
EXTENDING A DATA BASE SYSTEM WITH PROCEDURES

Michael Stonebraker, Jeff Anton and Eric Hanson

EECS Department
University of California

Berkeley, Ca., 94720

Abstract
This paper suggests that more powerful data base systems (DBMS) can be built by support-

ing data base procedures as full fledged data base objects. In particular, allowing fields of a data
base to be a collection of queries in the query language of the system is shown to allow complex
data relationships to be naturally expressed. Moreover, many of the features present in object-
oriented systems and semantic data models can be supported by this facility.

In order to implement this construct, extensions to a typical relational query language must
be made and considerable work on the execution engine of the underlying DBMS must be accom-
plished. This paper reports on the extensions for one particular query language and data manager
and then gives performance figures for a prototype implementation. Even though the perfor-
mance of the prototype is competitive with that of a conventional system, suggestions for
improvement are presented.

1. INTRODUCTION
Most current data base systems store information only as data. However older data base sys-

tems (e.g. [DBTG71]) specifically allowed data base procedures written in a general purpose pro-
gramming language to be called during command execution. Moreover, Lisp [WILE84] supports
objects which are interchangeably either procedures or data. In this paper we suggest that sup-
porting a restricted form of data base procedures in a DBMS allows complex data base problems
to be easily and naturally addressed. In particular, we propose that a field in a data base be
allowed to have a value which is a collection of commands in the query language supported by
the DBMS (e.g. SQL [SORD84] or QUEL).

Our proposal should augment a field-oriented abstract data type (ADT) facility (e.g.
[ONG84]). Such an ADT capability appears useful for supporting relatively simple objects
which do not require shared subobjects (e.g. lines, points, complex numbers, etc.). On the other
hand, data base procedures are attractive for more complex objects, possibly with shared subob-
jects (e.g. forms, icons, reports, etc.).

We begin in Section 2 by presenting the data definition facilities for procedural data along
with several examples of the use of this construct. Then, in Section 3 we review briefly how to
extend one query language with necessary facilities to use procedures. Our choice is QUEL
[STON76], but the extensions are easy to map into most other relational query languages. The
definition of this language, QUEL+, is indicated in Section 3 and is based on suggestions in
hhhhhhhhhhhhhhhhhhhhhhhhhhhhh

This research was sponsored by the U.S. Air Force Office of Scientific Research Grant 83-0254 and
the Naval Electronics Systems Command Contract N39-82-C-0235

[STON84]. Substantial changes to the query execution code of a data base system are required to
process QUEL+. In Section 4 we indicate the changes that were necessary to support our con-
structs in the University of California version of INGRES [STON76]. Then, in Section 5 the per-
formance of our prototype on several problems with complex data relationships is indicated.
Lastly, Section 6 discusses ways in which the performance of the prototype could be improved.

2. DATA BASE PROCEDURES
The motivation behind using procedures as full-fledged data base objects was to retain the

‘‘spartan simplicity’’ of the relational model, while allowing it to address situations where it has
been found inadequate. Such situations include generalization, aggregation, referential integrity,
transitive closure, complex objects with shared subobjects, stored queries, and objects with
unpredictable composition. The main advantage of our approach is that a single mechanism can
address a large class of recognized deficiencies. We discuss the data definition capabilities of our
proposal along with examples of its application to some of the above problems in the remainder
of this section.

2.1. Objects with Unpredictable Composition
The basic concept is that a field in a relation can have a value consisting of a collection of

query language commands. Consider, for example, a conventional EMP relation with the
requirement of storing data on the various hobbies of employees. Three relations containing
hobby data might be:

SOFTBALL (emp-name, position, average)
SAILING (emp-name, rating, boat-type, marina)
JOGGING (emp-name, distance, best-time, shoe-type, number-of-races)

Each gives relevant data for a particular hobby. For example, Smith could be added as the
catcher of the softball team by:

append to SOFTBALL (name = ‘‘Smith’’, position = ‘‘catcher’’, average = 0)

The desired form of the EMP relation would be:

create EMP (name = c10, age = i4, salary = f8, hobbies = procedure)

Then, for example, Smith could be added as an employee by:

append to EMP (
name = ‘‘Smith’’
age = 40
salary = 10000,
hobbies = ‘‘retrieve (SOFTBALL.all)

where SOFTBALL.name = ‘‘Smith’’’’
)

In this case, the first three values are conventional fields while the fourth is a field of data type
‘‘collection of commands in the query language’’. The value of this last field is obtained by exe-
cuting the command (s) in the field. As such the ultimate value of each hobbies object is an arbi-
trary collection of records of arbitrary composition. A procedural field has the flexibility to
model environments where there is no predetermined structure to objects. A second example of
the need for procedural fields is indicated in the next subsection.

2.2. Stored Queries
Most data base systems which preprocess commands in advance of execution (e.g. System

R [ASTR76] and the IDM [EPST80]) store access plans or compiled code in the data base sys-
tem. Such systems already manage a data base of compiled queries. Their implementations

2

would become somewhat cleaner if data base commands became full-fledged data base objects.
For example, the precompiler for a programming language could run a conventional APPEND
command to insert a tuple into the following relation for each data base command found in a user
program:

TODO (id, command)

Then, at run time the program would use the EXECUTE command to be introduced in Section 3:

execute (TODO.command) where TODO.id = value

To substitute parameters into such a command, one requires an additional operator ‘‘with’’ to
specify:

execute (TODO.command with param-list) where TODO.id = value

In this way, the compile-time and run-time interfaces to the data base system are the same, result-
ing in a more compact implementation.(**) Moreover, in Section 6 we discuss how to asynchro-
nously build query processing plans for user commands between the time that the preprocessor
inserts then in the TODO relation and the time that the user executes them. Hence, there is no
performance penalty to our approach compared to current technology. In fact, our approach may
well run faster because in Section 6 we also propose caching the answers to commands as well as
their execution plan.

A second use of stored queries is to support the definition of relational views. Each view
can be stored as a row in a VIEW relation as follows:

VIEW (name, query)

Here, the retrieval command that defines the view can be stored in the ‘‘query’’ field while the
name of the view is stored in the ‘‘name’’ field. The query modification facilities of [STON75]
are needed to support the extensions that we propose to a query language in the next section; con-
sequently, it will be seen that views require very little special case code if implemented as pro-
cedural fields.

Lastly, many applications require the ability to store algorithms made up of data base com-
mands in the data base. An example of this kind of application is [KUNG84]. Our proposal con-
tains exactly the facilities needed in such environments.

2.3. Complex Objects with Shared Subobjects
Another example where procedures are helpful is in modeling of complex objects. Suppose

an object is composed of text, line segments, and polygons and is represented in the following
relations:

OBJECT (Oid, text, shape)
LINE (Lid, l-desc)
TEXT (Tid, t-desc)
POLYGON (Pid, p-desc)

Subcomponents of objects would be inserted into the LINE, TEXT or POLYGON relation, and
we assume that l-desc and p-desc are of type ‘‘line’’ and ‘‘point’’ respectively and utilize a field-
oriented ADT facility (e.g. [ONG84]). For example:

append to LINE (Lid = 22,
l-desc = ‘‘(0,0) (14,28)’’)

hhhhhhhhhhhhhhhhhhhhhhhhhhhhh
** Of course, authorization must be done for the above command to support access control. It would

be beneficial to avoid reauthorizing a command each time it is executed from an application program. A
mechanism to accomplish this task is beyond the scope of this paper.

