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Abstract

Near-neighbor search is an increasingly important operation for queries over multimedia,

text, and other non-standard datatypes. In large databases, near-neighbor searches must be

enhanced by indexed retrieval for e�ciency. In this paper, we present a detailed analysis of

three proposals for near-neighbor search: one based on the R-tree, and two which motivated

the invention of new trees, namely the SS-tree and SR-tree. We �nd that while the new trees

do improve performance, the reason for their improvement comes mostly from a new Penalty

metric, and not from a variety of other details in their implementation. Our analysis was done

using a Generalized Search Tree, which both allowed us to easily do a fair comparison, and also

provided the framework for a clearer analysis of the issues at hand.

1 Introduction

Near-neighbor search is a technique required by a variety of new applications. Given a particular

data item, near-neighbor search �nds the k closest matches to the item and outputs them in

order of proximity. Example applications that use near-neighbor search include full-text document

retrieval, image retrieval, geographic information systems, and sequence alignment in bioinformatics

programs.

A natural way to handle \rough" queries over non-standard data types is to map data to points

in a multidimensional space, and map rough queries to points in the same space. Then a natural

Euclidean version of the near-neighbor problem can be used to retrieve data in the appropriate order.

This is done in document retrieval, for example: each document is mapped into a multidimensional

vector space, and a query (itself a \document" consisting of a set of keywords) is similarly mapped

into the same space { documents \close" to the query in the vector space are returned as matches,

ranked by their proximity. In order to get acceptable performance in large database systems,

multidimensional vector data is typically indexed by a spatial data structure like the R-tree [4] or

one of its related enhancements, e.g. the R*-tree [2].

Although R-trees and their variants were originally intended to support multidimensional selec-

tion predicates, Roussopoulos et al. presented a near-neighbor search algorithm [9] that works for

R-trees (and hence for the superior R*-trees). One year after that paper, White and Jain proposed

a somewhat di�erent data structure called the SS-tree, which { using the search algorithm of [9]

{ outperformed the R*-tree [11]. Just one year later, Katayama and Satoh presented the SR-tree,

which achieved even better performance with the same search algorithm [8].

�Current addresses: wangsh@pangea.stanford.edu, jmh@cs.berkeley.edu, ilipkind@uclink.berkeley.edu. This work

was supported by NASA grant 1996-MTPE-00099, and NSF grant IRI-9703972.
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Name BP Shape Reinsertion Penalty PickSplit

R*-tree 2 R* R* R*

SS-tree 
 SS SS SS

SR-tree 
;2 SS SS SS

Table 1: A summary of previous indexing tree structures.

While these results represent swift practical progress, the conclusions to be drawn from this body

of work are somewhat unclear. The data structures vary in four di�erent ways, and the e�ects of

each individual variation on performance are not clear. In essence, the performance results to date

are not su�ciently detailed to generate a clear understanding of the underlying issues.

This paper recti�es that problem by presenting a detailed analysis of the performance distinctions

between these trees. We implemented all three trees using a Generalized Search Tree (GiST)

library [5], which allowed us to easily \mix and match" techniques proposed for each tree, and

fairly compare the performance di�erences. Our analysis con�rms the results presented in the

previous papers, and also shows that (1) most of the performance bene�ts of the SS-tree arise from

only one of the four parameters it modi�ed in the R*-tree (i.e. the Penalty metric), and (2) the

rectangular shape of R*-tree keys is generally advantageous for near-neighbor search, particularly

in high dimensional spaces. The combination of these results suggests that R*-tree with a modi�ed

Penalty metric is an attractive solution for near-neighbor search. Our study also highlights the

advantages of the GiST framework for access method development and analysis, and suggests that

future e�orts in access method design should shift focus: the invention of \new" trees no longer

seems as important as the careful analysis of the individual factors a�ecting tree performance.

