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Chapter 1

Introduction

The trend in database applications is that databases are becoming orders of mag-

nitude larger and user queries are becoming more and more complex. This trend is driven

by new application areas such as decision support, multi-media applications, scienti�c data

visualization, and information retrieval. For example, NASA scientists have been collecting

terabytes of satellite image data from space for many years, and they wish to run vari-

ous queries over all the past and current data to �nd relevant images for their research.

As another example, several department stores have started to record every product-code-

scanning action of every cashier in every store in their chain. Ad-hoc complex queries are

run on this historical database to discover buying patterns and make stocking decisions.

It has become increasingly di�cult for conventional single processor computer sys-

tems to meet the CPU and I/O demands of relational DBMS searching terabyte databases

or processing complex queries. Meanwhile, multiprocessors based on increasingly fast and

inexpensive microprocessors have become widely available from a variety of vendors in-
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cluding Sequent, Tandem, Intel, Teradata, and nCUBE. These machines provide not only

more total computing power than their mainframe counterparts, but also provide a lower

price/MIPS. Moreover, the disk array technology that provides high bandwidth and high

availability through redundant arrays of inexpensive disks [37] has emerged to ease the I/O

bottleneck problem. Because relational queries consist of uniform operations applied to

uniform streams of data, they are ideally suited to parallel execution. Therefore, the way

to meet the high CPU and I/O demands of these new database applications is to build

a parallel database system based on a large number of inexpensive processors and disks

exploiting parallelism within as well as between queries.

In this chapter, we �rst introduce the issues in query processing on parallel database

systems that will be addressed in this thesis. Then, related previous work on parallel

database systems, especially work on parallel query processing is surveyed. The last section

of this chapter presents an outline of the rest of this thesis.

1.1 Query Processing in Parallel Database Systems

One of the fundamental innovations of relational databases is their non-procedural

query languages based on predicate calculus. In earlier database systems, namely those

based on hierarchical and network data models, the application program must navigate

through the database via links and pointers between data records. In a relational database

system, a user only speci�es the predicates that the retrieved data should satisfy in a rela-

tional query language such as SQL [26], and the database system determines the necessary

processing steps, i.e., a query plan automatically. Since there may be many possible query
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plans which di�er by orders of magnitude in processing costs (see [27] for an example), the

key of database query processing is to �nd the cheapest and fastest query plan.

1.1.1 Conventional Query Processing

Conventional query processing assumes a uniprocessor environment and query

plans are executed sequentially. A query plan for a uniprocessor environment is called

a sequential plan. The common approach to optimization of sequential plans is to exhaus-

tively or semi-exhaustively search through all the possible query plans, estimate a cost for

each plan, and choose the one with minimum cost, as described in [47]. A sequential query

plan is a binary tree of the basic relational operations, i.e., scans and joins. There are

two types of scans: sequential scan and index scan. There are three types of joins: nest-

loop, mergejoin and hashjoin. Hashjoin is only useful given a su�cient amount of main

memory [48], hence has not been widely implemented until recently. All other scan and

join operations, as described in any database textbook such as [30], are applicable in any

environments. At run time, the query executor processes each operation in a plan sequen-

tially. Intermediate result generation is avoided by the use of pipelining, in which the result

tuples of one relational operation are immediately processed as the input tuples of the next

operation.

IBM's System R requires the inner relation of any join operation to be a base table

(i.e., a stored, permanent relation) [47]. The resulting query plans are called deep tree plans.

The rationale is that this restriction allows the use of an existing index on the inner relation

of a join to speed up the join processing and reduces the search space of plans signi�cantly.

In contrast to System R, both the university version and the commercial version of Ingres
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of using deep tree plans for queries with a small number of relations. However, a deep tree

plan eliminates the possibility of executing two joins in parallel. Therefore, it is important

to consider bushy tree plans in a parallel database system so that parallelism between joins

in the left subtree and those in the right subtree can be exploited. In this thesis, general

bushy tree plans are considered to exploit parallelism.

Query optimization usually takes place at compile time. However, in a multi-user

environment, many system parameters such as available bu�er size and number of free

processors in a parallel database system remain unknown until run time. These changing

parameters may a�ect the cost of di�erent query plans di�erently. Thus, we cannot simply

perform compile-time optimization based on some default parameter values. This issue of

query optimization with unknown parameters will be addressed in this thesis.

1.1.2 Parallel Query Processing

As we can see from the previous subsection, each sequential plan basically speci�es

a partial order for the relation operations. We call a query plan for a parallel environment a

parallel plan. If a parallel plan satis�es the same partial order of operations as a sequential

plan, it is called a parallelization of the sequential plan. Obviously, each parallel query

plan is a parallelization of some sequential query plan and each sequential plan may have

many di�erent parallelizations. Parallelizations can be characterized in the following three

aspects.

� Form of Parallelism
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We can exploit parallelism within each operation, i.e., intra-operation parallelism

and parallelism between di�erent operations, i.e., inter-operation parallelism. Intra-

operation parallelism is achieved by partitioning data among multiple processors and

having those processors execute this same operation in parallel. Since intra-operation

depends on data partitioning, it is also called partitioned parallelism. Inter-operation

parallelism can be achieved either by executing independent operations in parallel

or executing consecutive operations in a pipeline. We call parallelism between inde-

pendent operations independent parallelism and parallelism of pipelined operations

pipelined parallelism.

� Unit of Parallelism

Unit of parallelism refers to the group of operations that is assigned to the same

processor for execution. We also call a unit of parallelism a plan fragments since it is

a \fragment" of a complete plan tree. In theory, a plan fragment can be any connected

subgraph of a plan tree.

� Degree of Parallelism

Degree of parallelism is the number of processes that are used to execute a plan

fragment. In theory, the degree of parallelism can be greater than the number of

available processors.

Figure 1.2 shows an example parallel plan. It illustrates the above three aspects

for a parallelization of a mergejoin plan. As we can see, one input to the mergejoin is

a sequential scan followed by a sort and the other input is an index scan. We choose to
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than the search space of sequential plans, how to schedule the processing of multiple plan

fragments in an optimal way, and how to allocate main memory among multiple parallel

plan fragments optimally. This thesis presents an integrated solution that addresses all

these new issues.

1.2 An Overview of Previous Work

In the past decade, an enormous amount of work has been done in the �eld of

parallel database systems. In the early days, most database machine research had fo-

cused on specialized, often trendy, hardware such as CCD memories, bubble memories,

head-per-track disks, and optical disks. However, none of these technologies ful�lled their

promises [8]. Parallel database systems did not become a success until the widespread adop-

tion of the relational model and the rapid development of processor and disk technology.

Now parallel database systems can be constructed economically with o�-the-shelf conven-

tional CPUs, electronic RAM, and moving-head magnetic disks. To date, many successful

parallel database systems have been developed both in the commercial marketplace and in

research institutions, as will be described in this section.

Parallel database systems would not have enjoyed such a big success of today

had there not been a wealth of research results contributed by many researchers in this

�eld. This section will only survey those works that are most relevant to this thesis. As

pointed out in [50], there are three main architectures for parallel database systems: shared

disk, shared nothing, and shared everything. Each of these three architectures has di�erent

characteristics for parallel query processing. In this thesis, we will concentrate on the shared



9

everything architecture. Because shared disk has not been a popular approach and there has

been little work done speci�cally for that architecture, we will not discuss the shared disk

architecture in this thesis. Interested readers are referred to IBM's IMS/VS Data Sharing

product [52] and DEC's VAX Rdb/VMS products [31] for more details about shared disk

systems. Most previous research on parallel query processing is done in the context of

the shared nothing architecture. Therefore, besides the shared everything architecture, we

will also survey works on the shared nothing architecture. Section 1.2.1 �rst introduces

the shared nothing architecture and describes parallel query execution in a shared nothing

system. Then, Section 1.2.2 discusses the shared everything architecture and introduces

XPRS, a prototype system which all the work in this thesis is based on. Last, Section 1.2.3

surveys previous work on parallel query optimization.

1.2.1 Shared Nothing Systems

The Shared Nothing Architecture

With a shared nothing system, each processor owns a portion of the database

and only that portion may be directly accessed or manipulated by that processor. A two-

phase commit protocol [49] is required to coordinate a transaction commit which involves

multiple nodes. Examples of shared nothing systems include Tandem's NonStop SQL [56],

Teradata's DBC/1012 [55], MCC's Bubba [7] and University of Wisconsin's Gamma [17].

The key to parallelism in a shared nothing system is based on the concept of

declustering. Declustering a relation involves distributing its tuples among multiple nodes

according to some distribution criteria such as applying a hash function to the key attribute
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of each tuple. Declustering has its origin in the concept of horizontal partitioning initially

developed as a data distribution mechanism for distributed DBMS [43]. After declustering,

each processor in a shared nothing system is in charge of a portion of the database residing

on its local disk drives. This enables the DBMS software to exploit the I/O bandwidth

reading and writing multiple disks in parallel.

There are three basic declustering schemes: range partitioning, round-robin and

hashing as illustrated in Figure 1.3. Range declustering maps tuples with a key value in a

certain range to a certain disk. Round-robin declustering maps the i'th tuple or page to

disk i mod n (where n is the number of disks). Hashing declustering assigns tuples to disks

according to a hash function. Among the shared nothing systems, Teradata only supports

round-robin and hashing, while Tandem, Bubba and Gamma supports all three declustering

schemes.

For example, suppose that an employee relation is declustered among 5 sites using

range partitioning on the salary attribute as follows:

Site 1: salary < 10K
Site 2: 10K � salary < 20K
Site 3: 20K � salary < 30K
Site 4: 30K � salary < 40K
Site 5: salary � 40K.

In this case, a query to �nd all the employees who earn $25K will be processed only at

Site 3. In general, range partitioning can restrict the processing of a query to a minimum

number of processors, which complicates the issue of load balancing. Unless salaries of

employees are uniformly distributed and queries on salary ranges are likewise uniform, the

�ve sites in the system will not have an equal amount of work to do, and the entire system



11

a 
--

 g
h 

--
 m

u 
--

 z

ra
ng

e 
pa

rt
iti

on
in

g

ha
sh

 p
ar

tit
io

ni
ngro

un
d-

ro
bi

n 
pa

rt
iti

on
in

g

C
P

U
C

P
U

C
P

U

C
P

U
C

P
U

C
P

U
C

P
U

C
P

U
C

P
U

In
te

r-
co

nn
ec

tio
n 

N
et

w
or

k
In

te
r-

co
nn

ec
tio

n 
N

et
w

or
k

In
te

r-
co

nn
ec

tio
n 

N
et

w
or

kF
igu
re
1.3:
T
h
r
e
e
B
a
sic
D
e
c
lu
s
te
r
in
g
S
c
h
e
m
e
s

w
ill
b
ottlen
eck
on
th
e
overload
ed
p
ro
cessor.

T
h
e
load
b
alan
cin
g
p
rob
lem
h
as
p
rom
p
ted
p
eop
le
to
favor
rou
n
d
-rob
in
an
d
h
ash
in
g

d
eclu
sterin
g.
H
ow
ev
er,
h
ash
in
g
or
rou
n
d
-rob
in
d
eclu
sterin
g
w
ill
alm
ost
gu
aran
tee
th
at
all

�
ve
p
ro
cessors
w
ill
ex
ecu
te
ev
ery
q
u
ery
(ex
cep
t
for
an
ex
act-m
atch
q
u
ery
on
th
e
h
ash
ed

attrib
u
te).
F
or
a
q
u
ery
th
at
on
ly
retu
rn
s
a
sin
gle
tu
p
le,
th
is
w
ill
resu
lt
in
5
tim
es
as
m
u
ch

w
ork
as
n
ecessary,
w
h
ich
w
ill
certain
ly
h
u
rt
tran
saction
p
ro
cessin
g
p
erform
an
ce.

A
n
oth
er
p
rob
lem

of
a
sh
ared
n
oth
in
g
sy
stem

is
th
e
com
m
u
n
ication
overh
ead
.

W
h
en
a
q
u
ery
is
ex
ecu
ted
in
p
arallel
on
m
u
ltip
le
sy
stem
s,
th
ere
is
in
ev
itab
le
com
m
u
n
i-

cation
am
on
g
th
e
sy
stem
s
to
sy
n
ch
ron
ize
m
u
ltip
le
com
p
u
tation
.
A
t
th
e
sam
e
tim
e,
d
ata

m
u
st
often
b
e
sen
t
from
on
e
sy
stem
to
oth
er
sy
stem
s
to
gain
p
arallelism
.
F
or
ex
am
p
le,

to
p
erform
a
join
in
p
arallel
am
on
g
m
u
ltip
le
n
o
d
es,
on
e
of
th
e
join
relation
s
m
ay
n
eed
to



12

be broadcasted to all the participating nodes. This generates more tra�c on the network.

When the degree of declustering is increased, the response time of individual queries will

decrease at �rst because of higher parallelism, but after a certain point, the response time

will increase because the communication overhead has become a signi�cant fraction of the

overall execution cost. This problem has prompted Bubba to advocate declustering only to

a subset of the disks to reduce communication cost [12]. However, this also raises a number

of new issues for physical database design. In Bubba, in addition to selecting a declustering

strategy for each relation, the number of disks over which a relation should be declustered

must also be decided. Copeland, et al. describe in [12] an approach based on the heat of

a tuple, i.e., the access frequency of the tuple over some period of time, which balance the

frequency with which each disk is accessed rather than the actual number of tuples on each

disk.

Parallel Query Execution in Gamma

We describe how query execution can be parallelized through the particular im-

plementation in Gamma, which is representative for shared nothing systems. As is pointed

out in [21], there are two models for parallelizing relational queries, i.e., the bracket model

and the operator model. Gamma adopts the bracket model. The operator model will be

described in the next subsection.

In the bracket model, there is a generic template process for each type of operations

that can receive and send data and can execute exactly one operation at any point of time.

A schematic diagram of such a template process for join operations is shown in Figure 1.4.

The code that makes up the generic template calls the code for the operation which then
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types of operations. For example, the template process for joins must listen to two input

ports, while the template process for scans only need to listen to one input port. These

operation-speci�c templates constraint the unit of parallelization as a single operation.

Therefore, one operation has to pay the overhead of inter-process communication (IPC) to

call another operation, whereas if more than one operations can be executed in the same

process, operations can call each other much more e�ciently by simple procedure calls.

Next, we discuss the shared everything systems including XPRS and Volcano.

The operator model of parallelization will be described with the Volcano system since it is

originally proposed for that system.

1.2.2 Shared Everything Systems

In a shared everything system, main memory, in addition to disks, is also shared

across all the processors, making system management and load balancing much easier.

An example of shared everything systems is University of California at Berkeley's XPRS

system [41] which we will describe in details throughout this thesis.

In the context of query processing, the main advantage of a shared nothing sys-

tem is its scalability. It may be possible to scale a shared nothing systems to hundreds,

even thousands of processors. The main disadvantage of a shared nothing system is the

communication overhead. Contrarily, a shared everything system has the advantage of no

communication overhead and easy load balancing, but is limited on scalability. Ultimately

bounded by the internal bus bandwidth, usually a shared everything system can at most

scale up to tens of processors. However, a shared everything system can be used as a node

in a shared nothing system to reduce the number of nodes and increase e�ciency.
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tem. First, there are no communication delays because messages are exchanged through the

shared memory, and synchronization can be accomplished by cheap, low level mechanisms.

Second, load balancing is much easier because the operating system can automatically al-

locate the next ready process to the �rst available processor. The simulation results in [2]

show that a shared everything system will outperform a shared nothing system with an

equivalent number of processors, disks and megabytes of main memory by as much as a fac-

tor of two. As will be described in the rest of this thesis, XPRS is designed and implemented

to take full advantages of the shared everything architecture.

Database applications are often I/O intensive. In order to keep up with the I/O

requests from multiple processors, XPRS uses a disk array to eliminate the I/O bottleneck.

All relations are striped [45] sequentially, block by block, in a round-robin fashion across the

disk array to allow maximum I/O bandwidth. Figure 1.7 only shows the non-redundant disk

array con�guration, i.e., RAID Level 0 as classi�ed in [37], which is the default con�guration

for XPRS. XPRS also supports other disk array con�gurations. Performance implications

of running XPRS on other disk array con�gurations will be discussed in Chapter 5.

The goals of XPRS are high performance and high availability. This thesis only

deals with the high performance aspects of XPRS. Discussions on the high availability

aspects of XPRS can be found in [53]. XPRS is designed to achieve high performance for

both transaction processing and complex ad-hoc queries through parallelism within each

individual query as well as between di�erent queries.
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Parallel Query Execution in Volcano

The Volcano query processing system is also a shared everything system. It tries to

combine extensibility with parallelism and introduced the operator model of parallelization

to overcome the problems of the bracket model. The basic idea is to encapsulate all the

issues of parallelization into a single operator, which is called the exchange operator in

Volcano [21].

In Volcano, each operator is implemented as a iterator, i.e., it supports a simple

open-next-close interface similar to conventional �le scans. For a given query plan, calling

open for the root operator results in initializations of execution states e.g., allocation of a

hash table, and open calls for all its inputs. After all iterators in a query plan are initialized

recursively, the query is processed by calling next for the root operator repeatedly until

it fails with an end-of-stream indicator. Finally, the close call recursively shut down all

iterators in the query plan.

The exchange operator is also implemented as an iterator, but it has a special

set of open, next and close procedures. An open call to an exchange operator will create

one or more child processes. The parent process will serve as the consumer and the child

processes will serve as the producers. Proper communication channels between the parent

process and child processes will also be set up by the open call. For a next call to the

exchange operator, the parent process will try to get the next tuple from the communication

channels from the child processes. Meanwhile, the child processes will be executing some

operations in parallel, packing the result tuples into packets and sending the packets to the

parent process. Flow control is also exercised in the exchange operator to keep the child
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processes from over
owing the communication bu�ers. Finally, when a close call comes to

the exchange operator, the parent process will send a message to the child processes telling

them to clean up and terminate.