3

append to POLYGON (Pid = 44,
p-desc = ‘‘(1,10) (14,22) (6,19) (12,22)’’)

append to TEXT (Tid = 16,
t-desc = ‘‘the fox jumped over the log’’)

Then, the ‘‘text’’ and ‘‘shape’’ fields of OBJECT would be of type procedure, and each tuple in
OBJECT would contain queries to assemble a specific object from pieces stored in the other rela-
tions. For example, the following query would make object 6 be composed of all line segments
with identifiers less than 20, polygon 44, and the first 9 text fragments.

append to OBJECT(Oid = 6,
shape = ‘‘retrieve (LINE.all) where LINE.Lid < 20

retrieve (POLYGON.all) where POLYGON.Pid = 44’’,
text = ‘‘retrieve (TEXT.all) where TEXT.Tid < 10’’)

Notice that sharing is easily accomplished by inserting queries into multiple ‘‘shape’’ or ‘‘text’’
fields which reference the same subobject.

Additional examples of complex objects include forms (such as found in a system like
FADS [ROWE82]), icons, reports, and complex geographic objects (e.g. a plumbing fixture
which makes a right angle bend).

When objects can have a variety of subobjects and those subobjects can be shared, most
contemporary modelling ideas are flawed. For example, the proposal of [HASK82, LORI83]
does not easily allow shared subobjects. Semantic data models (e.g. [HAMM81, MYLO80,
SHIP81, SMIT77, ZANI83]) lack the flexibility to deal with uncertain structure. The proposal of
[COPE84] allows sharing by storing subobjects as separate records and connecting them with
pointer chains. Our sharing is accomplished without requiring a specialized low level storage
manager, and we will show in Section 6 how caching can be used to make performance competi-
tive with pointer based proposals.

2.4. Generalizations to Arbitrary Procedures
Our proposal should be easily generalizable to procedures written in a general purpose pro-

gramming language. An example that can utilize more general procedures is a graphics applica-
tion that wishes to store icons in the data base (e.g. [KALA85]). Icons should be stored in human
readable form, so their description can be browsed easily. However, display software requires
icons to be converted into a display list for a particular graphics terminal. An icon could be a
complex object, and its components assembled by a query. However, the components must then
be turned into a display list by a procedure in a general purpose programming language which
appears in an application program. Efficiency can be gained by caching icons as noted in Section
6; however, further efficiency results from caching the actual display list. Such a capability
requires general procedures rather than just data base procedures.

A second example of the need for general procedures is in the support for extended data
type proposals (e.g. [ONG84]) They require user-defined procedures to implement new operators.
Such procedures must be called by the DBMS as appropriate, and it would be more natural if they
were full fledged data base objects.

A last example of the use of general procedures would be in the system catalogs of a typical
relational data base system where the following two relations appear.

RELATION (relation-name, owner, ...)
ATTRIBUTE (relation-name, attribute-name, position, data-type, ...)

Whenever a relation with N attributes is ‘‘opened’’, a ‘‘descriptor’’ must be built by accessing
one tuple in RELATION plus N tuples from the ATTRIBUTE relation. In order to allow ‘‘brows-
ing’’ of the system catalogs, it is desirable to store the catalogs in the above fashion; however the

4

penalty is the lengthy time required to open a relation.

An alternate solution is to add a procedural field to RELATION, e.g:

RELATION (relation-name, owner, ... , descriptor)

The ‘‘descriptor’’ field contains queries to retrieve the appropriate tuples from the ATTRIBUTE
relation and the current tuple from the RELATION relation. These queries are surrounded by
code in a general purpose programming language to build the actual descriptor in the format
desired by the run time system.

In Section 6 we will discuss a technique that allows the value for a procedural field to be
cached in the field itself. If this is accomplished, then the N accesses to the ATTRIBUTE rela-
tion are avoided, and the descriptor can be accessed directly from the RELATION relation.
Writes to tuples in the ATTRIBUTE relation which make up an object (an infrequent event) will
cause the cached value to be invalidated as explained in Section 6. The next time a relation is
opened, the contents of the cached value must be reassembled.

Alternate implementations of complex objects (e.g. [COPE84]) store subobjects as indivi-
dual records. Hence, pointers must be followed to assemble a composite object. Sophisticated
clustering will be required to avoid extra disk reads in this environment. Moreover, if subobjects
are shared, it will be impossible to guarantee clustering. Our caching implementation should
offer superior performance to one based on pointers when updates are infrequent. It should be
noted, however, that our caching idea can be applied to any DBMS to improve performance.
Hence, a pointer based DBMS that also implemented caching might be an attractive alternative.

We now turn to a special case of procedural data types and indicate its utility.

2.5. Referential Integrity
Consider the standard EMP and DEPT example as follows:

EMP (name, age, salary, dept)
DEPT (dname, floor, budget)

Here, one often wants to guarantee that the values that occur in the column ‘‘dept’’ of EMP are a
subset of the values that occur in the field ‘‘dname’’ in DEPT. This concept has been termed
referential integrity in [DATE81] and occurs because ‘‘dept’’ is, in effect, a pointer to a tuple in
DEPT and is represented by a foreign key.

Procedural data can alleviate the need for special case syntax and implementation code to
support referential integrity in the following way. Suppose the ‘‘dept’’ field for each employee in
the EMP relation contains the following procedure:

retrieve (DEPT.all) where DEPT.dname = ‘‘the-appropriate-dept’’

In this case the following semantics are automatically enforced. Whenever, an employee is hired
and assigned to a non-existent department, then the procedure in the ‘‘dept’’ field evaluates to
null, and the employee is effectively placed in the null department. Moreover, whenever a
department is deleted from the DEPT relation, then all employees who were previously in that
department now have a procedural field which evaluates to null and are thereby placed in the null
department. Although [DATE81] has several other options, procedural data captures the main
thrust of that proposal.

Notice that all fields in the ‘‘dept’’ column have the same basic query as their value, differ-
ing only in the constant used in the qualification. Consider an implementation of this special case
whereby the parameterized command(s) is stored in the system catalogs and only the parameter(s)
stored in the field itself. Hence, in the example above, only the department name of the
employee’s department would appear in the field ‘‘dept’’, while the remainder of the query:

retrieve (DEPT.all) where DEPT.dname = parameter-1

5

would appear in the system catalogs. Moreover, an update to the ‘‘dept’’ field would only need to
specify the parameter and not the entire query, e.g:

append to EMP (name = ‘‘Joe’’, age = 25, salary = 10000, dept = ‘‘shoe’’)

To specify this special case syntactically, one could proceed in two steps. First, one could
register the procedure containing the parameter(s) with the data manager and give it some inter-
nal name, say DEPARTMENT, with the following command:

define DEPARTMENT as retrieve (DEPT.all) where DEPT.dname = parameter-1

Then, one could create the EMP relation as:

create EMP (name = c10, age = i4, salary = f8, dept = DEPARTMENT)

Alternatively, one could avoid the registration step for commonly used procedures such as the
one above by accepting the following syntax:

create EMP (name = c10, age = i4, salary = f8, dept = DEPT[dname])

The syntactic token DEPT[dname] signifies that the procedure

retrieve (DEPT.all) where DEPT.dname = parameter-1

should be automatically defined and associated with the ‘‘dept’’ field.

The data type ‘‘pointer to a tuple’’ suggested in [POWE83, ZANI83] can be effectively
supported by another special case. Suppose each relation automatically contains a unique
identifier (UID), a feature commonly requested in some environments. Moreover, suppose in the
syntax:

create EMP (name = c10, age = i4, salary = f8, dept = DEPT)

the DEPT token is automatically associated with the query:

retrieve (DEPT.all) where DEPT.UID = parameter-1

In this way procedures can be used to support the capability that a field in one relation can be a
uniquely identified tuple in another relation.

2.6. Aggregation and Generalization
Procedural fields can support both generalization and aggregation as proposed in [SMIT77].

For example, consider:

PEOPLE (name, phone#)

where phone# is of type procedure and is an aggregate for the more detailed values area-code,
exchange and number. As such, the following parameterized procedure can be used for the
phone# field:

retrieve (area-code = parameter-1, exchange = parameter-2, number = parameter-3)

A simple append to PEOPLE might be:

append to PEOPLE (name = ‘‘Fred’’, phone# = ‘‘415-841-3461’’)

Here, ‘‘-’’ is the assumed separator between the values of the three parameters.