2 The Search Trees

The GiST software reduces the distinctions between search trees to a matter of search key type,

and a few simple \extension" methods. This minimizes the code required to generate a new search

tree. An added advantage is that the di�erences between search trees can be clearly stated by

focusing on the GiST extension methods. To describe the di�erences between the trees we study

here, we outline the salient GiST extensions of each, including both the data in the tree's search

keys, and the methods on those keys. These features are summarized in Table 1. We focus on the

R*-tree, SS-tree, and SR-tree.

� Bounding predicates: Internal nodes in each search tree contain search keys, which are perhaps

better described as bounding predicates (BPs). A BP is associated with a pointer, and can

be thought of as a compressed representation of all data items at the leaves of the subtree

referenced by the pointer. Since BPs typically must be small in order to provide high fanout,

they typically represent lossy compressions of the set of data below them { lossy in the sense

that they over-generalize. The danger of being over-general is that searches may delve into

subtrees that contain no relevant data.

R*-tree BPs are bounding hyperrectangles, i.e. ranges from low to high in each of n dimen-

sions. The SS-tree uses bounding hyperspheres, i.e. an n-dimensional point and a radius.

All points below a BP's pointer are contained in the corresponding hyperrectangle or hy-

persphere. The SR-tree maintains both a bounding hyperrectangle and hypersphere; the
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conjunction of structures allows the SR-tree to prune searches in every situation that either

the SS-tree or the R*-tree can. Moreover, the information provided by the hyperrectangles

allows the SR-tree to maintain smaller hyperspheres than the SS-tree.

� Penalty Metric: In all the trees we consider here, BPs in a given node may overlap. When a

new entry is to be inserted below a particular internal node of the tree, the insertion algorithm

has to choose a subtree to hold the new entry. The Penalty metric uses the BPs in the node

to estimate the overhead of placing a new entry into a particular subtree; the subtree of least

Penalty is chosen for insertion.

The R*-tree Penalty metric uses two di�erent techniques, one for insertion into leaf nodes,

and another for insertion into internal nodes. When the R*-tree Penalty metric is invoked on

a BP B pointing to a leaf nodes, it measures the area of overlap a between B and all other

entries on the node. It then computes B0, the value B would change to if the new entry were

inserted in B's subtree, and measures the area of overlap a0 between B0 and all other entries

on the node. The R*-tree penalty in this case is a0 � a. When the R*-tree Penalty metric is

invoked on a BP B at a higher level of the tree, it computes B0, and returns the di�erence in

(hyper-)volume between B0 and B.

For a BP B, the SS-tree's Penalty metric measures the Euclidean distance of the new item

to the center of the hypersphere B. The SR-tree also uses the SS-tree's Penalty metric.

� Reinsertion Policy: Multidimensional search trees can become poorly clustered over time.

The R*-tree introduced a heuristic to alleviate this problem. When an R*-tree node n over-


ows, it is not split; instead, 30% of the entries on n (those furthest from the center) are

reinserted into the tree one by one. If a reinserted entry causes an over
ow in some node m

at the same level of the tree as n, then m is split.

The SS-tree proposed a more aggressive splitting policy. If a node m over
ows while rein-

serting nodes from n, the SS-tree recursively calls the reinsertion code, reinserting 30% of

the elements in m rather than splitting. The SS-tree only splits a node m if the over
owing

insertion to m is a recursive call of a reinsertion from m. The SR-tree also uses the SS-tree's

reinsertion algorithm.1

� PickSplit Algorithm: When the insertion algorithm decides to split a page, the PickSplit

method is called to determine which entries remain on the old page and which are moved

to a new page. The R*-tree picksplit algorithm attempts to minimize the hyper-surfaces

(margin) of the two resulting nodes, and also the volume of the overlap between the two

nodes. To do this, it considers splitting along each dimension in turn; the dimension which

provides some way to split with minimum sum-of-margins (the margin of the old node's

bounding hyperrectangle plus the margin of the new node's bounding hyperrectangle) is

chosen for splitting. Once the dimension is chosen, all possible splits along that dimension

are considered, and the one of minimum overlap-volume is chosen.