The advantage of implementing the exchange operator as an iterator is that it can

be inserted at any one place or multiple places in a complex query plan. Figure 1.8 shows

a query plan that includes both relational operators, i.e., scans and joins, and exchange

operators. An open call to the top exchange operator by the starting process will create

some processes to process the plan fragment consisting of the hashjoin, the nestloop join

and the index scan. These new processes will in turn call open to the exchange operators

above the two sequential scans which creates multiple processes to process the sequential

scans. In this way, all the parallel processes and communication channels between them are

set up. Then the query plan will be processed in parallel by these processes. As we can

see, the exchange operator can support not only di�erent units of parallelism, namely single

operations or multiple operations (depending on where it is inserted), but also di�erent

forms of parallelism, i.e., pipelining between operations (e.g, between the sequential scans

and the hashjoin), parallelism between operations (e.g., between the two sequential scans)

and parallelism within operations (e.g., within each sequential scan). More details about

the exchange operator are discussed in [21].

In summary, parallelization involves many new issues, such as, creation and termi-

nation of parallel processes, establishment of communication channels, 
ow control between

asynchronous processes, etc. The bracket model tries to deal with these issues in a sched-

uler and the template processes for di�erent operation types. Therefore, these issues are
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the large search space of parallel plans. In a multi-user environment as XPRS, parameters

such as the amount of available bu�er space and number of free processors are unknown at

compile time. Therefore, compile-time optimization must generate plans for an uncertain

run-time environment. Second, the number of possible parallel query execution plans is so

enormous that any exhaustive search algorithm is impractical. As a result, the search space

must be heuristically reduced. Previous work on these two issues will be surveyed below.

Dealing with Unknown Parameters

Most current database systems avoids the unknown parameter problem by making

certain assumptions about values of system parameters (e.g., number of available bu�ers).

However, at run time these assumptions may be violated because the run-time workload

is unpredictable. When these assumptions are violated, queries need to be re-optimized to

avoid performance degradation.

To reduce the need for re-optimization, some researchers have studied the problem

of optimizing queries with unknown parameters. The earliest signi�cant work in this area is

presented in [22], which discusses the implementation of dynamic query plans in the Volcano

optimizer generator. The main idea is to introduce choose-plan nodes to generate multiple

query plans, consequently, the run-time system must go through a decision tree to choose

a plan according to the current system parameters. The proposal is to introduce choose-

plan nodes at all places in a plan where the choice of subplans underneath is sensitive to

the values of system parameters. This work introduces many important concepts related

to query optimization with unknown parameters, but does not include a complete search

strategy to identify the dynamic plans and the places where the choose-plan operator should
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be placed.

The Starburst project has also considered incorporating a second optimization

phase that chooses plans at run time [23], but no technique has been developed to �nd

those plans. Also, [13] uses an integer programming model to optimize queries in a trans-

action processing environment and their bu�er allocations simultaneously. However, in the

end, only one plan is produced per query, and that plan is susceptible to changes in the

environment.

The most recent work is presented in [24], which proposes a general framework

for dealing with unknown parameters in query optimization. The bu�er size parameter is

considered in depth to illustrate the general approach, which is based on randomized query

optimization algorithms, such as Simulated Annealing [25] and Iterative Improvement [54].

In a randomized query optimization algorithm, the query plan space is represented as a

state transition graph with each state corresponding to a query plan and each transition

corresponding to an event such as change of join orders or join methods. A local optimal

plan is a plan that has lower cost than all its adjacent plans in the state transition graph.

A randomized query optimization algorithm randomly walks through the state transition

graph �nding local optimal plans and returns the minimum-cost local optimal plan that is

ever visited. In the approach proposed in [24], there is a co-routine to optimize the query

plans for each value of an unknown parameter with a randomized algorithm. The key idea

of this approach is to have sideways information passing among the co-routines, i.e., for

each co-routine to let other co-routines know the minimum cost plan that it has visited.

The depth of sideways information passing is de�ned as the number of co-routines which
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each co-routine pass information to. The paper shows through experiments that for the

bu�er size parameter, Iterative Improvement with sideways information passing of depth 1

is the most e�ective randomized optimization algorithm. The problem with this approach

is that it is only applicable to randomized algorithms and cannot be incorporated into

existing conventional query optimizers. This is because if a deterministic algorithm is used,

every co-routine will make the same move at each step, which renders sideways information

passing useless.

Optimizing Parallel Execution Plans

There has been little work done on this topic. To date, no query optimizers

consider all parallel algorithms for each operator and all possible query plans. The main

di�culty of this optimization problem is the enormous search space of all possible parallel

query plans.

In [9], Bultzingsloewen outlines six key issues in query optimization in loosely or

tightly coupled multiprocessors with private disks and sketches the optimization strategy

that was being implemented for the KARDAMOM database machine. However, the paper

does not give any details about how to cut down the size of the search space of parallel

query plans.

Schneider and DeWitt present in [46] an experimental analysis of the query pro-

cessing tradeo�s among left-deep and right-deep tree plans in a shared-nothing enironment.

An important �nding is that right-deep trees are superior given su�cient memory resources.

However, there is no analytical cost expression which can be used by an optimizer to decide

whether and when to switch from a left-deep tree to a right-deep tree. Moreover, no algo-
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rithms are proposed for determining the degree of parallelism for each parallel operation.

In [36], Murphy and Shan propose an algorithm to parallelize a given sequential

plan to achieve minimum duration time with computational resource requirements less

than the given system bounds in a shared memory environment. It does not address the

problem of how to choose a sequential plan to parallelize, and it assumes that the amount

of available resources is known and therefore the algorithm cannot be used at compile time

for a multi-user environment. Moreover, the algorithm includes testing a series of target

duration times starting from the lower bound and therefore might be too expensive for

run-time optimization.

Lu, et al. propose in [32] an optimization algorithm that considers bushy tree

plans and inter-operation parallelism. The algorithm only handles synchronized bushy tree

plans, i.e., those without pipelining between joins, and uses a greedy algorithm to choose a

bushy tree plan that always tries to join as many pairs of relations as possible in parallel

for each step. This maximum inter-operation parallelism approach may not be a good

way to parallelize a query plan. A careful balance between inter-operation parallelism and

intra-operation parallelism need to be maintained.

1.3 Overview of This Thesis

In summary, extensive research and development have been done on paralleliza-

tions of relational query executions. There are two main approaches: the bracket model

used in Gamma which provides a generic template process that controls the parallel exe-

cution of single operations, and the operator model used in Volcano which encapsulate all
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the parallelization issues within an operator. The operator model is obviously cleaner and

supports automatic parallelism of any new operator added to the system. In fact, Gamma

has also recently adopted the operator model and introduced a merge operator and a split

operator to encapsulate parallelism issues [15]. In XPRS, parallelization of relational oper-

ations is not the main focus. Our emphases have been put on parallel query optimization,

parallel task scheduling and memory allocation strategies. There have been little work done

on these topics. In the following three chapters, we will present our solutions to each of these

problems integrated in the XPRS environment, which constitutes a complete approach to

parallel query processing.

In the following chapter, the design and implementation of parallel query pro-

cessing in XPRS is described along with some performance �gures from our operational

prototype. We propose a two phase optimization strategy that solves the unknown param-

eter problem and signi�cantly reduces the search space of parallel query plans while still

preserving the optimality of resulting plans. Experiment results through XPRS benchmarks

are shown to verify the e�ectiveness of this optimization strategy.

Most parallel database systems such as Gamma and Bubba only consider intra-

operation parallelism. On the other hand, XPRS exploits both intra-operation parallelism

and inter-operation parallelism. In such an environment, there may be multiple tasks (con-

sisting of relational operations) that are ready to run at the same time and an optimal

processing schedule need be determined for these tasks such that the total processing time

is minimized. The task scheduling problem in parallel query processing is introduced in

Chapter 3. Our solution to the problem is an adaptive scheduling algorithm which is based
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on the concept of IO-CPU balance point that maximizes system resource utilizations. It

tries to execute IO-bound and CPU-bound tasks at their balance point and dynamically

adjusts parallelism to keep running at the balance point when workload changes.

Main memory is also one of the most important resources in parallel query pro-

cessing along with processors and I/O bandwidth. When multiple tasks are running in

parallel, the problem of how to optimally allocate a limited amount of memory to these

tasks arises. The memory allocation problem for parallel hashjoin operations is studied in

Chapter 4. A theorem is developed for determining the optimal memory allocation between

parallel hashjoins. A mechanism for dynamic memory allocation adjustment is designed so

that the optimal memory allocation can be preserved when workload changes. Integration

of our memory allocation strategy with the task scheduling algorithm is also described.

Up to Chapter 5, this thesis only considers one particular disk array con�guration,

the RAID Level 0 or the simplex con�guration. Chapter 5 completes the discussion on

parallel query processing by studying the performance of di�erent disk array con�gurations

in a parallel query processing environment. XPRS supports three di�erent disk array con-

�gurations: simplex, mirror disks and parity arrays. Experiment results have been obtained

from XPRS to illustrate the performance tradeo�s between these disk array con�gurations.

Chapter 5 reports these experiment results.

Last, our conclusions and discussions on future research directions are o�ered in

Chapter 6.
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Chapter 2

Optimization of Parallel Query

Execution Plans

The goal of parallel query optimization is to �nd the optimal parallel query execu-

tion plan for any given user query. As discussed in the previous chapter, the main di�culties

in this optimization problem are the compile-time unknown parameters such as available

bu�er size and number of free processors, and the enormous search space of possible parallel

plans. In this chapter, we will present the XPRS solution to this problem, a two phase opti-

mization strategy, along with experimental evidence from XPRS benchmarks that supports

the e�ectiveness of this strategy. Considering inter-operation parallelism requires a solution

to the task scheduling problem, which is the topic of the next chapter. For ease of presen-

tation, this chapter only considers intra-operation parallelism. A more complete approach

that considers both intra-operation and inter-operation parallelism will be described in the

next chapter after the task scheduling problem is solved.
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This chapter is organized as follows. Section 2.1 de�nes the optimization problem

and presents our two phase optimization strategy along with the hypotheses that it is

based on. Section 2.2 then discusses the performance of parallelizations of a sequential plan

and presents the overall architecture for parallel query processing in XPRS. Section 2.3

then describes some experiments that we have performed on XPRS which largely verify

the hypotheses that our two phase optimization strategy is based on. Last, Section 2.4

summarizes the whole chapter.

2.1 Optimization of Parallel Plans

This section de�nes the optimization problem, presents our two phase optimiza-

tion strategy and the hypotheses that it is based on, and gives our intuition behind the

hypotheses. Experimental veri�cations of these hypotheses will be provided in Section 2.3.

We also demonstrate the necessity to dynamically adjust plans at run time according to

available bu�er sizes and introduce a choose node to implement the plan adjustment.

2.1.1 The Optimization Problem

The overall performance goal of a parallel database system is to obtain maximum

throughput as well as minimum response time in a multi-user environment. The objective

function that XPRS uses for query optimization is a combination of resource consumption

and response time as follows:

cost = resource consumption + w � response time:
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Here w is a system-speci�c weighting factor. A small w mostly optimizes resource consump-

tion, while a large w mostly optimizes response time. Resource consumption is measured

by the number of disk pages accessed and number of tuples processed, while response time

is the elapsed time for executing the query.

Our optimization problem is to �nd the parallel plan with minimum cost among all

possible parallelizations of all possible sequential plans of a query. Suppose P is a sequential

plan and let PARALLEL(P ) be the set of possible parallelizations of P . Suppose Q is a

given query and let SPLAN(Q) be the set of sequential plans of Q. Then PPLAN(Q),

the set of parallel plans of Q, is given by

PPLAN(Q) =
[

P2SPLAN(Q)

PARALLEL(P ):

PPLAN(Q) is the search space to explore for intra-query parallelism.

In a multi-user environment, many system parameters that a�ect query execution

cost are unknown at compile time. In XPRS, we speci�cally consider two of such parameters:

available bu�er size, NBUFS and number of free processors, NPROCS. Bu�er size not

only a�ects the bu�er hit rate but also determines the number of batches in a hashjoin [48].

The number of free processors determines the possible speedup of query execution. For

ease of exposition, in the following formulation, we assume that the bu�er size and number

of free processors are �xed during the execution of a single query. As we will describe in

Section 2.2.3, our operational prototype only �xes these parameters during the execution

of individual plan fragments.

For PP 2 PPLAN(Q), let Cost(PP;NBUFS;NPROCS) be the cost of the
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parallel plan PP given NBUFS units of bu�er space and NPROCS free processors. Our

optimization problem is to �nd,

minfCost(PP;NBUFS;NPROCS)jPP 2 PPLAN(Q)g.

There are twomajor di�culties in this problem. First, the search space PPLAN(Q)

is orders of magnitude larger than SPLAN(Q); therefore query optimization by exhaustive

search [47] is impractical. Second, the dynamic parameters, NBUFS and NPROCS are

unknown until query execution time; therefore compile-time optimization must deal with

these unknown parameters. Our goals are to reduce the search space of parallel plans by

heuristics and to perform as much compile-time optimization as possible.

2.1.2 Two Phase Optimization

We achieve our goals by the following two phase optimization strategy.

Let BPP (Q;NBUFS;NPROCS) be the best parallel plan for query Q given

NBUFS units of bu�er space and NPROCS free processors, BP (Q;NBUFS) be the best

sequential plan for Q given NBUFS units of bu�er space, and Cost(P;NBUFS) be the

cost of a sequential plan P given NBUFS units of bu�er space.

� Phase 1. Find the optimal sequential plan assuming that the entire bu�er pool is

available, i.e., �nd BP (Q;ALLBUFS) where ALLBUFS is the size of the whole

bu�er pool.

� Phase 2. Find the optimal parallelization of the optimal sequential plan, i.e., �nd

minfcost(PP;NBUFS;NPROCS) j PP 2 PARALLEL(BP (Q;ALLBUFS))g
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where NBUFS and NPROCS are the run-time available bu�er size and number of

free processors.

Because we have a �xed bu�er size ALLBUFS in Phase 1, it can be performed

at compile time. Phase 2 still has to be performed at run time, because it takes the run-

time parameters NBUFS and NPROCS into account and tries to dynamically determine

the best parallelization of the sequential plan chosen in Phase 1. As we can see, this

two phase optimization strategy overcomes the di�culties in our optimization problem,

because it provides a nice partitioning between compile-time optimization and run-time

optimization and signi�cantly reduces the search space by restricting to the parallelizations

of one particular sequential plan. The e�ectiveness of this strategy is based on the following

two hypotheses for a shared everything environment.

1. The Bu�er Size Independent Hypothesis

The choice of the best sequential plan is insensitive to the amount of bu�er space

available as long as the bu�er size is above the hashjoin threshold, i.e.,

Cost(BP (Q;NBUFS); NBUFS) � Cost(BP (Q;NBUFS 0); NBUFS),

where NBUFS 6= NBUFS0; NBUFS � T;NBUFS 0 � T , and T is the hashjoin

threshold.

As we will discuss in details in the next subsection, certain exceptions to the above

hypothesis do exist; however, they can be localized within speci�c operations and han-

dled with a mechanism that dynamically chooses the implementation of an operation

at run time according to real bu�er sizes.
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2. The Two Phase Hypothesis

For a shared everything environment where only intra-operation parallelism is ex-

ploited, the best parallel plan is a parallelization of the best sequential plan, i.e.,

BPP (Q;NBUFS;NPROCS) 2 PARALLEL(BP (Q;NBUFS)).

We will verify these two hypotheses with experiment results in the Section 2.3.

2.1.3 Introduction of Choose Nodes

We have identi�ed two situations in the execution of single operations that may

cause problems with the bu�er size independent hypothesis. One is choosing between an

indexscan using an unclustered index and a sequential scan. The other is choosing between

a nestloop with an indexscan over the inner relation and a hashjoin. These two situations

are not necessarily the only problematic cases, but they are the only cases that we have

discovered among a wide variety of queries as will be described in Section 2.3.1. Moreover,

the choose nodes that we are about to introduce are a general mechanism and can deal with

any additional cases as they are discovered.

We will show the two problematic cases that we have found by plotting the exe-

cution costs of some sample queries against varying bu�er sizes. In general, the cost of a

sequential plan is measured by resource consumption [47], which is a linear combination of

I/O cost and CPU cost as follows,

Cost = #page io+ c�#tuples processed:
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Figure 2.1: Cost of SeqScan v.s. IndexScan

Here c is another system-speci�c weighting factor. Since bu�er sizes only a�ect the I/O

cost of query execution, we will only plot the I/O costs (i.e., number of page I/Os) of query

executions in the examples below.

� Sequential Scan versus Index Scan

A sequential scan only needs one bu�er page and additional bu�er pages do not reduce

query execution cost. However, the cost of an indexscan using an unclustered index

is very sensitive to bu�er size. If there is enough bu�er space to hold all the pages

that need to be fetched during the indexscan, then we only need to read each of those

pages once. Therefore, with su�cient bu�er space, if an indexscan touches less than
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all pages, it will have lower cost than a sequential scan. On the other hand, with few

bu�ers, an indexscan may end up fetching the same page from disk many times and

becomes more expensive than a sequential scan. Figure 2.1 gives an example of this

situation by plotting the cost of each plan versus bu�er size for the following selection

query on a 10,000-tuple relation from the Wisconsin benchmark:

retrieve (tenk1.all) where tenk1.u1 > 110 and tenk1.u1 � 510.

The I/O costs of this query are measured from real executions of this query sequen-

tially (in a single process) on XPRS con�gured with di�erent bu�er sizes. Obviously,

when the two curves cross, we require a mechanism to switch from a sequential scan

to an index scan, or vice versa. Note that this situation does not always happen.

In most cases, the two curves are far apart and do not cross each other. This situ-

ation only arises for a certain selectivity range which causes these two curves to be

close together. The example query in Figure 2.1 is carefully selected to illustrate this

situation.

