
Implementing Calendars and Temporal Rules in Next

Generation Databases �

Rakesh Chandra, Arie Segev
y

Walter A. Haas School of Business

University of California, Berkeley

and

Information and Computing Sciences Division

Lawrence Berkeley Laboratory

Berkeley, CA 94720

Michael Stonebraker

Computer Science Division, EECS Department

University of California, Berkeley, CA 94720

email: crakesh@csr.lbl.gov, segev@csr.lbl.gov, mike@postgres.berkeley.edu

Abstract

In applications like �nancial trading, scheduling, manufacturing and process control, time

based predicates in queries and rules are very important. There is also a need to de�ne sets

of time points or intervals. We refer to these sets as calendars. This paper presents a system

of calendars that allows speci�cation of natural-language time-based expressions, maintenance

of valid time in databases, speci�cation of temporal conditions in database queries and rules,

and user-de�ned semantics for date manipulation. A simple set based language is proposed to

de�ne, manipulate and query calendars. The design of the parser and an algorithm for e�cient

evaluation of calendar expressions is also described. The paper also describes the implementation

of time-based rules in POSTGRES using the proposed system of calendars.

Keywords: Calendars, Temporal Databases, Temporal Rules, Extensible Databases.

�Issued as LBL Technical Report 34229
yThe work of this author was supported by an NSF Grant IRI-9116770 and by the Applied Mathematical Sciences

Research Program of the O�ce of Energy Research, U.S. Department of Energy under Contract DE-AC03-76SF00098.

1 Introduction

Temporal conditions and constraints arise very often in applications like �nancial trading, schedul-

ing, manufacturing and process control. Even though temporal conditions can easily be expressed

in natural languages, it is di�cult or impossible to express them in temporal query languages like

TQUEL[Sno87] and TSQL[NA89]. For example, consider the condition:

The expiration date of an option is the 3rd Friday of November if it is a business day, else it is

the business day preceding the above mentioned Friday

Now suppose a user would like to �nd the closing price of the stock underlying the option on

this expiration date. It would be ideal if a database query language provided the capability to

de�ne a variable called expiration-date that expressed the condition given above and then allow

this variable to be used in the query:

Retrieve (stock.price) when stock overlaps expiration-date

As another example, consider the following query posed by an administrator to a university

database:

Retrieve the names of all foreign students who worked more than 20 hours in any week during

the semester

Note that the days in a semester are speci�c to the univerity and change from year to year.

There is a need for a facility to de�ne such application speci�c time points or collections of time

points in the query language. Unfortunately temporal query languages do not support this facility1.

Many interesting time-series studied in economics and �nance are recorded at equal intervals

of time. These are called regular time-series. Thus, we always know the future time points at

which these time-series have values. If these sets of future time points could be expressed by a

database query language, it would be unnecessary to store the time points associated with time-

series observations, since they could be generated on request. Such a capability would allow the

maintenance of valid time in the database. TQUEL allows the speci�cation of an interval but an

arbitrary subset of the time points within this interval cannot be easily expressed. For example,

using TQUEL, it can be expressed that the GNP time-series, which records the sum total of

economic activity in the country in a quarter, is stored for all valid time points in the interval (Jan

1, 1985 , Dec 31, 1993). But the valid time points, the last day of every quarter in every year,

cannot be expressed in TQUEL.

Lastly, it is quite common for applications to have their own semantics for date arithmetic.

For example, [Sto90a] pointed out that the yield calculation on �nancial bonds uses a calendar

that has 30 days in every month for date arithmetic, but 365 days in the year for the actual yield

1Note that Temporal Elements [Gad88],[TCG+93] allow reference to a set of time intervals but not in the context

of calendars. Also the time intervals must be speci�ed explicitly.

2

calculation. If date functions supplied by commercial databases are used, results will be incorrect

because these date functions always assume the underlying calendar as the gregorian calendar.

Since many date conventions can exist, a facility that allows date functions to take user-de�ned

calendars as arguments, would to solve this problem.

In [CS93], we outlined the database requirements for managing temporal �nancial data, in-

cluding calendars and temporal rules. This paper elaborates on the calendar representation and

manipulation, and presents a scheme for activating database rules based on calendar expressions.

The proposed calendar system uses an algebra based on collection intervals [LMF86] to allow:

� the expression of temporal conditions in queries and rules that re
ect the semantics of natural

language time based expressions.

� the maintenance of valid time in databases.

� the creation of application speci�c calendars.

� di�erent semantics for date arithmetic.

This paper describes the implementation of calendars and time-based rules in the extensible

database, Postgres [Sto90b]. Extensible databases provide:

� object support by allowing the de�nition and manipulation of complex data types.

� support for the declaration of operators that take complex data types as arguments.

� knowledge management by allowing the de�nition of rules to re
ect application semantics.

� a \fast path" capability that allows the creation of indexes to optimize the performance of

these operators.

The rest of the paper is organized as follows. A summary of relevant research is presented in

section 2. Section 3 discusses the model and implementation of calendars. The calendar expression

language is presented along with the design of a parser and an algorithm for creating e�cient

evaluation plans for the parsed calendar expression. Section 4 discusses the utility of time-based

rules and their implementation. Section 5 provides a comparative study of other calendric system

proposals. Section 6 concludes the paper with a summary of the contributions of this research and

problems for future research.