The SS-tree �nds the dimension with the largest variance of center-coordinate across all entries

in the original node. It splits the entries up along this dimension in a way that minimizes

the variance of the center-coordinates in the resulting nodes. The SR-tree uses the SS-tree's

PickSplit algorithm.

1The reinsertion policy was not proposed as an extension method in the original paper on GiST [5]; this made our

implementation of the SS-tree reinsertion policy somewhat inconvenient. We are currently exploring the extension of

reinsertion to more general tree reorganizations, which we hope will be more bene�cial and 
exible than reinsertion

policies, and will interact better with concurrency control protocols like that of [7].
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2.1 Discussion

The Penalty, Reinsertion and PickSplit methods primarily a�ect the way that an index tree orga-

nizes itself; the data in the BPs a�ects the behavior of the search algorithm. If a particular tree

performs poorly, it could be the result of one or both of the following reasons:

1. Poor clustering: If the data in the tree is not clustered well, then a search algorithm will

have to \jump" from leaf node to leaf node to satisfy a query. Such a problem can only be

addressed by better implementations of Penalty, Reinsertion and PickSplit.

2. Poor BPs: Even if the data in the tree is well clustered, if the BPs are not su�ciently accurate

then a search algorithm may visit many nodes unnecessarily. Such a problem can be addressed

by storing more descriptive information in each BP to minimize the \lossiness" of the BP's

compressed representation of its subtree. Note however that the storage requirement of the

BPs determines the fanout of internal nodes of the tree, so it is advantageous to keep the BPs

small.

Table 1 clearly shows that the SS-tree and SR-tree are very similar: they di�er only in that the

SS-tree keeps more data in its bounding predicates than the SR-tree. Thus if an SS-tree clusters a

particular dataset poorly for near-neighbor queries, an SR-tree will do the same. The performance

di�erences between these two trees result primarily from (1) the di�erence in fanout, and (2) the

enhanced ability of the SR-tree to guide the near-neighbor search algorithm. The R*-tree, on the

other hand, provides di�erent Penalty, PickSplit and Reinsertion methods, and hence organizes

data into leaf nodes quite di�erently.

2.2 Framework of This Study

Our categorization of the previously-proposed search trees suggests an entire family of possible

\new" trees, corresponding to di�erent choices along each of the four columns in Table 1. In table 2

we enumerate all the possible trees one could construct from the BPs and extension methods used

in previous work. We also provide a preview of our results by checking o� trees that demonstrate

acceptable performance for some workloads.

In the remainder of the paper we compare all the trees in this table. Our goal is not merely to

�nd the combinations that work best, but to isolate the factors that actually a�ect performance. For

the extension methods, this can be done via simply trying out the di�erent combinations of methods

and seeing how the resulting trees di�er in performance. For the BPs, we wish to understand both

the bene�t of additional information, and the performance cost of reduced fanout.

The entries in Table 2 present the naming scheme we use throughout the paper. The pre�x of the

tree name is R*T, SST, or SRT, and corresponds to the BP shape of the tree (rectangle, sphere, or

both, respectively). Then each tree name has three \bits" which describe its Reinsertion, Penalty,

and PickSplit method, in that order. Bit value \r" corresponds to the R*-tree implementation of

the particular method, while \s" corresponds to the SS-tree implementation.

