
A COMMENTARY ON THE POSTGRES RULES SYSTEM

Michael Stonebraker, Marti Hearst, and Spyros Potamianos
EECS Dept.

University of California, Berkeley

Abstract

This paper suggests modifications to the
POSTGRES rules system (PRS) to increase its
usability and function. Specifically, we suggest
changing the rule syntax to a more powerful one
and propose additional keywords, introduce the
notion of rulesets whose purpose is to increase the
user’s control over the rule activation process, and
expand the versioning facility to support a broader
range of applications than is currently possible.

1. INTRODUCTION

In the POSTGRES data base management
system [WENS88, STON86a], we have designed
and implemented an integrated rules system.
Based on this experience we have sev eral changes
we plan to make. This paper reviews (in Section 2)
the initial proposal as presented in [STON88],
describes the status of the current implementation,
and suggests modifications and additions in three
areas: rule syntax (Section 3), rulesets (Section 4),
and versions (Section 5). In Section 6 we summa-
rize the changes.

2. THE CURRENT POSTGRES RULES
SYSTEM

2.1. Syntax

POSTGRES supports a query language,
POSTQUEL, which borrows heavily from its pre-
decessor, QUEL [HELD75]. The main extensions
are syntax to deal with procedural data, extended
data types, rules, inheritance, versions and time.
The language is described elsewhere [ROWE87],

This research was sponsored by the Army Research Organization Grant DAAL03-87-0083 and by the Defense Advanced Re-
search Projects Agency through NASA Grant NAG 2-530.

and here we give only one example to motivate our
rules system. The following POSTQUEL com-
mand sets the salary of Mike to the salary of Bill
using the standard EMP relation:

replace EMP (salary = E.salary)
using E in EMP
where EMP.name = ‘‘Mike’’
and E.name = ‘‘Bill’’

POSTGRES allows any such POSTQUEL
command to be tagged with three special modifiers
which change its meaning. Such tagged com-
mands becomerules and can be used in a variety
of situations as will be presently described.

The first tag is ‘‘always’’ which is shown
below modifying the above POSTQUEL com-
mand.

always replace EMP(salary = E.salary)
using E in EMP
where EMP.name = ‘‘Mike’’
and E.name = ‘‘Bill’’

The semantics of this rule are that the associated
command should logically appear to run forever.
Hence, POSTGRES must ensure that any user who
retrieves the salary of Mike will see a value equal
to that of Bill’s.

If a retrieve command is tagged with
‘‘always’’ it becomes a rule which functions as an
alerter. For example, the following command will
retrieve Mike’s salary whenever it changes.

always retrieve (EMP.salary)
where EMP.name = ‘‘Mike’’

1

The second tag which can be applied to any
POSTQUEL command is ‘‘refuse’’. This tag is
useful to enforce sophisticated protection rules as
noted in [STON88]. The final tag is ‘‘one-time’’
which is useful to implement ‘‘alarm clocks’’, i.e.
rules which fire once and then permanently disap-
pear.

2.2. Implementation Options

Currently the PRS optimizes rule execution
along two dimensions. As an example of the first,
consider the following collection of rules:

always replace EMP(salary = E.salary)
using E in EMP
where EMP.name = ‘‘Mike’’
and E.name = ‘‘Bill’’

always replace EMP(salary = E.salary)
using E in EMP
where EMP.name = ‘‘Bill’’
and E.name = ‘‘Fred’’

These rules ensure that Mike’s salary is set to Bill’s
which is set to Fred’s. If the salary of Fred is
changed, then the second rule can be awakened to
change the salary of Bill which can be followed by
the first rule to alter the salary of Mike. In this
case an update to the data base awakens a collec-
tion of rules which in turn awaken a subsequent
collection. This control structure is known asfor-
ward chaining, and we will term itearly evalua-
tion. The first option available to the PRS is to
perform early evaluation of rules which results in a
forward chaining control flow.