2 Relevant Research

Many researchers in the arti�cial intelligence community have studied the problems of temporal

representation. [All85] de�ned the interval as a primitive temporal entity and also provided a

3

set of possible relationships between two intervals. He showed how the interval could be used to

allow representation of inde�nite and relative temporal knowledge. [LMF86] built on this work

by introducing the operators dicing and slicing to allow the representation of natural language

expressions. Their work is the basis for the constructs and language de�ned in this paper.

[SS92], [SS93] �rst introduced the idea of an extensible calendric system. The proposal described

modi�cations to SQL2[Mel90] that support multiple calendars. The modi�cations reduced the

complexity of the language while simultaneously increasing the expressive power. The paper also

describes a toolkit that provided tools to de�ne new calendars and calendric systems. A comparative

study of Soo's proposal and our proposal is provided in section 5. In addition to the above research,

there have been other extensions to SQL to accommodate date and time data types [Dat88]. In

addition, the commercial database Oracle [Cor87] supports the date data type. The main drawbacks

with these extensions is that (a) they assume a uniform single calendar, the gregorian calendar and

(b) the extensions don't provide support for natural language time-based expressions. [DW90]

provides a thorough critique of one of these proposals. Our proposal corrects the shortcomings of

these models by providing multiple calendars and support for natural language expressions.

In addition to the work described above, many researchers Our work is in the context of exten-

sible relational databases, but the results can be used to augment studies in the area of temporal

object-oriented databases such as [RS91], [RS93], [SC91] and [WD92]. have developed temporal

data models. Also, two surveys and a book on temporal databases are available in [Sno90],[RGM92],

and [TCG+93].

3 Calendars

3.1 Calendar Algebra

In this section, we brie
y discuss the algebra for collection intervals and operators developed in

[All85] and [LMF86]. A Calendar is formally de�ned as a structured set of intervals and the Order

of a calendar is de�ned as the depth of the set. ([LMF86] de�ned the Order of a collection of

intervals). Thus, the set S = f(l1; u1); (l2; u2); � � � ; (ln; un)g is a calendar of order 1 while R =

fS1; S2; � � � ; Smg, where Si = f(lj; uj)g, is a calendar or order 2.

The following relationships, introduced by [All85], between two intervals are useful. If int1 and

int2 are two intervals, then

� int1 overlaps int2 := (int1 \ int2)

� int1 during int2 := ((l1 � l2) ^ (u2 � u1))

� int1 meets int2 := (u1 = l2)

4

� int1 < int2 := (u1 � l2)

� int1 � int2 := ((l1 � l2) ^ (u2 � u1))

Based on these relationships, the following operators are de�ned:

� overlaps(int1,int2) := if (int1 \ int2) 6= � return(true)

� during(int1,int2) := if (l1 � l2 ^ u2 � u1) return(true)

� meets(int1,int2) := if (u1 = l2) return(true)

� <(int1,int2) := if (u1 � l2) return(true)

� �(int1,int2) := if (l1 � l2 ^ u2 � u1) return(true)

The operators overlaps, during, meets, < and � will be collectively referred to as setops.

Two other operators are used to facilitate the manipulation of calendars. The foreach operator

(similar to dicing introduced by [LMF86]) is used in conjunction with setops. For example, the

strict foreach operator (:), takes as arguments, a setop(Op), a calendar of order-1 (C) and an

interval (I =< ts; te >). It applies Op to each interval in C and I . Formally, the strict foreach

operator is de�ned as:

fC : Op : Ig � fc\ I j(c 2 C)^Op(c; I)g=f�g

where � denotes the interval (�1;1) that is excluded from the result.

The foreach operator can also take a calendar (C1) as its third argument. In this case, the

foreach operator is applied as described above for every element in C1. Formally,

fC : Op : C1g � fc \ ij(c 2 C) ^Op(c; i)^ (i 2 C1)g=f�g

The following examples illustrate the above formulas. Suppose WEEKS is a calendar repre-

senting the weeks in the year 1993.

WEEKS � f(�4; 3); (4; 10); (11; 17); (18; 24); (25; 31); (32; 38); (39; 45); � � �g

Note that the �rst interval (-4,3) does not contain 0 (If 0 were allowed to be contained in the set

then the interval would have been (-4,2) and January would have to be (0,30) for consistency. Since

this is unintuitive, we adopt the convention that an interval will never contain 0.) Let fJan-1993g

be the interval f(1,31)g. Then by the formula for the strict foreach operator, we have:

fWEEKS : during : Jan � 1993g � f(4; 10); (11; 17); (18; 24); (25; 31)g

5

Note that fJan-1993g is an interval and that the foreach operator applied the setop, during to

every element of WEEKS and fJan-1993g. Now suppose fYear-1993g is a calendar of the months

in 1993. Thus,

fY ear � 1993g � f(1; 31); (32; 59); (60; 90); (91; 120); � � �g

Then,

fWEEKS : during : Y ear � 1993g � ff(4; 10); (11; 17); (18; 24); (25; 31)g;

f(32; 38); (39; 45); (46; 52); (53; 59)g;

f(60; 66); (67; 73); (74; 80); (81; 87)g;

f(95; 101); (102; 108); (109; 115)g; � � �g

In the above case, the third argument to the foreach operator is a calendar. The result is a calendar

of order-2 and re
ects the weeks completely contained in every month of 1993.