4



Name BP Shape Reinsertion Penalty PickSplit Competitive

R*Trrr (R*-tree) 2 R* R* R*

R*Trrs 2 R* R* SS

R*Trsr 2 R* SS R*
p

R*Trss 2 R* SS SS
p

R*Tsrr 2 SS R* R*

R*Tsrs 2 SS R* SS

R*Tssr 2 SS SS R*
p

R*Tsss 2 SS SS SS
p

SSTrrr 
 R* R* R*

SSTrrs 
 R* R* SS

SSTrsr 
 R* SS R*
p

SSTrss 
 R* SS SS
p

SSTsrr 
 SS R* R*

SSTsrs 
 SS R* SS

SSTssr 
 SS SS R*
p

SSTsss (SS-tree) 
 SS SS SS
p

SRTrrr 
;2 R* R* R*

SRTrrs 
;2 R* R* SS

SRTrsr 
;2 R* SS R*
p

SRTrss 
;2 R* SS SS
p

SRTsrr 
;2 SS R* R*

SRTsrs 
;2 SS R* SS

SRTssr 
;2 SS SS R*
p

SRTsss (SR-tree) 
;2 SS SS SS
p

Table 2: Structures considered in this paper. Structures with a check mark performed competitively

for some workload.
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Figure 1: An approximation of the overlap area of two circles.

2.3 Measuring the Overlap of Spheres

One minor complication arises in constructing SS-trees that use the R*-tree PickSplit algorithm.

That algorithm needs to compute the volume of overlap of BPs, and this is geometrically complex

for spheres. In our implementation we approximate this volume by the volume of the hyper-

parallelopiped that is enclosed by the overlapped area. This is illustrated for two-dimension in

Figure 1, where the shaded area is taken as a rough estimation of the overlap area. While this esti-

mations is rough (particularly in high-dimensional spaces), we will see that the resulting inaccuracy

in PickSplit has little e�ect on overall performance.

2.4 Near Neigbor Search Algorithm

In this section, we brie
y describe the near neighbor search algorithm proposed in [9], which was

used in the previous work on near-neighbor search in R*, SS and SR-trees. We sketch the algorithm

for completeness; the interested reader should consult the original near-neighbor search paper and

subsequent work [6, 1] for further details. The algorithm of [9] traverses the tree in a branch-and-

bound fashion, returning the k points closest to the query point. At all times it maintains a list

of the k nearest points seen so far and their distances; these are intialized to virtual points at

in�nite distance. The algorithm also maintains a priority queue of nodes to visit; this is initialized

to contain the root node. The algorithm traverses the tree by always visiting the �rst node on the

priority queue. If the current node it is visiting is a leaf, the algorithm �rst updates the list of k

nearest points based on the points contained in the leaf. If it is not a leaf, it orders all the BPs

on the node using a metric MINDIST, de�ned as the smallest possible estimate of the minimum

distance between the search point and any point in the BP. The BP with the smallest MINDIST

is hoped to contain more points close to the search point; hence the priority queue is maintained

ordered by MINDIST. Another metric MINMAXDIST, which measures the smallest possible upper

bound between the query point and all points in the BP, is used together with MINDIST to prune

some of the BPs prior to the visit. The algorithm terminates when the priority queue is empty, at

which point the k nearest neighbors are returned.

Although the traversal algorithm is the same for all the trees, search performance depends

heavily on the accurate estimation of the MINDIST and MINMAXDIST metrics. As we will see,

the performance improvement of SR-tree over SS-tree comes directly from a better estimation of

these two metrics, even though SR-tree has a smaller fanout in the non-leaf levels.
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3 Experimental Study

We implemented the trees described above in C++ using the libGiST package, version 0.9b1 [3].

LibGiST includes the R*-tree reinsertion policy as an option, and we enhanced it to o�er the SS-

tree reinsertion policy as well. The trees were stored in UNIX �les, and no bu�er management was

used in our experiments, which simply measure I/O requests from libGiST to the �le system. The

machine used for the experiments was a Dell PowerEdge 4100 Server, with 2 200Mhz Pentium Pro

processors, 256 Mb of RAM, and one 4Gb hard drive, running the SunOS 5.5.1 operating system.