� Hashjoin versus Nestloop

A similar situation occurs in choosing between a nestloop with an indexscan over the

inner relation, which we will refer to as an indexjoin, and a hashjoin. With su�cient

bu�er space, an indexjoin will fetch ultimately all the pages in the outer relation and

all the pages in the inner relation that match some tuple in the outer relation plus

a small number of index pages. On the other hand, a hashjoin will need to fetch all

the pages in both the outer and inner relations. If the join selectivity is small, the
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indexjoin plan may not need to fetch all the pages in the inner relation and therefore

will have a lower cost than the hashjoin plan. On the other hand, with few bu�ers,

the indexscan in indexjoin may have to fetch the same page many times and cause the

indexjoin to become more expensive than a hashjoin. Figure 2.2 shows an example of

a \cross over" point between indexjoin and hashjoin of the following carefully selected

join query between two Wisconsin benchmark relations:

retrieve (onek.all, tenk1.all) where onek.u1 = tenk1.a10.

Again, this situation only occurs for a certain range of join selectivities.

To solve these \cross over" problems, we introduce a new choose node into query
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plans, which can choose between the two join or two scan methods depending on which

side of the cross over point the actual bu�er size belongs to. Now we modify the bu�er size

independent hypothesis as follows.

Modi�ed Bu�er Size Independent Hypothesis

The choice of the best sequential plan with choose nodes is insensitive to the amount

of bu�er space available as long as the bu�er size is above the hashjoin threshold, i.e.,

Cost(BCP (Q;NBUFS); NBUFS) � Cost(BCP (Q;NBUFS 0); NBUFS),

where BCP (Q;NBUFS) is the optimal sequential plan of Q under bu�er sizeNBUFS with

choose nodes, NBUFS 6= NBUFS0; NBUFS � T;NBUFS0 � T , and T is the hashjoin

threshold.

2.1.4 Intuition Behind Hypotheses

Now we explain the intuition behind these hypotheses. Let us �rst consider the

bu�er size independent hypothesis for a single operation, i.e., a scan or a join. If there are no

indices that can be used to facilitate the operation, the hypothesis obviously holds, because

only a sequential scan plan is possible for scans and a hashjoin plan is always optimal for

joins as long as the bu�er size is above the hashjoin threshold [48]. This is why requiring

the bu�er size to be above the hashjoin threshold is important. Otherwise, a hashjoin plan

may not be possible and the optimal plan can be either nestloop or mergejoin depending

on the situation [6], thus, the hypothesis may not hold for two-way join queries. If there

are indices de�ned on a selection or join attribute, usually we want to take advantage of

the indices to form plans that involve index scans, and the problematic cases described
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above may occur. However, we can deal with all the problematic cases by encapsulating

all the necessary plan switching in a choose node. Therefore, with choose nodes, the bu�er

size independent hypothesis is guaranteed to hold for all single operations. Furthermore,

we postulate that this remains to hold for complete query plans consisting of one or more

operations. Section 2.3.2 will show that this is generally true with only small errors.

The two phase hypothesis only holds for a shared everything environment and only

for intra-operation parallelism. In a shared nothing environment, communication cost must

also be considered. Thus, the hypothesis may become false because the optimal sequential

plan may incur excessive communication cost when parallelized and therefore its paralleliza-

tion can only be a sub-optimal parallel plan. For example, in an optimal sequential plan,

relation R1 and relation R2 are joined �rst. However, if the relevant tuples of R1 and R2 are

declustered among di�erent sites, it may save a lot of communication overhead if the join

of R1 and R2 is delayed to a later stage of the plan when many tuples are already �ltered

out. Therefore, the two phase hypothesis is not always true in a shared nothing environ-

ment. The two phase hypothesis may also become false when inter-operation parallelism

is considered. As will be shown in the next chapter, inter-operation parallelism between

an IO-bound operation and a CPU-bound operation can achieve better resource utilization

than only intra-operation parallelism. Therefore, a bushy plan that contains a mixture

of independent IO-bound and CPU-bound operations may become cheaper than the op-

timal sequential plan when parallelized. On the other hand, if we only consider a shared

everything environment and intra-operation parallelism, as we will show in Section 2.2.2,

each sequential plan can be parallelized without incurring any extra resource consumption.
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Since the optimal sequential plan minimizes resource consumption, so does its paralleliza-

tion. Hence, the two phase hypothesis is trivially true if only resource consumption is

considered. For response time, we will also show in Section 2.2.2, each sequential plan

can achieve a near-linear speedup through intra-operation parallelism. Since the optimal

sequential plan is also the fastest sequential plan, its parallelization will remain the fastest.

Although this is not always true, Section 2.3.3 will show that the errors are very small.

2.2 XPRS Query Processing

Having explained our two phase optimization strategy, in this section, we present

the design and implementation of XPRS query processing. We �rst describe the paral-

lelization of individual operations in XPRS along with their performances, then present the

overall architecture of XPRS query processing.

2.2.1 Implementation of Intra-operation Parallelism

In XPRS, intra-operation parallelism (partitioned parallelism) is implemented in

two ways: page partitioning and range partitioning. In page partitioning we partition rela-

tions across disk page boundaries and assign a subset of disk pages to each participating

process to work on. In range partitioning we partition relations according the value of a

certain attribute. We assume that we can use the data distribution information such as

histograms stored in the system catalogs to obtain a well-balanced range partition. We can

also use the keys stored in the root node of a B-tree index for range partitioning. We apply

either page partitioning or range partitioning to scans directly, but joins are parallelized by
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appropriately parallelizing its outer and/or inner paths. Details of parallelization for each

type of operation are described below.

� Sequential Scan

A sequential scans is parallelized through page partitioning. In XPRS, we speci�-

cally use a simple mod function to partition pages among processes. If the degree of

parallelism is n, process i scans page x such that x mod n = i.

� Index Scan

An index scan is parallelized through range partitioning. If the scan range is G, the

degree of parallelism is n and the range partition is Gi, i = 1; : : : ; n, (
S
Gi = G),

process i scans tuple t such that t 2 Gi.

� Sort

A sort is also parallelized through range partitioning. If the entire range of the sort key

is G, the degree of parallelism is n and the range partition is Gi; i = 1; : : : ; n; (
S
Gi =

G), process i sorts the tuples in Gi. In the end, the sorted segments produced by all

the processes are attached together in the order of the subrange Gi's and an entire

sorted relation is formed.

� Nestloop Join

A nestloop join is parallelized by partitioning its outer relation and each participating

process joins a portion of the outer relation with the inner relation. Suppose the outer

relation is R and the inner relation is S. If the degree of parallelism is n and R is

partitioned into Ri, i = 1; : : : ; n, process i performs join Ri ./ S.
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� Mergejoin

A mergejoin can be parallelized similarly to a sort through range partitioning.

� Hashjoin

Parallelization of a hashjoin requires a segment of shared memory to store the shared

hash table and both inputs to the hashjoin properly partitioned among the participat-

ing processes. Suppose that the hashjoin is R ./ S with R as the smaller relation and

R can �t into the available memory. Let the degree of parallelism be n, the partition

of R be Ri, i = 1; : : : ; n and the partition of S be Si, i = 1; : : : ; n. A hash table for

R is allocated in the shared memory. In the build phase, process i inserts tuples in

Ri into the shared hash table, and in the probe phase, process i uses tuples in Si to

probe the hash table of R and outputs the matched result tuples. If R cannot �t into

the available memory, the standard hybrid hashjoin [48] algorithm can be employed.

The same parallelization as we just described can be applied to each batch of a hybrid

hashjoin. Note that there may be access con
icts to the shared hash table among

the parallel processes. However, the access con
icts only occur in the build phase

when two processes try to insert tuples into the same hash bucket at the same time.

Therefore, to minimize the probability of con
ict, the number of hash buckets should

be made large compared to the degree of parallelism. We also use hardware spin locks

for synchronization to make the overhead negligible.
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2.2.2 Performance of Intra-operation Parallelism

DeWitt, et al. has shown in [16] that intra-operation parallelism can achieve near-

linear speedup in response time in a shared nothing environments. We brie
y show the

same near-linear speedup in XPRS in a shared memory environment. In addition, we show

performance varying the number of disks and number of processes independently and also

the degradation resulting from excessive parallelism.

In the experiments, we created the two 10,000-tuple relations from the Wisconsin

Benchmark, tenk1 and tenk2. Because the tuple sizes in the Wisconsin Benchmark relations

are relatively small, we also created another 10,000-tuple relation, ltenk1, which has the

same �elds as tenk1 except that each tuple is �lled to 1,000 bytes by an extra string �eld.

Appropriate indices were created according to the benchmark speci�cation. All the relations

are striped across a set of disks using a simple mod function, i.e., block x, is stored on disk

(x mod #disks). For example, if we only use two disks, then all the odd number blocks

will be on one disk and all the even number blocks will be on the other. The relations are

also partitioned among the parallel scan processes with a simple mod function, i.e., process

i scans block x such that x mod #processes = i. Before each execution, the �le system

cache is always cleared so that no blocks of the test relations are left in memory. All the

processes are pre-forked so that process startup overhead is negligible. As mentioned before,

our prototype runs on a Sequent Symmetry system running Dynix operating system with

12 processors and 7 disks.

We have measured the speedup of parallel scans and joins on the above relations

varying the number of processes and number of disks. We present sample results of the



42

1

2

3

4

5

6

7

8

9

10

11

12

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

s
p
e
e
d
u
p

#processes

Query: retrieve (tenk1.all) where tenk1.u1 > 647 and tenk1.u1 < 1648

s.s. k = seqscan, k disks

i.s. k = indexscan, k disks

s.s. 1
s.s. 3
s.s. 5
i.s. 1
i.s. 3
i.s. 5

Figure 2.3: Speedup of Parallel Scan: small tup.

speedup measurements in Figure 2.3 - 2.5. Figure 2.3 and Figure 2.4 show speedup of

scans, while Figure 2.5 shows speedup of joins. We have found that a sequential scan is

CPU-bound when the tuples are small and becomes I/O-bound when the tuples get large.

Moreover, index scans are I/O-bound because they do not need to examine every tuple in a

page. Our experiment results show that parallel scans and joins can achieve close-to-linear

speedup until they run out of processors if they are CPU-bound such as the sequential scan

in Figure 2.3 and the join in Figure 2.5, or disk bandwidth if they are I/O-bound such as

the index scan in Figure 2.3 and the sequential scan in Figure 2.4. Figure 2.5 also shows

that the synchronization overhead caused by the shared hash table in hasjoins is negligible.

In Figure 2.4, we see a drop in the speedup when the number of processes exceeds
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the number of disks. This is caused by the operating system read-ahead. When we have

fewer processes than disks, the access pattern on each disk is sequential. Consequently

normal �le system read-ahead will prefetch the next disk block to be processed. When

there are more processes than disks, the access pattern to each disk becomes random and

the �le system read-ahead is ine�ective.

Observe that there is always a performance drop when the degree of parallelism

exceeds the number of processors. It results from the extra context switches and virtual

memory overhead generated when the number of processes exceeds the number of processors.

In addition, a process holding the shared bu�er pool spin lock might be descheduled and the

convoy problem[5] will occur. In a multi-user environment there will be multiple commands
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Figure 2.5: Speedup of Parallel Join: small tuples

concurrently being processed, it is important to ensure that the total degree of parallelism

does not exceed the number of processors.

2.2.3 Architecture of Parallel Query Processing in XPRS

The previous subsection has introduced the parallelizations of single operations

and their performance in XPRS. Based on those results, this subsection describes the par-

allelizations of complete query plans consisting of multiple operations. Figure 2.6 gives an

overall architecture of XPRS query processing, which consists of a master backend process

and multiple slave backend processes. The master backend is responsible for the optimiza-

tion, scheduling and coordination, while the slave backends execute in parallel whatever plan
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parallelization for a selected sequential plan. It decomposes a sequential plan into a set of

plan fragments, decides a processing schedule for all the plan fragments and assigns a degree

of parallelism to each plan fragment that is to be executed, then passes a set of selected plan

fragments along with their parallelism back to the parallel executor. The parallel executor

then distributes the plan fragments to the slave backend processes according to the degree

of parallelism of each fragments. The slave backends execute the plan fragments in parallel

and send an acknowledgement back to the parallel executor after they �nish executing.

The parallel executor will then ask the parallelizer for more plan fragments to execute. The

whole processes repeats until all the plan fragments are �nished.

Since the XPRS parallelizer is the key component for exploiting parallelism, we

will describe it in more details from the following three aspects.

� Exploiting Di�erent Forms of Parallelism

We have decided to only consider intra-operation parallelism and parallelism between

independent operations. Pipelining between operations is always achieved within the

same plan fragment so that operations can call each other with simple procedure calls

and do not have to pay the overhead of inter-process communication. Therefore in

XPRS, inter-operation parallelism does not include pipelined parallelism.

� Choice of Plan Fragments

Since we want to execute each plan fragment in a pipelined fashion, blocking between

any two operations in a plan fragment is not allowed. Blocking between two operations

occurs when one of the operations must wait for the other operation to �nish producing

all the tuples before it can proceed. The common examples of blocking are introduced
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the intermediate results of the hash probe into a temporary relation and the following

hash build node will read from the temporary relation after the previous hash probe

is �nished. Subsequent to the decomposition, we only need enough memory for one

hashjoin at a time. Even if the parallelizer can allocate enough memory to satisfy the

minimum memory requirements for both hashjoins, it still has to decide whether it

is better to execute the two hashjoins together or separately, and if together, how to

divide the memory between the two hashjoins. This is what we call the plan fragment

decomposition problem which will be solved in Chapter 4.

� Determining Degree of Parallelism

Although the architecture in Figure 2.6 also allows inter-operation parallelism, we will

defer the details to the next chapter. For intra-operation parallelism, the parallelizer

only needs to choose one plan fragment that is ready to execute and assign it the

maximum degree of parallelism constrained by the disk bandwidth and number of free

processors. The performance curves in Section 2.2.2 have shown the consequences of

excessive parallelism. Suppose that N is the run-time number of available processors

and B is the run-time available disk bandwidth (IOs/second). The parallelizer will

estimate the I/O rate of the chosen fragment, for example, C (IOs/second), and choose

the degree of parallelism for the fragment as the following,

parallelism = min(N;B=C):
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2.3 Veri�cation of Hypotheses

As described in the previous section, XPRS is designed and implemented based

on the hypotheses that supports the two phase optimization strategy. In this section, we

present experimental evidences that verify theses hypotheses. In the experiments, we �rst

run a wide variety of benchmark queries using all the possible execution plans under di�erent

bu�er sizes and measure the real execution costs and then calculate the the relative errors

that result from our hypotheses. We will show that such errors are extremely small. We �rst

present experiment results on the bu�er size independent hypothesis, then present results

on the two phase hypothesis.

2.3.1 Choice of Benchmarks

We have chosen to use two benchmarks. The �rst benchmark is the Wisconsin

benchmark [3], a standard benchmark for measuring query processing power. We have only

used 10 of the 32 queries which are selections and joins. Other queries in the benchmark

that involve data manipulation are not used in our experiments. Because the Wisconsin

benchmark has no more than 3-way joins and has limited join selectivities, we also developed

a random benchmark generator to generate additional varieties of complex queries.

The relations in our random benchmark have the following POSTQUEL de�nition:

create r (ua1=int4, a1=int4, ua20=int4,

a20=int4, ua50=int4, a50=int4,

ua100=int4, a100=int4,

filling=text)

We generated 10 random relations with cardinalities ranging from 100 to 10; 000. All the
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integer attribute values are randomly distributed between 0 and 9; 999. All the \ua" at-

tributes are unclustered attributes and all the \a" attributes are clustered attributes. The

number following \ua" or \a" indicates the number of times each value is repeated in the

attribute. For example, each value in \ua20" is duplicated 20 times. We de�ne indices on

all the integer attributes so that the optimizer can always have the choice of generating an

indexscan. The attribute \�lling" is a variable length string, and is used to vary the tuple

size of di�erent relations. The generator can make the \�lling" attribute 68 bytes or 968

bytes so that resulting tuple size is 100 bytes or 1; 000 bytes so that there can be a mixture

of IO-bound and CPU-bound queries.

The queries in the random benchmark are generated in the following way. To

generate a random join of k relations, we �rst randomly choose k relations. Then we start

with the �rst relation in the chosen list and the rest in the unchosen list. We randomly pick a

relation in the unchosen list, join it with a randomly picked relation in the chosen list on two

randomly chosen attributes and move it from the unchosen list to the chosen list. We repeat

this operation until the unchosen list becomes empty; and we have generated a random join

on k relations. Next we generate random selections on the relations. Each relation has a 50%

probability of having a restriction of either an equality condition or inequality conditions

with a lower bound and a upper bound. The target list is also randomly selected from

all the attributes of all the relations with each attribute having 50% probability of being

chosen.
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2.3.2 Experiments on the Bu�er Size Independent Hypothesis

In the experiments, we �rst have the XPRS query optimizer generate all possible

sequential plans for each query. The XPRS optimizer is capable of generating all possible

plans in the style of [47]. If a plan is known to be dominated by another plan, it is discarded.

For example, since we know that hashjoin is the best join plan without the use indices

(assuming that our bu�er size is above the hashjoin threshold) [48], we can always remove

nestloop and mergejoin plans which do not use indices from the test plans, which cuts

down our experiment running time substantially. Another example is that mergejoin plans

with inner relation and outer relation exchanged always have the same cost and therefore

only one of them need to be executed. After selecting interesting execution plans, we run

each selected plan varying the bu�er size from the minimum amount to make all hashjoins

possible toMAXBUFS, the bu�er size that can hold all the relations in main memory. For

each execution we measure the actual execution cost. To avoid the problem of inaccurate

estimate of intermediate result sizes to hashjoin, for a given join order, we always execute

the plans that do not contain hashjoins �rst. Size information of intermediate results is

collected during the execution of these plans. In this way, we can always use the the actual

size of intermediate results for hashjoins. The e�ect of inaccurate size estimates on our

results is left as a future research topic.