The relaxed foreach operator, denoted by (.) is formally de�ned as :

fC:Op:Ig � fcj(c 2 C)^ Op(c; I)g=f�g

Since the during operator will have the same result with the strict and relaxed foreach operator,

we use overlaps to illustrate the di�erence.

fWEEKS : overlaps : Jan � 1993g � f(1; 3); (4; 10); (11; 17); (18; 24); (25; 31)g

The result is a calendar of all the weeks or partial weeks in January 1993. On the other hand,

fWEEKS:overlaps:Jan� 1993g � f(�4; 3); (4; 10); (11; 17); (18; 24); (25; 31)g

The result is a calendar with all the weeks that overlap with January 1993.

The selection operator (similar to slicing introduced by [LMF86]) [x]/C selects the xth interval

from the calendar C if C is an order-1 calendar and x is an integer. The selection predicate [x] is

also allowed to be a list of integers and an integer range. If n is used in the selection predicate, the

last interval is selected from C and if a minus sign pre�xes an integer in the predicate, selection is

done from the end of the set. For example, [�2]/C, selects the second element from the end of C.

If C is a calendar of order greater than 1, say n, then it selects the xth element of each calendar of

order n� 1. For example, the third week in January 1993 would be expressed by:

[3]=WEEKS : overlaps : Jan � 1993 � [3]=f(1; 3); (4; 10); (11; 17); (18; 24); (25; 31)g

� f(11; 17)g

6

The third week of every month is expressed by:

[3]=WEEKS : overlaps : Y ear � 1993 � [3]=ff(1; 3); (4; 10); (11; 17); (18; 24); (25; 31)g

f(32; 38); (39; 45); (46; 52); (53; 59)g; f(60; 66); (67; 73); (74; 80); (81; 87); (88; 90)g;

f(91; 94); (95; 101); (102; 108); (109; 115)g; � � �g

� f(11; 17); (46; 52); (74; 80); (102; 108); � � �g

[LMF86] showed that the operators described above are adequate to describe natural language

time based expressions. The following section shows how this algebra can be implemented in an

extensible database by creating database tables, procedures, a calendar expression language, a

parser and an algorithm for e�cient evaluation of calendar expressions.

3.2 Calendar Implementation

The set of basic calendars are SECONDS, MINUTES, HOURS, DAYS, WEEKS, MONTHS,

YEARS, DECADES and CENTURY. Relationships between basic calendars are maintained in

the table CALTABLE. This table has the following structure:

CALTABLE(calendar1 : text, calendar2 : text, list : int[])

Here calendari is a text variable and the list is an array of integers. For example, the tuple

fYEARS,MONTHS,12g expresses the relationship between years and months, i.e., 12 Months � 1

Year. The relationship between years and days is more complicated because of the presence of a

leap year every 4 years. Since the UNIX system start date is taken as Jan 1, 1970, the entry in the

table would be fYEARS, DAYS, (365,365,366,365)g. This means that in the �rst year (1970) there

are 365 days, the second year has 365 days and so on. After 4 years the same pattern is repeated.

The relationship between MONTHS and DAYS is described by the following tuple:

fMONTHS, DAYS, (31,28,31,30,31,30,31,31,30,31,30,31,31,28,31,30,31,30,31,31,30,31,30,31,

31,29,31,30,31,30,31,31,30,31,30,31,31,28,31,30,31,30,31,31,30,31,30,31)g

The table, CALENDARS, is used to store information on user-de�ned calendars and has the

following structure:

CALENDARS(name : text,

derivation-script: text,

eval-plan: text,

lifespan: float[2],

materialization: float[2],

granularity: text,

values: interval[])

7

Calendars

Name Tuesdays

Derivation-Script [2]/DAYS:during:WEEKS

Eval-Plan set of procedural statements

Lifespan (1985,1)

Materialization (1991,1991)

Values f(2,2),(9,9),� � �,g

Figure 1: Table CALENDARS

This table records the name of the user-de�ned calendar. The set of statements in the calendar

expression language (described below) that are used to derive the calendar is stored in derivation-

script. The eval-plan is the list of procedural statements that are used to generate values of

the calendar. This plan is created by the parser by parsing the derivation-script. Lifespan is

the maximum and minimum time point that the calendar describes and materialization is the

range of the subset of calendar values that the application generates and stores in values. Note

that values is an array of intervals and can thus store order-1 calendars2. The granularity of a

calendar must be one of the basic calendars. In most cases, the granularity can be inferred from

the derivation-script. Figure 1 illustrates the calendar Tuesdays.

The tuple stored in the table Calendars is that for the calendar, Tuesdays. Tuesdays is derived

by the statement:f[2]/DAYS:during:WEEKSg which means the 2nd day of every week. (Note that

Monday is taken to be 1 and Sunday as 7). The parser will read the derivation-script and output

a set of procedural statements to generate the speci�c calendar values. The lifespan is from 1985

to 1 and only tuesdays in the the year 1991 are explicitly stored in the database.

3.3 Calendar Expression Language

This language is needed to provide a way to create and manipulate new calendars. A calendar

script consists of:

� Assignment statements of the form variable = calendar expression

where variable is of type order-n calendar. These variables need not be declared before use.

Calendar expressions use temporary variables, setops, the foreach operator and selection

operators.

2A calendar of higher order can also be accommodated in this scheme. For example, a calendar of order-2 can be

thought of as an array of an array of intervals and be stored as a one dimensional array.

