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Abstract
In this paper we discuss several alternate implementation schemes for rule indexing in a
data base system. Two of the proposals have much in common with predicate locking,
while four others resemble versions of physical locking. A performance analysis is con-
ducted based on an abstract model of the rule indexing problem.

1. INTRODUCTION
There has been considerable discussion of the relative merits of predicate locking [ESWA76] and

physical locking [GRAY78] to support concurrency control in relational data base systems. Physical lock-
ing has been implemented in most commercial relational systems with which we are familiar, and appears
to be the tool of choice.

In this paper we show that similar considerations arise when a relational DBMS is extended to sup-
port rule processing for expert system applications. In this new context, tactics similar to both predicate
locking and physical locking can be applied, and it is necessary to re-examine the best choice in light of the
changed circumstances.

In Section 2 we indicate three different environments in which rule processing must be accomplished.
Each will be seen to require very similar functionality. Then we turn in Section 3 to a discussion of support
for these environments which use tactics similar to physical locking and predicate locking. Section 4 indi-
cates an abstract model with which we can compare the performance of the two approaches. Section 5 then
discusses predicted performance of the various implementations in a collection of different situations.
Lastly, we conclude in Section 6 by discussing a collection of more sophisticated algorithms which may
offer superior performance compared to the ones analyzed.

2. RULE PROCESSING ENVIRONMENTS

2.1. Triggers
The first environment of interest is support for active data bases which include triggers. One possible

syntax was presented in a previous paper [STON85a], and others have been designed (e.g. [ESWA75]). We
will use the folowing schema for the standard EMP relation for examples in this paper:

relation: EMP(name, age, salary, status)
storage structure:B+-tree indexes on name, salary
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A trigger to set Mike’s salary equal to Sam’s salary whenever Sam is given a raise would be expressed as
follows:

range ofE is EMP
replaceALWA YS EMP (salary = E.salary)
whereEMP.name = “Mike”
and E.name = “Sam”

The required semantics are that this command should logically appear to run indefinitely. More realistically,
whenever a command such as

replaceEMP (salary = 1000)whereEMP.name = “Sam”

is processed the trigger should be awakened to update Mike’s salary.

More precisely, the system must store a (perhaps very large) collection of triggers:

T1: replaceALWA YS relname-1 (Target-list-1)wherePREDICATE-1
.
.
.

Tn: replaceALWA YS relname-n (Target-list-n)wherePREDICATE-n

When a user update (i.e. a replace or an append) is processed, e.g.

update-commandrelname (Target-list)whereQUAL

the system must find all triggers Ti, for which there exists a tuplet modified or inserted by the update such
that:

t satisfies PREDICATE-i
and

t satisfies QUAL
and

Target-list contains an attribute which appears in Target-list-i or PREDICATE-i

Notice, that the only penalty for finding “false drops” (i.e. Ti for which the above condition is not true) is
that time is wasted processing a trigger which does not actually do anything.

2.2. Inference
One possible approach to inferring data which is not present in the data base was also presented in

[STON85a]. In that proposal columns of a relation are either real or virtual. Real fields are filled with nor-
mal data while virtual fields are inferred from rules associated with the relation. One possible rule would
be:

replaceDEMAND EMP (salary = E.salary)
whereEMP.name = “Mike”
and E.name = “Sam”

This rule states that the salary of Mike should be the same as the salary of Sam. A second rule might
require Sam’s salary to be 1000 dollars as follows:

replaceDEMAND EMP (salary = 1000)
whereEMP.name = “Sam”

One wishes an environment whereby a user can ask queries of the form:

retrieve (EMP.salary)whereEMP.name = “Mike”

and have the system infer the correct answer of 1000 from the above rules.

