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Abstract

The traditional focus of relational query optimization schemes has been on the choice of join methods and join
orders. Restrictions have typically been handled in query optimizers by “predicate pushdown” rules, which apply
restrictions in some random order before as many joins as possible. These rules work under the assumption that
restriction is essentially a zero-time operation. However, today’s extensible and object-oriented database systems
allow users to define time-consuming functions, which may be used in a query’s restriction and join predicates.
Furthermore, SQL has long supported subquery predicates, which may be arbitrarily time-consuming to check.
Thus restrictions should not be considered zero-time operations, and the model of query optimization must be
enhanced.

In this paper we develop a theory for moving expensive predicates in a query plan so that the total cost of the
plan — including the costs of both joins and restrictions — is minimal. We present an algorithm to implement the
theory, as well as results of our implementation in POSTGRES. Our experience with the newly enhanced POSTGRES
query optimizer demonstrates that correctly optimizing queries with expensive predicates often produces plans that
are orders of magnitude faster than plans generated by a traditional query optimizer. The additional complexity of
considering expensive predicates during optimization is found to be manageably small.

1 Introduction

Traditional relational database (RDBMS) literature on query optimization stresses the significance of choosing an
efficient order of joins in a query plan. The placement of the other standard relational operators (restriction and
projection) in the plan has typically been handled by “pushdown” rules (see e.g., [U1189]), which state that restrictions
and projections should be pushed down the query plan tree as far as possible. These rules place no importance on
the ordering of projections and restrictions once they have been pushed below joins.

The rationale behind these pushdown rules is that the relational restriction and projection operators take es-
sentially no time to carry out, and reduce subsequent join costs. In today’s systems, however, restriction can no
longer be considered to be a zero-time operation. Extensible database systems such as POSTGRES [SR86] and Star-
burst [HCL190], as well as various Object-Oriented DBMSs (e.g., [MS87], [WLH90], [DT90], [ONT92], etc.) allow
users to implement predicate functions in a general-purpose programming language such as C or C++. These
functions can be arbitrarily complex, potentially requiring access to large amounts of data, and extremely complex
processing. Thus it is unwise to choose a random order of application for restrictions on such predicates, and it may
not even be optimal to push them down a query plan tree. Therefore the traditional model of query optimization
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does not produce optimal plans for today’s queries, and as we shall see, the plans that traditional optimizers generate
can be many orders of magnitude slower than a truly optimal plan.
To illustrate the significance of ordering restriction predicates, consider the following example:

Example 1.

/* Find all maps fromweek 17 showing nore than 1% snow cover.
Channel 4 contains inmages fromthe frequency range that interests us. */
retrieve (maps.nane)
where maps.week = 17 and maps. channel = 4
and coverage(naps.picture) > 1

In this example, the function cover age is a complex image analysis function that may take many thousands of
instructions to compute. It should be quite clear that the query will run faster if the restrictions maps. week = 17 and
maps. channel = 4 are applied before the restriction cover age(maps. pi cture) > 1, since doing so minimizes
the number of calls to cover age.

While restriction ordering such as this is important, correctly ordering restrictions within a table-access is not
sufficient to solve the general problem of where to place predicates in a query execution plan. Consider the following
example:

Example 2.

/* Find all channel 4 maps from weeks starting in June that show nore than 1% snow
cover. Info about each week is kept in the weeks table, requiring a join. */
retrieve (maps.nane)
where maps. week = weeks. nunber
and weeks.month = "June" and maps.channel = 4
and coverage(naps.picture) > 1

Traditionally, a DBMS would execute this query by applying all the single-table restrictions in the where clause before
performing the join of maps and weeks, since early restriction can lower the complexity of join processing. However
in this example the cost of evaluating the expensive restriction predicate may outweigh the benefit gained by doing re-
striction before join. In other words, this may be a case where “predicate pushdown” is precisely the wrong technique.
What is needed here is “predicate pullup”, namely postponing the restriction cover age( nmaps. pi cture) > 1 until
after computing the join of maps and weeks.

In general it is not clear how joins and restrictions should be interleaved in an optimal execution plan, nor is it
clear whether the migration of restrictions should have an effect on the join orders and methods used in the plan.
This paper describes and proves the correctness of the Predicate Migration Algorithm, which produces an optimal
query plan for queries with expensive predicates. Predicate Migration modestly increases query optimization time:
the additional cost factor is polynomial in the number of operators in a query plan. This compares favorably to the
exponential join enumeration schemes used by most query optimizers, and is easily circumvented when optimizing
queries without expensive predicates — if no expensive predicates are found while parsing the query, the techniques
of this paper need not be invoked. For queries with expensive predicates, the gains in execution speed should offset
the extra optimization time. We have implemented Predicate Migration in POSTGRES, and have found that with
modest overhead in optimization time, the execution time of many practical queries can be reduced by orders of
magnitude. This will be illustrated below.