A second option is to delay the awakening of
either of the above rules until a user requests the
salary of Bill or Mike. Hence, neither rule will be
run when Fred’s salary is changed. Rather, if a
user requests Bill’s salary, then the second rule
must be run to produce it on demand. Similarly, if
Mike’s salary is requested, then the first rule is run
to determine Mike’s salary, in turn triggering the
second rule which is run to obtain Bill’s salary.
This control structure is known asbackward
chaining, and we will term itlate evaluation. The
choice of early or late evaluation is an internal
optimization subject to a collection of restrictions
presented in [STON88].

There is another dimension to PRS optimiza-
tion which deals with the rule firing mechanism.
In [STON86b] we analyzed the performance of a
rule indexing structure and various structures based

on physical marking (locking) of objects to control
rule activation. When the average number of rules
that covered a particular tuple was low, locking
was preferred. Moreover, rule indexing could not
be easily extended to handle rules with join terms
in the qualification. Because we expect there will
be a small number of rules which cover each tuple
in practical applications, we are utilizing a locking
scheme.

Consequently, when a rule is installed into
the data base for either early or late evaluation,
POSTGRES runs the command corresponding to
the rule in a special mode and collects a list of all
data items that are read or proposed for writing by
the rule. On each such data item the system sets
one of several kinds of locks, detailed in
[STON88]. When a query subsequently reads or
writes one of these marked objects, the locks trig-
ger appropriate rule specific processing. This pro-
cessing is termed ‘‘record processing’’ because it is
activated by updates, insertions or deletions of
individual records.

There are situations where lock escalation
may be desirable. For example, consider the rule:

always replace EMP (desk = ‘‘steel’’)
where EMP.age < 80

Because this rule will read the ages of most
employees, it is preferable toescalateindividual
locks on data items to a column level lock. In this
case, rule activation can be performed byrewrit-
ing the user interaction. For example, the query

retrieve (EMP.desk)
where EMP.name = ‘‘Mike’’

can be easily rewritten as:

retrieve (‘‘steel’’)
where EMP.name = ‘‘Mike’’
and EMP.age < 80

retrieve (EMP.desk)
where EMP.name = ‘‘Mike’’
and EMP.age >= 80

The complete collection of PRS rewrite rules
is specified in [STON88]. In summary, the PRS
must choose for any rule whether to use early or
late evaluation and whether to use record process-
ing or query rewriting as the rule processing algo-
rithm. The tradeoffs between these options are
also considered in [STON88].

2

2.3. Current Implementation Status

The current PRS implementation supports
only late evaluation for always replace rules. In
addition, both fine and coarse granularity locks are
working. However, we hav e only implemented the
record processing algorithms, so coarse granularity
locks are used only to indicate that record level
processing must be done for each record in the col-
umn in question. Consequently, the escalation of
locks does not change the fundamental rule pro-
cessing algorithm, but merely saves space.

3. SYNTAX CHANGES

Based on our initial experience with the
rules system and feedback from early candidate
users, we are considering modifying the rules sys-
tem in the ways discussed in this and the next two
sections.

3.1. Problems with the Current Syntax

There are at least three problems with the
current syntax. First, it is impossible to specify
transition constraints, such as permitting salary
adjustments only if they are less than $500. This
would require something like:

refuse replace EMP (salary)
where new.salary - old.salary > 500

In the current PRS there is no way to refer to the
new value or the old value of a field. Moreover,
simply adding new and old as keywords changes
the semantics of PRS. For example, the above
command only makes sense when there is a new
value for some employee’s salary. This is not con-
sistent with the current paradigm of a rule always
being in execution.

Second, there is insufficient control to imple-
ment all useful cases of referential integrity
[DATE81]. Consider for example the EMP and
DEPT relations:

EMP (name, salary, dept)
DEPT (dname, floor).

and suppose one wanted to delete all employees in
a department as a side effect of deleting the depart-
ment. This is easily specified as the following PRS
rule:

delete always EMP
where EMP.dept not-in {DEPT.dname}

However, the above rule also refuses the insertion
of employees in a non-existent department. Hence,

it implements rule ‘‘cascade the deletion and refuse
the insertion’’. Unfortunately, there is no way to
cascade deletions but take some other action on
insertions. Hence, there is insufficient granularity
of control.