3.1 Datasets

In our experiments we use both synthetic and real point datasets. We generate synthetic data in 3,

10 and 16 dimensions, with the range for each dimension being [0,1]. We examine the performance

of the trees with varied dataset sizes, from 10,000 to 100,000 entries, increasing by intervals of 10,000

entries. Each of the 10,000 entries contains 100 clusters, with cluster centers distributed randomly

in the space. Each cluster contains 100 points, distributed randomly in a small hypercube with

length of 0.1 in each dimension. These datasets are modeled on those of [8], but di�er slightly in that

the clusters of [8] are distributed randomly in a hypersphere instead of a hyperrectangle. Uniform

datasets are also used for test, but are found to be unsuitable for evaluating index structures [8] in

high dimensions, and are not shown in this paper. All of our queries fetch the 21 nearest neighbors

of a point, and the results are averaged over 1000 queries.

Our real dataset consists of latitude/longitude coordinates of 1,355,825 place names in the

United States, from the USGS Geographic Names Information System [10]. The two dimensional

BPs (xi; yi) were �rst normalized to give (Xi; Yi) where Xi and Yi are between 0 and 1: Xi =

(Xi �Xmin)=(Xmax �Xmin). Here, Xmin is the minimium of all Xs, and Xmax is the maximum.

Similar scaling is done on the y coordinates. This linear scaling does not a�ect our results, but

made the generation of queries somewhat simpler.

In the rest of the paper, our conclusions based on synthetic data are derived from complete

experiments on 3, 10 and 16 dimensional datasets, even though some of the results are not shown.

For clarity, we choose to �rst present experiments on point data in 3, 10 and 16 dimensions. Based

on the results of these initial experiments, we go into details and present data that are only relevent

to the understanding of why a speci�c organization was good (or bad).

3.2 General Performance: Penalty Metric Dominates

In order to test the performance of the di�erent trees, we generated near-neighbor queries by choos-

ing a point at random from an n-dimensional hypercube, and requesting the 21 nearest neighbors

of that point. For each query we measured the number of leaf-level I/O requests generated by

libGiST. All results shown in this paper were averaged over 1,000 queries. We chose to focus on

leaf-level I/Os since, in the presence of a bu�er manager, these I/Os dominate query performance

time.

Figure 2 shows experimental results for all the trees of Table 2, with experiments over 16-

dimensional data sets of increasing size. The most signi�cant conclusion that arises from this

experiment is that trees with a \1" in the second bit outperform the corresponding trees with that

bit 
ipped to \2", indicating that the Penalty metric plays the most important role in determining
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performance. For example, the performance of a conventional R*-tree (R*Trrr) is improved by a

factor of between �ve and seven when it is modi�ed to use the SS-tree Penalty metric. The same

trend is also observed for the SS-tree and SR-tree. For these two trees, when the R*-tree Penalty

metric is used, their performance deteriorates by a factor of 4. Compared to the Penalty metric,

the PickSplit and Reinsertion methods a�ect the performance far less (by a factor of 30-40% at

the most). More importantly, no general trend suggests that one implementation of these methods

outperforms the other. For this reason, we do not present further results comparing trees that

di�er only on the Reinsertion and the PickSplit policies.

Although we do not present the results here, we con�rmed the dominant in
uence of the Penalty

metric for our 10-dimensional and 3-dimensional datasets. In the 3-dimensional case, the SS-tree

Penalty metric does not outperform the R*-tree Penalty metric as much as before, but it still makes

a signi�cant di�erence (about a factor of 3).

Broadly put, these results suggest that the conventional R*-tree does not perform well for near-

neighbor queries because it does not cluster data well. This conclusion is reached through three

observations. First, both the R*Trrr and SRTrrr do not perform well, and touch at least half of the

leaf level pages. Second, a close look at the leaf level nodes reveals that distant pairs of points are

frequently stored in the same page. Third, and most important, when the SS-tree Penalty metric

is used, R*-tree performance increases dramatically. In Section 3.4 we will see that the R*-tree

provides relatively e�ective techniques for the near-neighbor search algorithm. Thus the ine�ciency

of the coventional R*-tree can be mainly attributed to its Penalty metric, which does not cluster

the data well.