1.1 Application to Existing Systems: SQL and Subqueries

It is important to note that expensive predicate functions do not exist only in next-generation research prototypes.
Current relational languages, such as the industry standard, SQL [ISO91], have long supported expensive predicate
functions in the guise of subquery predicates. A subquery predicate is one of the form “expression operator query”.



Evaluating such a predicate requires executing an arbitrary query and scanning its result for matches — an operation
that is arbitrarily expensive, depending on the complexity and size of the subquery. While some subquery predicates
can be converted into joins (thereby becoming subject to traditional join-based optimization strategies) even sophis-
ticated SQL rewrite systems, such as that of Starburst [PHH92], cannot convert all subqueries to joins. When one is
forced to compute a subquery in order to evaluate a predicate, then the predicate should be treated as an expensive
function. Thus the work presented in this paper is applicable to the majority of today’s production RDBMSs, which
support SQL.

1.2 Related Work

Stonebraker first raised the issue of expensive predicate optimization in the context of the POSTGRES multi-level
store [Sto91]. The questions posed by Stonebraker are directly addressed in this paper, although we vary slightly in
the definition of cost metrics for expensive functions.

One of the main applications of the system described in [Sto91] is Project Sequoia 2000 [SD92], a University of
California project that will manage terabytes of Geographic Information System (GIS) data, to support global change
researchers. Itis expected that these researchers will be writing queries with expensive functions to analyze this data.
A benchmark of such queries is presented in [SFG92].

Ibaraki and Kameda [IK84], Krishnamurthy, Boral and Zaniolo [KBZ86], and Swami and lyer [S192] have devel-
oped and refined a query optimization scheme that is built on the notion of rank that we will use below. However,
their scheme uses rank to reorder joins rather than restrictions. Their techniques do not consider the possibility of
expensive restriction predicates, and only reorder nodes of a single path in a left-deep query plan tree, while the
technique presented below optimizes all paths in an arbitrary tree. Furthermore, their schemes are a proposal for a
completely new method for query optimization, while ours is an extension that can be applied to the plans of any
query optimizer. It is possible to fuse the technique we develop in this paper with those of [IK84, KBZ86, S192], but
we do not focus on that issue here since their schemes are not widely in use.

The notion of expensive restrictions was considered in the context of the £LD £ logic programming system [CGK89].
Their solution was to model a restriction on relation R as a join between R and a virtual relation of infinite cardinality
containing the entire logical predicate of the restriction. By modeling restrictions as joins, they were able to use
a join-based query optimizer to order all predicates appropriately. Unfortunately, most traditional DBMS query
optimizers have complexity that is exponential in the number of joins. Thus modelling restrictions as joins can make
query optimization prohibitively expensive for a large set of queries, including queries on a single relation. The
scheme presented here does not cause traditional optimizers to exhibit this exponential growth in optimization time.

Caching the return values of function calls will prove to be vital to the techniques presented in this paper.
Jhingran [Jhi88] has explored a number of the issues involved in caching procedures for query optimization. Our
model is slightly different, since our caching scheme is value-based, simply storing the results of a function on a set
of argument values. Jhingran’s focus is on caching complex object attributes, and is therefore instance-based.

1.3 Structure of the Paper

The following section develops a model for measuring the cost and selectivity of a predicate, and describes the
advantages of caching for expensive functions. Section 3 presents the Predicate Migration Algorithm, a scheme
for optimally locating predicates in a given join plan. Section 4 describes methods to efficiently implement the
Predicate Migration Algorithm in the context of traditional query optimizer. Section 4 also presents the results of our
implementation experience in POSTGRES. Section 5 summarizes and provides directions for future research.