Lastly, although the PRS is a powerful rules
system, it has always been frustrating to some of us
that it could not be used to support view processing
for relational views. Hence, the function provided
by PRS seems a slight mismatch with the needs of
a DBMS rules system. This concern has caused us
to consider changing the rules system to the fol-
lowing one.

3.2. PRS II

PRS contains a rules system that performs
either tuple processing or query rewrite, depending
on the lock granularity, and automatically deter-
mined which rules to evaluate early and which late.
This uniform specification of rules with different
system-determined implementations will be modi-
fied. Specifically, to add additional control we are
changing the syntax slightly and adding keywords
new andold. This changes the paradigm from the
notion of a command perpetually in execution to
one where events are specified which cause spe-
cific actions to occur. Unfortunately this will
require us to abandon optimizing the early versus
late decision in most cases. It also makes PRS II
closer to other proposals, e.g. [DELC88,
DAYA86].

The syntax of a PRS II rule is thereby:

define rule rulenameis
on POSTQUEL event
do POSTQUEL command(s)

The semantic interpretation is that the action part
of the rule is executed once when the POSTQUEL
ev ent occurs. Multiple rules may be defined based
on the same event; all applicable ones are
executed. POSTQUEL events are specified using
the following syntax:

on command-name to object
where condition

Here command-name is one of {append,
replace, delete, retrieve} optionally coupled with
new on an append or replace andold on a replace
or delete.Object is the name of a relation or a col-
umn in a relation andcondition is an arbitrary
POSTQUEL qualification.Command(s) are any
set of legal POSTQUEL commands with two

3

extensions. First, a POSTQUELrefuse command
with a target list of columns which cannot be mod-
ified is provided. This command allows a rule to
refuse the update that its event portion specifies.
Second, we add the keywordsnew andold which
can be used anywhere that a relation name, tuple
variable or constant can. Thenew keyword refers
to the tuple being inserted in an event involving an
append command or the tuple being updated in a
replace event. Theold keyword refers to the tuple
that is being removed by a delete event or the one
to be updated by a replace event.

Consider the following rule, using the new
syntax, that propagates Bill’s salary on to Mike:

on replace to EMP.salary
where EMP.name = ‘‘Bill’’
do replace EMP (salary = new.salary)
where EMP.name = ‘‘Mike’’

In this rule, the event specified by theon condition
is the introduction of a new value for the salary of
the employee named Bill. At the time this rule is
aw akened, there will be anew tuple and there may
or may not be anold tuple with the fields that are
being replaced. When the rule manager is awak-
ened, it processes the rule by running the query
specified by thedo statement, after first substitut-
ing values for fields specified by new.column-name
or old.column-name.

However, the above rule does not preclude a
user from directly updating Mike’s salary. Hence,
by itself, it is not equivalent to the PRS rule dis-
cussed in the previous section. To attain equiv-
alence, we must add a second rule:

on replace to EMP.salary
where EMP.name = ‘‘Mike’’
do refuse (new.salary)

The second rule is assigned a lower priority than
the first, and ensures that no other update can
change Mike’s salary.

Detecting an append, delete or replace that
satisfies the on-condition and then executing the
do-statements corresponds to normal forward
chaining. In fact, any PRS append, delete or
replace statement used with early evaluation can be
routinely converted into equivalent PRS II rules.
The PRS "always retrieve" rules are also easily
translated. For example, the following PRS II rule
returns Mike’s salary each time it changes:

on replace to EMP.salary
where EMP.name = ‘‘Mike’’

do retrieve (new.salary)

Backward chaining rules are also easily
expressed. The following rule expresses the stipu-
lation that Mike should earn the same salary as
Bill:

on retrieve to EMP.salary
where EMP.name = ‘‘Mike’’
do retrieve (EMP.salary)
where EMP.name = ‘‘Bill’’

This rule is awakened when a query attempts to
read Mike’s salary. At that time the do-action is
run and retrieves the current salary of Bill instead.
Of course, Bill’s salary could be specified in a sim-
ilar way and a backward chaining control flow
results.