Generalization is also easy to support. If all employees have exactly one hobby, then the
hobbies field in the example EMP relation from Section 2.1 will specify a simple generalization
hierarchy. In fact, our example use of hobbies supports a generalization hierarchy with members
which can be in several of the subcategories at once.

6

2.7. Summary
In summary, data base procedures are a high leverage construct. Not only can they be used

to simulate a variety of semantic data modelling ideas such as generalization and aggregation, but
also they can be used to support objects that have unpredictable composition and shared subob-
jects. In addition, they are useful in simplifying the design of current relational systems by
allowing a more uniform treatment of compiled queries and views. Lastly, support for pro-
cedures written in an arbitrary programming language is a natural and valuable extension, and a
preliminary proposal in this direction appears in [STON86]. Hence, a single construct is useful in
a wide variety of circumstances.

3. THE QUERY LANGUAGE, QUEL+
In order to make procedures a useful construct, several extensions must be made to QUEL

and these are indicated in the next several subsections. This language, QUEL+, contains slight
modifications to the facilities proposed in [STON84], and a concise summary of its extensions to
QUEL appears in Appendix 1.

3.1. Execution of the Data
A procedural field can be interpreted in two ways, namely it has a definition which is the

QUEL code in the field and a value which is obtained by executing the QUEL commands. Since
a user needs to gain access to both representations, we use the convention that a normal retrieval
returns the definition. For example, the query:

retrieve (EMP.hobbies) where EMP.name = ‘‘Smith’’

will return a collection of QUEL commands. Execution of a procedural field is accomplished by
an additional QUEL+ command which allows one to execute data in the data base. For example,
one can find all the hobby data for Smith by running the following command:

execute (EMP.hobbies) where EMP.name = ‘‘Smith’’

This command will search for qualifying tuples and then execute the contents of the hobbies
field.

Two points should be noted about the above command. First, notice that a user program
must be prepared to accept the tuples returned from the above query. Since the composition of
these tuples may vary from tuple to tuple, the run time system must send output to an application
program using a more complex format than often used currently. In particular, each tuple must
either be self-describing or a tuple descriptor must be sent to the application which describes all
subsequent tuples until a new descriptor is sent. Run time support code in the application pro-
gram must be prepared to accept this more complex format and deal with the more complex
buffering and communication with variables in an application program that this entails. Second,
a user must note which fields contain procedural data, since retrieving a procedural field does not
yield the ultimate data value. We considered automatic evaluation of procedural fields, but this
option requires a second operator to ‘‘unevaluate’’ the procedure and seemed no more user-
friendly. Also, it would have required the application program to accept unnormalized relations.
For example, automatic evaluation of procedural fields for the query:

retrieve (EMP.name, EMP.hobbies) where EMP.age > 35

would yield an unnormalized relation as a result.

In some applications, it is desirable to execute only one of a collection of qualifying tuples.
The following command will execute the hobby description for one employee over 70.

execute-one (EMP.hobbies) where EMP.age > 70

The intent of this command is that query processing heuristics along the lines of [SELI79] would

7

be run on each candidate hobby description. The one with the expected least cost would be
selected for execution. The use of this construct in a particular expert system application is dis-
cussed in [KUNG84].

3.2. Multiple-Dot Notation
Our second extension to QUEL allows the components of a complex object to be addressed

directly. For example, one could retrieve the batting average of Smith as follows:

retrieve (EMP.hobbies.average) where EMP.name = ‘‘Smith’’

This multiple-dot notation has many points in common with the data manipulation language
GEM [ZANI83], and allows one to conveniently access subsets of components of complex
objects. More exactly, QUEL+ allows an indirectly referenced column name of the form:

relation.column-name-1.column-name-2 ... column-name-n

wherever a normal column name:

relation.column-name

is allowed in QUEL. The only restriction is that ‘‘column-name-i’’ must be a procedural data
type for 1 <= i < n-1. Moreover, column-name-(i+1) is a column in any relation specified by a
RETRIEVE command contained in the field specified by column-name-i. Of course, the same
construct is allowed for relation surrogates (tuple variables).

The above QUEL+ command returns the average of Smith for any hobby that has a field
with name ‘‘average’’. Since there may be several hobbies with this field defined, one requires a
notation to restrict the average only to the SOFTBALL relation. This is easily accomplished with
another operator, i.e:

retrieve (EMP.hobbies.average)
where EMP.name = ‘‘Smith’’
and EMP.hobbies.average in SOFTBALL

Here ‘‘in’’ expects an indirectly referenced column name as the left operand and a relation name
as the right operand and returns true only if the column is in the indicated relation. Additional
operators associated with procedural objects may be appropriate and will be added to QUEL+ as
a need arises.

3.3. Extended Scoping
To change the position of Smith from catcher to outfield, one could make a direct update to

the SOFTBALL relation. However, it is sometimes cleaner to allow the update to be made
through the EMP relation as follows:

replace EMP.hobbies (position = ‘‘outfield’’) where EMP.name = ‘‘Smith’’

The desired construct is that a procedural field (in this case EMP.hobbies) can appear as the target
of a DELETE, REPLACE or APPEND command. In general, this procedural field is identified
by an arbitrary multiple-dot expression of the form discussed in the previous section, and we term
this expression the scope of the update.

The semantics of an extended scope command are that the RETRIEVE commands in the
procedural field used as the target of the update command define conventional relational views.
Once a specific instance of such a procedural field has been identified, for each view, Vi, associ-
ated with a RETRIEVE command, Ri, one need only replace the the update scope by Vi in every
place it appears in the user command, and then standard query modification [STON75] using Ri
should be performed on the qualification and the target list of the resulting user’s command.

8

For example, if Smith’s ‘‘EMP.hobbies’’ field contains the single query:

retrieve (SOFTBALL.all) where SOFTBALL.name = ‘‘Smith’’

then the above command to move Smith to the outfield will have the form

replace EMP.hobbies (position = ‘‘outfield’’)

once the clause

where EMP.name = ‘‘Smith’’

has been evaluated to identify a specific ‘‘EMP.hobbies’’ value. Hence, this query is turned into:

replace V1 (position = ‘‘outfield’’)

and then query modification converts it to:

replace SOFTBALL (position = ‘‘outfield’’) where SOFTBALL.name = ‘‘Smith’’

Notice that this construct allows a very simple means for supporting relational views. If the
definition of each view appears in the VIEW relation as suggested in the previous section, e.g:

VIEW (name, query)

then any command involving a view, V, need only be modified to replace every reference to V
with VIEW.query and then the clause

VIEW.name = V

must be added to the qualification. The resulting command will be one containing multiple-dot
clauses and extended scoping statements and can be executed as a conventional QUEL+ com-
mand.

3.4. Extended Scoping with Tuple Variables
In addition to allowing the above construct, QUEL+ also allows a tuple variable to be used

whenever a relation name or a field of type QUEL is permissible. Hence, the example above can
also be expressed as:

range of e is EMP.hobbies
replace e (position = ‘‘outfield’’) where EMP.name = ‘‘Smith’’

3.5. Relation Level Operators
In addition, QUEL+ supports relation level operators, including union, intersection, outer

join, natural join, containment and a test for emptiness. We illustrate the use of this construct
with an example from the previous section where objects were made up of lines, polygons, and
text fragments. In this situation, one might want to find all pairs of objects, one of which contains
all the shapes in the other. This would be formulated as:

range of o is OBJECT
range of o1 is OBJECT
retrieve (o.Oid, o1.Oid) where o.shape >> o1.shape

Here, the containment operator >>, accepts two procedural operands and returns true if the rela-
tion specified by the procedure in the left operand includes the relation specified by the procedure
in the right operand. The relation on the left is found by constructing the outer union defined by
the RETRIEVE commands in o.shape. If all commands have identical target lists, then the outer
union is the same as a normal union. Otherwise, it is formed by constructing a relation with all
columns appearing in any command, filling each target list with nulls to be the full width of the
composite relation, and then performing a normal union. This resulting relation must be com-
pared for set inclusion with the relation to which o1.shape evaluates. Our initial collection of

9

operators is indicated in Table 1.