3.3 Search and BP Shape: Rectangles Dominate

Having demonstrated the Penalty metric as the predominant performance factor among the exten-

sion methods, we turn our attention to bounding predicates themselves, and their e�ect on search.

In Figure 3a, we compare the performance of four implementations on 16 dimensional data: the

traditional R*-tree (R*Trrr), the original SS-tree (SSTsss) and SR-tree (SRTsss), along with an

R*-tree that uses SS-tree extension methods (R*Tsss).

The �rst observation to make is that we con�rm the results of the previous work: SRTsss

outperforms SSTsss, while SSTsss outperforms R*Tsss. Second and more important, we see that

R*Tsss performs much better than SSTsss. This is not only true for 16-dimensional data, but also

true for 3-dimensional data as shown in �gure 3b. Note that the SR-tree has all the information

of the SS-tree in its keys, and is clustered similarly (though it has a smaller non-leaf fanout). The

ine�ciency of the SS-tree compared to the SR-tree suggests that the spherical BPs do not provide

e�cient search when the dimensionality is high. In this sense, rectangular BPs seem better than

spherical ones. Since the performance of SRTsss and R*Tsss are almost the same, we conclude

that for SR-trees on high dimensionality data, the rectangular portion of the key is used to direct

the near-neighbor search algorithm.

The fact that the rectangle directs the search for high dimensional SR-trees was actually ob-

served by Katayama and Satoh. In the original SR-tree paper they explain this by arguing that

spherical keys have smaller diameter, and hence may often provide tighter bounds than rectangles

even though they typically have larger volume than rectangles. While it is true that the sphere

often has a larger volume, its advantage of having smaller diameter may not be important. Our

results demonstrate that R*Tsss is comparable to SRTsss, despite the fact that that R*Tsss uses
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rectangular keys of arguably larger diameter.

We want to point out here that storage utilization di�erence for the four trees does not explain

the performance di�erence. For R*Trrr, the storage utilization is around 73%, while for SSTsss,

R*Tsss and SRTsss, the number is around 80%-85%. However, for some tree implementations

(especially those SS-trees with R*-tree Penalty metric), the storage utilization may decrease to as

low as 55%.

3.4 A Closer Look at Spheres and Rectangles

We proceed to more carefully examine the relative merits of sphere and rectangle keys. Before

continuing, recall that during search, the near-neighbor algorithm computes two metrics for each

BP on the node: MINDIST and MINMAXDIST [9]. They are used to order and prune the nodes

to visit in a near-neighbor traversal of the tree.

We do not reiterate here the formulae for MINDIST and MINMAXDIST for rectangular and

spherical BPs; the interested reader is referred to [9] and [11] for these details. We designate

the MINDIST for rectangular and spherical BPs as MINDISTR�TREE and MINDISTSSTREE,

respectively. Similarly, we de�ne MINMAXDISTR�TREE and MINMAXDISTSSTREE as the

MINMAXDIST for the rectangular and spherical BPs. Since an SR-tree keeps both the rectangle

and the sphere, MINDIST and MINMAXDIST are de�ned as

MINDISTSRTREE = MAX(MINDISTSSTREE ;MINDISTR�TREE) (1)

MINMAXDISTSRTREE = MIN(MINMAXDISTSSTREE ;MINMAXDISTR�TREE)(2)

In our experiments, we also implemented two variations of the SR-tree. The �rst one, designated

as SRTSSsss, uses the SS-tree de�nition of MINDIST and MINMAXDIST. That is,

MINDISTSRTREE = MINDISTSSTREE (3)

MINMAXDISTSRTREE = MINMAXDISTSSTREE : (4)

Similarly, SRTR*sss uses the R*-tree de�nitions of MINDIST and MINMAXDIST:

MINDISTSRTREE = MINDISTR�TREE (5)

MINMAXDISTSRTREE = MINMAXDISTR�TREE: (6)

We compared the performance of SRTSRsss, SRTSSsss and SRTR*sss on our 16-dimensional test

data, and the results are shown in Figure 4 (upper). Note that in this experiment the actual tree

constructed in each case is identical; only the distance metrics of the search algorithm are changed.