2 Background: Expenses and Caching
To develop our optimizations, we must enhance the traditional model for analyzing query plan cost. This will involve

some modifications of the usual metrics for the expense of relational operators, and will also require the introduction
of function caching techniques. This preliminary discussion of our model will prove critical to the analysis below.



|| flag name description |

percall_cpu | execution time per invocation, regardless of the size of the arguments
perbyte_cpu | execution time per byte of arguments
byte_pct percentage of argument bytes that the function will need to access

Table 1: Function Expense Parameters in POSTGRES

A relational query in a language such as SQL or Postquel [RS87] may have a where clause, which contains an
arbitrary Boolean expression over constants and the range variables of the query. We break such clauses into a
maximal set of conjuncts, or “Boolean factors” [SACT 79], and refer to each Boolean factor as a distinct “predicate” to
be satisfied by each result tuple of the query. When we use the term “predicate” below, we refer to a Boolean factor
of the query’s where clause. A join predicate is one that refers to multiple tables, while a restriction predicate refers only
to a single table.

Traditional query optimizers compute selectivities for both joins and restrictions. That is, for any predicate p (join
or restriction) they estimate the value

. card(output(p))
SeIeCtIVlty(p) = W

and make the assumption that selectivities of different predicates are independent. Typically these estimations are
based on default values and system statistics [SACT 79], although recent work suggests that accurate and inexpensive
sampling techniques can be used [LNSS93, HOT88].

2.1 Cost of User-Defined Functions in POSTGRES

In an extensible system such as POSTGRES, arbitrary user-defined functions may be introduced into both restriction
and join predicates. These functions may be written in a general programming language such as C, or in the database
query language, e.g. SQL or Postquel. In this section we discuss programming language functions; we handle query
language functions below.

Given that user-defined functions may be written in a general purpose language such as C, there is little hope
for the database to correctly estimate the cost and selectivity of predicates containing these functions, at least not
initially. In this section we extend the POSTGRES function definition syntax to capture a function’s expense.
Selectivity modeling for user-defined operators in POSTGRES has been described in [M0s90].

To introduce a function to POSTGRES, a user first writes the function in C and compiles it, and then issues
Postquel’s define function command. To capture expense information, the define functi on command accepts a
number of special flags, which are summarized in Table 1.

The cost of a predicate in POSTGRES is computed by adding up the costs for each expensive function in the
expression. Given a POSTGRES predicate p(ay, . . ., ay ), the expense per tuple is recursively defined as:

S, ea,+percall cpu(p)
+perbyte_cpu(p)  (byte_pct(p)/100) * >, bytes(a;)-+access_cost
ep = if p is a function

0 if p is a constant or tuple variable

where e, is the recursively computed expense of argument «;, bytes is the expected (return) size of the argument in
bytes, and access_cost is the cost of retrieving any data necessary to compute the function. This data may be stored
anywhere in the various levels of the POSTGRES multi-level store, but unlike [Sto91] we do not require the user to

1 After repeated applications of a function, one could collect performance statistics and use curve-fitting techniques to make estimates about
the function’s behavior. Such techniques are beyond the scope of this paper.



define constants specific to the different levels of the multi-level store. Instead, this can be computed by POSTGRES
itself via system statistics, thus providing more accurate information about the distribution and caching of data across
the storage levels.

2.2 Cost of SQL Subqueries and Other Query Language Functions

SQL allows a variety of subquery predicates of the form “expression operator query”. Such predicates require
computation of an arbitrary SQL query for evaluation. Simple uncorrelated subqueries have no references to query
blocks at higher nesting levels, while correlated subqueries refer to tuple variables in higher nesting levels.

In principle, the cost to check an uncorrelated subquery restriction is the cost ¢,, of materializing the subquery
once, and the cost e, of scanning the subquery once per tuple. However, we will need these cost estimates only to
help us reorder operators in a query plan. Since the cost of initially materializing an uncorrelated subquery must
be paid regardless of the subquery’s location in the plan, we ignore the overhead of the materialization cost, and
consider an uncorrelated subquery’s cost per tuple to be ¢;.

Correlated subqueries must be materialized for each value that is checked against the subquery predicate, and
hence the per-tuple expense for correlated subqueries is ¢,,. We ignore e, here since scanning can be done during
each materialization, and does not represent a separate cost. Postquel functions in POSTGRES have costs that are
equivalent to those of correlated subqueries in SQL: an arbitrary access plan is executed once per tuple of the relation
being restricted by the Postquel function.

The cost estimates presented here for query language functions form a simple model and raise some issues in
setting costs for subqueries. The cost of a subquery predicate may be lowered by transforming it to another subquery
predicate [LDHT87], and by “early stop” techniques, which stop materializing or scanning a subquery as soon as
the predicate can be resolved [Day87]. Incorporating such schemes is beyond the scope of this paper, but including
them into the framework of the later sections merely requires more careful estimates of the subquery costs.