The virtues of this approach relative to utilizing the view mechanism to perform inference (e.g.
[ULLM85, IOAN84]) have been presented in [STON85a]. In brief, the view mechanism is appropriate
when a small collection of rules is present and most of them are applicable. The canonical example is the
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construction of the ANCESTOR view from a base PARENT relation. On the other hand, if there are many
rules which define a particular view and most are not relevant to a given query, then our proposal excells.
Moreover, our proposal supports conflicting rules. For example, a third rule might state that all managers
must be paid 2000 dollars, e.g:

replaceDEMAND EMP (salary = 2000)whereEMP.status = “mgr”

If Mike is promoted from a worker to a manager, then his salary should be changed from 1000 to 2000.
This requires a mechanism whereby multiple rules can apply in a given situation and one is designated at
higher priority to be used in preference to the others. Such priority situations are common in AI applica-
tions and are straightforwardly supported in the scheme of [STON85a] but are much more difficult in rule
systems which utilize the view processing system.

This environment requires storing a (perhaps very large) collection of DEMAND commands:

D1: replaceDEMAND (Target-list-1)wherePREDICATE-1
.
.
.

Dn: replaceDEMAND (Target-list-n)wherePREDICATE-n

Then, the system must process a user command:

retrieve (Target-list)whereQUAL

by finding all Di for which there exists a tuplet such that:

t satisfies PREDICATE-i
and

t satisfied QUAL
and

Target-list intersect Target-list-i NON-EMPTY

For qualifying Di, one must run an algorithm similar to query modification [STON75] to convert the origi-
nal user retrieval into a new one which is then processed. The details of this algorithm appear in
[STON85a]. Again, there is no penalty for “false drops”, as they simply generate excess overhead.

2.3. Precomputed Answers to Commands
A third environment with similar requirements is one which allows queries in the query language to

be data base objects [STON84]. For example, one could declare the salary field of the EMP relation to be a
query language command. The value for this field for the employee named Mike would be:

rangeof E is EMP
retrieve (salary = E.salary)whereE.name = “Sam”

Of course, Sam’s salary would be the query returning a constant:

retrieve (salary = 1000)

The difference between this model and the previous one is that queries are bound to specific data tuples,
and the value of the field is found by executing a query. For example, if all the employees in the shoe
department share the same salary, then the query specification must be repeated for each one. On the other
hand, the previous environment did not bind a query to a specific tuple, and a single DEMAND command
could apply to all employees in the shoe department.

In this situation a desirable optimization strategy is to optionally cache the answer to queries which
are executed [STON85b]. The next time one accesses the object, the data is already precomputed and need
not be rematerialized. However, the system must invalidate the precomputed object (e.g the salary of Mike)
if a subobject from which it is composed (e.g. the salary of Sam) is updated.

More precisely, this environment contains a collection of queries which have been precomputed, e.g:

Q1: retrieve (Target-list-1)wherePREDICATE-1
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.

.

.
Qn: retrieve (Target-list-n)wherePREDICATE-n

If an update command (a replace or append) is processed, e.g:

update-command(Target-list)whereQUAL

the system must ascertain which retrieve commands must be invalidated. The required test is to find all Qi

for which there exists a tuple,t such that:

t satisfies PREDICATE-i
and

t satisfies QUAL
and

Target-list contains an attribute which appears in Target-list-i or PREDICATE-i

Notice that this test is identical to the trigger test.

3. SUPPORT FOR RULE PROCESSING
The first option for supporting rule processing would be to construct a theorem prover which would

find all PREDICATE-i for which:

QUAL AND PREDICATE-i NOT EMPTY

Analysis of such a theorem prover is beyond the scope of this paper, and we restrict our attention to more
conventional tactics. Also inference requires tuple-by-tuple processing on retrieves and bulk processing is
not applicable. Hence, in the remainder of this paper we assume that tuples satisfying QUAL are deter-
mined in the course of normal query processing. For each such tuple,t the task is then the following:

Find all rules,Di , Ti or Qi depending on the environment, such thatt satisfies PREDICATE-i .

Also, depending on the type of rules being used, there may be additional checking concerning presence of
attributes.

The first approach which we consider is to view each PREDICATE-i as setting a predicate lock in the
data base. When the tuplet is accessed, one must ascertain which predicate locks cover it. When the num-
ber of predicates is large, it is best to construct a predicate index to avoid a sequential search of all predi-
cates. Given such an index, to find the predicates covering a tuple, one can perform an index lookup. In
Section 3.2 we present a predicate indexing scheme for rule processing that has points in common with
predicate locking proposals.