8

� if clauses of the form if (condition) action else action

action is another calendar script while condition is a calendar expression. If the calendar

expression evaluates to a null set, the condition is false.

� while clauses of the form while (condition) action

The following examples are used to illustrate the calendar expression language. Consider the

following script that is used to de�ne the calendar EMP -DAY S. This script de�nes the days on

which national employment �gures are announced by the government and is \the last day of every

month in the year. If this is a holiday, then the preceding business day".

f

LDOM = [n]=DAY S : during :MONTHS;

LDOM HOL = LDOM : intersects : HOLIDAY S;

LAST BUS DAY = [n]=AM BUS DAY S :<: LDOM HOL;

return(LDOM � LDOM HOL+ LAST BUS DAY);

g

The temporary variable, LDOM is a calendar containing the last day of every month. The

calendar expression fDAYS:during:MONTHSg produces a calendar with the days in each month

� ff(1,1),� � �,(31,31)g,f(32,32),� � �,(59,59)g,� � �g. [n] is used to select the last day of every month,

� f(31,31),(59,59),(90,90),� � �g. HOLIDAY S is a calendar containing the days on which there

are holidays, e.g., f(31,31),(90,90)g, which indicates that Jan 31st and Mar 30th are holidays.

fLDOM:intersects:HOLIDAYSg gives a calendar that contains the days that were last days in

the month and also holidays, � f(31,31),(90,90)g. fAM BUS DAYS:<:LDOM HOLg results in an

order-2 calendar in which each component order-1 calendar contains a list of AM BUS DAYS that

precede a holiday that was also the last day of the month. From this order-2 calendar, the last

element of each order-1 calendar is chosen. This is shown below:

AM BUS DAY S � f(1; 1); (2; 2); � � � ; (30; 30); � � � ;

(88; 88); (91; 91); � � �g

AM BUS DAY S :<: LDOM HOL � ff(1; 1); � � � ; (30; 30)g

f(1; 1); � � � ; (88; 88)g; � � �g

then; [n]=AM BUS DAY S :<: LDOM HOL � f(30; 30); (88; 88); � � �g

9

The calendar returned by the script is (LDOM - LDOM HOL + LAST BUS DAY)

� f(31,31),(59,59),(90,90),� � �g�f(31,31),(90,90),� � �g + f(30,30),(88,88),� � �g

� f(30,30),(59,59),(88,88),� � �g.

The following example illustrates the use of the if clause. The script expresses the \third Friday

of the expiration month if a business day else the preceding business day".

{

Fridays = [5]/DAYS:during:WEEKS;

temp1 = [3]/Fridays:overlaps:Expiration-Month;

/* 3rd Friday of the expiration month where expiration

month is a predefined calendar */

if (temp1:intersects:holidays) /* if holiday */

return([n]/AM_BUS_DAYS:<:temp1);

/* last business day before 3rd friday of expiration month */

else

return(temp1);

}

The following script illustrates the use of the while clause. It will alert the user when the current

day is the last trading day of a �nancial option. The last trading day is the seventh business day

preceding the last day of the expiration month.

{

temp1 = [n]/AM_BUS_DAYS:during:Expiration-Month;

/* last business day of the expiration month */

temp2 = [-7]/AM_BUS_DAYS:<:temp1;

/* -7 selects the seventh element from the end of

the set. This expression selects the seventh

business day preceding temp1 */

while (today:<:temp2) ; /* do nothing */

return ("LAST TRADING DAY");

/* alert sent to user */

}

3.4 Parser Design

The parser for calendar expressions parses the script and creates an e�cient evaluation plan. The

evaluation plan is a set of procedural statements in a high level programming language, e.g., C.

10

Two database procedures to simplify the creation of an evaluation plan are described next, followed

by the parser algorithm.

Calendar Procedures

The �rst procedure is called generate and takes the arguments of start time (Ts), end time (Te)

and a list of numbers. generate creates a calendar of order-1 and its operation can be formally

de�ned as:

generate(Ts; Te; x1; � � � ; xn) � f(Ts; Ts+x1); (Ts+x1; Ts+x1+x2); � � � ; (Ts+�
n
i=xi; Ts+�

n
i=1xi+x1); � � �g

In generate, calendar intervals are generated by using the list of numbers in a circular way till

the end time is exceeded by an interval. This is illustrated by the following example:

Y RS SINCE 1987 � generate(Jan 1; 1987; Jan 3; 1992; (365; 366; 365; 365))

� f(1; 365); (366; 731); (732; 1096); (1097; 1461); (1462; 1826); (1827; 1829)g

where the second element in the calendar, f(366; 731)g, denotes that the second year, 1988, began

366 days from Jan 1, 1987 and ended 731 days from Jan 1, 1987. For simplicity, January 1, 1987

is taken as 1. Note that Te is January 3, 1992 and this results in the last element in the set being

(1827,1829) where 1827 is January 1, 1992 and 1829 is January 3, 1992.

The second procedure is called caloperate and it takes as arguments, a calendar, a list of

numbers and an end time. caloperate(C; Te; (x1; x2; � � � ; xn)), where C is the calendar from which

the new calendar is to be derived, would create a new calendar whose �rst interval is a union of

the �rst x1 intervals of calendar C, the second interval is the union of the second x2 intervals of

C and so on. The list is considered a circular list as in generate. caloperate is illustrated by the

following example. If YEARS � (1; 365), then caloperate(Y EARS; �; 7), would give the calendar

of weeks in the year since:

WEEKS � caloperate(YEARS; �; 7)� f(1; 7); (8; 14); (15; 21); � � �g

As speci�ed (1,7) is the union of the �rst 7 intervals of YEARS and (8,14) is the union of the second

7 intervals of YEARS. Here � indicates an arbitrary end time (it must be less than Te of YEARS).