4. PROCESSING QUEL+
The purpose of this section is to explain how our existing prototype executes QUEL+ com-

mands. This prototype supports the complete language noted in the previous section with the
exception of execute-one and extended scoping statements. Moreover, it only implements gen-
eral QUEL procedural fields. The optimization routines to support the special case that all
queries in a given column differ only by a collection of parameters have not yet been imple-
mented.

Although more sophisticated query processing algorithms have been constructed [SELI79,
KOOI82], our implementation builds on the original INGRES strategy [WONG76]. The imple-
mentation of QUEL+ has been accomplished using this code because it is readily available for
experimentation. Integration of our constructs into more advanced optimizers appears straight-
forward, and we discuss this point again at the end of this section.

Figure 1 shows a diagram of the extended decomposition process. Detachment of one-
variable queries that do not contain multiple-dot or relation level operators can proceed as in the
original INGRES algorithms [WONG76]. Similarly, the reduction module of decomposition is
unaffected by our extensions to QUEL. In addition, tuple substitution is performed when all other
processing steps fail. A glance at the left hand column of Figure 1 indicates that a test for zero
variables must be inserted into the original flow of control after the reduction module. Then, new
facilities must be included to process the ‘‘yes’’ branch of the test. These include a test for
whether there is a relation to materialize and the code to perform this step. Lastly, the one-
variable query processor must be extended to process relation level operators. We explain these
extensions with a detailed example.

The desired task is to find the polygon descriptions with identifiers less than 5 for all objects
which have the same collection of shapes as the complex object with Oid equal to 10, i.e:

range of o is OBJECT
range of o1 is OBJECT
retrieve (o.shape.p-desc)
where o.shape.Pid < 5
and o.shape == o1.shape

Operator Functioniii
U union
!! intersection
>> containment
<< containment
== equality
<> inequality
JJ natural join on all common column names
OJ outer (natural) join
empty emptynessiiicc
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c

Relation Level Operators

Table 1

10

hhh

|-----------------
| |
V

V

V
--------------------------- ---------------------------
--------------------------- ---------------------------
no
V V V
--------------------- ----------------- ----------------------
--------------------- -----------------
V V V
--

Extended Decomposition

Figure 1
hhh

and o1.Oid = 10

In the initial step of the reduction process the last clause in the query is found to have a single
variable, so it can be executed as:

retrieve into TEMP-1 (o1.shape) where o1.Oid = 10

The original query is now:

11

retrieve (o.shape.p-desc) where o.shape.Pid < 5 and o.shape == TEMP-1.shape

The first clause above contains a multiple-dot attribute and should not be processed until later. At
this point reduction fails and the query still has two variables in it, so processing falls through to
the tuple substitution module. If TEMP-1 is selected for substitution, the resulting query is:

retrieve (o.shape.p-desc)
where o.shape.Pid < 5
and o.shape == ‘‘QUEL-constant-1’’

Notice that the variable ‘‘TEMP-1.shape’’ has been replaced by a constant ‘‘QUEL-constant-1’’
which is a collection of QUEL commands. Processing now returns to the top of the loop where
the query still does not have any one-variable clauses. Processing again returns to tuple substitu-
tion where the variable o might be chosen. This results in the query:

retrieve (‘‘QUEL-constant-2’’.p-desc)
where ‘‘QUEL-constant-2’’.Pid < 5
and ‘‘QUEL-constant-3’’ == ‘‘QUEL-constant-1’’

Notice that o.shape has been replaced by two constants ‘‘QUEL-constant-2’’ and ‘‘QUEL-
constant-3’’ which are identical. When o.shape is materialized, there will be a one-relation
clause (o.shape.Pid < 5) that can be used to restrict and project the relation. Moreover, it is desir-
able to check this clause as early as possible because the current query will have no answer if this
clause is false. On the other hand, o.shape must be retained as a complete object so that the the
relation level comparison with QUEL-constant-1 can be performed if necessary. In order to
avoid forcing the relation level operator to be executed first, we have duplicated the QUEL con-
stant and thereby retained the option of performing the one-variable restriction first. Even though
QUEL-constant-2 and QUEL-constant-3 define the same object, the caching discussed in Section
6 should avoid materializing this object more than once.

Now the command has zero variables and is passed to the materialize module. This pro-
cessing step chooses one of the QUEL constants and materializes the outer-union of the
RETRIEVE commands into a relation TEMP-2. If ‘‘QUEL-constant-2’’ is chosen, then the
resulting query will be:

retrieve (TEMP-2.p-desc) where
TEMP-2.Pid < 5
and ‘‘QUEL-constant-3’’ == ‘‘QUEL-constant-1’’

This query now has a one-variable clause which can be detached and processed creating another
temporary relation TEMP-3. If TEMP-3 is empty then the query is false and can be terminated.
Alternately, processing must continue on the following command:

retrieve (TEMP-3.p-desc) where ‘‘QUEL-constant-3’’ == ‘‘QUEL-constant-1’’

The qualification is again free from variables, so another relation must be materialized. If
‘‘QUEL-constant-1’’ is chosen, we obtain:

retrieve (TEMP-3.p-desc) where ‘‘QUEL-constant-3’’ == TEMP-4

The qualification is still free from variables, so the final relation must be materialized as follows:

retrieve (TEMP-3.p-desc) where TEMP-5 == TEMP-4

After another trip around the processing loop, no further materialization is possible. Hence, the
query must now be passed to the one-variable query processor. This module will process the
operator == for the two relations involved.

Several comments are appropriate at this time. First, this algorithm delays materializing a
relation until there is no conventional processing to do. In addition, it delays evaluating relation
level operators until there is nothing else to do. This reflects our belief that expensive operations

12

should never be done until absolutely necessary. The current prototype only materializes a pro-
cedural field if the desired columns actually appear in the result. This tactic avoids obviously
unnecessary materializations. However, no attempt has been made to materialize only a subset of
a procedural object by using qualification in the user command to advantage. For example, only
the tuples where Pid < 5 could have been materialized from the query in ‘‘QUEL-constant-2’’ by
modifying the qualification. Such restricted materializations would not allow the caching that we
have in mind, and we did not consider them. A more sophisticated query planner would try to
optimize the decision of whether to materialize the value of the whole procedural object or a
qualified subset.

Second, most current optimizers build a complete query plan in advance of executing the
command. Such optimizers (e.g. [SELI79, KOOI82]) can construct a plan for the portion of the
query without nested dot constructs. However, run-time planning will be required on remaining
portions of commands. For example, the following query must be processed by tuple substitution
for o or o1.

retrieve (o.shape.p-desc, o1.shape.p-desc) where o.shape.l-desc = o1.shape.l-desc

After substitution twice, the remaining query is:

retrieve (TEMP-1.p-desc, TEMP-2.p-desc) where TEMP-1.l-desc = TEMP-2.l-desc

The characteristics of TEMP-1 and TEMP-2 are not known until run time, so further query plan-
ning must be deferred to this time.

The only exception to run time planning would occur if all values in a procedural column
contain the same query as discussed in Section 2. In this situation, a view translation algorithm
can be run on the initial user command instead of applying the algorithm of this section. The
algorithm is similar to the one presented in [STON75] and would translate a multiple-dot query
into a conventional query which can be optimized in the conventional fashion. This ‘‘flattening’’
of a query will allow a compile time plan to be built and additionally will support a wide range of
query processing alternatives to be explored, rather than just the ‘‘outside-to-inside’’ strategy dis-
cussed in this section. The details of this algorithm are straight-forward and are omitted for the
sake of brevity.