If a PRS II rule containsnew or old, then
record processing will be used to implement the
rule. However, PRS II rules which do not contain
these keywords will be implemented via query
rewrite. For example, consider the rule:

on retrieve to EMP.desk
retrieve ‘‘steel’’ where EMP.age < 80

This rule can use a column level lock and be easily
enforced by a query rewrite algorithm, essentially
the same as the one in the example in the previous
section and in [STON88].

In summary, PRS II can be supported by the
same implementation used in PRS; that of item
locks or column locks. Item locks are supported
by tuple processing while column locks are sup-
ported by query rewrite. The decision on lock
granularity can be made automatically only for
rules which do not use the keywordsnew andold.
The way rules are written determines whether they
will be executed in a forward or backward chaining
manner, as seen in the two salary writing examples
above. Backward chaining rules can beprecom-
puted by a demon and their results cached. How-
ev er, forward chaining rules cannot be delayed to
late evaluation without changing their semantics.
Hence, there is less room for automatic optimiza-
tion in PRS II. On the other hand, PRS II has aug-
mented power as demonstrated in the next section.

3.3. New Functionality

In this section we indicate how to use PRS II
to perform transition constraints and solve the view
update problem. Restricting salary updates to
$500 is easily accomplished with the following
rule:

4

on new EMP.salary
refuse (new.salary)
where new.salary - old.salary > 500

The other example concerns view update.
Assume that we have the following view definition
for a conventional relational DBMS:

define view
EMP-DEPT (EMP.all, DEPT.floor)
where EMP.dept = DEPT.dname

This view is easily expressed as the following PRS
II rule:

on retrieve to EMP-DEPT
do retrieve (name = EMP.name,
salary = EMP.salary,
dept = EMP.dept,
floor = DEPT.floor)
where EMP.dept = DEPT.dname

Standard query modification [STON75] for retrieve
commands is equivalent to the processing per-
formed by query rewrite for PRS II. However, the
problem with views is that many updates are
semantically ambiguous. It is not clear, for exam-
ple, how to process the following ambiguous
update:

replace EMP-DEPT (floor = 1)
where EMP-DEPT.name = ‘‘Mike’’

In PRS II, we can allow a user to specify additional
rules to control system behavior in these circum-
stances. Specifically, suppose that it is known that
there is exactly one department on each floor. This
means that the intent of the update above is to
place Mike in the department located on the first
floor. This can be enforced by the following rule:

on update to EMP-DEPT.floor
do replace EMP (dept = DEPT.dname)
where DEPT.floor = new.floor
and EMP.name = new.name

Processing of an update to EMP-DEPT
occurs in two stages. First, a retrieval operation
must be performed to isolate the records to be
modified. This query is rewritten by the ‘‘on
retrieve’’ rule to obtain the desired data. Next, the
system computes proposed updates to EMP-DEPT.
Each such proposed update will fire the ‘‘on
update’’ rule, which will make the correct actual
update.

Hence, views can be supported bytwo kinds
of rules. The first kind specifies how to handle
retrievals, and triggers standard query

modification. The second kind of rules specifies
what actions to take with proposed updates of indi-
vidual tuples in the view. These rules can resolve
ambiguity in an application specific way and are
the component that is missing from current com-
mercial implementations of views.

Of course, it is possible to have default
update processing perform the standard algorithm
when no update rules are specified by the user. In
this way, no extra effort is required for view
updates which are not ambiguous.

4. RULESETS

4.1. Introduction

Currently the rules defined within a POST-
GRES data base are monolithic in organization, i.e.
all rules are active for all users at all times. This is
problematic for several reasons. First, a knowl-
edge engineer frequently needs to modify active
rules during the development phase. Currently,
this must be done tediously by deleting and rein-
serting individual rules. Moreover, when multiple
rules are inserted in the current system, since the
rules become active immediately, synchronization
hazards can occur. For example, consider the fol-
lowing two rules:

replace always EMP (salary = E.salary)
using E in EMP
where E.name = ‘‘Mike’’
and E.salary < 10000
and EMP.name = ‘‘Joe’’
priority = 2

replace always EMP (salary = E.salary)
using E in EMP
where E.name = ‘‘Jean’’
and E.salary > 10000
and EMP.name = ‘‘Mike’’
priority = 10

Suppose the rules are entered in the above order
and Mike’s salary is initially $5000. In this case,
the first rule will fire immediately and change Joe’s
salary. On the other hand, if the second rule is
entered first, then Mike’s salary will be adjusted to
a number above $10,000. and Joe’s salary will not
get changed. Such ordering dependencies should
be avoided.