From the statistics collected in the experiments, we know for each query, Q,

the real execution cost of each query plan under di�erent bu�er sizes, i.e., given any

plan P and bu�er size NBUFS, we know Cost(P;NBUFS). Therefore, we can iden-

tify BP (Q;NBUFS). Let BCP (Q;NBUFS) be the plan obtained by adding appropriate
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choose nodes to plan BP (Q;NBUFS). Since we know the cost of all the plans that are

only di�erent from BP (Q;NBUFS) in some join or scan methods, we can also calculate

the cost of BCP (Q;NBUFS) under any bu�er sizes. The relative error of the bu�er size

independent hypothesis is computed with the following formula:

FixBufCost = Cost(BCP (Q;MAXBUFS); NBUFS);

MinCost = Cost(BP (Q;NBUFS); NBUFS);

Error(Q;NBUFS) =
FixBufCost �MinCost

MinCost

Figure 2.8 shows the graph of average relative errors of the Wisconsin benchmark

queries. For each query Q, we �rst compute Error(Q;NBUFS) for each bu�er size, then

we compute the average relative error over the bu�er sizes. As we can see from the graph,

the �rst few queries have 0 error. This is because those are the selection queries and two-

way join queries for which the choose nodes can always choose the optimal plan. Errors

occur in the three-way join queries, but they are never above 4%.

Figure 2.9 shows the graph of average relative error on the random benchmark.

120 queries of up to 6-way joins are executed in the experiment. The relative error is

averaged over queries that have the same number of relations (20 of them each). As we can

see from the graph, the average relative errors remain below 5%.

Thus, two di�erent benchmarks support the bu�er size independent hypothesis.

With choose nodes we have encapsulated enough of the plan switches required when bu�er

size changes so that average relative error is never above 5%.
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Relative Errors of Hypothesis 1: Wisc. Benchmark
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Figure 2.8: Relative Errors of the Bu�er Size Independent Hypothesis on the

Wisconsin Benchmark

We have also studied the detailed statistics from our experiments to �nd out the

cause of these errors. We found that these errors are caused by plans with similar costs

but di�erent join orders and thus di�erent I/O access patterns. For example, the plan

P1 : (A ./ B) ./ C may have a similar cost as the plan P2 : (B ./ C) ./ A when the bu�er

size is �xed toMAXBUFS, but they have di�erent I/O access patterns. Let HP (B) stand

for the bu�er hit rate of plan P with bu�er size B. Suppose that P1 is the optimal plan

with bu�er size MAXBUF . Because HP1
and HP2

are di�erent functions, it is possible for

HP1
to decrease faster than HP2

as B decreases. Therefore, P1 may become more expensive

than P2 at some bu�er size, thus violate the hypothesis. However, since this only happens

between plans with similar costs to start with, the errors are very small, as shown by our
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Relative Errors of Hypothesis 1: Random Benchmark
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Figure 2.9: Relative Errors of the Bu�er Size Independent Hypothesis on the

Random Benchmark

experiment results.

2.3.3 Experiments on the Two-Phase Hypothesis

The experiments that we run to justify the two phase hypothesis are similar to

those described in the previous subsection. We have also used the queries from the Wisconsin

benchmark and the random benchmark. For each test query, we �rst generate all the possible

sequential plans as described in the previous subsection. We ran each plan with varying

degrees of intra-operation parallelism and bu�er sizes. The degree of parallelism is varied

from 1 to 12 (the number of processors in our system) and the bu�er size is varied in the same

way as in the previous subsection. For each execution of a plan, P , with NBUFS bu�ers
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and NPROCS processes, we measure the resource consumption and response time, and

compute the cost of the execution, Cost(P;NBUFS;NPROCS). Let BP (Q;NBUFS)

be the best sequential plan with bu�er size NBUFS. The relative error of the two phase

hypothesis is calculated with the following formula:

TwoPhaseCost = Cost(BP (Q;NBUFS); NBUFS;NPROCS);

MinCost = minfPg Cost(P;NBUFS;NPROCS);

Error(Q;NBUFS;NPROCS) =
TwoPhaseCost �MinCost

MinCost

Because the cost of parallel plans depends on the system-speci�c weighting factor,

w, we need to calculate errors for di�erent values w.

Figure 2.10 shows the average relative error of the Wisconsin benchmark queries.

For each query, Q, the relative error, Error(Q;NBUFS;NPROCS), is averaged over all

combinations of NBUFS and NPROCS. As we can see, for small values of w, (which

means that we mostly optimize resource consumption,) the relative errors are near 0. This

is because the parallelization of the optimal sequential plan also has the minimum resource

consumption. For large values of w, (which means that we mostly optimize response time,)

the relative error never exceeds 8%. This indicates that the parallelization of the optimal

sequential plan may not always have the minimum response time, but it is close to the

minimum.

Figure 2.11 shows the average relative error of the random benchmark. Due to

the enormous computing resources demands of this experiment, we have only run queries
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Relative Errors of Hypo. 2: Wisc. Bench., w = 100
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Figure 2.10: Relative Errors of the Two-phase Hypothesis on the Wisconsin

Benchmark

of up to 5-way joins from the random benchmark. As we can see, the average relative error

never exceeds 6%.

By looking into the detailed statistics in our experiments, we have discovered that

errors only occur when there are two plans that have very close sequential costs but are

parallelized in di�erent ways. For example, for a one-variable query with certain selectivities,

the cost of the index scan plan can be approximately the same as the cost of the sequential

scan plan (i.e., the sum of the number of index pages and the number of selected data pages

is about the same as the total number of data pages). However, index scans are parallelized

through range partitioning while sequential scans are parallelized through page partitioning,

which is easier to guarantee load balance. Therefore, even though the sequential execution

of the sequential scan plan may be slightly slower than the sequential execution of the index

scan plan, the sequential scan plan may get better speedup when parallelized. Thus, the

parallel version of the sequential scan plan may run faster than the parallel version of the
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Relative Errors of Hypo. 2, Rand Bench., w = 100
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Figure 2.11: Relative Errors of the Two-phase Hypothesis on the Random Bench-

mark

index scan plan because of their di�erent ways of parallelization, which violates the two

phase hypothesis if we optimize response time. Our experiment results show that such

errors are very small because each plan can achieve a near-linear speedup when parallelized

through intra-operation parallelism and these plans have close sequential costs to start with.

Although we have only validated this for queries with a small number of relations due to

limited computational resources, we believe that this result is also true for queries with a

large number of relations.

2.4 Summary

In this chapter, we have described our approach to the optimization of parallel

query execution plans in a shared everything environment. We have demonstrated that

we can achieve near-linear speedup with intra-operation parallelism in XPRS and there is

severe performance penalty for excessive parallelism. We have presented experiment results
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that justify our two phase optimization approach, which reduces the complexity of parallel

query optimization without signi�cantly compromising optimality of the resulting parallel

plan. The �rst phase of of our two phase optimization is a conventional query optimization

with a �xed bu�er size that �nds the optimal sequential plan augmented with appropriate

choose nodes that are encapsulated in individual operations. The second phase �nds the

best parallelization of the sequential plan obtained from the �rst phase according to run-

time enironment. Our approach achieves run-time 
exibility while still doing most of the

optimization at compile time.

In the experiments presented this chapter, we have assumed perfect estimates

of intermediate result sizes and uniform data distribution. The e�ects of inaccurate size

estimates and skewed data distributions also need to be studied more carefully. This chapter

has only considered intra-operation parallelism. Issues involving inter-operation parallelism

will be discussed in the next chapter.
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Chapter 3

Parallel Task Scheduling

The previous chapter has only considered intra-operation parallelism. However,

intra-operation alone cannot guarantee maximum performance. As will be shown, a com-

bination of intra-operation parallelism and inter-operation parallelism must be exploited to

achieve maximum performance. In this chapter, we will address the issues involving inter-

operation parallelism, particularly the scheduling problem of parallel tasks. We will �rst

present a clean and simple algorithm for optimally scheduling a set or a sequence of tasks

(i.e., plan fragments) in parallel processing of a single query or multiple queries. The main

idea is to use inter-operation parallelism to combine IO-bound and CPU-bound tasks to

increase system resource utilization. The algorithm matches up IO-bound and CPU-bound

tasks with appropriate degrees of intra-operation parallelism to make both the processors

and the disks operate as close to their full utilizations as possible and thus to minimize the

elapsed time. Moreover, a complex packing problem in the optimization of task schedules

is avoided by a mechanism to dynamically adjust the degree of intra-operation parallelism
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of a running task to keep the system operating at the maximum utilization point as the

workload changes. The previous chapter has only addressed the parallel query optimization

problem with intra-operation parallelism. Having solved the scheduling problem, we can

estimate the cost of a parallel plan with inter-operation parallelism based on our scheduling

algorithm. We will extend the two phase optimization strategy presented in the previous

chapter to consider inter-operation parallelism by introducing a new cost estimation method

to the query optimizer.

This chapter is organized as follows. Section 3.1 �rst de�nes the scheduling prob-

lem that we are solving. Section 3.2 then describes our adaptive task scheduling algorithm

including calculation of IO-CPU balance point, dynamic adjustment to intra-operation

parallelism and task re-ordering heuristics. Section 3.3 then examines variations of our

scheduling algorithm and compares their performances through experiment results. After

the scheduling algorithm and its performance are presented, Section 3.4 extends the two-

phase optimization strategy to consider inter-operation parallelism based on the scheduling

algorithm, and last, this chapter is summarized in Section 3.5.

3.1 Problem De�nition

Under the architecture of XPRS query processing given in Figure 2.6, plan frag-

ments are used as the units of parallel execution. In this chapter, they are also called tasks

for scheduling purposes. By inter-operation parallelism, we, in fact, mean inter-fragment

or inter-task parallelism. At any give time, there may well be multiple plan fragments (i.e.,

tasks) that are ready to run, such as the left subtree and the right subtree of a bushy tree



61

plan, or in a multi-user environment, plan fragments from queries simultaneously submitted

by di�erent users. As we can see in Figure 2.6, XPRS can also accept multiple user queries

at the same time and try to execute plan fragments from di�erent queries in parallel. This

greatly increases the opportunity for inter-operation parallelism.

When there are multiple plan fragments that are all ready to run, it becomes the

XPRS parallelizer's responsibility to schedule these tasks optimally. The following is the

scheduling problem that needs to be solved for the XPRS parallelizer.

Given n (n = 1; 2; : : : ;1) runable plan fragments (tasks), f1; f2; : : : ; fn, where the

plan fragments may be from a bushy tree plan of the same query or from di�erent queries

that are simultaneously submitted,

1. decide a processing schedule for f1; f2; : : : ; fn;

2. choose a degree of parallelism for each fi,

such that the total elapsed time of processing f1; f2; : : : ; fn is minimized.

As we will see, our solution to the above described problem works for both a �xed

set of tasks or a sequence of tasks. Namely, we also allow n to be in�nity in the above

description for online scheduling.

Some researchers have tried to model this problem as a modi�ed version of the bin

packing problem or the multi-processor scheduling problem in combinatorial optimization

as in [38]. For example, each task can be represented as a rectangle with the width of each

rectangle as the elapsed time of the task and the height of each rectangle as the CPU usage

of the task. The problem becomes to pack the set of rectangles as tightly as possible into

a horizontal stripe as shown in Figure 3.1. There are two problems with this approach.
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3.2.1 IO-bound and CPU-bound tasks

The key idea of our solution to the task scheduling problem is to combine IO-bound

and CPU-bound tasks through inter-operation parallelism so that the utilization of both

the processors and the disks is maximized, and thus the elapsed time is minimized. Before

we describe our solution, we need to de�ne our classi�cation of IO-bound and CPU-bound

tasks.

Let Ci (IOs/second) be the rate of I/O requests of task fi if processed sequentially.

When fi is executed with parallelism x, its I/O rate becomes

IOi(x) = Ci � x:

Suppose that the total disk I/O bandwidth is B (IOs/second) and the total number of

processors is N .

We de�ne task fi as IO-bound if Ci > B=N and CPU-bound if otherwise. Obvi-

ously, the function y = IOi(x) is a straight line with slope Ci. If we draw the line with the

rectangle bounded by B and N as in Figure 3.2, we can see that IO-bound tasks are those

corresponding to the lines above the diagonal and CPU-bound tasks are those corresponding

to the lines below the diagonal.

Because the disk page size and tuple sizes are known, we can estimate how many

tuples of a relation can �t into one disk block. We can also how much CPU time will be

spent on each tuple for di�erent database operations. Therefore, we can estimate the I/O

rate, Ci and do the classi�cation beforehand.

As we can see in Figure 3.2, the parallelism of a task is limited by the rectangle
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intra-operation parallelism, unless the line corresponding to a task is exactly the diagonal

line, the system will not be running at the upper right corner of the rectangle. Either some

I/O bandwidth or some processors may be wasted.

When we run two tasks fi with parallelism xi and fj with parallelism xj together,

the system is running at the point with coordinate (xi+xj ; Cixi+Cjxj). We can maximize

the system resource utilization by choosing xi and xj according to the following equations:

8>>><
>>>:

xi + xj = N

Cixi + Cjxj = B

By solving the above equations, we get,

8>>><
>>>:

xi = (B � CjN)=(Ci � Cj)

xj = (CiN � B)=(Ci � Cj):

We call (xi; xj) the IO-CPU balance point for tasks fi and fj .

Suppose that Ci > Cj , in order to make xi and xj both positive, we must have

Ci > B=N and Cj < B=N . In other words, valid solutions exist for the above equations if

and only if one task is IO-bound and the other CPU-bound. This formula also tells us that

one IO-bound task plus one CPU-bound task can always achieve maximum system resource

utilization with appropriate parallelism assignment. Although a combination of more than

two tasks may also achieve the same e�ect, it complicates the scheduling algorithm and

consumes more memory. Therefore, in exploiting inter-operation parallelism, it is su�cient

to only run two tasks at a time. In other words, we never need to run more than two tasks



66

IO
 r

at
e

pa
ra

lle
lis

m

IO
 b

an
dw

id
th

#C
P

U
s

ta
sk

i
ta

sk
j

•
B

N

•
m

ax
 u

til
iz

at
io

n 
po

in
t

IO
-C

P
U

 b
al

an
ce

 p
oi

nt

x i
x j

F
igu
re
3.3:
IO
-C
P
U

B
a
la
n
c
e
P
o
in
t

in
p
arallel.
T
h
is
resu
lt
sign
i�
ca
n
tly
sim
p
li�
es
th
e
sch
ed
u
lin
g
p
rob
lem
.

F
igu
re
3.3
giv
es
a
grap
h
ical
in
terp
retation
to
th
e
ab
ove
an
aly
sis.
If
w
e
d
raw
th
e

lin
e
corresp
on
d
in
g
to
an
IO
-b
ou
n
d
task
ta
s
k
i

th
rou
gh
th
e
origin
an
d
th
e
lin
e
corresp
on
d
in
g

to
a
C
P
U
-b
ou
n
d
task
ta
sk
j

th
rou
gh
th
e
u
p
p
er
righ
t
corn
er
of
th
e
rectan
gle,
th
ere
w
ill

alw
ay
s
b
e
an
in
tersection
w
ith
in
th
e
rectan
gle
b
etw
een
th
e
tw
o
lin
es.
T
h
is
in
tersection
is

th
e
IO
-C
P
U
b
alan
ce
p
oin
t.
W
e
can
see
th
at
if
w
e
ru
n
ta
sk
i

w
ith
p
arallelism
x
i

an
d
ta
sk
j

w
ith
p
arallelism
x
j ,
th
e
sy
stem
w
ill
b
e
ru
n
n
in
g
at
th
e
m
ax
im
u
m
u
tilization
p
oin
t.

T
h
e
ab
ove
calcu
lation
assu
m
es
th
at
th
e
d
isk
b
an
d
w
id
th
B
is
a
p
red
e�
n
ed
con
stan
t.

H
ow
ev
er,
in
reality,
d
isk
s
h
ave
tw
o
b
an
d
w
id
th
s,
i.e.,
a
seq
u
en
tial
I/O
b
an
d
w
id
th
an
d
a
ran
-

d
om
I/O
b
an
d
w
id
th
,
w
h
ere
th
e
ran
d
om
I/O
b
an
d
w
id
th
is
on
ly
ab
ou
t
1
=3
of
th
e
seq
u
en
tial

I/O
b
an
d
w
id
th
.
W
e
h
ave
to
take
th
is
in
to
accou
n
t
to
d
o
a
m
ore
carefu
l
calcu
lation
for

p
arallelism
in
volv
in
g
seq
u
en
tial
I/O
task
s.

W
e
�
rst
con
sid
er
tw
o
seq
u
en
tial
I/O
task
s,
f
i

an
d
f
j .
L
et
B
s

b
e
th
e
seq
u
en
tial
I/O



67

bandwidth and Br be the random I/O bandwidth. We can compute the e�ective bandwidth

B from Bs and Br. There are the following two cases depending on the disk block size.

� Large Block Size

If we use track-size blocks, even though there may be seeks between the two tasks,

each task still sees a sequential bandwidth. Therefore, B = Bs.

� Small Block Size

Normally, �le systems use much smaller block sizes, for example, 8K bytes in XPRS.

In this situation, the e�ective bandwidth will be less than the sequential bandwidth

because of contention on the disk arms. We use a simple linear interpolation to

estimate B. There are two boundary cases. The best case is that the disks spend

most of their time handling I/O requests from one task and only occasionally seek to

the other task, thus B � Bs. The worst case is that the disks spend half the time

on one task and half on the other seeking between the two tasks, thus B � Br. Note

that the ratio of I/O time is given by Cixi=Cjxj , or Cjxj=Cixi. Therefore we can

calculate B as below,

B =

8>>><
>>>:

Br + (1� Cixi=Cjxj)(Bs � Br) if Cixi � Cjxj

Br + (1� Cjxj=Cixi)(Bs � Br) otherwise.

Similarly, we can also compute the e�ective bandwidth for a sequential I/O task and a

random I/O task running in parallel.

Because of the possible loss of the sequential bandwidth in inter-operation par-
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allelism, it may be more e�cient to run two sequential I/O tasks separately using only

intra-operation parallelism even though one task is IO-bound and the other is CPU-bound.

For example, we have run a small experiment on XPRS using two sequential scans making

sure that one scan is CPU-bound and the other is IO-bound. When they are run separately

using intra-operation parallelism only, the total elapsed time is 45 seconds. However, when

they are run together using inter-operation parallelism at their IO-CPU balance point, the

total elapsed time becomes 65 seconds.