Lastly, in our prototype the module that materializes a relation passes the RETRIEVE com-
mands to another process which also runs the INGRES+ code. This second INGRES+ executes
the command, stores the resulting relation in the data base, and then passes control back to the
first INGRES+. A second process is required because the INGRES code will not allow a com-
mand to suspend in the middle of the decomposition process so that a new command can be exe-
cuted. The ability to ‘‘stack’’ the execution state of a query would be a very desirable addition to
the system.

5. BENCHMARK RESULTS
It would be clearly desirable to compare the performance of INGRES+ against various other

approaches to object management. These could include using a conventional relational system as
well as prototypes with other capabilities (e.g. [COPE84, LORI83]). Only a conventional rela-
tional system was easily available in our environment as a test case. Hence, a more detailed per-
formance study is left as a future exercise and would require the acquisition of appropriate
hardware to run other prototypes.

In this section we describe a collection of benchmarks which we performed on our proto-
type. We modeled three different tasks using QUEL+ and then compared them to a conventional
relational system, namely INGRES [STON76]. In all cases we chose tasks which would result in
different queries in the two systems. Running the same command in both systems would clearly
result in equal performance. In all tests recovery and concurrency control has been turned off,

13

and CPU time and total elapsed time in a single user environment were tabulated. For conveni-
ence, INGRES numbers are normalized to 1 while INGRES+ numbers are given as a multiple of
the corresponding INGRES result. All tests are run on a single-user VAX 11/780.

Both systems contain substantial inefficiencies (e.g. run-time optimization, generation of an
excessive number of temporary relations). However, it appears that such problems penalize both
systems about equally. Only three issues excessively penalize INGRES+. First, the unnecessary
communication with a second INGRES+ task adds unnecessary overhead that could be elim-
inated in a commercial implementation. Second, in many cases INGRES will be seen to execute
a single two-variable query while INGRES+ runs a larger number of one-variable commands.
Run time query planning of a larger number of commands imposes an excessive penalty on
INGRES+. Lastly, the flattening of parameterized procedural fields has not yet been implemented
in INGRES+. Consequently, execution of muliple-dot queries is constrained by the structure of
the query, and an inefficient plan may be executed as a result. Hence, a compiled query imple-
mentation of QUEL+ which included parameterized procedual fields should yield results similar
to or more favorable toward INGRES+ than those we present.

The three experiments are discussed in the following subsections.

5.1. Simulation of Simple Complex Objects
This experiment involves accessing simple variant records corresponding to hobbies in the

EMP relation of Section 2. Each of 7000 employees has a collection of hobbies. From a total of
50 possible hobbies, each employee practices between one and eight.

Both an INGRES and an INGRES+ data base must store records on each of the 50 hobbies
in relations:

SOFTBALL (emp-name, other data)
SAILING (emp-name, other data)
JOGGING (emp-name, other data)
.
.
.

A normal DBMS would store in addition the relations:

EMP(name, age, salary)
HOBBIES(emp-name, hobby-name)

while an INGRES+ data base would only require a single relation:

EMP(name, age, salary, hobbies)

The field ‘‘hobbies’’ has a collection of queries, one per hobby as noted in Section 2.

The task is to find the information on all hobbies for a given employee and is expressed in
INGRES+ as follows:

execute (EMP.hobbies) where EMP.name = ‘‘unique-emp’’

A normal DBMS query language cannot express this task, and the most reasonable option is to
execute the following algorithm.

retrieve (HOBBIES.hobby-name) where HOBBIES.emp-name = ‘‘unique-emp’’
for each such hobby-name do

retrieve (hobby-name.all) where hobby-name.emp-name = ‘‘unique-emp’’
end-do

Table 2 indicates a performance comparison for various numbers of hobbies per employee. The
INGRES+ numbers result from running the above execute command while the INGRES number

14

were obtained using the terminal monitor to retrieve the hobbies for a given employee and then
executing the appropriate number of retrieve commands to obtain hobby data. This would simu-
late a user who ran a query to obtain the collection of hobbies and then ran the correct collection
of queries on the various hobbies relations. Notice that the INGRES+ option is superior except
when there is a single hobby per employee. This performance difference results from the fact that
a large number of queries are passed through the INGRES terminal monitor, which has noticeable
overhead. The INGRES+ solution runs the same collection of queries, but the hobby queries are
generated internally by the system and do not go through a terminal monitor.

5.2. Simulation of More Complex Objects With Shared Subobjects
Consider the example from Section 2 where complex objects are composed of lines, text

and polygons. Moreover, assume that these subobjects must be shared among various complex
objects. Consequently, both schemas have relations for the subobjects as follows:

LINE (Lid, l-desc)
TEXT (Tid, t-desc)
POLYGON (Pid, p-desc)

Then, a normal schema must have three additional relations indicating which subobjects are in
which complex objects:

T-obj (Tid, Oid)
P-obj (Pid, Oid)
L-obj (Lid, Oid)

However, an INGRES+ schema needs only the single additional relation from Section 2, namely:

OBJECT (Oid, trim, shape)

The trim field in OBJECT is a collection of queries of the form:

retrieve (TEXT.all) where TEXT.Tid = value

while the shape field has a collection of queries of the form:

retrieve (LINE.all) where LINE.Lid = value
retrieve (POLYGON.all) where POLYGON.Pid = value

The benchmark query is to find the shapes of a particular complex object, e.g:

retrieve (POLYGON.all)
where POLYGON.Pid = P-obj.Pid

hhh

Query INGRES-CPU INGRES+-CPU INGRES-total INGRES+-totaliii
one-hobby 1 1.23 1 1.28
four-hobby 1 .73 1 .61
eight-hobby 1 .59 1 .61c

c
c
c
c

c
c
c
c
c

c
c
c
c
c

c
c
c
c
c

A Benchmark of Simple Complex Objects

Table 2
hhh

15

and P-obj.Oid = ‘‘unique-value’’

retrieve (LINE.all)
where LINE.Lid = L-obj.Lid
and L-obj.Oid = ‘‘unique-value’’

The QUEL+ query is simply:

execute (OBJECT.shapes) where OBJECT.Oid = ‘‘unique-value’’

The INGRES+ prototype limits the length of procedural fields to 255 bytes (about 9
queries); hence, multiple rows are required to express an object with a larger number of subob-
jects. This limitation affects INGRES+ performance marginally. The costs of the two systems
for objects having respectively 1, 4, 8, 16 and 32 subobjects is shown in Table 3. INGRES must
run 2 two-variable queries while INGRES+ runs a single query on the OBJECT relation followed
by a one-relation query per subobject. If there is only one subobject, it is clear that INGRES+ will
run 2 one-variable queries and have better performance than INGRES. This performance advan-
tage deteriorates until there are 16 subobjects at which point 17 one-variable queries take more
time than 2 two-variable queries. In a commercial implementation, two-variables queries would
be better optimized and the crossover point might occur at a lower number of subobjects. On the
other hand, run-time optimization of 17 commands in INGRES+ is a serious source of overhead
which would not be present in a commercial system. Hence, it is not clear how Table 3 would
look in a commercial environment.

5.3. Simulation of Unnormalized Relations
Although QUEL+ is most useful when applied to applications with complex structure, it is

also possible to provide multiple-dot addressing on conventional data. This will allow a more
natural query formulation compared to conventional techniques; however, much of the same
effect can be alternately achieved using relational views. This section is included to demonstrate
that QUEL+ provides reasonable performance even in ordinary situations.