Similarly, if MONTHS � f(1; 31); (32; 59); (60; 90); (91; 120); � � �g, the QUARTERS of the year are

given by caloperate(MONTHS; �; 3)� f(1; 90); (91; 181); � � �g.

An Algorithm for Parsing the Calendar Script

For lack of space an informal description of the parsing algorithm is provided, followed by examples.

For every calendar expression in the calendar script, parsing is done from right to left:

11

� When a derived calendar is encountered, if it is not materialized, replace it by its derivation

script. Replace all temporary calendars (variables in calendar scripts) by the appropriate

calendar expressions.

� Factorize the resulting calendar expression. The objective of this step is to remove the parts

of the expression that are redundant. To factorize an expression, the following rule is used.

If the expression is of the form: f(X : Op1 : Y) : Op2 : Zg where X; Y and Z are calendars,

Opi are setops and if the granularity of Y and Z are the same with the condition that Z 2 Y ,

the expression is reduced to fX : Op1 : Zg except when fOp1 is � and Op2 is <g. In the

latter case, the expression is reduced to fX : Op2 : Zg.

� Create the parse tree.

� Determine the smallest time unit in the expression, e.g., DAYS, MINUTES, so that all calen-

dars de�ned in the expression can be expressed in these units. Also mark any calendar that

is encountered more than once to avoid generating values of the calendar unnecessarily.

� Create the calendar evaluation plan based on the parse tree. The evaluation plan uses the

procedures generate, caloperate, for loop statements and temporary variables. For e�cient

execution of the evaluation plan, a time interval must be chosen within which the values of

all relevant calendars are generated. In some cases, choosing this interval may be simple

(as in the example shown below). In other cases, this time interval may not be uniform for

all nodes of the parse tree. In these cases, at each node (N) of the parse tree, a simple

look-ahead determines whether the next node is a selection node. If this node is a selection

node, the selection predicate determines the time interval within which values of calendars

are generated at N .

The two examples presented below illustrate the parsing algorithm.

Example:

Consider the calendar expression that describes the mondays during January 1993.

fMondays : during : Januarys : during : 1993=Y earsg

AssumingMondays and Januarys are prede�ned calendars, they are replaced by their derivation-

scripts. We have:

f([1]=DAY S : during : WEEKS) : during : ([1]=MONTHS : during : Y EARS) : during : 1993=Y EARSg

12

YEARS	 	 1993

WEEKS DAYS

1

during:

during:

select

during:

select

1

 select

during:

YEARS	 	 MONTHS

(A)

YEARS	 	 1993

MONTHS

1

WEEKS DAYS

1

during:

 select

during:

select

during:

select

(B)

Figure 2: Parse tree for \Mondays during January 1993"

13

Note that part of this expression, f([1]=MONTHS : during : Y EARS) : during : 1993=Y EARSg,

is of the form f(X : Op1 : Y) : Op2 : Zg, where X � [1]=MONTHS, Y � Y EARS and Z �

1993=Y EARS. Since the granularity of Y and Z is the same, i.e., Y EARS, and Z 2 Y , this

expression can be rewritten to f[1]=MONTHS : during : 1993=YEARSg.

Thus, the calendar expression reduces to:

f([1]=DAY S : during :WEEKS) : during : [1]=MONTHS : during : 1993=YEARSg

This expression can't be factorized any further because the granularity of f[1]=MONTHS : during :

1993=Y EARSg is di�erent from WEEKS. The initial and factorized parse trees for the above

calendar expression are shown in Figure 2(A) and 2(B) respectively.

Example:

Consider the calendar expression,

fThird Weeks : during : Januarys : during : 1993=YEARSg

where Third Weeks � f[3]=WEEKS : overlaps : MONTHSg. Using the parsing algorithm we

get,

f([3]=WEEKS : overlaps :MONTHS) : during : [1]=MONTHS : during : 1993=Y EARSg

Note that the factorization applied in the previous example is shown here without explanation.

Also note that this expression can still be factorized because we have an expression of the form

f(X : Op1 : Y) : Op2 : Zg where X � [3]=WEEKS, Y � MONTHS and Z � f[1]=MONTHS :

during : 1993=Y EARSg and the granularity of Z is MONTHS. Thus, the calendar expression is

rewritten to:

f[3]=WEEKS : overlaps : [1]=MONTHS : during : 1993=Y EARSg

The initial and factorized parse trees for this expression are shown in Figure 3(A) and (B) respec-

tively. In both parse trees, it is evident that for the expressions to be evaluated, calendars need

only be generated for the time interval 1993.

In this section, we described the calendar algebra and its implementation. The following section

discusses the application of calendars to de�ning and implementing temporal rules.

4 Time-Based Rules

Rules are useful for testing integrity constraints, maintaining consistency, versioning, materialized

views, updating derived data [SJGP90] and monitoring the database for speci�c events [De88].