Alternatively, one can view each predicate as setting physical locks. Since each PREDICATE-i is a
valid query qualification, a database command corresponding to it can be executed by the query processing
engine. When this command executes, a special marker can be set on each accessed tuple instead of a con-
ventional read or write lock. Such a marker, called a ‘‘trigger-me lock’’ or ‘‘t-lock,’’ indicates that PREDI-
CATE-i might cover the tuple. When the collection of rules that cover a tuple,t is required, these locks can
be consulted. We present an algorithm based on t-locks in Section 3.3.

Then, in Sections 3.4 - 3.6 we discuss four other variants of the basic predicate locking and physical
locking techniques. These alternatives may prove attractive in certain situations.

3.1. Predicate Indexing
The goal of this scheme is to build a data structure that will allow the rule base to be efficiently

searched to determine the PREDICATE-i that cover a specific tuple. In this section we assume that all
PREDICATE-i have the following characteristics:

1) each PREDICATE-i restricts a single relation and contains a single tuple variable

2) each PREDICATE-i is a conjunction of terms of the form:
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constant-1≤ attribute-i ≤ constant-2

for 1 ≤i ≤F .
Constant-1 and constant-2 may be scalars or positive
or negative infinity.

Notice, that this formulation does not allow the presence of join clauses in predicates. Moreover, the index-
ing proposal in this section cannot easily be extended to capture join predicates.

For each relation that has rules defined, we propose to build a special kind of R-tree [GUTT84a] on
the total ofF attributes that may have a restrictive term in a predicate. We select R-trees instead of some
other multidimensional structure like k-D-B-trees [ROBI81] because rules do not represent point data in a
multidimensional space, but rather rectangular regions. For example,

20 < EMP.age < 30 and 10K < EMP.salary < 30K

defines a rectangle in the two dimensional space with dimensions EMP.age and EMP.salary.

An R-tree is a tree structure used to index rectangles in a geometric environment [GUTT84b]. It is
clear that the predicates indicated above can be considered rectangles in the multidimensional space formed
by considering each of theF attributes as a dimension. An intermediate node in an R-tree is a sequence of
pairs (RECT,PTR), whereRECT is the description of a rectangle andPTRa pointer. The pointerPTR is used
to point to another node all of whose rectangles are completely contained inRECT. The leaf nodes have the
same format, except that there are no pointers.

One major difference between R-trees and B-trees is that the rectangles,RECT found in intermediate
nodes of an R-tree are not disjoint. Therefore, when descending the tree searching for the predicates which
cover a specific tuple,t, one may investigate more than one path in the R-tree. When the indexed rectangles
are large, as may be the case in this application, considerable overlap of bounding rectangles may be
observed, and many paths may require investigation.

In this application, an alternate variation of R-trees may prove attractive. Any rule predicate can be
decomposed into a collection of non-overlapping sub-rectangles whose union is the original predicate.
These sub-rectangles can be judiciously chosen so that no bounding rectangle in any index lev el of the R-
tree need be enlarged. Moreover, when a leaf-level page overflows and the page must be split, the bounding
rectangle can usually be partitioned into two non-overlapping rectangles and then the sub-rectangles on the
page which intersect the new boundary can be split. However, in the worst case where there aren rules that
all mutually intersect, then a sub-rectangle of each rule will occur on some leaf page. If the capacity of this
page is exceeded, a split will not lower its occupancy and the leaf page must be extended with overflow
pages.

In this case, only a single path in the tree must be investigated to find the predicates coveringt. The
cost is a perhaps much larger number of rules to index. We will call the new tree type, R+-trees, and a
detailed investigation of its characteristics is presented in [SELL86]. In the performance comparison that
follows in Section 4, we analyze only R+-trees because we can only find closed form expressions for
expected costs in this case. Which variation actually performs better depends on the composition of the
predicates.

It should be clear that one must descend an R+-tree from the root to one leaf node every time one
wishes to find the predicates that cover a specific tuple. However, one need do no special maintenance of
the tree when a tuple is inserted into the database or modified.