The normal way to store data for the standard EMP, DEPT and JOB data base is:

EMP (name, age, salary, dept, jid)
DEPT(dname, floor)
JOB (jid, jname, benefits)

hhh

Query INGRES-CPU INGRES+-CPU INGRES-total INGRES+-totalii
Q1 1 .54 1 .67
Q4 1 .75 1 .78
Q8 1 .99 1 1.0
Q16 1 1.35 1 1.44
Q32 1 2.17 1 2.94c

c
c
c
c
c
c

c
c
c
c
c
c
c

c
c
c
c
c
c
c

c
c
c
c
c
c
c

Benchmarks of Complex Objects

Table 3
hhh

16

Here, employees have a name, an age, a salary, are in a department, and have a job identifier.
The other two relations are self-evident. We assume that there are 7000 employees, 500 depart-
ments and 50 job descriptions. Moreover, EMP tuples are 32 bytes wide, DEPT tuples are 14,
and JOB tuples are 24.

On the other hand, in INGRES+ one can use an alternate schema as follows:

EMP (name, age, salary, dept, j-emp)
DEPT(dname, floor, d-emp)
JOB (jid, jname, benefits)

Here, j-emp is a procedural field of the form:

retrieve (JOB.all) where JOB.jid = ‘‘value-for-this-employee’’

In addition, d-emp is a procedural field of the form:

retrieve (EMP.all) where EMP.dept = ‘‘this-dept’’

Consequently, all the employees in a specific department are accessible though the d-emp field
while the job description of a particular employee can be obtained through the j-emp field.

We ran the following three queries in both INGRES and INGRES+

Query 1: a normal join returning a few tuples

The queries to run in the two systems are respectively:

retrieve (EMP.name, DEPT.floor)
where EMP.dept = DEPT.dname
and DEPT.dname = ‘‘unique-name’’

retrieve (DEPT.d-emp.name, DEPT.floor)
where DEPT.dname = ‘‘unique-name’’

In this case, we are comparing the processing speed of normal INGRES running a two variable
query with that of INGRES+ which must execute a one-variable query and then a second one-
variable subquery.

Query 2: the full join

The two queries are respectively:

retrieve (EMP.name, DEPT.floor)
where EMP.dept = DEPT.dname

retrieve (DEPT.d-emp.name, DEPT.floor)

In this case, we are computing the full join between EMP and DEPT. The comparison is between
a single two variable query and a single one-variable query to scan the DEPT relation along with
500 one-variable queries to find appropriate information in EMP. This should be a poor query for
INGRES+ because of the run-time optimization of 500 queries. Moreover, because of the struc-
ture of the query, INGRES+ will iterate over DEPT tuples and then access the EMP relation for
each one. This may (or may not) correspond to the plan which would be selected by a conven-
tional optimizer using a flat representation of the query. If iterative substitution for DEPT tuples
is not a wise plan, then INGRES+ will have poor performance because of the structure of the
query.

Query 3: a three way join to find the job of a particular employee in a particular department

17

The queries are:

retrieve (JOB.jname, EMP.name)
where DEPT.dname = ‘‘value-1’’
and EMP.dept = dept.dname
and EMP.job = JOB.jid
and EMP.name = ‘‘value-2’’

retrieve (DEPT.d-emp.j-emp.jname, DEPT.d-emp.name)
where DEPT.dname = ‘‘value-1’’
and DEPT.d-emp.name = ‘‘value-2’’

Here, INGRES is running a single three variable query while INGRES+ will execute three one-
variable queries. The extended system should be especially attractive in this case, because of the
extra complexity required to process multivariable queries in a conventional system.

Table 4 presents the results for these three queries.

hh

Query INGRES-CPU INGRES+-CPU INGRES-total INGRES+-totalii
Query 1 1 1.37 1 1.15
Query 2 1 15.1 1 17.2
Query 3 1 .29 1 .36c

c
c
c
c

c
c
c
c
c

c
c
c
c
c

c
c
c
c
c

Benchmarks of Unnormalized Relations

Table 4
hh

As can be seen, Query 1 performs at about the same speed in both systems. In this case two one-
variable queries are comparable to a single two variable query. The full join was a factor 15-17
worse in INGRES+ because the overhead of running 500 queries to retrieve EMP tuples is
overwhelming. Finally, Query 3 shows that three one-variable commands are faster by a factor of
3-4 than a single three-variable command. Although one would expect superior performance from
INGRES+, the magnitude is surprising and reflects the fact that the normal INGRES optimizer is
not especially good at three way joins.

The conclusion to be drawn is that INGRES+ is competitive except when it utilizes a poor
query plan or is forced to run a large number of commands. Bad performance in the latter situa-
tion should be eliminated by compile time query planning. Bad performance in the former case
can be alleviated by flattening out multiple-dot commands when an entire column has the same
query structure.

The next section turns to a suggestion to dramatically improve the performance of pro-
cedural fields.

6. CACHING PROCEDURAL FIELDS
The performance of INGRES+ may be dramatically improved by caching frequently used

objects so they will not have to be repeatedly rematerialized. This section explores the use of this
tactic.

18

6.1. The Cache Model
Caching QUEL procedures should be thought of as a two step process:

1) compile a query plan for the command(s) (plan caching)
2) execute the plan (result caching)

The first step (plan caching) is often done at compile time in current systems; however, in
our model it should be thought of as computing an intermediate representation of the object. This
representation can be saved for later reuse. Moreover, in current systems a query plan is usually
invalidated at execution time if the schema has changed in a way that compromises the validity of
the plan. In our model query plans are cached until a compromising update forces invalidation.
One can optionally support a ‘‘demon’’ which utilizes any idle CPU resources recompiling
invalidated plans. Alternatively, one can simply recompile when the plan is executed, as in
[ASTR76].

The size of a compiled plan depends on the target language of the compiler. If access plans
are generated, then the size will be modest (e.g. hundreds of bytes). If machine code is generated,
then the size will be thousands of bytes. If plans are of moderate size, they can be cached directly
in the field that defines them. Larger plan representations can be cached in a separate relation, i.e:

CACHE (identifier, compiled-plan)

and only the identifier stored in the defining field.

The second step (result caching) involves materializing the object from the compiled plan.
Again this step can be performed on demand and saved for reuse or even computed in advance.
The size of a materialized object depends, of course, on the command(s) which is executed.
Small objects can be cached directly in the defining field. Larger objects should probably be
cached as individual relations, and the name of the relation(s) inserted in the defining field.
When objects are hierarchically composed of other objects, the above constructs can be applied
recursively; hence, small objects which are composed of small objects will be cached together in
the field describing the enclosing object.

It is straightforward for the data base system to allow result caching for N1 ‘‘big objects’’
and execute a least recently used (LRU) algorithm to select big objects to be discarded. Of
course this requires N1 relations to hold these objects and the corresponding extra entries in the
system catalogs. Alternately, a data manager could reserve N2 blocks of storage for objects and
select a victim based on a function of size and time-since-last-reference. Of course, N1 and N2
would be carefully chosen system-specific parameters. Objects must also be discarded upon an
update to one or more tuples from which they are composed. We discuss a mechanism to accom-
plish this task presently. Alternately, it should be possible to incrementally update the cached
object when a subobject is modified. Recent work on supporting materialized views (e.g.
[BLAK86]) can be applied to this task. Moreover, if the object is an QUEL aggregate, it is
straightforward to update the cached value. Additional effort in this direction is currently in pro-
gress.

For cached big objects, it is desirable to store their name and the query(s) which compose
them in a main memory data structure. Then, if the same or another user materializes an object
with the same description, the one already materialized can be used instead. An example of this
situation occurred in Section 4 where our algorithm materialized the object represented by
o.shape twice.

The prototype discussed in Section 4 caches big objects as discussed above, but small
object caching as well as invalidation on update has yet to be implemented. We turn now to the
efficient invalidation of objects.

19

6.2. Object Invalidation
Consider a new kind of lock mode called I mode. Hence, objects can be locked in R, W or I

mode. A lock set in I mode has an associated identifier indicating the object which has been
precomputed using the locked object. The compatibility of the various modes is indicated in
Table 5. The * in that table indicates that a W requestor for an object locked in I mode will be
allowed to proceed and set a W lock on the object. First, however the object with which the I
lock is associated will be invalidated.