14

during:

during:

select

3

select

overlaps:

MONTHS	 	 WEEKS

3

select

during:

YEARS	 	 MONTHS

(A)

YEARS	 	 1993

YEARS	 	 1993

MONTHS

1

overlaps:

 select

during:

select

(B)

WEEKS

3

select

Figure 3: Parse tree for \Third Week in January 1993"

15

Rules have been an active area of database research in the past few years. Examples of systems that

support rules are Starburst[Wid92] and Ode[AG90]. There are several temporal aspects associated

with rules. We say that a rule is temporal if at least one of the following cases is present: (a) the On

Event clause involves temporal conditions, (b) the Condition includes temporal conditions, (c) the

Action of the rule changes past or future states of the database. [EGS92] and [ESA93] addressed

the issue of rule activation and processing due to retroactive and proactive transactions in active

temporal databases. In this paper, we are concerned with temporal On Event clauses, and assume

that the other parts of the rule can be handled by the underlying rule system.

The system of calendars described in the previous section can be used to incorporate temporal

conditions for the triggering of rules. In this section, we show how a simple form of a temporal rule

can be e�ciently implemented. For the purpose of a concrete discussion, the Postgres Rule System

is used as an example.

The Postgres rule system supports rules of the form On Event where Condition do Action

where Event (as in many other systems that support rules) is a database operation - append /delete

/retrieve /replace. The Condition is a Postquel clause that can be used to check the current or

historical (with respect to transaction time) state of database objects. Action is a collection of

Postquel commands with the additional feature that NEW and CURRENT can be used instead

of a tuple variable. The CURRENT tuple refers to the tuple accessed during a retrieve, replace

or delete, and NEW refers to the tuple that is to be appended.

The additional functionality discussed in this paper is the support for time-based rules of the

form: On Calendar-Expression do Action, e.g., Every Tuesday do Proc X � f[2]=DAY S : during :

WEEKSg do Proc X. Support for complex temporal conditions in rules is the subject of current

research.

Overview

When a temporal rule is declared to the database system it is parsed by the parsing algorithm

described in the previous section. The calendar expression, parse tree and evaluation plan of

the new rule are stored in the database table, RULE-INFO. The next time point at which the

rule should trigger is also evaluated and stored in the database table, RULE-TIME. RULE-TIME

contains information on the next time point at which every temporal rule should trigger. RULE-

TIME is probed by a daemon process, DBCRON, every T units of time to determine the temporal

rules that trigger in the next T time units. DBCRON creates a main memory data structure that

stores this information and is responsible for triggering rules at appropriate time points. It is

modeled on the UNIX utility, CRON. An overview of temporal rule implementation is shown in

Figure 4. The rest of the section describes the temporal rule implementation scheme in detail.

16

Overview of Temporal Rule Implementation

Parse Temporal Rule

Temporal
Rule

Non-Temporal Rule

Determine time to
trigger rule (t)

t <(db_last_touch+T)
Update RULE-TIME

Rewrite Rule

1. Calendar Exp
2. Parse Tree
3. Eval Plan
4. Rule Id

Temporal
Rule

t>(db_last_touch+T)
Update MMSTRUCT

Rewritten Rule

Database Rule
Processor

Update RULE-INFO
Update ACTIVATE

Process DBCRON
• probes Rule-Time
 every T units
• creates MMSTRUCT
• triggers rules at
 appropriate times
• sleeps when no rule is
 to be triggered

Figure 4: Temporal Rule Implementation

Implementation

Database Tables and Data Structures

This section describes the data structures used for processing rules. The processing algorithm is

discussed in the next section.

Three database tables are used to maintain information about rules. RULE-TIME contains the

next time point at which a rule is to be triggered. This table is maintained as a B+-tree index since

range queries are needed to retrieve the rules that must be triggered in the next T units of time.

RULE-INFO contains the calendar expression of the rule, the parse tree and the evaluation plan

in addition to the rule id. The table, ACTIVATE contains just the rule id of all time-based rules

that have been declared to the database and is used in the triggering of these rules. The structure

of these tables are shown below:

RULE-TIME(time-point: abstime, rule-ids : oid[])

RULE-INFO(rule-id: oid, calendar-exp: text,

parse-tree: tree, exec-plan: text)

ACTIVATE(rule-id: oid)

It is assumed here that the above tables are potentially very large and reside on secondary

17

storage. To provide for fast triggering of the rules, a main memory structure, MMSTRUCT, is

maintained. MMSTRUCT is a main memory array that contains the rules to be triggered in the

next T units of time. The array is sorted by time and contains a PTR which points to the next

rule to be triggered. MMSTRUCT is created by probing RULE-TIME to retrieve the rules to be

triggered in the next T units of time. A system variable, DB LAST TOUCH, stores the last time

RULE-TIME was probed to update MMSTRUCT.

Rule Processing

When a rule is declared to the database, it is sent to the rule preprocessor which performs the

following functions:

1. parses the rule to understand the calendar expression, create the parse tree and evaluation

plan. RULE-INFO is updated with this information. If there is no calendar expression, the

rule is released to the database rule processor without any change.

2. ACTIVATE is updated using the rule id.

3. The evaluation plan is executed to determine the �rst time, (t), the new rule will be triggered

. If (t) < (DB LAST TOUCH +T), it means that this rule is to be triggered before RULE-

TIME is probed again. Thus MMSTRUCT is updated, resorted and the PTR reset. If

(t) > (DB LAST TOUCH + T), RULE-TIME is updated.