3.2. Basic Locking
In this scheme, a relation

RULES(id, rule-def)

will contain the rule base. Theid field contains a unique identifier for the rule, andrule-defcontains the
definition of the rule, including its predicate.
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For each rule which is defined, an access plan is constructed by the query optimizer. This plan is
executed and each tuple it reads is marked with a t-lock containing an identifier for the current predicate. If
a sequential scan of the relation is used, then all tuples in the relation will be marked. In this case we
assume that conventional lock escalation will convert record locks to a relation lock. Otherwise, an index
will be used for access and t-locks will be set on data recordsandon the key interval inspected in the index.
Such index interval locks are required to correctly deal with insertion of new records, as explained momen-
tarily. The exact form of the index locks may be specific to the type of index, and our analysis in Section 4
assumes that t-locks can be set between keys on the leaf level of the index. To simplify the analysis we also
require that all predicates contain at least one indexed attribute, thus avoiding the use of any relation-level
locks.

If a tuple t is inserted, then the collection of markers must be found for the new tuple. As a side
effect of the insertion, values will be inserted into various indexes. If such a value is covered by a key-range
lock, then a corresponding t-lock will be added to the data tuple containing the value. If a tuple is modified,
it should be viewed as a deletion followed by an insertion.

To ascertain what collection of PREDICATE-i cover a tuplet, one first collects all the t-locks ont.
Since these t-locks represent a superset of the predicates that actually match the tuple, relevant tuples in the
RULES relation must be checked to determine whethert actually satisfies each one.

For example, the qualification:

EMP.salary = 1000 and EMP.age > 30

will set t-locks in the salary index and on all data records that it reads (i.e. those with salary = 1000). Not all
of these will have qualifying ages. The reason such a cautious strategy must be adopted is that a non-
indexed attribute may be modified so that a record matches a predicate it did not match before the change.
For example, an employee may be aged from 30 to 31. Since there is no secondary index on age, the basic
algorithm would have no way of discovering that it should now be marked, barring searching the salary
index, a cost we wish to avoid if only age is updated. Because of this problem, t-locks must be set on all
tuples thatpotentiallysatisfy a predicate based on the interval locks the predicate has set in the indexes.

This strategy is called basic locking because it sets t-locks on all objects for which a normal query
would set read or write locks. Moreover, it requires no changes to conventional execution of access plans,
so it can be properly called a locking mechanism. The advantage of this scheme is that it is closely coupled
to normal query processing. New qualifications can be added using normal facilities, and locks for new
tuples are found as byproducts of normal update processing.

In the next three sections we indicate variations on basic predicate locking and basic physical lock-
ing.

3.3. Early Basic Locking
Notice that the above algorithm defers checking whether a given tuple actually satisfied a predicate

until the tuple is accessed. The algorithm does only a modest amount of work at the time a tuple is inserted
or modified, leaving the bulk of the overhead to the time the tuple is accessed. Hence, the algorithm can be
classified as a "late" algorithm, in that it defers overhead whenever possible. If tuples are updated fre-
quently, late algorithms should perform well. On the other hand, if a tuple is accessed often, the following
"early" locking algorithm should prove advantageous.

In early basic locking, a collection of t-locks is constructed at the time a tuple is inserted or modified
just as in basic locking. However, an extra step is also performed, namely each corresponding predicate
from the RULES relation is accessed and checked against the tuple. T-locks are only stored on the tuple for
predicates which the tuple satisfies and the "false drops" are eliminated. In exchange for extra overhead at
update time, this algorithm can deliver a  list of qualifying rule-ids with no extra overhead at the time of
access.
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3.4. Early Predicate Indexing
An analogous "early" version of predicate indexing can also be constructed. In this situation, ascer-

taining which predicates cover a giv en tuple is not deferred to access time; rather it is done at insertion
time. Hence, markers for the predicates which actually cover the tuple are stored on the tuple as in early
basic locking. However, these markers are discovered by accessing the predicate index rather than by con-
sulting index interval locks in appropriate indexes. Again, this scheme should be advantageous in "read
mostly" environments.