As one can see, the performance of SRTSRsss and SRTR*sss are comparable, while the SRTSSsss

often touches 4 times more pages than SRTSRsss does. This clearly demonstrates that SS-tree does

not perform well for high dimensional data, because it does not allow optimal estimation of many

distance metrics.

We also compared the performance of SRTSRsss, SRTSSsss and SRTR*sss for three-dimensional

data. As shown in Figure 4 (lower), the performance of the SS-tree metrics does exceed that of

the R*-tree metrics in this case. The SR-tree-based metrics outperform both as expected, but in

this case the superiority derives from their ability to use their bounding spheres. We noticed that

when the dimensionality is low, spherical keys are advantageous, even though the total number of

leaf-level nodes that are touched is so small that the di�erence between SRTSRsss and SRTSSsss

does not exceed two pages.
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Figure 5: Diagram shows the modi�cation to SS-tree

3.5 Improving the Sphere

We now examine the SS-tree more closely, to understand why the SS-tree cannot estimate the

distance metrics e�ectively for high dimensional data. To do this, we try to modify the BPs for

SS-tree to include more information, which can allow a better estimation of the distance metrics.

One such modi�cation, of course, is to keep a rectangle in addition to the sphere, as in the SR-tree.

However this decreases the fanout for the non-leaf level of the SS-tree by a factor of three. We are

more interested in modi�cations that improve the SS-tree performance without a�ecting the fanout

signi�cantly.

Our �rst modi�cation to the SS-tree is to include a new �eld that stores the distance between

the center and the point in the bounding sphere that is nearest to the center (D2 in Figure 5).

Without this distance, MINMAXDIST is calculated by

MINMAXDIST1 = D1 =
p
D0 �D0 +R �R; (7)

where R is the radius of the sphere and D0 is the distance between the search point P and the

center of the sphere C. Using the new distance D2, we have

MINMAXDIST2 = D0 +D2 (8)

MINMAXDIST = MIN(MINMAXDIST1;MINMAXDIST2): (9)

Notice that MINMAXDIST is a better estimation than MINMAXDIST1. In our experiments,

however, we found that this modi�cation did not a�ect the performance noticeably.

In an attempt to improve things, we chose to store the coordinates of the point N that is nearest

to the center, rather than just the distance D2. With this point N , we have

MINMAXDIST2 = D3 (10)

MINMAXDIST = MIN(MINMAXDIST1;MINMAXDIST2); (11)

whereD3 is the distance between P and N. In Figure 6, we compare the performance of the standard

SS-tree with an SS-tree whose BPs also contain this new �eld.

As one can see, with the new �eld SS-tree actually performs worse. This is not surprising if one

considers that this modi�cation decreases the non-leaf level fanout by a factor of two. If this e�ect

is compensated by doubling the page size at the nonleaf levels, the performance of the modi�ed
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Figure 6: Performance of the Modi�ed SS-tree for 16-D data.

SS-tree actually almost matches that of the SS-tree. This suggests that our second modi�cation

does not improve the performance of SS-tree either.

One should notice that while the above modi�cations allow a better estimation of MINMAXDIST,

they do not improve the estimation of MINDIST. This ine�ciency of the modi�cations suggests that

the SS-tree does not perform well because it gives an inaccurate estimation of MINDIST. The R*-

tree and SR-tree, which save a rectangle, allow a better estimation of MINDIST, and outperforms

the SS-tree for high-dimensional dataset.

From these experiments, we can come up with a relatively clear picture of why SS-trees do not

work well for high dimensional data. When visiting children of a node during a near-neighbor

traversal, the child of smallest MINDIST is visited �rst. However, since SS-trees do not make a

good estimation of MINDIST, the child with the smallest MINDIST often does not contain many

points that are nearest to the search point.