2.3 Join Expenses

In our subsequent analysis, we will be treating joins and restrictions uniformly in order to optimally balance their
costs and benefits. In order to do this, we will need to measure the expense of a join per tuple of the join’s input, i.e.
per tuple of the cartesian product of the relations being joined. This can be done for any join method whose costs are
linear in the cardinalities of the input relations, including the most common algorithms: nested-loop join, hash join,
and merge join.?

Note that a query may contain many join predicates over the same set of relations. In an execution plan for a
query, some of these predicates are used in processing a join, and we call these primary join predicates. If a join has
expensive primary join predicates, then the cost per tuple of a join should reflect the expensive function costs. That
is, we add the expensive functions’ costs, as described in Section 2.1, to the join costs per tuple.

Join predicates that are not applicable while processing the join are merely used to restrict its output, and we refer
to these as secondary join predicates. Secondary join predicates are essentially no different from restriction predicates,
and we treat them as such. These predicates may then be reordered and even pulled up above higher join nodes,
just like restriction predicates. Note, however, that a secondary join predicate must remain above its corresponding
primary join. Otherwise the secondary join predicate would be impossible to evaluate.

2.4 Function Caching

The existence of expensive predicates not only motivates richer optimization schemes, it also suggests the need for
DBMSs to cache the results of expensive predicate functions. Some functions, such as subquery functions, may be
cached only for the duration of a query; other functions, such as functions that refer to a transaction identifier, may be
cached for the duration of a transaction; most straightforward data analysis or manipulation functions can be cached

23ort-merge join is not linear in the cardinalities of the input relations. However, most systems, including POSTGRES, do not use sort-merge
join, since in situations where merge join requires sorting of an input, either hash join or nested-loop join is almost always preferable to sort-merge.



indefinitely. Occasionally a user will define a restriction function that cannot be cached at all, such as a function that
checks the time of day, or that generates a random number. A query containing such a function is non-deterministic,
since the function is not guaranteed to return the same value every time it is applied to the same arguments. Since
the use of such functions results in ill-defined queries, and since they are relatively unusual, we do not consider them
here.

Instead, we assume that all functions can be cached, and that the system caches the results of evaluating expensive
functions at least for the duration of a query. This lowers the cost of a function, since with some probability the
function can be evaluated simply by checking the cache. In this section we develop an estimate for this probability,
which should be factored into the per-tuple predicate costs described above.

In addition to lowering function cost, caching will also allow us to pull expensive restrictions above joins without
modifying the total cost of the restriction nodes in the plan. In general, a join may produce as many tuples as the
product of the cardinalities of the inner and outer relations. However, it will produce no new values for attributes of
the tuples; it will only recombine these attributes. If we move a restriction in a query plan from below a join to above
it, we may dramatically increase the number of times we evaluate that restriction. However by caching expensive
functions we will not increase the number of expensive function calls, only the number of cache lookups, which are
quick to evaluate. This results from the fact that after pulling up the restriction, the same set of function calls on
distinct arguments will be made. In many cases the primary join predicates will in fact decrease the number of distinct
values passed into the function. Thus we see that with function caching, pulling restrictions above joins does not
increase the number of function calls, and often will decrease that number.

The probability of a function cache miss depends on the state of the function’s cache before the query begins
execution, and also on the expected number of duplicate arguments passed to the function. In order to estimate the
number of cache misses in a given query, we must be able to describe the distribution of values in the cache as well
as the distribution of the arguments to the function. To do this, every time we invoke an n-ary function f, we cache
the arguments to f and its return value in a database relation f cache, which has tuples of the form

(arg,,...,arg,, return-value).

We index this relation on the composite key (arg,, . .., arg,,), so that before computing f on a set of arguments we
can quickly check whether its return value has already been computed. Since f cache is a relation like any other,
the system can provide distribution information for each of its attributes. As noted above, this information can be
estimated with a variety of methods, including the use of system statistics or sampling. In the absence of distribution
information, some default assumptions must be made as to the distribution. The issue of how to derive an accurate
distribution is orthogonal to the work here, and we merely assume that it is done to a reasonable degree of accuracy.

Given a model of the distribution of a function’s cache, and the distribution of the inputs to a function, one can
trivially derive a ratio of cache misses to cache lookups for the function. This ratio serves as the probability of a cache
miss for a given tuple.

To capture caching information in POSTGRES, we introduce one additional flag to the define function com-
mand. This cache_life flag lets the system know long it may cache the results of executing the function: setting cache life
= infinite implies that the function may be cached indefinitely, while cache._life = xact and cache_life = query denote that
the cache must be emptied at end of transaction or query respectively.