3.5. Boolean Basic Locking
This scheme will be appropriate for query processing engines which use all applicable indexes when

constructing a query plan. Hence, when the query plan for any predicate is executedall possible indexes
are consulted and lists of record identifiers are intersected or merged before any data tuples are accessed.
Then, only those tuples which satisfy all indexed predicates are actually read. In this scheme, index interval
locks will be set inall possible indexes in contrast to basic locking where index locks will be set in only
one index. In addition tuple locks will be set on only those tuples which satisfyall indexed predicates in
contrast to basic locking where locks will be set on all tuples satisfying the predicate(s) for one indexed
attribute.

This scheme will have a lesser number of false drops than basic locking, but will require setting a
larger number of index interval locks. Also, correctness of this algorithm requires that the query planner be
forced to consult all indexes. Notice lastly that an "early" version of boolean locking can be defined.

In order to analyze the performance of the six algorithms discussed so far:

(late) basic locking
early basic locking
(late) predicate indexing
early predicate indexing
(late) boolean basic locking
(early) boolean basic locking

we now define an abstract model for the operations performed on the database. Through this model we will
be able to analyze the performance of the above implementations in various contexts.

4. THE ABSTRACT MODEL
The schemes discussed so far have dissimilar characteristics. Late predicate indexing requires all

requests for the set of covering predicates to go through the index while early basic locking delivers the col-
lection that qualify directly. When tuples are updated or inserted, there is no extra overhead paid by the
"late" schemes while all "early" methods incur a substantial penalty. This section defines an abstract model
of relevant operations so that performance of the various algorithms can be analyzed.

4.1. The Abstract Model
We assume that there are two relevant operations in the model. The first is to update a single field in a

single tuple in a relationR which hasF attributes. This single field is chosen at random from among theF
candidates. The second is to find all the predicates which cover a giv en tuple which already exists in the
data base. This tuple is specified by giving a key value as a qualification. The reason for this model is that
most data base operations can be built up from these primitives. For example, an insert is approximately
modeled by one replace operation for each attribute. In addition, a retrieve operation is a collection of basic
tuple retrieves.

Moreover, the three applications presented in Section 2 are composites of these two operations. For
example, the trigger environment requires tuples to be identified, all predicates which cover these tuples to
be found and then the proposed update to be performed. This can be considered as a collection of pairs of
basic operations in our model, each containing a retrieve followed by an update. The other two example
applications are similarly modeled.
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The mix between updates and retrieves is controlled by a parameter,P, which is the percentage of
updates. The other parameters used in the analysis are presented in the following table.

Parameter Description

C1 The cost of evaluating a predicate for a given tuple
C2 The cost of reading a page
B The size of the page in bytes
W The width of data records in the relation
N The number of tuples in the relation
F The number of fields in the relation
FI The number of fields in the relation with an index
S The width of individual fields in the relation
4 The assumed width of pointers and t-locks
t The number of rules
Q The fraction of records matching a single term of a

predicate (will vary with the model)
P The fraction of update commands

The Model Parameters
Table 1

Moreover, we will analyze each of the following four models for the rule predicates:

Model 1: All predicates have a single clause restricting a single field z, i.e. they are of the form

relation.z = value

Model 2: All rule predicates are of the form

lvalue≤ relation.z≤ uvalue

Model 3: Each predicate has an equality restriction clause on all of theF attributes in the relation.

relation.z1 = value1 and ... and relation.zF = valueF

Model 4: This model is the same as model 3, except that the individual clauses are range restrictions
rather then exact-match terms.

lvalue1 ≤ relation.z1 ≤ uvalue1 and ... lvalueF ≤ relation.zF ≤ uvalueF

We now turn to the expected cost per operation for late predicate indexing, late basic locking, and
late boolean basic locking for each of the four predicate models. The expected costs of the early versions
of these implementations are straight forward to derive, and we omit them in the interest of brevity. In all
cases, we assume that the general algorithm is utilized, and that special case features appropriate to a partic-
ular predicate class cannot be exploited. This corresponds to a realistic implementation which does not
know the composition of the rules in advance. Also, we only count processing costs in excess of those
required by any system to perform the retrieval and update operations.