Therefore, it is not always better to run an IO-bound task and a CPU-bound

task in parallel if the tasks generate sequential I/O's. In our scheduling algorithm to be

described in Section 3.2.4, we compare the estimated time of executing two sequential I/O

tasks in parallel and the estimated time of executing them separately to decide whether

inter-operation parallelism is worthwhile.

3.2.3 Dynamic Adjustment of Parallelism

Even though we have known how to calculate the IO-CPU balance point given

an IO-bound task and a CPU-bound task, we have not yet solved the scheduling problem.

Running two tasks at their IO-CPU balance point only guarantees full resource utilization

while both tasks are running. When one task �nishes �rst and there is no other task to �ll in

the newly available resources, resources are still wasted. An execution order of all the tasks

that minimizes resource waste need to be found. This is still the complex combinatorial

optimization problem discussed before. In XPRS, this combinatorial optimization problem

is avoided by a mechanism of dynamic adjustment of intra-operation parallelism taking

advantage of the low communication overhead feature in a shared memory environment.
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As described in Chapter 2, in XPRS, intra-operation parallelism is implemented

in two ways, page partitioning and range partitioning. In page partitioning, we partition

relations across disk page boundaries and assign a subset of disk pages to each participating

processors to work on. Speci�cally, given n processors, processor i processes disk pages

fp j p mod n = ig, where i = 0; 1; : : : ; n � 1. For example, if we have 3 processors, then

processor 0 scans pages f0; 3; 6; : : :g, processor 1 scans pages f1; 4; 7; : : :g, and processor 2

scans pages f2; 5; 8; : : :g. Obviously, using our page partitioning scheme, unless the number

of processors that we use is exactly the same as the number of disks in the disk array,

the access to each disk is not exactly sequential because of the asynchronousness of the

parallel backends. However, assuming all the processors proceed at about the same speed,

the page in one disk request is always very close to the page in the previous request to the

same disk. Therefore, the seek distances are likely to be very small, and we can still get a

close-to-sequential bandwidth which is still much higher than the random bandwidth.

In range partitioning, relations are partitioned according to the value of a certain

attribute. For example, suppose that the employee relation is to be partitioned between 2

processors. We may have one processor work on tuples with emp:salary > 30000 and the

other processor work on tuples with emp:salary � 30000. We can try to �nd a balanced

range partition with data distribution information in the system catalog or in the root node

of an index.

Page partitioning is used for sequential scans while range partitioning is used for

index scans. Joins are parallelized using either page partitioning or range partitioning de-

pending on the type of scans in their inner and outer plans. Di�erent parallelism adjustment



70

M
as

te
r 

B
ac

ke
nd

S
la

ve
 B

ac
ke

nd
 i

si
gn

al

cu
rp

ag
e i

m
ax

pa
ge

ne
w

 p
ar

al
le

lis
m

, n’

cu
rr

en
tly

 

m
ax

pa
ge

 =
 m

ax
{c

ur
pa

ge i}

ad
ju

st
 p

ar
al

le
lis

m
 

ad
d 

ne
w

 s
la

ve
s 

to
 ta

sk
 

if 
pa

ra
lle

lis
m

 in
cr

ea
se

s
w

he
n 

sc
an

 p
as

t m
ax

pa
ge

sc
an

ni
ng

 p
ag

e 
cu

rp
ag

e
i

de
ci

de
 to

 a
dj

us
t p

ar
al

le
lis

m
fr

om
 n

 to
 n

’

F
igu
re
3.4:
P
a
g
e
P
a
r
titio
n
in
g
P
a
r
a
lle
lism

A
d
ju
s
tm
e
n
t

m
ech
an
ism
s
h
ave
b
een
d
esign
ed
for
p
age
p
artition
in
g
an
d
ran
ge
p
artition
in
g
op
eration
s.

S
u
p
p
ose
th
at
th
e
cu
rren
t
d
egree
of
p
arallelism

for
a
task
is
n
an
d
w
e
w
an
t
to

ad
ju
st
it
to
a
n
ew
d
egree
of
n
0,
w
h
ere
n
0
can
b
e
greater
th
an
n
,
w
h
ich
m
ean
s
th
at
w
e
are

p
u
ttin
g
in
m
ore
availab
le
p
ro
cessors
to
w
ork
on
th
is
task
,
or
sm
aller
th
an
n
,
w
h
ich
m
ean
s

th
at
w
e
are
tak
in
g
som
e
p
ro
cessors
aw
ay
from
th
is
task
to
w
ork
on
an
oth
er
task
.
W
e
h
ave

im
p
lem
en
ted
d
y
n
am
ic
p
ara
llelism
ad
ju
stm
en
t
in
X
P
R
S
as
follow
s:

�

F
or
P
age
P
artition
in
g

T
h
e
m
aster
b
acken
d
sen
d
s
a
sign
al
to
all
p
articip
atin
g
slave
b
acken
d
s
on
th
e
task
.

U
p
on
receiv
in
g
th
e
sign
al,
each
slave
b
acken
d
,
i
=
0
;1
;:
::;n
�

1,
sen
d
s
b
ack
th
e

cu
rren
t
p
age
n
u
m
b
er
cu
r
p
a
g
e
i

th
at
it
is
scan
n
in
g
an
d
th
en
w
aits
for
a
m
essage
from

th
e
m
aster
b
acken
d
.
A
fter
receiv
in
g
all
th
e
p
age
n
u
m
b
ers
from
th
e
slave
b
acken
d
s,



71

the master backend computes the maximum page number,

maxpage = maxfcurpageig; i = 0; 1; : : : ; n� 1.

Then the master backend sends maxpage and new parallelism n0 to all the slave

backends, which completes the communications between the master and the slaves

for the parallelism adjustment. If n0 > n, the master backend will start n0 � n free

slave backends to work on the task and make each of them start scanning after page

maxpage. After receiving maxpage and n0, all the slave backends will resume their

work until they �nish scanning all the pages before maxpage, at which point, they will

change from scanning every nth page to scanning every n0th page and complete the

parallelism adjustment. If n > n0, upon scanning past maxpage, the slave backends

i, i >= n0 � 1 will �nish processing the current task and report back to the master

backend as available. The communication between the master backend and the slave

backends for page partitioning parallelism adjustment is shown in Figure 3.4.

� For Range Partitioning

The master backend sends a signal to all the participating slave backends on the task.

Upon receiving the signal, each slave backend sends back the intervals of values that

remain for them to scan. For example, if a slave backend is assigned to scan for values

in interval [l; h] and the current value that is being examined is c, the interval that

will be sent back to the master backend is [c; h]. After parallelism adjustment, each

slave backend may get more than one intervals to scan instead of only one contiguous

interval. Upon receiving all the intervals from the slave backends, the master backend



72

Master Backend Slave Backend i

signal

rangei

rangei’

currently scanning rangei

proceed to scan rangei’add new slaves to task 
if parallelism increases

decide to adjust parallelism
from n to n’

repartition 
(∪ rangei) into new
ranges rangei’ , 
i = 1, ..., n’.

F
igu
re
3.5:
R
a
n
g
e
P
a
r
titio
n
in
g
P
a
r
a
lle
lism

A
d
ju
stm
e
n
t

red
istrib
u
tes
th
e
in
tervals
am
on
g
n
0
slave
b
acken
d
s
an
d
sen
d
s
each
slave
b
acken
d
a
set

of
rep
artition
ed
search
in
tervals.
If
n
0
>
n
,
th
e
m
aster
b
acken
d
w
ill
start
n
0
�

n
free

slave
b
acken
d
s
to
w
ork
on
th
e
task
.
M
ean
w
h
ile,
th
e
old
slave
b
acken
d
s
w
ill
resu
m
e

th
eir
p
ro
cessin
g
w
ith
th
e
n
ew
search
in
tervals.
If
n
0
<

n
,
th
e
ex
tra
slave
b
acken
d
s

w
ill
�
n
ish
th
e
p
ro
cessin
g
of
th
e
cu
rren
t
task
an
d
rep
ort
b
ack
to
th
e
m
aster
b
acken
d

as
availab
le.
F
igu
re
3.5
sh
ow
s
th
e
com
m
u
n
ication
s
b
etw
een
th
e
m
aster
b
acken
d
an
d

th
e
slave
b
acken
d
s
for
ran
ge
p
artition
in
g
p
arallelism
ad
ju
stm
en
t.

A
s
w
e
can
see,
th
e
e�
cien
cy
of
ou
r
p
arallelism
ad
ju
stm
en
t
m
ech
an
ism
d
ep
en
d
s
on

th
e
low
com
m
u
n
ication
d
elay
ad
van
tage
of
a
sh
ared
m
em
ory
sy
stem
.

O
u
r
d
y
n
am
ic
p
arallelism

ad
ju
stm
en
t
m
ech
an
ism

is
n
ot
on
ly
u
sefu
l
for
solv
in
g

th
e
sch
ed
u
lin
g
algorith
m
,
it
is
also
u
sefu
l
for
correctin
g
op
tim
izer
cost
estim
ation
errors.



73

Because of errors in cost estimation models, the optimizer may label an IO-bound task

CPU-bound or vice versa, which may cause performance problems. The run time system

can detect this error by monitoring the I/O rate while the mislabeled task is running and

adjust it to its correct parallelism.

3.2.4 Adaptive Scheduling Algorithm

The main idea of our scheduling algorithm is to use our dynamic parallelism ad-

justment mechanism to keep the system running at the IO-CPU balance point, i.e., at the

maximum system resource utilization. At the same time, the algorithm also considers the

possibility that inter-operation parallelism may be disadvantageous when sequential I/O

is involved because of the disk seeks between tasks, in which case only intra-operation

parallelism will be used to take advantage of the sequential disk bandwidth.

Given a set of n runable tasks, S = ff1; f2; : : : ; fng, suppose that the sequential

execution time of fi is Ti. And suppose that Tintra(fi) is the execution time of fi running

alone with only intra-operation parallelism and Tinter(fi; fj) is the execution time of fi and

fj running at their IO-CPU balance point (xi; xj) with inter-operation parallelism. We

have,

Tintra(fi) = Ti=maxp(fi);

Tinter(fi; fj) = min(Ti=xi; Tj=xj) + Tij=maxpij :

where Tij is the execution time of the remaining task when either fi or fj �nishes �rst and

maxpij is the maximum intra-operation parallelism of the remaining task. We have,
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Tij =

8>>><
>>>:

Ti � Tjxi=xj if Ti=xi > Tj=xj

Tj � Tixj=xi otherwise,

maxpij =

8>>><
>>>:

maxp(fi) if Ti=xi > Tj=xj

maxp(fj) otherwise.

The following is the description of our algorithm.

1. Divide S into Sio and Scpu such that S = Sio
S
Scpu, Sio contains all the IO-bound

tasks and Scpu contains all the CPU-bound tasks.

2. Choose task1 2 Sio and set S1 = Sio, or if Sio = ;, choose task1 2 Scpu and set

S1 = Scpu.

3. Choose task2 2 S � S1, such that

Tinter(task1; task2) < Tintra(task1) + Tintra(task2):

4. If task2 does not exist, run task1 alone with parallelism maxp(task1) if task1 is a new

task, or adjust the current parallelism of task1 to maxp(task1) if task1 is a running

task, set S = S � ftask1g
1, go to 2 when task1 completes.

5. If task2 exists, calculate the IO-CPU balance point between task1 and task2, (x1; x2).

1When we remove a task from S, we also implicitly remove the task from Sio and Scpu.



75

6. Execute task1 with parallelism x1 if task1 is a new task, or adjust the current paral-

lelism of task1 to x1 if task1 is a running task; Execute task2 with parallelism x2.

7. If task1 �nishes �rst while task2 is still running, set S = S � ftask1g, task1 = task2,

S1 = S � S1, go to 3.

8. If task2 �nishes �rst while task1 is still running, set S = S � ftask2g, go to 3.

9. If S = ;, algorithm terminates.

In the above algorithm, we try to pair up an IO-bound task and a CPU-bound

task for inter-operation parallelism only if it is better than running them separately with

intra-operation parallelism. If either IO-bound tasks or CPU-bound tasks run out, we will

simply execute the remaining tasks with intra-operation parallelism only.

At any point, there may be more than one possible pairs of IO-bound tasks and

CPU-bound tasks, fi and fj , that can be chosen. Our strategy is to pair up the most

IO-bound task (the task with the greatest I/O rate) and the most CPU-bound task (the

task with the smallest I/O rate). In this way, we can keep the system running closer to

the maximum utilization point (the upper-right corner of the rectangle in Figure 3.3) when

either IO-bound or CPU-bound tasks run out �rst, because the remaining tasks will be

those corresponding to lines closer to the diagonal in Figure 3.3.

In a multi-user environment, if we want to minimize the response time of individual

queries instead of the the total elapsed time, a shortest-job-�rst heuristic can be used, i.e.,

to execute the tasks from the shortest query �rst.

The above algorithm can be easily extended to handle a sequence of tasks ff1; f2; f3; : : :g
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instead of a �xed set of tasks. In other words, the above algorithm can also be used for

online scheduling. All we need to do is to represent Sio and Scpu as queues. When a task

arrives, it is put into either the Sio queue or the Scpu queue according to its I/O rate. For

our most IO-bound and most CPU-bound task �rst strategy, we can easily keep the tasks in

the Sio queue in descending order of I/O rate and the tasks in the Scpu queue in ascending

order of I/O rate. Each time we simply take a task o� the head of the task queues. The

rest of the algorithm still work as described.

3.3 Evaluation of Scheduling Algorithms

In this section, we evaluate the performance of our scheduling algorithm described

in the previous section through XPRS benchmark experiments. Experiments are performed

on XPRS con�gured with 8 processors and 4 disks2. In the experiments, we compare the

performance of the following three scheduling algorithms.

� INTRA-ONLY { No Inter-Operation Parallelism, i.e., executing tasks one by one

using intra-operation parallelism only.

� INTER-WITHOUT-ADJ { Inter-Operation Parallelism without Dynamic Adjust-

ment

This is almost the same as the algorithm in the previous section, except that when

one task �nishes �rst, no dynamic parallelism adjustment is performed. The master

backend will simply start the task that can get closest to maximum utilization point

2We decided not to use the full con�guration of XPRS, i.e., 12 processors and 7 disks, in order to make

it easier to generate IO-bound and CPU-bound tasks in our experiments.
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if executed using the currently available processors in parallel with the running task.

� INTER-WITH-ADJ { Inter-Operation Parallelism with Dynamic Adjustment, i.e.,

the algorithm described in the previous section.

We run the following four workloads against each of the three algorithms:

� all IO-bound tasks,

� all CPU-bound tasks,

� extremely IO-bound tasks with extremely CPU-bound tasks,

� random-mix tasks.

Each workload consists of ten tasks. Since our algorithms only depend on the

I/O rate of each task and other details of the operations in the tasks do not a�ect the

performance. we choose all the queries to be one-variable selection queries for simplicity

and ease of constructing tasks with speci�c I/O rates. Hence, all the tasks will be either

a sequential scan or an index scan. The length of each task is randomly chosen between

scanning 100 tuples and scanning 10; 000 tuples. We adjust the I/O rate of each task by

varying the size of tuples that are scanned. All relations in the workloads have the same

schema:

ri(a = int4; b = text);

where attribute b is a variable-size string and is used to adjust the tuple sizes. All queries

will be a selection on ri:a. An unclustered index may be created on a to make index scans

possible. For sequential scans, the I/O rate is determined by the tuple size. There is a �xed
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per-tuple overhead (evaluation of query quali�cations) after each tuple is read into memory

from disks. Therefore, the time between two I/O requests is equal to the time to read in a

disk page plus the time to process all the tuples that reside in the read-in disk page. When

the tuple size is small, many tuples can be packed into one disk page, thus it takes longer

to process all the tuples in a page and the I/O rate is lower, so the task is likely to be

CPU-bound. On the other hand, if the tuple size is large, the I/O rate is higher and the

task is likely to be IO-bound. For index scans on an unclustered index, however, the I/O

rate is always high because index scans can follow the pointer in an index to a quali�ed

tuple on a disk page and hence the time between two I/O requests is small. Therefore,

index scans on an unclustered index are most likely IO-bound. On the other hand, index

scans on a clustered index have more or less the same situation as sequential scans.

In our experiments, the most CPU-bound task is a sequential scan on relation rmin

in which the b attribute in all the tuples is set to NULL so that the tuple size is the smallest.

The most IO-bound task is a sequential scan on relation rmax in which the b attribute in all

the tuples is set large enough so that each disk page can only hold one tuple. In XPRS, the

disk page size is 8K bytes. We have measured the I/O rate of sequential scans on both rmin

and rmax. The rmin I/O rate is 5 (IOs/second) and the rmax I/O rate is 70 (IOs/second). All

other tasks will have I/O rate in between these extremes. We have measured the bandwidth

of our disks (bandwidth after �le system overhead) to be 97 io's/second for sequential reads,

60 io's/second for almost sequential reads and 35 io's/second for random reads. Even for

parallel sequential scans, the e�ective bandwidth is at best the almost sequential bandwidth

because of the asynchronousness of the parallel backends. Since we use 4 disks, we have a
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INTER-WITH-ADJ can improve performance by as much as 25% over INTRA-ONLY.

We can also see that INTER-WITHOUT-ADJ loses to INTRA-ONLY because without

parallelism adjustment a task may have to run with a low parallelism even when other

tasks have �nished and more processors have become available.

3.4 Optimization of Bushy Tree Plans for Parallelism

In the previous sections, we have studied the scheduling problem of a set or a

sequence of runable tasks. Our algorithm can be used regardless of whether the parallel

tasks are from a bushy tree plan of the same query or from di�erent queries. In this

section, we will concentrate on the optimization problem of parallel execution plans for a

single query and propose an optimization strategy based on the scheduling algorithm in the

previous sections.

Since we have shown that a proper combination of intra-operation parallelism and

inter-operation parallelism wins over only intra-operation parallelism given a workload of

mixed IO-bound and CPU-bound tasks. The intra-operation-parallelism-only optimization

strategy presented in the previous chapter obviously cannot always take full advantage of all

available resources and thus cannot guarantee the optimality of the execution plan chosen.