When INGRES+ materializes any object, it simply sets I locks on all objects read by the
query(s) which materialize the object. These I locks are held until the object is deleted or invali-
dated through an update to a subobject.

6.3. Implementation of I Locks
A straight-forward approach would be to place I locks in the same lock table holding R and

W locks. In this case, one must cope with a lock table of widely varying size since the number
of I locks can change dramatically. Moreover, when a failure occurs, either all precomputed
objects must be invalidated (which may be a costly alternative if the facility is extensively used)
or I locks must be made recoverable. Lastly, phantoms must be correctly handled. Hence, if a
new tuple is added which satisfies the qualification of some precomputed object, then this object
must be invalidated.

The first objective can be satisfied by using extendible hashing [FAGI79] for the lock table
instead of conventional hashing. The second objective requires setting I locks as part of a tran-
saction and writing them into the log. If a failure occurs during this transaction, then recovery
code must be extended slightly to back out the I locks which were set. Moreover, I locks must be
periodically checkpointed to allow recovery from media failures. Hence, when recovery code is
rolling forward from a checkpoint, I locks can be suitable updated. In summary, making I locks
recoverable simply involves treating them as ordinary data and presents only modest implementa-
tion difficulties.

The phantom problem poses more serious issues. Systems which perform page level lock-
ing (e.g. [RTI86, CHEN84]) have few difficulties supporting correct semantics in the presence of
phantoms. Hence, one can include I locks in such systems without concern. However, finer
granularity locking is required to avoid an excessive number of unnecessary invalidations. Sys-
tems which perform record level locking (e.g. System R [ASTR76]) can allow detection of phan-
toms by holding locks on index intervals in the leaf nodes of secondary indexes as well as on data

hhh

R W I

R ok no ok
W no no *
I ok no ok

Compatibility Modes for I Locks

Table 5
hhh

20

records. Hence, a transaction which inserts a tuple will hold a write lock on the tuple and on the
appropriate index interval for any field for which a secondary index exists. If I locks are also held
on data records and index intervals, then all conflicts caused by phantoms will be detected by a
collision in some index.

When access paths other than B-trees are present, a slight generalization to the above
scheme will support phantom detection. Tuple level locks are held on index and data records
which use a hashed or B-tree organization. Then, a precomputed object must be invalidated if an
I lock which is held on its behalf falls adjacent to a tuple on which a W lock is held. For B-tree
data records and indexes, adjacency means ‘‘logically adjacent in tuple identifier order’’; for
hashed records and indexes, adjacency means ‘‘in the same hash bucket.’’

The only problem with the adjacency approach is that a B-tree page split will cause a write
lock to be set on the page to be split, and thereby will cause an invalidation of all objects holding
I locks on that page. Unless tuple identifiers are constructed so that they do not change when a
tuple moves to a different page, this invalidation is required. Otherwise I locks will be held on
the previous identifier for the moved tuple, and incorrect operation will result.

The phantom problem and the logging problem appear easier to solve if an alternate stra-
tegy is employed. Consider storing I locks in the data and index records themselves. Systems
which support variable length records can simply add as many I locks to each record as neces-
sary. Such locks are recoverable using conventional techniques which are automatically applied
to data records. The phantom problem requires the above adjacency algorithm; however, structure
modifications (e.g. B-tree page splits) do not cause unnecessary invalidations. Moreover, since
the extra locks are stored separately from R and W locks, extendible hashing is not a prerequisite
for the lock table. Lastly, this approach is easily extended to field-level locks, which may offer
superior performance to record level I locks.

The drawbacks of this second alternative is that a second implementation of a lock manager
must be coded for I locks. Moreover, setting an I lock on an object requires rewriting the object
instead of just reading it. Hence, setting I locks will be expensive.

6.4. Performance of Cached Objects
The purpose of this section is to present a model which can be used to suggest when cach-

ing should be applied to a procedural object. Consider a ‘‘small’’ object which can be con-
structed in N1 page accesses and inspection of N2 records. Assume that this object occupies R1
= 1 page of space, consists of R2 tuples and is cached in the data record itself. In addition, con-
sider a query pattern in which P percent of the accesses are reads of the complex object and 1-P
are updates to subobjects from which the complex object is composed. Moreover, each update is
applied to a randomly chosen subobject from the N2 candidates. Lastly, the record in which the
description of the complex object is stored must be read during retrieval whether or not caching is
employed. Hence, that access is not counted in the following analysis.

Consider the sequence of accesses to be a collection of intervals, each consisting of one or
more consecutive writes followed by one or more consecutive reads. In a given interval, the
expected length ER of the run of reads and the length EW of the run of writes is:

ER = 1 / (1 - P)
EW = 1 / P

Consider first the no-cache alternative. With the parameter K discussed in [SELI79] which
weighs the CPU time used in evaluating a query plan relative to the number of I/O’s, the cost, M
to materialize the object after its definition has been obtained is:

M = N1 + N2 * K

Without caching, this cost must be paid on each read access, and the cost, C1 of these accesses is:

21

C1 = (ER) * (M)

We now turn to the corresponding costs for cached objects. The cost to invalidate the com-
plex object on the initial write is:

IN = 1

This assumes that I locks are stored in the records of the subobjects and that only the data record
containing the object description must be rewritten to perform invalidation. All I locks are sim-
ply left in place. Subsequent writes prior to the first read also require the same cost even though
the complex object has already been invalidated.

The first read to the complex object requires a materialization at cost, M. In addition, the
cost, C to cache the object is:

C = 1

The materialized object must be written into the field occupied by the description of the complex
object requiring a single record to be rewritten. Since I locks were never reset from prior materi-
alizations, no extra cost is required to ensure that they are set. Subsequent reads only require
accessing the object in the cache. Since the access to the object description is not being counted,
there is no additional I/O because the cached object is stored in this record. Hence, only the CPU
cost to access the R2 records in the cached object must be paid, i.e:

A = R2 * K

Therefore, the expected cost of an interval using caching is:

C2 = EW * IN /*cache invalidation on each write*/

+ M + C /*materialize plus cache on first read*/

+ (ER - 1) * (A) /*subsequent reads access the cache*/

Define Z = M - A to be the caching factor, i.e. the difference between the cost to materialize the
object and the cost to access the object from the cache. This cost is in weighted CPU and page
costs and is typically in the range of 10 - 1000. Algebraic manipulation now yields that caching
will be preferred if:

Z > (1 / P ** 2) - 1

The consequence of this analysis is that caching will generally win unless P is very small. If P is
1/2, then Z must be greater than 3 for caching to be beneficial. If P is 1/10, then Z must exceed
99.

6.5. Indexing Cached Fields
An extension of this caching tactic may be attractive when the queries in a field have certain

compositions. Consider a situation, such as salaries in an EMP relation for which most of the
fields are specified as constants while a few are specified procedurally. For example, Joe might
make $10,000 and Bill is specified as having the same wages as Joe. In this case salary can be a
procedural field and most rows have a value of the form:

retrieve (wages = constant)

while Bill would have a value of:

retrieve (EMP.salary.wages) where EMP.name = ‘‘Joe’’

In this case, one would desire a salary index on salaries for efficient processing of queries of the
form:

22

retrieve (EMP.name) where EMP.salary.wages = value

This section indicates how to construct such indexes on procedural fields.

Instead of caching values as they are computed, consider caching all values in advance. If
this is done, then it is straightforward to build an index on a field appearing in the cached objects
using the conventional indexing utility. One can use this index to answer queries of the above
form rapidly. On updates to subobjects, one must invalidate cached objects as discussed in the
previous subsection. However, as part of the transaction which updates a subobject, the invali-
dated object must be rebuilt and the index updated. Conventional locking must be employed to
guarantee consistency, and aborting a transaction must cause a backout of all updates or an invali-
dation of the new cached value.