4.2. Late Predicate Indexing
The predicate index must be built on allF attributes of the relation. Assuming 4 bytes for each

pointer andW to be the width of a tuple, then each node can hold

p =  B

2W + 4


predicates. We will also assume for simplicity that all nodes are full. (Otherwise one can use some constant
factor such as the one derived in [YA O78]). In R+-trees the rules may broken into more than one entry in
models 2 and 4, and a reasonable approximation of the expected number of smaller piecesO that a rule
must be broken into is
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O =







1 for models 1 and 3

2 for model 2

2F /2 for model 4

Given the above assumptions, the number of leaf pages,L in the index is:

L =  t.O

p


and the depth of the index is:

d = lceil logp Lrceil

In this case the cost to find all predicates that overlap a specific tuple is, for models 1 and 3

cost= (d + 1)(C2 + C1. p)

while for models 2 and 4

cost= (d + 1)(C2 + C1. p) + (t.Q − p)C1 + lceil
t.Q − p

p
rceilC2 if t.Q > p

cost= (d + 1)(C2 + C1. p) if t.Q ≤ p

and the total cost per operation, TOTAL in the abstract model is:

TOTAL = (1 − P)cost

4.3. Late Basic Locking
It is clear that an insert incurs zero extra overhead for this algorithm. The only cost occurs in finding

covering predicates. The predicates corresponding to all t-locks must be accessed (at cost C1 each) and
then checked (at cost C2) to find the ones which actually cover the tuple. Therefore, the total cost per oper-
ation in the abstract model is:

TOTAL = (1 − P)t.Q. (C1 + C2)

4.4. Late Boolean Basic Locking
It is clear that there will be no false drops for any of the predicates, since all have an indexed

attribute. Hence, the only extra work will occur during insert operations. The number of markings which
will be collected and checked in model 1 and 2 is:

num= t.Q

while in models 3 and 4 we have to checkt.Q markings from each of theFI indexes, that is

num= FI . t.Q

markings. The total cost of this operation is:

cost1 = num. (C1 + C2)

Moreover, each secondary index which is defined over attributes used in predicates must be accessed even
if it is not being updated. All indexes hav eN attribute values and pointers toN records. However, in mod-
els 1 and 2, only the index on attributez has t-locks while the rest do not. In models 3 and 4 all indexes
have t-locks.

For attributez in models 1 and 2, there aret.Q t-locks in the index which consume 4. t.Q bytes.
Assuming that all index pages are full, the number of leaf pages,L in the index is:



-10-

L =  4. t.Q + 4. N + S. N

B


and the depth of the index is

d = lceil log f Lrceil

where the fanoutf is given by:

f =  B

S+ 4


The cost of processing this index is:

cost2 = (d + 1)(C2 + lceil log2 frceil)

For the other indexes, there are no t-locks and the number of leaf pagesL′ is simply:

L′ =  4. N + S. N

B
rceil

The cost of processing the indexcost2′ is then computed with this value ofL′. Consequently, the total cost
per operation, TOTAL in models 1 and 2 is given by:

TOTAL = P. cost1 + P
F − 1

F
(cost2 + (FI − 1). cost2′))

In models 3 and 4 there will be t-locks in all indexes and no distinction need be made for attributez. Con-
sequently, the total cost is:

TOTAL = P. cost1 + P. FI
F − 1

F
. cost2

5. PERFORMANCE RESULTS
In order to compare the six implementations we set the following parameters to constants as indi-

cated:

C1 = 10
C2 = 30
B = 2000
W = 100
N = 1,000,000
F = 10
S = 10
FI = 3

One can interpret C1 and C2 as times in msec; the other parameters are typical of current applications. It
can be noted that models 1 and 3 will yield the same expected total cost per basic operation for any particu-
lar setting of the model parameters. Hence, they differ only in what values ofQ are intuitively reasonable.
The same comment applies to models 2 and 4. For both pairs of models we varied the expected number of
rules which cover a tuple,t.Q and the update probability,P. In all cases, predicate indexing performance
is sensitive to the total number of rules,t, and we set that to 10000. Figure 1 plots expected cost per opera-
tion, TOTAL for models 1 and 3 fort.Q = 1 asP is varied from 0 to 1 (EPI, EBL and EBBL stand for early
predicate indexing, early basic locking and early boolean basic locking respectively. The others are simi-
larly noted).