However, in a multi-user environment, this problem can be easily solved by combining the

two phase optimization strategy in the previous chapter with our scheduling algorithm. We

still �nd the best parallel plan for each query using only intra-operation parallelism with the

algorithm in the previous chapter, but we rely on the tasks from di�erent queries submitted

by multiple users to achieve maximum resource utilizations using our scheduling algorithm.
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In this section, we will focus on the optimization problem of a single query in a single-user

environment where we have to depend on the tasks within a same plan to achieve IO-CPU

balance and where bushy tree plans have to be considered. Our idea is to preserve the same

optimization scheme as in the previous chapter, but use a new cost estimation method to

estimate and compare the costs of bushy tree plans.

Since use of parallelism only helps reduce response time of a query execution, we

will consider response time alone as our cost measurements in the following discussions.

For each sequential plan p, let seqcost(p) be the cost of sequential execution of p and

parcost(p; n) be the cost of parallel execution of p on n processors. As described before,

plan p can be decomposed into a set of plan fragments which are what we call tasks in

parallel executions. Unlike the situation in the previous sections, the tasks here have order-

dependencies among themselves because some task may take the output of another task

as input. However, obviously our scheduling algorithm can be easily modi�ed to deal with

the order-dependencies. It only needs to check if a task is ready before choosing it to

execute and only execute the ready tasks. Suppose that F (p) = ff1; f2; : : : ; fkg is the set of

plan fragments (tasks) of plan p. Using the cost estimation methods in conventional query

optimization, we can estimate the sequential execution time of each task i, Ti. We can also

estimate the number of I/O's of each task i, Di. Thus, we can estimate the I/O rate of

each task i as

Ci = Di=Ti:

Let Tn(S) be the elapsed time of executing a set of tasks, S with n processors. We
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can compute Tn(S) with the following recursive formula:

Tn(S) =

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

Ti=maxp(fi) + Tn(S � ffig)

if fi is run alone;

min(Ti=x1; Tj=x2) + Tn((S � ffi; fjg)
S
ffijg)

if fi and fj is run in parallel.

where fi and fj are two ready tasks chosen in S according to our scheduling algorithm to

execute in parallel at IO-CPU balance point (xi; xj), fij is the remaining task of the longer

of fi and fj when one of them �nishes �rst. This formula basically simulates each iteration

of our scheduling algorithm and computes the total elapsed time of processing all the tasks.

We compute parallel execution cost of a plan as,

parcost(p; n) = Tn(F (p)):

Now for each plan p, we can estimate parcost(p; n) given n and since we are as-

suming a single-user environment, n is known beforehand. Therefore, we can �nd the plan

that minimizes parcost(p; n). The optimal plan can be found by a conventional query

optimization algorithm with parcost(p; n) replacing seqcost(p). Note that the calculation

of parcost(p; n) depends on the structure of the entire plan tree of p which makes local

pruning, a common complexity-reducing technique in conventional query optimization in-

feasible. Aside from this factor, we can solve the parallel optimization problem with the
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same algorithmic complexity as in conventional query optimization.

3.5 Summary

In this chapter, we have presented our approach to exploit inter-operation par-

allelism in XPRS. We have �rst studied the scheduling problem of a set or a sequence of

independent tasks that are either from a bushy tree plan of a single query or from the plans

of multiple queries and proposed a clean and simple scheduling algorithm. The scheduling

algorithm achieves maximum resource utilizations by running two carefully selected tasks in

parallel at their IO-CPU balance point, and avoids the combinatorial optimization problem

by dynamically adjusting the degree of parallelism of the tasks to keep the system running

with maximum resource utilizations. It takes full advantage of the low communication over-

head feature of a shared memory system, which a shared nothing system does not have. We

have also studied the optimization problem of parallel execution plans of a single query and

extended our optimization strategy in the previous chapter to consider inter-operation par-

allelism by introducing a cost estimation method for parallel execution costs of a sequential

plan based on the scheduling algorithm.

We have neglected the memory constraints on parallelism in the chapter. For

example, we cannot run two hashjoins in parallel unless there is enough memory for both

hash tables. Memory allocation strategies for parallel operations will be the topic of the

next chapter.
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Chapter 4

Memory Allocation Strategies

Processors, disk bandwidth and main memory are the three most important re-

sources in parallel query processing. The previous chapter has dealt with the allocations of

processors and disk bandwidth. This chapter will add in the third dimension, main mem-

ory to the resource allocation problem. The processing of a query ultimately consists of

a sequence of CPU instructions and disk I/O requests. Therefore, the �rst two resources,

processors and disk bandwidth, directly contribute to query processing. On the other hand,

main memory only contributes in an indirect way by reducing the number of CPU instruc-

tions and I/O requests in the query processing. Because of the special role of main memory,

we will treat the memory allocation problem separately in this chapter. However, in the

end of this chapter, we will integrate the memory allocation strategy to be presented in this

chapter with the task scheduling algorithm presented in the previous chapter to complete

our approach to resource allocation in XPRS.

The question to be answered in this chapter is how to allocate memory among par-
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allel operations optimally. In general, the contribution of main memory to query processing

is very hard to model, because memory usage depends on access patterns of di�erent oper-

ations, competition for the shared bu�er pool among simultaneous operations, and bu�er

replacement policies. Therefore, we will not try to solve the memory allocation problem

for general operations, rather we will focus on the hashjoin operation, since it is the most

memory intensive operation. Because of its special memory usage, hashjoins usually allocate

separate memory space that bypasses the bu�er manager. For other operations, we will rely

on the bu�er manager to make the right decisions based on database bu�er management

strategies such as those in [11].

Our memory allocation strategy for parallel hashjoins follows the same framework

as the task scheduling algorithm presented in the previous chapter. The main idea is to

�nd the optimal memory allocation for two parallel hashjoins and to dynamically adjust

the memory allocation when tasks change to preserve optimality.

In this chapter, the memory allocation problem to be solved is de�ned in Sec-

tion 4.1. Then, in Section 4.2, we describe our memory allocation strategy for XPRS in

details including �nding the optimal memory allocation and dynamic adjustment of mem-

ory allocations. Last, our memory allocation strategy is integrated into our task scheduling

algorithm in Section 4.3 and the whole chapter is summarized in Section 4.4.

4.1 Notations and Problem De�nition

This section introduces notations that will be used throughout this chapter and

de�nes the memory allocation problem.
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The important notations used in this chapter are summarized in Figure 4.1. Only

one I/O access time parameter is given in our notations because we do not distinguish

sequential I/O and random I/O in this chapter to simplify the formulas. This is reasonable

since all reads and writes of any temporary �les in a hashjoin are always sequential and

random I/Os may only happen during the initial read of the join relations. Therefore, our

formulas can be easily extended to also consider random I/Os. In this chapter, we also

do not consider the possible overlap between CPU and I/O processing because it is too

di�cult to model. Since hash tables take extra space for meta data, the incremental factor

F is introduced to indicate hash table overhead. For example, the size of the hash table of

relation R is F � pages(R) instead of just pages(R). The available memory size parameter

M is not necessarily a �xed constant. Since XPRS is designed as a multi-user system, M

is allowed to change during query execution, but we assume that M is always above the

minimum memory requirement for any hashjoins as mentioned in Chapter 2. Our algorithm

is designed to be capable of adapting itself to the changing memory sizes. In this chapter,

we only consider the hybrid hashjoin since it is shown to be the best hashjoin algorithm [48]

and only consider elapsed time as the optimization objective. Also throughout this chapter,

we assume that the relation on the left side of a join operation is the smaller relation, i.e.,

for join R ./ S, pages(R) � pages(S), unless explicitly mentioned otherwise.

For simplicity, we will omit the degree of parallelism in the formulas in this chapter.

Therefore, the estimated execution time of a hashjoin is its sequential execution time. Since

we have shown in Section 2.2.2 that a hashjoin can be parallelized with linear speedup, the

actual execution time for a hashjoin is its sequential execution time divided by its degree
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Notation Meaning

comp time to compare keys in main memory

hash time to hash a key that is in main memory

move time to move a tuple in memory

IO time to read or write a page between disk and main memory

F hash table incremental factor

pages(R) number of pages in relation R

tuples(R) number of tuples in relation R

M total available memory size

Figure 4.1: Important Notations in This Chapter

of parallelism.

As shown in [48], each hashjoin has a minimum memory requirement, minM and

a maximum memory requirement, maxM . For hashjoin R ./ S,

minM(R ./ S) =
q
F � pages(R) ; maxM(R ./ S) = F � pages(R):

Chapter 3 shows that it is su�cient to only run two tasks at a time. Therefore,

in this chapter, we will only consider the memory allocation problem between two hashjoin

operations. Suppose that we have two hashjoins, R1 ./ S1 and R2 ./ S2 that can be

executed in parallel. If maxM(R1 ./ S1) +maxM(R2 ./ S2) � M , the memory allocation

problem does not exist because we can satisfy the maximum memory requirement for both

hashjoins. IfminM(R1 ./ S1)+minM(R2 ./ S2) > M , the memory allocation problem also

does not exist because there is not enough memory for executing both hashjoins together

and each hashjoin must be executed separately. The memory allocation problem arises only

if minM(R1 ./ S1) +minM(R2 ./ S2) � M < maxM(R1 ./ S1) +maxM(R2 ./ S2), when

we have enough memory to execute both hashjoins in parallel but not enough to satisfy the
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maximum requirements of both hashjoins. In this case, we must answer the following three

questions.

� Question 1.

Is it worthwhile to execute the two hashjoins in parallel? If we execute each hashjoin

separately, each will have the entire M units of memory and will run faster. Hence,

we must decide whether to execute the two hashjoins in parallel or one after another.

� Question 2.

If we decide to execute the two hashjoins together, how do we divide M between the

two hashjoins optimally?

� Question 3.

If the optimal memory allocation changes when one hashjoin �nishes and a new

hashjoin enters, how can we adjust the current allocation to the optimal allocation?

Section 2.2.3 also raised the issue of plan fragment decomposition. As discussed

in Section 2.2.3, there are at most two hashjoins in a plan fragment (actually a hash probe

followed by a hash build as illustrated in Figure 2.7) because of the blocking edge between

the two phases of a hashjoin. Questions 1 and 2 must also be answered for two hashjoins in

the same plan fragments. The only di�erence is that in this case, the two hashjoins are not

executed independently; they are in a pipeline. If the answer is to execute them separately,

the plan fragment will be decomposed into two, each containing one hashjoin; and instead

of pipelining, the results of the �rst hashjoin will be stored in a temporary relation. Hence,

the temporary relation overhead must also be considered. We will give a simple solution to
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the plan fragment decomposition problem based on our answers for the parallel hashjoins.

4.2 Memory Allocation Strategies for Hashjoins

This section presents our memory allocation strategy for parallel hashjoins and

gives our answers to Questions 2 and 3 posed in the previous section. Because the answer

to Question 1 is based on the answers to Questions 2 and 3, it is delayed to the next

section. This section is organized into three subsections. The �rst subsection introduces

a cost formula for hashjoins as the basis for our analysis. The second subsection then

introduces a theorem for optimal memory allocation for hashjoins and presents the answer

to Question 2 and a solution to the plan fragment decomposition problem. The third

subsection then describes our mechanism of dynamic memory allocation adjustment for

hashjoins and answers Question 3.

4.2.1 Cost Analysis of Hashjoins

We will �rst brie
y recapitulate the hybrid hashjoin algorithm. A hybrid hashjoin

consists of a number of batches of simple hashjoins. In a hashjoin R ./ S, if F �pages(R) �

M , there is only one batch, i.e., the entire R is read and hashed into the main memory hash

table, then S is read to probe the hash table of R for matching tuples. If F�pages(R) > M ,

there will be B + 1 batches in the hybrid hashjoin as described below, where

B = d
pages(R)� F �M

M � 1
e:
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1. First, we choose a hash function h and a partition of its hash values which will divide

R into R0; : : : ; RB, such that the hash table for R0 has M �B pages, and R1; : : : ; RB

are of equal size. Then allocate B pages in memory to B output bu�ers, one for each

R1; : : : ; RB, and assign the remaining M � B pages of memory to the hash table of

R0.

2. Scan R and hash each tuple with h. If it belongs to R0 it is inserted into the hash

table of R0 in memory. Otherwise it belongs to Ri with i > 0, so move it to the output

bu�er of Ri. When an output bu�er is �lled up, it is written to a disk �le. When this

step �nishes, the hash table of R0 is in memory and R1; : : : ; RB are on disk.

3. Partition S with h in the same way as partitioning R, into S0; : : : ; SB. Assign the

output bu�er for Ri in the previous step to Si, for i = 1; : : : ; B. Scan S and hash each

tuple with h. If the tuple is in S0, probe the hash table of R0 for a match. If there

is a match, output the result tuple, otherwise drop the tuple. If the tuple is not in

S0, it belongs to Si for i > 0, so move it to the output bu�er of Si. When an output

bu�er is �lled up, it is written to a disk �le. In the end, R0 ./ S0 is produced and

R1; : : : ; RB and S1; : : : ; SB are left on disk.

4. For i = 1; : : : ; B, perform simple hashjoin of Ri ./ Si, since we can easily prove that

the hash table Ri �ts in memory, i.e., Ri � F �M .

For cost computation, we denote by T (R ./ S;M) the elapsed time for executing

the hashjoin R ./ S sequentially with M units of memory. The following cost formula is

directly quoted from [48].
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T (R ./ S;M) =

(pages(R) + pages(S))� IO Initial Read of R and S.

+(tuples(R) + tuples(S))� hash Partition R and S.

+(tuples(R) + tuples(S))� (1� q)�move Move tuples to output bu�ers.

+(pages(R) + pages(S))� (1� q)� IO Write from output bu�ers.

+(pages(R) + pages(S))� (1� q)� IO Read batches into memory.

+(tuples(R) + tuples(S))� (1� q)� hash Hash in joining Ri ./ Si; i = 1; : : : ; B.

+tuples(R)�move Move tuples to hash tables for R.

+tuples(S)� comp� F Probe for each tuple of S.

where

q = pages(R0)=pages(R)

and

pages(R0) = (M � B)=F = (M �
pages(R)� F �M

M � 1
)=F =

M2
� pages(R)� F

(M � 1)F
:

Thus,

q =
M2

� pages(R)� F

pages(R)� (M � 1)F
:

4.2.2 Optimal Memory Allocation for Hashjoins

This subsection proves a theorem for optimal memory allocation between two

parallel hashjoins and answers our Question 2.
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De�nition 4.1 For hashjoin R ./ S, let

MC =
2� pages(S)� IO+ (tuples(R) + tuples(S))(move+ hash)

pages(R)
:

We call MC the memory coe�cient of the hashjoin.

Theorem 4.1 If two hashjoins, J1 : R1 ./ S1 and J2 : R2 ./ S2 are to be executed in

parallel, and if minM(J1) + minM(J2) � M < maxM(J1) + maxM(J2), the optimal

memory allocation for these two hashjoins is to allocate as much memory as possible to the

hashjoin with larger memory coe�cient leaving only the remaining memory or the minimum

required memory to the other hashjoin, i.e., if J1 has the larger memory coe�cient, J1 should

be given M �max(M �maxM(J1); minM(J2)) units of memory while J2 should only get

max(M �maxM(J1); minM(J2)) units of memory.

Proof.

We can reorganize the formula for T (R ./ S;M) as follows.

T (R ./ S;M) = (pages(R) + pages(S))� IO + (tuples(R) + tuples(S))� hash

+ tuples(R)�move+ tuples(S)� comp� F

+ 2� (pages(R) + pages(S))� (1� q)� IO

+ (tuples(R) + tuples(S))� (1� q)� (move+ hash):

Since

q =
M2 � pages(R)� F

pages(R)� (M � 1)F
;
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we have

1� q =
pages(R)� F �M

pages(R)� F

M

M � 1
:

Because we always assume a large amount of memory M , M

M�1
� 1. Hence,

1� q �
pages(R)� F �M

pages(R)� F
:

By substituting this into the formula for T (R ./ S;M), we can derive the following formula.

T (R ./ S;M) = 3� (pages(R) + pages(S))� IO

+ 2� tuples(R)� (move+ hash)

+ tuples(S)� (2� hash + comp� F )

�
1

F
(2IO+MC)�M:

In brief,

T (R ./ S;M) = A�
1

F
(2IO+MC)M;

where

A = 3� (pages(R) + pages(S))� IO

+ 2� tuples(R)� (move+ hash)

+ tuples(S)� (2� hash + comp� F ):

Obviously, A is independent of memory size M .
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Suppose that M1 units of memory are allocated to hashjoin J1, and M2 units

of memory are allocated to hashjoin J2. We have, M1 + M2 = M;minM(Ji) � Mi �

maxM(Ji); i = 1; 2. The total cost of executing both hashjoins is,

T (J1;M1) + T (J2;M2) = A1 �
1

F
(2IO+MC1)M1 + A2 �

1

F
(2IO+MC2)M2

= (A1 +A2)�
1

F
2IO(M1 +M2)�

1

F
(MC1 �M1 +MC2 �M2)

= (A1 +A2)�
1

F
2IO�M �

1

F
(MC1 �M1 +MC2 �M2):

As we can see, in order to minimize the total cost, the termMC1�M1+MC2�M2

must be maximized, for which we should give as much memory as possible to the hashjoin

with larger memory coe�cient.

Q.E.D.

Theorem 4.1 answers our Question 2. It shows that memory coe�cient is a measure

of the contribution of each unit of memory to a hashjoin. Therefore, the answer to Question

2 is to allocate as much memory as possible to the hashjoin with larger memory coe�cient.

Theorem 4.1 can also be applied to solve the plan fragment decomposition problem.