3.6 The E�ects of Fanout

A close look at Figure 6 suggests that page size does not a�ect the performance of the SS-tree too

much. To verify this observation, we reran the 16D test for R*Tsss, SSTsss and SRTsss, halving

their pagesize to 4096 bytes. The results are summarized in Figure 7. As one can see, when the

page size is halved, the number of leaf level page accesses increases. However, the increase is only

about 30% at most. Compared to the 3- to 7-fold di�erences in performance due to the Penalty

metric, we expect any e�ects due to a 2x di�erence in fanout to essentially be noise.
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Figure 7: The dependence of the performance on pagesize for 16-D data.

3.7 Performance on Real Data

Finally, we checked our low-dimensional results by experimenting on real two-dimensional data,

representing the locations of places in the United States. As shown in Figure 8, the performance

of all three trees is good. This is expected for the low dimensionality of map data (2). The

performance of SR-tree is the best, as expected. Compared to the synthetic 3-D data, two issues

are worth noting. First, the performance di�erence between R*-tree and SR-tree is much less

dramatic for the real data. This suggests that R*-trees may serve as good approximations of the

superior SR-trees in realistic low-dimensional data sets. SS-trees remain ine�ective: the number of

leaf level pages that are touched by the SS-tree is about two times that of the R*-tree, and 3 times

that of the SR-tree.

4 Conclusions and Future Work

We have performed a detailed study of the techniques proposed for near-neighbor search in the R*-

tree, SS-tree, and SR-tree. Our analysis shows that the most important di�erence between these

trees is that the Penalty metric used in the SS-tree and SR-tree is superior to that of the R*-tree,

resulting in far better clustering for near-neighbor search. The di�erent Reinsertion and PickSplit

methods proposed for these trees do not seem to make much relative di�erence in performance.

With regarding to the bounding predicates, we �nd that rectangular bounding predicates are

superior to spherical ones in high dimensions, since rectangular BPs produce smaller estimations

of the MINDIST metric in the near-neighbor search algorithm.

Combining these results, we observe that when the R*-tree is modi�ed to use the SS-tree Penalty
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Figure 8: Performance comparison on 2-D geographical data.

metric, it actually outperforms the SS-tree in most of our experiments on sythetic and real data.

The SR-tree outperforms all trees, but its performance for high dimensional data is not signi�cantly

superior to that of the modi�ed R*-tree. For low-dimensional data, where the search often involves

only a few page accesses, the SR-tree does outperform the R*-tree, though the absolute di�erence

per lookup is only a couple I/Os. In short, we believe that R*-trees with a modi�ed Penalty metric

are an attractive choice for near-neighbor search in spaces of more than a few dimensions; this is

particulary true since R* are more standard for range-search and have already been implemented

in a variety of contexts.

A subsidiary result of this work is to illustrate the advantage of GiSTs not only for ease of

implementation, but also for clarity in the analysis of design tradeo�s. The GiST framework

exposes just those parameters which vary across trees, and hence motivates access method designers

to examine those parameters closely. Although our study suggests that modi�ed R*-trees are an

attractive choice for near-neighbor search, we very consciously chose not to give these \new" trees

a name. It is our belief that most multi-dimensional search trees are extremely similar, and that

the interesting challenge in designing an e�cient search tree is not in inventing new techniques, but

in justifying the particular advantages of the techniques.

A few open problems remain in this body of work. First, we would like to extend our results

to range queries. We believe that the Penalty metric of the SS-tree should be advantageous for

such workloads, since it seems to cluster proximate points together. We are also interested in

focusing closely on the data stored in BPs to support near-neighbor search; we believe that it may

be possible to improve upon the combined rectangle/sphere BP of the SR-tree. Finally, there exist

near-neighbor search algorithms [6] that are more e�cient than that of [9], and we would like to
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revisit our results in that context.
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