A third motivation for rulesets concerns
applications which have a rule base composed of
both shared and private rules. For example,

5

consider a POSTGRES implementation of a text
retrieval system such as RUBRIC [MCCUN86].
Users specify a taxonomy which is used to classify
an incoming stream of articles into subject areas.
For example, if a user is interested in articles about
scuba diving, he might divide the topic into
subtopics such as "coral_reefs," "equip-
ment_maintenance," "dangers," and divide these
into subtopics as well, down to the level of lexical
groupings. When an article is scanned, its good-
ness of fit is assessed for each leaf level subcate-
gory. This result is propagated up the taxonomy
and certainty of membership is computed for each
category. When taxonomies are large, users will
wish to use a predefined set of categorization rules
with some private modifications for their own
tastes. This combination of shared and private
rules is awkward to specify in the current system.

As a remedy to these problems, we are intro-
ducing rulesets into POSTGRES. Rulesets may
be defined and removed at will, and each POST-
GRES rule may optionally be placed into a ruleset.
Rulesets are hierarchically structured, and can be
activatedor deactivated.

4.2. Ruleset Commands

A ruleset is defined as follows:

Define Ruleset ruleset_name
[inherits ruleset {, ruleset }]
[init_script proc-name]
[cleanup_script proc-name]

It is convenient to group rulesets into an inheri-
tance hierarchy, so that common collections of
rules can be shared among multiple rulesets. The
inherits clause provides this capability. The
init_script is the name of a POSTGRES procedure
which contains a script of POSTQUEL commands
to be run when the ruleset is activated. Typically
this script contains initialization information and
instructions to create any necessary temporary rela-
tions. Thecleanup_script is a procedure contain-
ing POSTQUEL queries that is invoked at deacti-
vate time. A ruleset can be removed with the fol-
lowing command:

Remove Ruleset ruleset_name

Rules can be bound to an individual ruleset and
subsequently removed from a ruleset using the fol-
lowing two commands:

Add rule-name to ruleset
Remove rule-name from ruleset

Rulesets can be activated using the following com-
mand:

Activate ruleset_name
[i_script]
[late_signal]
[auto_deactivate]

Here, thei_script flag, if set, indicates that the ini-
tialization script be run. Normally, an activate
command is acknowledged immediately by the
POSTQUEL run-time system. However, the user
can optionally chose to be notified only when the
inference engine detects that no new inferences
have been made as a result of the ruleset activation
by setting thelate_signalflag. This allows assess-
ment of the state of a cascaded computation at the
conclusion of the inference process. Under normal
circumstances, a ruleset remains active until deacti-
vated. However, the user can specify with the
auto_deactivate flag that ruleset deactivation
should occur as soon as ‘‘the dust settles.’’

The last command is

Deactivate ruleset_name
[d_script]

This command sets all members of ruleset_name to
"inactive" status. Thed_script flag, when set,
indicates that the deactivation script should be run.

4.3. Implementation

Each rule is included in a unique ruleset, and
the ruleset name is stored with the command body
of the rule. POSTGRES will maintain a main
memory hash table to indicate which rulesets are
active. If a rule is awakened by the rule manager, a
check is initiated to ensure that it is in an active
ruleset. If so, processing continues normally; oth-
erwise the rule is ignored.

For space and implementation efficiency the
lock information placed on individual tuples will
not be updated with "active" markers. Hence, inac-
tive rules will cause the rule engine to fetch the
command body of the rule before realizing that the
rule currently has no effect (although we may opt
to cache rule/ruleset mapping information). The
alternative is to hav e deactivation of rules be very
expensive, requiring that all rule locks be found
and updated.