Suppose that we have two consecutive hashjoins, (R ./ S) ./ T . Let U = R ./ S. We assume

that pages(U) � pages(T ). If minM(R ./ S) + minM(U ./ T ) � M < maxM(R ./

S) + maxM(U ./ T ), we need to decide whether to execute the two joins together in a

pipeline, or to execute R ./ S �rst and store the result in a temporary relation U , then

execute U ./ T . Suppose that M1 and M2 (M1 + M2 = M) are the optimal memory

allocation for these two hashjoins according to Theorem 4.1. We can calculate the cost of
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executing the two hashjoins together as:

T (R ./ S;M1) + T (U ./ T;M2)� pages(R ./ S)� IO;

where pages(R ./ S) � IO is the I/O cost saved by pipelining. We can also calculate the

cost of executing the two hashjoins separately as:

T (R ./ S;M) + T (U ./ T;M) + pages(R ./ S)� IO;

where pages(R ./ S)� IO is the cost for writing the temporary relation to disk (bu�ering

is not considered here). These formulas can be easily modi�ed by exchanging U and T

if pages(U) > pages(T ). Therefore, we can decide whether to execute the two hashjoins

together or separately by comparing their costs and choose the way with lower cost.

4.2.3 Dynamic Memory Adjustment in Hashjoin

If two hashjoins are executed in parallel, when one of them �nishes and a new

hashjoin starts, the optimal memory allocation may very well change, thus we may need to

adjust the amount of memory allocated to the currently running hashjoin. If the memory

coe�cient of the running hashjoin is larger than that of the new hashjoin, more memory may

need to be added to the running hashjoin. On the other hand, if the memory coe�cient of

the running hashjoin is smaller than that of the new hashjoin, a certain amount of memory

may need to be taken away from the running task to be given to the new hashjoin. This

subsection describes our mechanism to dynamically increase or decrease the amount of
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memory of a hashjoin while it is running.

We will �rst describe the implementation of hashjoin in XPRS before the dynamic

memory adjustment mechanism is presented. The XPRS implementation of hashjoin is

similar to that described in [60], which also deals with dynamic changes in the amount

of available memory. However, [60] only considers dynamic memory adjustment in the

build phase of a hashjoin, while our implementation of hashjoin allows dynamic memory

adjustment in both phases of a hashjoin. Also [60] focuses on the situations when the

amount of available memory is less than expected or the join relation size is larger than

estimated, thus is mainly concerned with decreasing memory sizes. On the other hand, we

consider both decreasing and increasing memory sizes. If more memory becomes available

during the execution of a hashjoin, we also adjust the hashjoin to take advantage of the

newly available memory.

The important concepts in our hashjoin implementation are hash chains, hash

buckets and hash batches. A hash chain is a linked list of tuples with the same hash value.

A hash bucket is a set of hash chains that share the same set of pages. A hash batch is a set

of hash buckets that are used in the same batch in a hybrid hashjoin. As we can see, each

hash chain corresponds to one hash value, each hash bucket corresponds to a range of hash

values, while each hash batch corresponds to a larger range of hash values. Our hash table

consists of an in-memory hash directory which associates hash value ranges to corresponding

hash buckets, and a set of pages for all the hash buckets, as shown in Figure 4.2. Each page

also contains a local hash directory that identi�es all the hash chains within the page. We

use relative addressing for pointers which allows the format of the pages in a hash bucket
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memory initially, a hash bucket may be written to a bucket �le on disk, but later on if more

memory becomes available, it can be read back into memory and become memory-resident.

We can also move a hash bucket from one hash batch to another by adjusting the hash value

ranges of the hash batches. In this way, we can dynamically adjust the hash-partitioning

in a hashjoin by rearranging the hash batches.

Let us consider hashjoin R ./ S. When there is a �xed amount of memory,

our hashjoin implementation performs exactly the same as the hybrid hashjoin algorithm

described in Section 4.2.1. First, R is hash-partitioned to batches R0; R1; : : : ; RB, where all

the hash buckets of R0 are memory-resident, while all the hash buckets of Ri; i = 1; : : : ; B

are on disk with only one page for each hash bucket in memory as an output bu�er. Then

S is hash-partitioned in the same way as R while performing R0 ./ S0 during the same

pass through S. After hash partitioning is �nished, Ri ./ Si; i = 1; : : : ; B are performed

in turn. As we can see, in fact a hybrid hashjoin can be viewed as three stages: hash-

partitioning R, hash-partitioning S and subjoins Ri ./ Si; i = 1; : : : ; B. Now suppose that

the amount of memory changes during the execution of a hashjoin. We consider dynamic

memory adjustment for each stage in a hashjoin separately. Suppose that the old memory

size is M and the new memory size is M 0. Let k = bjM 0
�M j=bsizec, where bsize is the

bucket size for the hash table of R.

� If the memory size changes while R is being hash-partitioned.

If M 0 > M , k more hash buckets of R will be read from disk to memory. Namely, R0

will be increased by k hash buckets. Since these hash buckets will have to be read into

memory for the subjoins, we do not introduce any extra overhead in this adjustment.
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By increasing R0, we not only save the disk write cost of corresponding hash buckets

of S when S is hash-partitioned, but also may reduce the number of batches in the

hashjoin.

IfM 0 < M , k hash buckets ofR0 will be swapped frommemory to disk. The number of

batches in this hashjoin will therefore be increased. However,M�M 0 units of memory

can be freed and allocated to another hashjoin with larger memory coe�cient. The

overall cost is still reduced.

� If the memory size changes while S is being hash-partitioned.

IfM 0 > M , k hash buckets ofR will be read from disk to memory, The k corresponding

hash buckets of S will also be read and each tuple will be used to probe into the k hash

buckets of R. If a match is discovered, a result tuple is output. Otherwise, the tuple

is dropped. After all k hash buckets of S are scanned, the hashjoin just proceeds with

a larger R0 in memory. Since these k hash buckets of R and S will have to be read

into memory for the subjoins, this adjustment does not incur any extra overhead. By

increasing R0, further writes to the k hash buckets of S are saved and the number of

batches in the hashjoin may also be reduced.

If M 0 < M , k hash buckets of R0 will be swapped from memory to disk. Tuples of S

that belong to corresponding hash buckets and have not yet been scanned will from

now on be written to disk instead of be used to probe the k hash buckets of R0. The

number of batches in this hashjoin will therefore be increased. However, M �M 0

unites of memory can be freed and allocated to another hashjoin with larger memory

coe�cient and the overall cost is still reduced.
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� If the memory size changes while subjoins are being performed.

In executing a subjoin, we �rst always read as many hash buckets of R into memory

as possible then scan the corresponding hash buckets of S to probe the in-memory

hash table of R. Therefore, the actual sizes of Ri; Si; i = 1; : : : ; B change dynamically

according to the available memory size when each subjoin starts. If the memory

size changes during a subjoin, the same memory adjustment techniques as we have

described so far can be applied to each subjoin.

As we can see, the granularity of our dynamic memory adjustment is a hash bucket.

Therefore, the hash bucket size is an important parameter for performance tuning.

4.3 Integration with Task Scheduling Algorithm

The previous section has answered Question 2 and 3 raised in Section 4.1. This

section gives our answer to Question 1 and integrates our memory allocation strategy with

the task scheduling algorithm presented in Chapter 3. Our task scheduling algorithm use

the I/O rate of each task to decide whether it is IO-bound or CPU-bound. The memory

allocation problem complicates task scheduling because the I/O rate of a hashjoin varies

with di�erent amount of memory allocated. Therefore this variable I/O rate issue must

be dealt with in the integration of our memory allocation strategy and our task scheduling

algorithm. In this section, we will �rst give the answer to Question 1, then deal with

variations of I/O rates, and last present the modi�ed task scheduling algorithm integrated

with our memory allocation strategy.
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4.3.1 Answer to Question 1

Question 1 can be answered by introducing the memory factor into the formula of

Tintra() and Tinter() of Section 3.2.4 for hashjoins. Consider two hashjoins: J1 : R1 ./ S1

and J2 : R2 ./ S2. Suppose that J1's memory coe�cient is larger than J2's and M is

the total memory size. According to Theorem 4.1, the optimal memory allocation for the

two hashjoins is M1 = M �max(M �maxM(J1); minM(J2)) to J1 and M2 = max(M �

maxM(J1); minM(J2) to J2. Therefore, if we run the two hashjoins separately, we have

Tintra(Ji) = T (Ji;M)=maxp(Ji); i = 1; 2:

On the other hand, if we run the two hashjoin together and suppose that (x1; x2) is the

IO-CPU balance point de�ned in Chapter 3 for the two joins, we have,

Tinter(J1; J2) = min(T (J1;M1)=x1; T (J2;M2)=x2) + T (J12;M)=maxp(J12) + Tadjust;

where J12 represents the processing that remains to be done for the running join when the

other join has �nished �rst, and Tadjust represents the overhead for memory adjustment that

happens for the longer-running hashjoin to take advantage of the newly available memory.

We have,

T (J12;M) =

8>>><
>>>:

T (J1;M)� T (J2;M2)x1=x2 if T (J1;M1)=x1 > T (J2;M2)=x2

T (J2;M)� T (J1;M1)x2=x1 otherwise,
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Tadjust =

8>>><
>>>:

2�M2 � IO if T (J1;M1)=x1 > T (J2;M2)=x2

2�M1 � IO otherwise,

The answer to Question 1 is to compute Tinter(J1; J2) and Tintra(J1) + Tintra(J2).

If Tinter(J1; J2) < Tintra(J1) + Tintra(J2), we should run the two joins together, otherwise

we should run them separately.

Note that the above analysis is somewhat simpli�ed. It assumes each hashjoin

as one single task, while in fact each hashjoin has two phases and each phase belongs to

a di�erent plan fragment because of the blocking between the two phases as discussed in

Section 2.2.3. However, the above analysis can be easily changed to treat each hashjoin as

two tasks. The details are omitted here. Moreover, the above analysis only considers the

case in which both hashjoins are to be executed from scratch. In general, a new hashjoin

may be chosen to start while another hashjoin still running. Therefore, we need to decide

whether to start a new hashjoin to run in parallel with the currently running hashjoin, or

to leave the currently running hashjoin alone until its completion. The above analysis can

also be easily extended to deal with this general situation, in which the memory size of a

hashjoin may be adjusted larger or smaller, but in either case, we can calculate Tadjust as,

Tadjust = 2� jnew memory size � old memory sizej � IO;

i.e., the overhead for swapping in and out and hash buckets held in the memory added or

removed.



103

4.3.2 Variation of I/O Rate

In Chapter 3, we have assumed that the I/O rate of a task is a constant that can

be pre-determined. However, for a hashjoin, the I/O rate varies depending on the amount of

memory allocated to the hashjoin. The range of I/O rate variation of a hashjoin is analyzed

below.

We will only consider the I/O rate in the build phase of a hashjoin R ./ S. The I/O

rate in the probe phase can be similarly analyzed. Suppose that R will be hash-partitioned

into R0; R1; : : : ; RB. The I/O rate C can be written as C = Cr + Cw; where Cr is the

rate to read pages of R from disk and Cw is the rate to write pages of Ri; i = 1; : : : ; B to

disk. Here Cr is a constant independent of memory size, but Cw varies with memory size.

Let P be the probability of an arbitrary tuple of R belongs to batch Ri; i > 0. We have

Cw = P � Cr. We can also calculate P as P = pages(Ri)=pages(R), where

pages(Ri) =
pages(R)� pages(R0)

B
;

pages(R0) =
M �B

F
;

B = d
F � pages(R)�M

M � 1
e:

Therefore, we can express Cw and thus C as a function of memory size M . We represent

the function for C of M as C(M).

We are mainly interested in the lower bound and upper bound of Cw. Obviously,

whenM � F �pages(R), Cw = 0. Hence the lower bound of Cw is 0. Because pages(R0) �
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pages(Ri), and B >= 1, we know that

pages(Ri) = (pages(R)� pages(R0))=B � pages(R)� pages(Ri):

Therefore, pages(Ri) � pages(R)=2. Hence, P � 1=2, i.e., the upper bound of Cw is Cr=2.

Thus, we have,

Cr � C(M) � 1:5Cr:

In other words, the range of variation of I/O rate C is [Cr; 1:5Cr]. We may use this range

to determine if a task is IO-bound or CPU-bound in the modi�ed scheduling algorithm to

be presented next.

4.3.3 Modi�ed Scheduling Algorithm

Having answered Questions 1, 2 and 3, now we are ready to integrate our memory

allocation strategy with the task scheduling algorithm presented in Chapter 3. The main

idea of the integration is the following.

� In addition to running two tasks at their IO-CPU balance point, if the tasks are

hashjoins, we also allocate the optimal amount of memory to each task according to

Theorem 4.1.

� In addition to dynamically adjusting parallelism to the new IO-CPU balance point

when a new task enters, we also dynamically adjust memory allocation to the new

optimal memory allocation using the techniques described in Section 4.2.3.

Speci�c modi�cations to the task scheduling algorithm in Section 3.2.4 are described below.
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In Step 1, the set of tasks can no longer be divided to only Sio and Scpu because

the I/O rate of a task may vary with the amount of memory allocated to the task, thus we

may not be able to determine whether a task is IO-bound or CPU-bound. However, even

for a hashjoin, it is still possible to determine if it is IO-bound or CPU-bound using the

lower bound minC and upper bound maxC of its I/O rate. According to the de�nition

of IO-bound and CPU-bound tasks in Section 3.2.1, if minC > B=N , we know that the

hashjoin is guaranteed to be IO-bound, and if maxC � B=N , we know that the hashjoin is

guaranteed to be CPU-bound (where B is the total disk bandwidth and N is the number

of processors). However, if minC � B=N < maxC, we cannot determine if the hashjoin

is IO-bound or CPU-bound until memory is allocated. Therefore, we introduce a third set

Sunknown which contains all the tasks whose class (IO-bound or CPU-bound) cannot be

pre-determined. Now we have S = Sio
S
Scpu

S
Sunknown . When choosing a task in Step 2

or 3, if Sio or Scpu becomes empty, tasks in Sunknown will be chosen.

In Step 3, if the two tasks are hashjoins, the check to decide whether to run the

two tasks together or separately should be performed with the new formulas for Tinter and

Tintra in Section 4.3.1. If the two tasks are chosen from Sunknown , we will �rst determine

the optimal memory allocation (M1;M2) between the two tasks, then calculate the actual

I/O rate C1(M1) and C2(M2) of the two tasks to make sure that one task is IO-bound and

the other is CPU-bound. If it is not the case, the check fails.

In Step 4, if task1 is a running task, in addition to adjusting its parallelism to

maxp(task1), we also adjust it to use all the available memory. In Step 5, in addition

to calculating the IO-CPU balance point, (x1; x2), we also calculate the optimal memory
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allocation, (M1;M2). In Step 6, whenever parallelism is adjusted, we also adjust memory

allocation to the new optimal allocation, (M1;M2).

Section 3.2.4 also proposed some heuristics for choosing the pair of IO-bound

and CPU-bound tasks, such as \most IO-bound and most CPU-bound �rst" and \shortest

query �rst". Here we introduce yet another heuristic for a set of hashjoin tasks. Because

memory adjustment introduces extra overhead, we want to have a heuristic that tries to

minimize memory adjustment overhead. According to Theorem 4.1, we always allocate as

much memory as possible to the hashjoin with larger memory coe�cient. We call a memory

adjustment a major memory adjustment if a hashjoin changes from the one with smaller

memory coe�cient to the one with larger memory coe�cient or vice versa. Obviously, a

major memory adjustment is most likely to be expensive because it has to adjust from the

minimum required memory to most of the available memory or vice versa. Our heuristic

minimizes the number of major memory adjustments, in which we choose the IO-bound

hashjoins in memory coe�cient descending order and the CPU-bound hashjoins in memory

coe�cient ascending order. It can be easily shown that we only need to make at most one

major memory adjustment under this heuristic. This is because that there may be exactly

one point when the memory coe�cient of the IO-bound tasks becomes smaller than that of

the CPU-bound tasks. If such a point exists, then one major memory adjustment is made

at this point, but there is no major memory adjustment before or after this point. If such

a point does not exist, then no major memory adjustment will be made.
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4.4 Summary

In this chapter, we have presented our memory allocation strategy for hashjoins

in XPRS and integrated it with the task scheduling algorithm proposed in Chapter 3. Our

memory allocation strategy follows the same framework as the task scheduling algorithm.

We run two parallel hashjoins with their optimal memory allocation and dynamically adjust

memory allocation to the new optimal memory allocation when a new task starts. A

theorem on optimal memory allocation between two hashjoins is developed. According to

the theorem, if there is not enough memory to satisfy the maximum memory requirement of

both hashjoins, in the optimal memory allocation, as much memory as possible should go to

the hashjoin with larger memory coe�cient leaving only the minimum required memory or

the remaining memory after the maximum memory requirement of this hashjoin is satis�ed

to the hashjoin with smaller memory coe�cient. The plan fragment decomposition problem

raised in Section 2.2.3 is also solved using this theorem. Our mechanism for dynamic

memory adjustment in hashjoins is made possible by the careful design of our hashjoin

implementation such that hash buckets can be moved in and out of memory easily depending

on memory availability. This chapter along with the previous two chapters completes the

approach to parallel query processing in XPRS.
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Chapter 5

Performance of Disk Array

Con�gurations

The previous chapters have only considered one particular disk array con�gura-

tion, the RAID Level 0 or the simplex con�guration. This chapter completes the discussion

on parallel query processing by studying the performance implications of di�erent disk array

con�gurations to parallel query processing. Disk arrays and shared memory multiprocessors

are complementary to each other because disk arrays automatically balance the I/O work-

load by striping data across all disks while shared memory multiprocessors automatically

balance the processing workload across multiple processors. XPRS supports several di�er-

ent disk array con�gurations and each of them has its pros and cons. The question is how

these di�erent disk array con�gurations perform in a parallel query processing environment

compared with each other. This chapter intends to answer this question through experi-

ment results on XPRS. As we will show, although di�erent disk array con�gurations have
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di�erent performance characteristics, the di�erence does not a�ect the results presented in

the previous chapters.

This chapter is organized as follows. In the next section, we will introduce the

concept of disk arrays and di�erent con�gurations of disk arrays, particularly the mirrored

con�guration and the parity array con�guration in more detail. Then in Section 5.2, we

will describe the experiments that we have run on XPRS with di�erent disk array con�g-

urations and present the experiment results that illustrate the performance of these disk

array con�gurations. Last, this chapter is concluded and summarized in Section 5.3.