In the case that most values are simply constants, such indexes should be beneficial, and be
only marginally more expensive to maintain than conventional ones.

7. CONCLUSIONS
This paper has suggested that data base procedures are a natural way to model complex

objects and to allow data base oriented algorithms and precompiled queries in the data base.
Moreover, they appear to be easily generalizable to arbitrary programming language procedures
which may be useful in certain applications. Lastly, they can be used to model aggregation, gen-
eralization and most other environments addressed by semantic data models. The advantage of
data base procedures is that a user does not need to learn additional concepts to design his appli-
cation. Since he must know the query language anyway, there is little extra complexity. Hence,
this proposal is in the same spirit of the ‘‘spartan simplicity’’ stressed by the original advocates
of the relational model.

A prototype implementation was described and initial performance studies explored. They
indicated comparable performance between the extended and the non-extended prototypes except
when many one-variable commands were processed by INGRES+ or when a bad query plan was
indicated by the structure of the query. Bad plans can be avoided if procedural fields are res-
tricted to parameterized queries, and compile time optimization should alleviate the overhead of
one-relation commands. Moreover, a caching strategy was described which should accelerate
performance of the prototype especially when objects are of moderate size. Our caching scheme
should offer superior performance to pointer oriented implementations of complex objects when
update frequency is low or moderate.

23

REFERENCES

[ASTR76] Astrahan, M., et. al., ‘‘System R: A Relational Approach to Data,’’
ACM-TODS, June 1976.

[BLAK86] Blakeley, J. et. al., ‘‘Efficiently Updating Materialized Views,’’ Proc.
1986 ACM-SIGMOD Conference on Management of Data, Washington,
D.C., May 1986.

[CHEN84] Cheng, J., et. al., ‘‘IBM Database 2 Performance: Design, Implementa-
tion, and Tuning,’’ IBM Systems Journal, February 1984.

[COPE84] Copeland, G. and Maier, D., ‘‘Making Smalltalk a Data Base System,’’
Proc. 1984 ACM-SIGMOD Conference on Management of Data, Bos-
ton, Mass., June 1984.

[DATE81] Date, C., ‘‘Referential Integrity,’’ Proc. 6th VLDB Conference, Cannes,
France, September 1981.

[DBTG71] Data Base Task Group, ‘‘Report to the CODASYL Programming
Language Committee,’’ April 1971.

[EPST80] Epstein, R., and Hawthorn, P., ‘‘Design Decisions for the Intelligent
Database Machine,’’ Proc. 1980 National Computer Conference,
Anaheim, Ca., May 1980.

[FAGI79] Fagin, R. et. al., ‘‘Extendible Hashing: A Fast Access Method for
Dynamic Files,’’ ACM-TODS, Sept. 1979.

[HAMM81] Hammer, M. and McLeod, D., ‘‘Database Description with SDM,’’
ACM-TODS, September 1981.

[HASK82] Haskins, R. and Lorie, R., ‘‘On Extending the Functions of a Relational
Database System,’’ Proc. 1982 ACM-SIGMOD Conference on Manage-
ment of Data, Orlando, Fl, June 1982.

[HELD75] Held, G. et. al., ‘‘INGRES - A Relational Data Base System,’’ Proc.
1975 National Computer Conference, Anaheim, Ca., May 1975.

[KALA85] Kalash, J., ‘‘Implementation of a Data Base Browser,’’ Electronics
Research Laboratory, University of California, Berkeley, Ca., Memo
No. M85/22, May 1985.

[KOOI82] Kooi, R. and Frankfurth, D., ‘‘Query Optimization in INGRES,’’ Data-
base Engineering, Sept. 1982.

[KUNG84] Kung, R. et. al., ‘‘Heuristic Search in Database Systems,’’ Proc. 1st
International Conference on Expert Systems, Kiowah, S.C., Oct. 1984.

[LORI83] Lorie, R. and Plouffe, W., ‘‘Complex Objects and Their Use in Design
Transactions,’’ Proc. Engineering Design Applications Stream of
ACM-IEEE Data Base Week, San Jose, Ca., May 1983.

[MYLO80] Myloupoulis, J. et. al., ‘‘A Language Facility for Designing Database
Intensive Applications,’’ ACM-TODS, June 1980.

[ONG84] Ong, J., et. al., ‘‘Implementation of Data Abstraction in the Relational
Database System INGRES,’’ SIGMOD Record, March 1984.

[POWE83] Powell, M. and Linton, M., ‘‘Database Support for Programming
Environments,’’ Proc. Engineering Design Applications Stream of
ACM-IEEE Database Week, San Jose, Ca., May 1983.

24

[ROWE82] Rowe, L. and Shoens, K., ‘‘A Form Application Development Sys-
tem,’’ Proc. 1982 ACM-SIGMOD Conference on Management of Data,
Orlando, Fl, June 1982.

[RTI86] Relational Technology, Inc., ‘‘INGRES Version 5.0 Reference
Manual,’’ November 1986.

[SELI79] Selinger, P., ‘‘Access Path Selection in a Relational Database System,’’
Proc. 1979 ACM-SIGMOD Conference on Management of Data, Bos-
ton, Mass., June 1979.

[SHIP81] Shipman, D., ‘‘The Functional Model and the Data Language Daplex,’’
ACM-TODS, March, 1981.

[SMIT77] Smith, J and Smith, D., ‘‘Database Abstractions: Aggregation and Gen-
eralization,’’ ACM TODS, June 1977.

[SORD84] Sordi, J., ‘‘IBM Database 2: The Query Management Facility,’’ IBM
Systems Journal, February 1984.

[STON75] Stonebraker, M., ‘‘Implementation of Views and Integrity Control by
Query Modification,’’ Proc. 1975 ACM-SIGMOD Conference on
Management of Data, San Jose, Ca., June 1975.

[STON76] Stonebraker, M. et al., ‘‘The Design and Implementation of INGRES,’’
ACM-TODS, September 1976.

[STON84] Stonebraker, M. et. al., ‘‘QUEL as a Data Type,’’ Proc. 1984 ACM-
SIGMOD Conference on Management of Data, Boston, Mass., June
1984.

[STON86] Stonebraker, M., ‘‘Object Management in POSTGRES Using Pro-
cedures,’’ Electronics Research Laboratory, University of California,
Memo M86/42, July 1986.

[WILE84] Wilensky, R., ‘‘The LISP PRIMER’’ W. Norton, Co, New York, 1984.

[WONG76] Wong, E., ‘‘Decomposition: A Strategy for Query Processing,’’ ACM-
TODS, Sept. 1976.

[ZANI83] Zaniolo, C., ‘‘The Database Language GEM,’’ Proc. 1983 ACM-
SIGMOD Conference on Management of Data, San Jose, Ca., May
1983.

25

APPENDIX 1

The syntax of QUEL has been described elsewhere [HELD75]. Here,
we report only the extensions to the original language, QUEL, which
define QUEL+. Let F be the construct ‘‘QUEL-col-1.,...,QUEL-col-
n.field’’.

1) F can appear wherever a field of a relation can appear in QUEL.

2) The construct ‘‘tuple-variable.F can appear whenever a tuple variable
or a relation name can appear in QUEL.

3) Clauses of the form:

G1 newop G2

are allowable if G1 and G2 are tuple variables or the construct ‘‘tuple-
variable.F’’ and newop is in the set:

{ U , !! , >> , << , == , <> , JJ , OJ, empty }

4) EXECUTE and EXECUTE-ONE are added as commands

5) An operator ‘‘in’’ is added accepting an indirectly referenced column
as a left operand and a relation name as a right operand.

6) A keyword ‘‘with’’ is added which is usable with the EXECUTE
command to indicate the presence of a parameter list.

26