5. AUGMENTED VERSION SUPPORT

In a rules system application it is often use-
ful to explore alternate scenarios. For example, in

6

an automotive application, one might want to acti-
vate a collection of rules that tests for low voltage
and another set that tests for absence of fuel. Each
ruleset will need to run on an individualversion of
the same underlying relation. Although the current
POSTGRES version system supports alternate ver-
sions, it requires each version to have a unique
name. This makes scenario construction difficult,
because each scenario has to have different specifi-
cations of common rulesets. Hence, it appears that
the POSTGRES version system should be
expanded to include the following notions:

1) Allow versions to be defined with the same
name as the relations they are based on,
appended with revision numbers. This
allows application queries and rules to be
used on versions without the need for rewrite
to accommodate different relation names.

2) Provide a way to declare the default (current)
version of a relation and an (overriding)
alternate current version of a relation.

3) Allow the definition of a version to automati-
cally include several relations at once, free-
ing the user from needing to keep track of
which relations are involved in a logical set
of relations.

4) Allow rules to refer to versions.

Rulesets can be used in conjunction with
such a versioning facility to produce rule cus-
tomization for dataset experimentation. When an
application creates a new version of a relation set,
the new version inherits all of the rules of the old
version. Then the application can delete unwanted
rules from and add new rules to the new version,
and deactivate the rulesets that it is not interested
in.

6. SUMMARY

The modifications we have suggested -- an
improved syntax, the introduction of rulesets, and
flexible versioning capabilities -- are meant to
improve the usability of the POSTGRES rules sys-
tem. These change the existing design only in
minor ways, and we expect to have PRS II running
quickly.

REFERENCES

[BORG85] Borgida, A., “Language Features
for Flexible Handling of Exceptions
in Information Systems,” ACM-

TODS, Dec. 1985.

[DATE81] Date, C., “Referential Integrity,”
Proc. Seventh International VLDB
Conference, Cannes, France, Sept.
1981.

[DAYA88] Dayal, U. et. al., “The HiPAC Pro-
ject: Combining Active Databases
and Timing Constraints,” SIGMOD
Record, Vol. 17, No. 1, March 1988.

[DELC88] Delcambre, L. and Etheredge, J.,
“The Relational Production Lan-
guage,” Proc. 2nd International
Conference on Expert Database
Systems, Washington, D.C., Febru-
ary 1988.

[HELD75] Held, G. et. al., “INGRES: A Rela-
tional Data Base System,” Proc
1975 National Computer Confer-
ence, Anaheim, Ca., June 1975.

[ROWE87] Rowe, L. and Stonebraker, M., “The
POSTGRES Data Model,” Proc.
1987 VLDB Conference, Brighton,
England, Sept 1987.

[STON88] Stonebraker, M. et. al., “The POST-
GRES Rules System,” IEEE Trans-
actions on Software Engineering,
Dec. 1988.

[STON86a] Stonebraker, M. and Rowe, L., “The
Design of POSTGRES,” Proc.
1986 ACM-SIGMOD Conference
on Management of Data, Washing-
ton, D.C., May 1986.

[STON86b] Stonebraker, M. et. al., “An Analy-
sis of Rule Indexing Implementa-
tions in Data Base Systems,” Proc.
1st International Conference on
Expert Data Base Systems,
Charleston, S.C., April 1986.

[STON82] Stonebraker, M. et. al., “A Rules
System for a Relational Data Base
Management System,” Proc. 2nd
International Conference on
Databases, Jerusalem, Israel, June
1982.

[STON75] Stonebraker, M., “Implementation
of Integrity Constraints and Views
by Query Modification,” Proc. 1975
ACM-SIGMOD Conference, San
Jose, Ca., May 1975.

7

[MCCUN86] McCune, B., et. al., “RUBRIC: A
System for Rule-Based Information
Retrieval,” IEEE Transactions on
Software Engineering, Vol. SE-11,
No. 9, Sept. 1985.

[WENS88] Wensel, S. (ed.), “The POSTGRES
Reference Manual,” Electronics
Research Laboratory, University of
California, Berkeley, CA, Report
M88/20, March 1988.

8