5.1 Disk Array Con�gurations

A disk array consists of many small form factor disks which provide high aggregate

I/O rate through data striping [45]. A signi�cant disadvantage of striping is that if a single

disk within the stripe set fails, none of the data can be accessed. In other words, a single

failure renders the entire array unavailable. Even though disk technology has made each

individual disk highly reliable, a disk array may still fail very often because its failure rate

scales up with the number of disks in the array. Therefore, it is critical that a disk array

include some fault-tolerant mechanism to increase the availability. It is well known that the

best approach to supporting high data availability is through redundancy. Data is stored in

such a fashion that each bit of data contributes to another redundant bit store elsewhere in

the array. A disk array that stores redundant data for the purpose of achieving high data

availability is called a RAID, or a Redundant Array of Inexpensive Disks.

There are two intrinsic penalties to data redundancy: �rst, storage capacity is sac-
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ri�ced to store the extra redundant data, and second, write bandwidth is wasted in keeping

the redundant data up to date. There is a hierarchy of alternative RAID con�gurations from

level 0 to level 5 that represent di�erent tradeo�s between availability, I/O performance,

and capacity [37]. Data striping without redundancy is called RAID Level 0, or the simplex

con�guration. The experiment results presented in the previous chapters are all based on a

RAID 0 con�guration. The two con�gurations best suited for both high I/O rate and high

availability are RAID Level 1 also called mirrored disks and RAID Level 5 also called parity

arrays. These two con�gurations are described in more details below.

5.1.1 RAID Level 1: Mirrored Disks

In a mirrored disk con�guration, each disk is associated with another disk as its

mirrored partner. Each data block on one disk is also stored redundantly on its mirrored

partner. Hence the capacity overhead for redundancy is 100%. Obviously, since each disk

has a mirrored partner, data can be read from either disk, but writes must be made to

both disks. Therefore, the e�ective write rate is only half of what the disks can collectively

provide. Because data is placed under two independent disks, we can further improve read

rate by a technique called seek scheduling, which schedules the disk with its head closer to

the requested data to service the request. Fifteen to twenty percent improvement to read

rate has been observed [10]. Assuming a reasonably short repair time, such as 72 hours, the

probability that both members of a mirrored pair fail at the same time is very small, and

thus a very large expected mean time to data loss (MTTDL) can be achieved.
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Gibson shows in [19] that parity arrays with hot spares can o�er about the same availability

as mirrored disks. However, a parity array only requires one extra disk for every N data

disks to achieve tolerance to single failures while the mirrored con�guration needs one extra

disk for every data disk.

The problem of parity arrays is write performance. In a parity array, for each data

block written, the associated parity block must also be updated. The new parity block can

only be computed by exclusive-OR'ing the old data block, the new data block and the old

parity block. Therefore, one logical write actually becomes four physical I/Os: read old

data, read old parity, write new data, write new parity. Thus the write rate is reduced to

25% of what a non-redundant array can deliver. However, this \read before write" overhead

can be avoided if data is written in units of N blocks at a time. Therefore, parity arrays

only su�er performance penalties for small writes.

5.2 Performance of Parallel Query Processing on RAID

This section examines the performance of parallel query processing on di�erent

RAID con�gurations, speci�cally simplex, mirrored disks and parity arrays. A set of bench-

mark queries are run on XPRS with each of the three disk array con�gurations and their

performance are reported to compare the three disk array con�gurations. We will �rst

describe the experiments on XPRS that are run and then present the experiment results.
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5.2.1 Experiments on XPRS

In our experiments, we run a standard set of benchmark queries on each of the

three disk array con�gurations, measuring the performance in terms of elapsed time. The

benchmark queries can be characterized as follows:

� sequential read (sequential scan),

� random read (unclustered index scan),

� sequential write (update consecutive tuples through sequential scan),

� random write (update through an unclustered index).

Each query is run on three disk array con�gurations: simplex, mirror and parity

array. For each con�guration, we consider two situations: �xed total capacity and �xed

user capacity. Speci�cally, each query will be run six times on the con�gurations in the

following table.

# of disks �xed total capacity �xed user capacity

simplex 6 3

mirror 2� 3 2� 3

parity array 5 + 1 3 + 1

We choose to use queries from a modi�ed version of the Wisconsin Benchmark [3].

As shown in Section 2.2.2, a sequential scan is CPU-bound when the tuple size is small

and IO-bound when the tuple size becomes large. CPU-bound queries are uninteresting in

our experiments since our primary purpose is to compare the performance of di�erent I/O

con�gurations. In the original Wisconsin Benchmark, the tuple size is very small, only 200

bytes, which makes all the sequential scan queries in the benchmark CPU-bound. In our
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version of the benchmark, we have introduced an extra text �eld to pad each tuple to 1; 000

bytes so that the sequential scan queries become IO-bound.

On the other hand, index scans using an unclustered index are all IO-bound be-

cause they do not need to examine every tuple in a fetched disk block. Rather, they can

directly access the quali�ed tuple in a block through an index pointer. The largest relations,

tenk1 and tenk2 in the Wisconsin Benchmark only have 10; 000 tuples. We have increased

the number of tuples in these relations to 20; 000 so that each query will run longer and

we can get more stable results. Speci�cally, we have used the following query for both

sequential scans and index scans:

retrieve (twentyk.all) where twentyk.unique1 < 2648 and twentyk.unique1 > 647.

For index scan experiments, an unclustered index is de�ned on attribute unique1. We also

use the same quali�cations for updates.

Because XPRS runs on top of the Dynix �le system, it is di�cult for us to imple-

ment seek scheduling for the mirror con�guration. Our experiments are run without seek

scheduling. This understates the performance results for the mirror con�guration to be

presented below. However, we make a special e�ort to achieve better load balancing for this

con�guration by directing I/O requests from the even number slave backends to one set of

disks and those from the odd number slave backends to the disks' mirrored partners.

5.2.2 Experiment Results

The experiment results are presented in Figures 5.2 - 5.7. For the retrieve queries,

we plot the query elapsed time against the degree of parallelism. Figures 5.2 - 5.4 show
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Figure 5.2: Performance of Seq. Scan 8K blocks, Fixed Total Capacity

the performance of read-oriented queries on �xed total capacity con�gurations. Figures 5.5

and 5.6 report the performance for the �xed capacity con�gurations. Figure 5.7 shows the

performance of the �xed capacity con�gurations normalized by the number of disks used.

The performance of sequential scan is shown in Figure 5.2. This �gure shows that

when the degree of parallelism is low, both the mirror and the parity con�guration perform

worse than the simplex con�guration. However, when the degree of parallelism increases,

all three con�gurations have approximately the same performance. This is due to the fact

that the default block size (i.e., the stripe unit size) of XPRS is only 8K bytes. When the

degree of parallelism is low relative to the size of a stripe, the access pattern to each disk

in the simplex con�guration is more or less sequential. Therefore, it takes advantage of the
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Figure 5.3: Performance of Seq. Scan 32K blocks, Fixed Total Capacity

read-ahead in the Dynix �le system.

On the other hand, in the parity array con�guration, the parity blocks are scattered

across all the disks. Thus each disk has to seek past the parity blocks frequently, which

turns o� the �le system read-ahead. The performance loss of the mirror con�guration

can be explained by its smaller stripe size (half of simplex's), hence the access pattern on

each disk becomes random at lower degrees of parallelism. Another factor for the mirror

con�guration is the way we assign even number slaves to one set of disks and odd number

slaves to the mirror set does not balance the I/O requests perfectly. When the degree of

parallelism becomes large, access patterns to each disk in all con�gurations become random

and thus there is essentially no performance di�erence between di�erent con�gurations.
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Figure 5.4: Performance of Index Scan, Fixed Total Capacity

Figure 5.3 shows the performance of the same query when the block size of XPRS

is increased to 32K bytes. In this case, all three con�gurations have almost the same

performance because they all enjoy a sequential I/O bandwidth through the large track-size

blocks.

Figure 5.4 shows the performance of an unclustered index scan query on the three

disk array con�gurations. It shows that the three con�gurations have virtually the same

performance for random reads when the degree of parallelism is low. For higher degrees of

parallelism, the mirror con�guration starts to show performance that is a little worse than

the other two con�gurations. This can be explained by the small stripe size of the mirror

con�guration. Because the stripe size is small, it is more likely that two processes try to
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Figure 5.5: Performance of Seq. Scan 32K blocks, Fixed User Capacity

access blocks from the same disk at the same time, thereby causing more queuing delays.

In summary, if we �x the total capacity, all three con�gurations can achieve the

same query processing performance. Although the parity array con�guration may have the

problem of losing sequential bandwidth because of the scattered parity blocks, it can be

avoided by increasing block size. If we compare these three con�gurations with �xed total

capacity for read-oriented queries, they can achieve the same performance, but the simplex

con�guration has poor availability and the mirror con�guration can only o�er half the user

capacity; therefore the parity array con�guration is obviously the best choice.

On the other hand, if we �x the user capacity, as in Figures 5.5 and 5.6, the

mirrored con�guration has the best performance. This is not too surprising, since the mirror
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Figure 5.6: Performance of Index Scan, Fixed User Capacity

con�guration has almost twice as many disks as the other two. However, Figure 5.7 shows if

we normalized the performance in terms number of I/Os per second to performance per disk,

the parity array con�guration has the best performance per disk except for low degrees of

parallelism. For high parallelism, the parity array con�guration achieves better performance

than simplex because it spreads data across more disks. However, this advantage is not

obvious at low parallelism because there are not enough outstanding I/O requests. Although

the mirror con�guration has the best raw performance in this case, it also wastes the most

space for redundancy. As a result, it has lower normalized performance.

Performance of write-oriented queries on the three disk array con�gurations is

shown in Figure 5.8, in which we present the measured elapsed time of updates to 1; 000
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Figure 5.7: Normalized Performance of Index Scan, Fixed User Capacity

tuples through sequential scan or unclustered index scan in a table. To e�ectively make use

of the parity array con�guration, a special stripe bu�er is implemented which bu�ers blocks

in the same stripe and writes out an entire stripe at the same time if possible so that we

can avoid reading the old data block and the old parity block to compute the new parity

block for each write. Obviously, this stripe bu�er is only e�ective for sequential writes.

As we can see in the table, the parity array con�guration has the worst performance for

random updates because of its read-modify-write scheme. However, parity arrays perform

much better for sequential updates with the help of the stripe bu�er. In fact, it can even

perform better than the mirror con�guration because it has more disk drives that can write

in parallel.
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Fixed Total Capacity Fixed User Capacity
Elapse Time (sec) simplex mirror array simplex mirror array

(6) (2� 3) (5 + 1) (3) (2� 3) (3 + 1)

sequential update 52:55 53:84 53:07 50:99 54:26 51:68

random update 53:44 56:34 73:42 54:09 55:28 71:86

Figure 5.8: Performance of Update Queries

5.3 Summary

In this chapter, we have compared the performance of three RAID con�gurations,

simplex, mirrored disks and parity arrays in a parallel query processing environment through

experiments on XPRS. From the experiment results, we have shown that for a �xed total

disk space, the parity array con�guration can achieve the same read performance as the

mirror con�guration while providing almost twice as much user disk space. For a �xed user

disk space, the parity array does not win on raw performance, but it wins on normalized

performance for read-oriented applications. For write-oriented applications, the parity array

con�guration can achieve comparable performance with other con�gurations for sequential

writes, but loses in random writes. However, a write-optimized �le system such as Log

Structured File System (LFS) [44] can help solve the random write problem of parity arrays

by grouping random writes and turning them into sequential writes.

This chapter completes our discussion on parallel query processing in a shared

everything environment. Although di�erent disk array con�gurations have di�erent perfor-

mance characteristics, the di�erence does not a�ect the results presented in the previous

chapters. Our parallel query processing strategies can be applied in a shared everything

system with any disk array con�guration.
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Chapter 6

Conclusions and Future Work

This chapter concludes the whole thesis. Our conclusions are also followed by some

discussions on future research directions.

It is the general consensus that parallel database systems are the key to high

performance data management demanded by applications such as decision support systems

and multi-media data management. However, parallel database systems also introduce new

problems to query processing especially for query optimization and resource management.

If these problems are not well solved, parallel database systems still cannot achieve high

performance. This thesis solves these problems in parallel query processing in a particular

environment, i.e., the shared everything enironment and presents a complete design and

implementation of parallel query processing in our prototype multi-user parallel database

system, XPRS, with focus on three main issues: parallel query optimization, task scheduling

and memory allocation.

Query optimization has been traditionally handled with an exhaustive or semi-
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exhaustive search algorithm to �nd the optimal query execution plan. Although this ap-

proach is reasonable for sequential query plans, it is bound to fail for parallel query plans

because the search space of possible parallel query plans is orders of magnitude larger

than the space of sequential query plans. Another problem that has not been well solved

in query optimization is the unknown parameter problem. In a multi-user environment,

many parameters that a�ect query execution costs are unknown until run time. Therefore,

compile-time optimization must deal with these unknown parameters. XPRS speci�cally

considers two parameters, available bu�er size and number of free processors. Both the

enormous search space problem and the unknown parameter problem are solved in XPRS

by a two phase optimization strategy. The �rst phase of our two phase optimization strat-

egy only optimizes sequential query execution plans based on �xed parameters at compile

time, and the second phase optimizes parallelizations of the chosen sequential plan from

the �rst phase based on resource availabilities at run time. Experiment results from XPRS

benchmarks have shown that this two phase optimization strategy almost always produce

an optimal or close-to-optimal parallel query plan.

In parallel query processing, there may be multiple tasks that are ready to run

at the same time. Therefore, an optimal processing schedule need be decided for these

tasks such that the total processing time is minimized. This scheduling problem is di�erent

from the conventional multiprocessor scheduling problem. In this scheduling problem, both

parallelism between multiple tasks and parallelism within each task must be considered to

achieve maximum performance. A simple and e�cient adaptive scheduling algorithm has

been proposed as a solution to this task scheduling problem. The scheduling algorithm is
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based on the concept of an IO-CPU balance point that maximizes system resource utiliza-

tions. It executes an IO-bound task and a CPU-bound task at their IO-CPU balance and

dynamically adjusts the degree of parallelism of the running tasks to keep the system run-

ning at the IO-CPU balance point. Experiment results have also con�rmed the e�ciency

and e�ectiveness of this scheduling algorithm.

Main memory is also one of the most important resources in parallel query pro-

cessing along with processors and I/O bandwidth. When multiple tasks are running in par-

allel, the problem of how to optimally allocate a limited amount of memory to these tasks

arises. This thesis speci�cally deals with memory allocation between parallel or pipelined

hashjoin operations. The optimal memory allocation between multiple hashjoins is discov-

ered through careful cost analysis on hashjoin executions. The memory allocation strategy

of XPRS always allocates the optimal amount of memory to parallel hashjoins and also

dynamically adjust the memory allocation to the new optimal allocation when one hashjoin

�nishes and a new one starts. Because the memory allocation strategy follows the same

framework as the task scheduling algorithm, it can be easily integrated into the task schedul-

ing algorithm.

A theme through the approach to parallel query processing presented in this thesis

is adaptiveness, which is crucial for a multi-user environment where the amount of avail-

able resources is unpredicatable. In this approach, query plans can be dynamically adjusted

through Choose nodes according to bu�er space availability; parallelism can be dynamically

adjusted to fully utilize both the processors and disk bandwidth; and memory allocation

can be dynamically adjusted to optimally utilize available main memory. We believe that
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this thesis presents the �rst complete approach to parallel query processing that integrates

optimization and resource allocation and has the ability to adjust to the changing environ-

ment.

A shared everything parallel database system relies on disk arrays to provide

enough I/O bandwidth for parallel query processing. This thesis also presents a perfor-

mance study of di�erent disk array con�gurations based XPRS. The experiment results

show that parity arrays (RAID Level 5) can provide comparable read performance as other

con�gurations while providing high availability and high capacity e�ciency. Parity arrays

can also provide comparable write performance if used under a write-optimized �le system

such as LFS.

Although this thesis presents results that constitutes a step forward towards mak-

ing parallel database systems highly e�ective and widely available, there are still many

research issues which need to be addressed in the future and among which only a few are

discussed below.

� Inter-Query Optimization

This thesis has only considered optimization of a single query. However, in a multi-

user environment, multiple queries may be issued simultaneously by di�erent users,

or in a transaction processing environment, each transaction may consist of multiple

queries. Thus, it is desirable to optimize multiple queries at the same time. Although

multiple query optimization has been studied before, the focus was on sharing the

evaluation of common subexpressions. There are a lot more issues in this subject

especially in a parallel database. For example, even though two queries do not contain
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any common subexpressions, it is still possible to run them together to achieve better

system resource utilization. The results on task scheduling and memory allocation in

this thesis are a good starting point for further research on this topic.

� Parallel Updates

Currently, XPRS only parallelizes data retrievals. Loading and updates are still

handled sequentially. However, loading and update performance is crucial for large

databases. Therefore, it is important to design parallel algorithms for loading, index

construction and maintenance, and large updates. For a multi-user environment, this

also leads to more issues in query optimization and resource management, such as

how to optimize and schedule queries while loading is proceeding.

� Memory Allocation for General Operations

The memory allocation problem has only been solved for hashjoin operations in this

thesis. Although hashjoins are shown to be a very e�cient hashjoin method, the mem-

ory allocation problem also needs to be solved for general operations. This will require

more cooperation between the database bu�er manager and the query optimizer and

executor, thus lead to many new research issues.

� New Architectures

Because of the limitation on scalability of a shared everything system, sooner or later,

a shared everything system will become a node in a shared nothing system. More

research needs to be done before a uni�ed approach for parallel query processing in

such a hybrid environment can be designed. Another promising architecture is the
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massively parallel machines manufactured by vendors such as Thinking Machines,

nCUBE, and KSR. New algorithms need to be developed to fully utilize the massive

parallelism provided by such architectures.
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