-11-

1 10
2 18
3 25
4 38
pointscale
scale 0.7
height 3
width 3
file /jd/ingres/tim/PAPERS/Eds85/graph11

Models 1 and 3 : Costs vs Update Probability
Figure 1

For models 2 and 4 we sett.Q to be 15 to simulate each tuple being covered by 15 rules and performed the
same analysis as above. The results appear in Figure 2.
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Models 2 and 4 : Costs vs Update Probability
Figure 2

<<<starting here -- will need some work>>>>> Notice that BL is the dominant alternative in both situations
except when the update probability is low. Also, PI is never preferred for these parameters settings. On the
other hand, when higher values oft.Q are utilized, then PI is always better than BL. Lastly, when the prob-
ability of update is low, there are situations where reduced marking is an attractive alternative. Figures 3
and 4 present such a case in whichP is fixed at 0.15 and the number of rules which cover a tuple,t.Q is
varied from 1 to 40.
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Models 1 and 2 : Costs vs Expected Number of Predicates
Covering a Single Tuple (P = 0.15)

Figure 3
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Models 3 and 4 : Costs vs Expected Number of Predicates
Covering a Single Tuple (P = 0.15)

Figure 4

Notice that reduced marking is the dominant strategy over the parameter space explored.

In general, predicate indexing offers superior performance when a tuple is covered by a large number
of rules and when the probability of update is high. Basic locking must access and check a predicate for
each t-lock in a tuple. This requires one random disk access per t-lock, whereas the qualifying predicates
are clustered in the predicate index. This absence of clustering dooms basic locking to poor performance
when the number of t locks becomes sufficiently large. On the other hand, the reduced marking system
incurs substantial overhead when tuples are updated, dooming it to fail in update intensive environments.

On the other hand, basic locking excels when the expected number of rules which cover a tuple is
low and reduced marking is the clear choice when the probability of update is low. Figure 5 gives the areas
in the (t.Q, P) space where each of the implementations seems to work best.
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Figure 5

6. OTHER APPROACHES
It is clear from the preceding section that the best choice varies with the expected environment.

Hence, it is feasible (although not very attractive) to implement more than one of the options and then
choose an implementation based on the expected number of rules which cover a giv en tuple and the update
probability.
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Moreover, there are considerations concerning the generality of predicates required. If one needs
predicates which include joins, then the predicate indexing schemes do not work, and a locking scheme
must be employed. One possible composite scheme which overcomes this deficiency is now presented. A
multi-relation predicate can be decomposed into a query plan which includes selections, projections, and a
specific join algorithm run on pairs of relations (e.g. [WONG76, SELI79]). One could insert any selection
or projection subquery in the plan into the appropriate predicate index. Then one could physically mark
any pairs of tuples that satisfied the join clauses. It is possible that such a scheme may be advantageous.
Other schemes to extend predicate indexing to join predicates are a subject for future research.

Also, if one restricts the predicates to model 1, then the predicate indexing scheme degenerates to a
conventional B-tree which can be integrated with the secondary indexing mechanism. Hence, the imple-
mentation difficulty is eased in this special case.

Another improvement to basic locking and boolean basic locking is to organize the collection of rules
so that the rules are clustered in a way similar to the predicate index described above. This will improve
the performance of basic locking in environments with many rules covering the average tuple because it
will cluster rules which must be checked together onto a smaller number of disk pages.

In addition, basic locking can be improved if additional complexity is tolerable. We will briefly
describe another more sophisticated marking scheme which we term “mark storage” that may offer superior
performance. The primary motivation behind the mark storage algorithm is to avoid searching every index
of R ev ery time a tuple is updated (as must be done in the reduced record marking algorithm). In a conven-
tional database system without rule processing, only indexes used in the query plan must be read, and only
those on updated attributes must be modified. The mark storage algorithm requires no extra I/O.