4. The rule is stripped of the calendar expression and is rewritten to have the following form:

On Calendar-Exp do Action is rewritten to

fOn retrieve to ACTIVATE where ACTIVATE.rule-id = $Rule

do Instead fAction; preprocess($Rule,1)gg.

The new rule will trigger the Action when there is a retrieve to ACTIVATE. In addition to

the Action, the procedure preprocess($Rule) is also triggered. preprocess($Rule,1) is the

same procedure used for preprocessing the rule. The argument, 1, indicates that this rule

already exists and thus only step 3 of the preprocessor algorithm is required. Note that $Rule

refers to a rule-id that is resolved at execution time.

In the above discussion, it has been mentioned that RULE-TIME is probed periodically to

determine the rules to be triggered in the next T units of time. The process which does this is

called DBCRON. DBCRON is a daemon process that is always running in the background and is

modeled on the Unix process, CRON. DBCRON has the following functions:

� probes RULE-TIME by performing a range query to retrieve the rules that are to be triggered

in the next T time units.

18

� the retrieved set of rule ids and time points is sorted by time and stored in the main memory

structure MMSTRUCT.

� triggers the rule pointed to by PTR at the appropriate time.

� based on a look-ahead, it determines how long it can remain dormant.

The algorithm for DBCRON is given below:

#define LAST_DB_TOUCH

#define T

dbcron(){

for (;;) { /* forever */

while (time()=mmstruct[ptr].time)

fork(trigger(mmstruct[ptr++].rule)

/* trigger rule by sending retrieve to ACTIVATE and increment pointer */

if (time() - LAST_DB_TOUCH >= T) {

probe(); /* access RULE-TIME, create MMSTRUCT, set PTR */

LAST_DB_TOUCH = time();

lookahead(); /* determines how long it can sleep MAX-SLEEP */

}

else

{ lookahead();

sleep(MAX-SLEEP);

}

}/* for */

}/* dbcron */

5 Discussion of an Alternative Calendar System

This section provides a comparison between Soo's proposal for Mixed Calendar Query Language

support [SS92] and our proposal. [SS92] de�ne three temporal data types, event, interval and

span. An event is an isolated instant in time, e.g., the time the option expired. An interval is a

set of contiguous chronons with a minimum time element Tmin and maximum element Tmax such

that Tmin � Tmax, e.g., July 1993. A span is de�ned as an unanchored duration of time that has a

known length but the start time and end time are unknown, e.g., a WEEK. The proposal is based

on set theory and the interval relationships de�ned in [All85]. Thus, all temporal queries supported

by TQUEL and TSQL can be supported by this calendar system. The added advantage is that

multiple calendars can be declared and queried.

In our work, only the interval data type is used for modeling calendars. Calendars are structured

sets of intervals where each interval could also be a set of intervals. The depth of the calendar is

de�ned by its order. An event is modeled by an interval in which Tmin = Tmax and spans are

19

modeled by maintaining them in the relation CALTABLE. For example, the span 1 WEEK is

maintained as a �xed number of SECONDS in this table. Relationships with other basic calendars

such as MINUTES and HOURS are also maintained. Our proposal uses the collection interval

algebra de�ned in [LMF86] and allows support for multiple calendars, queries supported by TQUEL

and TSQL and also natural language time-based queries.

Soo's proposal requires the modi�cation of SQL constructs while this proposal can be imple-

mented in an extensible database without modifying the syntax of the query language. The calendar

expression parser, procedures to generate calendars and procedures to evaluate calendar expres-

sions are declared as operators to the extensible DBMS. Once declared to the DBMS, they can be

used as part of the query language. This approach has the advantage that it can also be used with

commercial systems including SYBASE and ORACLE to a limited extent. For example, ORACLE

allows the creation of stored procedures in PL/SQL that can then be used as query language con-

structs in other PL/SQL procedures. Unfortunately it does not support direct integration of stored

procedures with SQL.

6 Conclusion

In applications like �nancial trading, scheduling, manufacturing and process control, time based

predicates in queries and rules are very important. There is also a need to de�ne semantic sets

of time points or intervals, referred to as calendars. This paper presented a system of calendars

that allows speci�cation of natural-language time-based expressions, maintenance of valid time

in databases, speci�cation of temporal conditions in database queries and rules, and user-de�ned

semantics for date manipulation. The main contributions of this research can be summarized as

follows:

� Proposal of a system of calendars in an extensible database that is useful for multiple calendar

support and temporal queries.

� De�nition of a simple set-based language used to de�ne, manipulate and query calendars.

� The design of a parser for this language and the optimization of calendar expressions.

� A strategy for the implementation of time-based rules in an extensible database.

We are looking at the following areas for future research:

� Complex selection predicates: In the calendar language described, we allow only simple se-

lections on the underlying calendars. Since regular time-series are associated with calendars,

it is possible to modify the calendar language to allow selection predicates on the time-series

20

associated with calendars in addition to the calendars themselves. For example, a typical

query to a stock price time series could be

Retrieve the time points at which the end-of-day closing prices for two successive days showed

an increase.

The selection predicate in this case takes the form of a pattern: fSt < Next(St)g. The

language constructs should be general enough to incorporate numerical patterns in sequences.

Implementation of this language also depends on e�cient algorithms for searching numerical

sequences.

� Implementation of Temporal conditions in Rules: This paper discusses the implementation

of a simple form of a temporal rule. We are studying techniques to incorporate complex

temporal conditions into rule events and conditions.