Consider the following general form of a predicate:

P: p1 and . . . and pk

Here,pj is a restriction term such as “R.A = 5” or “50≤R.A≤100”, and 1≤ k ≤ F . The attributes for which
a predicate has a restriction term will be denoted byai j

, where 1≤ j ≤ k, andi1 throughi k are the indexes
of the attributes with a restriction term. We say that a predicatepartially matchesa tuple if at least one
predicate termpj , 1 ≤ j ≤ k, matches an attributeai j

of the tuple. For example, consider the following
relation and predicate:

R ( A, B, C) -- indexes on A and B, no index on C

contents:
t: <A=5, B=10, C=14>

D1: A=4 and C=15
D2: B=10 and C=15
D3: A=5 and B=10

Given this relation and set of predicates, we would say thatD2 partially matchest on attribute B,D3 par-
tially matchest on both A and B, andD1 has no partial matches fort. In general, a predicateP matchesa
tuple if and only if the tuple partially matchesP on all k terms ofP. Attributes for whichP does not have
a term need not be considered. Thus,D3 matchest, and D1 and D2 do not. Furthermore, if a predicate
does not partially match a tuple on all terms, then it definitely does not match the tuple.

Given this background, the mark storage algorithm can be described. First, the algorithm requires
ev ery predicate to have at least one term on an indexed attribute. As in the reduced record marking scheme,
each rule sets locks in all indexes for which it has a restriction term. Besides just locking the indexes, a list
of rule id’s is stored on every indexed attribute of every tuple in the database. A rule-id is stored on a tuple
attribute if and only if that rule partially matches the tuple on that attributeand the attribute has an index.
Associated with each rule-id stored with an attribute is information giving the positions of the attributes for
which the rule predicate has a restriction term. This information can be stored with each rule-id as a bit
stringb1

. . .bF wherebi is 1 if the rule has a restriction term on attributei , and 0 otherwise. In the example
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database t will have the following lists of marks and associated bit strings on its attributes:

t: < A=5;[<D3, 110>], B=10;[<D2, 011>,<D3,110>], C=15>
Notice that attribute C oft has no list of rule-ids or bit strings since R.C has no index.

When a tuple is inserted into a relation, the lists of markings for the tuple attributes must be deter-
mined. This is easily accomplished since all indexes must be consulted, and the marks can be determined
at low cost when the indexes are searched. Furthermore, if the tuple is modified with areplacecommand,
the list of marks on an attribute changes only if that attribute was modified. This means that only indexes
corresponding to updated attributes need be inspected and appropriate markings recomputed. This will
result in a smaller update cost than the reduced marking algorithm.

The setS of predicates thatmight match a tuple,t are determined by finding the set of all <rule-
id,bit-string> pairs on the tuple such that for every attribute ofR which has an index, and for which the bit-
string elementbi is a 1, an identical <rule-id,bit-string> pair occurs on the mark list for attributei . For
example, examiningt as shown above, it is not possible to rule out a match ont for D3 sinceb1 andb2 are
1 and <D3, 110 > is on the list for A and B. However it is possible to rule out a match onD2 sincebi = 0
for D2, but < D2, 011 > is not on the mark list for attribute A. The collection of predicates which cannot be
ruled out must be checked just as in the basic locking algorithm.

This scheme may offer good performance because it avoids unnecessary I/O to indexes compared to
the reduced marking algorithm and reduces the number of predicates that must be accessed and checked
compared to the basic locking scheme. An analysis of the cost of this scheme is a subject of future
research.

7. CONCLUSIONS
We hav e presented alternate implementations for rule indexing in a data base system. Our first pro-

posal resembles predicate locking and uses a variation of R-trees to index the rule set. The other two
approaches resemble versions of physical locking.

Our performance analysis results show that it is not possible to choose one implementation to support
efficiently any rule based environment. Physical marking seems the most promising because of its ease of
implementation, performance in simple environments, and extensibility to join predicates. We hav e also
proposed extensions to predicate indexing and reduced marking that attempt to overcome their disadvan-
tages. Analysis of these schemes and investigation of other extensions are a topic of future research.
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