� The algorithm for evaluating calendar expressions does not expand materialized calendars

when factorizing calendar expressions. Thus, a suboptimal evaluation plan may be created

for certain calendar expressions. Generating e�cient plans for calendar expressions with

materialized calendars is the subject of current research.

References

[AG90] R. Agrawal and N. H. Gehani. ODE (Object Database and Environment): The Language and

Data Model. In Proceedings of ACM SIGMOD International Conference on the Management of

Data, pages 36{45, May 1990.

[All85] J.F. Allen. Maintaining Knowledge about Temporal Intervals. In R. Brachman and H. Levesque,

editors, Readings in Knowledge Representation, pages 509{521. Morgan Kaufman Publishers,

Inc., 1985.

[Cor87] Oracle Corp. ORACLE Terminal User's Guide. Technical report, Oracle Corp., 1987.

[CS93] R. Chandra and A. Segev. Managing Temporal Financial Data in an Extensible Database. In

Proceedings of the 19th Int. Conf. on Very Large Databases, Dublin, Ireland, September 1993.

[Dat88] C.J. Date. A Proposal for Adding Date and Time Support to SQL. ACM SIGMOD Record,

17(2):53{76, June 1988.

[De88] U. Dayal and et.al. The HiPAC Project: Combining Active Databases and Timing Constraints.

ACM SIGMOD Record, 17(1):51{70, March 1988.

[DW90] C.J. Date and C.J. White. A Guide to DB2, volume 1. Addison-Wesley, 3 edition, 1990.

[EGS92] O. Etzion, A. Gal, and A. Segev. Temporal Support in Active Databases. In Proc. of the 2nd

Workshop on Information Technology and Systems, December 1992.

21

[ESA93] O. Etzion, A. Segev, and G. Avigdor. On Rules in Temporal Databases. Technical Report

LBL-33970, Lawrence Berkeley Lab, 1993.

[Gad88] S.K. Gadia. The Role of Temporal Elements in a Temporal Database. Database Engineering,

7(2):197{203, 1988.

[LMF86] B. Leban, D. McDonald, and D. Forster. A Representation for Collections of Temporal Intervals.

In Proceedings of the AAAI-1986 5th Int. Conf. on Arti�cial Intelligence, pages 367{371, 1986.

[Mel90] J. Melton. Solicitation of Comments: Database Language SQL2. Technical report, American

National Standards Institute, 1990.

[NA89] S. Navathe and R. Ahmed. A Temporal Relational and Query Language. Information Science,

49(2):147{175, 1989.

[RGM92] Snodgrass R., S. Gomez, and L.E. Jr. McKenzie. Aggregates in the Temporal Query Language

TQUEL. Technical Report Technical Report TR89-26, University of Arizona, 1992.

[RS91] E. Rose and A. Segev. TOODM - A Temporal Object-Oriented Data Model with Temporal

Constraints. In Proc. of the 10th Int. Conf. on the Entiry-Relationship Approach San Mateo,

CA, pages 205{229, 1991.

[RS93] E. Rose and A. Segev. TOOSQL - A Temporal Object-Oriented Query Language. Technical

Report LBL-33855, Lawrence Berkeley Laboratory, 1993.

[SC91] Y.H.S. Su and H. M. Chen. A Temporal Knowledge Representation Model OSAM �/t and

its Query Language OQL/T. In Proceedings of the 17th Int. Conf. on Very Large Databases,

Barcelona, Spain, pages 431{442, September 1991.

[SJGP90] M. Stonebraker, A. Jhingran, J. Goh, and S. Potamianos. On Rules, Procedures, Caching and

Views in Data Base Systems. In Proceedings of ACM SIGMOD International Conference on the

Management of Data, June 1990.

[Sno87] R. Snodgrass. The Temporal Query Language TQuel. ACM Trans. on Database Systems, 12(2),

1987.

[Sno90] R. Snodgrass. Temporal Databases: Status and research directions. ACM Sigmod Record,

19(4):83{89, December 1990.

[SS92] M. Soo and R. Snodgrass. Mixed Calendar Query Language Support for Temporal Constants.

Technical Report TempIS No.29, University of Arizona, 1992.

[SS93] M. Soo and R. Snodgrass. Multiple Calendar Support for Conventional Database Management

Systems. In Proceedings of the Int. Workshop on an Infrastructure for Temporal Databases, June

1993.

[Sto90a] M.R. Stonebraker. Ch. 7: Extensibility. In M.R. Stonebraker, editor, Readings in Database

Systems. Morgan Kaufman, 1990.

22

[Sto90b] M.R. Stonebraker. The Implementation of POSTGRES. IEEE Transactions on Knowledge and

Data Engineering, 2(1):125{142, March 1990.

[TCG+93] A. Tansel, J. Cli�ord, S. Gadia, S. Jajodia, A. Segev, and R. Snodgrass. Temporal Databases.

Benjamin/Cummings Publishing Company, Inc., 1993.

[WD92] G.T.J Wuu and U. Dayal. A Uniform Model for Temporal Object-Oriented Databases. In

Proceedings of the 8th Int. Conf. on Data Engineering, pages 584{593, February 1992.

[Wid92] J. Widom. The Starburst Rule System: Language Design, Implementation and Applications.

Data Engineering, 15(4), December 1992.

23