2.4.1 Subquery Caching in SQL Systems

Current SQL systems do not support arbitrary caching of the results of evaluating subquery predicates. To benefit
from the techniques described in this paper, an SQL system must be enhanced to do this caching, at least for the
duration ofaquery. Itisinteresting to note that in the original paper on optimizing SQL queries in System R [SACH 79],

there is a description of a limited form of caching for correlated subqueries. System R saved the materialization of a
correlated subquery after each evaluation, and if the subsequent tuple had the same values for the columns referenced
in the subquery, then the predicate could be evaluated by scanning the saved materialization of the subquery. Thus
System R would cache a single materialization of a subquery, but did not cache the result of the subquery predicate.
That is, for a subquery of the form “expression operator query”, System R cached the result of “query”, but not
“expression operator query”.



| Table | TupleSize | #Tuples

maps 1040 424 932
weeks 24 19
emp 32 10 000
dept 44 20

Table 2: Benchmark Database

To apply the techniques presented here, we require caching of all values of the predicate for the duration of a
query. It is sufficient for our purposes to cache only the values of the entire predicate, and not the values of each
subquery. The two techniques are, however, orthogonal optimizations that can coexist. The System R approach (i.e.
caching “query”) saves materialization costs for adjacent tuples with duplicate values in the fields referenced by the
subquery. Our approach (i.e. caching “expression operator query”) saves materialization and scan costs for those
tuples that have duplicate values both in the fields referenced by the subquery and in the fields on the left side of the
subquery operator. In situations where either cache could be used to speed evaluation of a predicate, the latter is
obviously a more efficient choice, since the former requires a scan of an arbitrarily sized set.

2.5 Environment for Performance Measurements

It is not uncommon for queries to take hours or even days to complete. The techniques of this paper can improve
performance by several orders of magnitude — in many cases converting an over-night query to an interactive one.
We will be demonstrating this fact during the course of the discussion by measuring the performance effect of our
optimizations on various queries. In this section we present the environment used for these measurements.

We focus on a complex query workload (involving subqueries, expensive user-defined functions, etc), rather than
a transaction workload, where queries are relatively simple. There is no accepted standard complex query workload,
although several have been proposed ([SFG92, TOB89, O’N89], etc.) To measure the performance effect of Predicate
Migration, we have constructed our own benchmark database, based on a combined GIS and business application.
Each tuple in maps contains a reference to a POSTGRES large object [Ols92], which is a map picture taken by a satellite.
These map pictures were taken weekly, and the maps table contains a foreign key to the weeks table, which stores
information about the week in which each picture was taken. The familiar emp and dept tables store information
about employees and their departments. Some physical characteristics of the database are shown in Table 2.

Our performance measurements were done in a development version of POSTGRES, similar to the publicly
available version 4.0.1 (which itself contains a version of the Predicate Migration optimizations). POSTGRES was
run on a DECStation 5000/200 workstation, equipped with 24Mb of main memory and two 300Mb DEC RZ55 disks,
running the Ultrix 4.2a operating system. We measured the elapsed time (total time taken by system), and CPU
time (the time for which CPU is busy) of optimizing and executing each example query, both with and without
Predicate Migration. These numbers are presented in the examples which appear throughout the rest of the paper.

3 Optimal Plans for Queries With Expensive Predicates

At first glance, the task of correctly optimizing queries with expensive predicates appears exceedingly complex.
Traditional query optimizers already search a plan space that is exponential in the number of relations being joined;
multiplying this plan space by the number of permutations of the restriction predicates could make traditional plan
enumeration techniques prohibitively expensive. In this section we prove the reassuring results that:

1. Given a particular query plan, its restriction predicates can be optimally interleaved based on a simple sorting
algorithm.

2. Asaresult of the previous point, we need merely enhance the traditional join plan enumeration with techniques
to interleave the predicates of each plan appropriately. This interleaving takes time that is polynomial in the
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Restrict

Plan 1 Plan 2

Figure 1: Two Execution Plans for Example 1

number of operators in a plan.

The proofs for the lemmas and theorems that follow are presented in Appendix A.

3.1 Optimal Predicate Ordering in Table Accesses

We begin our discussion by focusing on the simple case of queries over a single table. Such queries may have an
arbitrary number of restriction predicates, each of which may be a complicated Boolean function over the table’s
range variables, possibly containing expensive subqueries or user-defined functions. Our task is to order these
predicates in such a way as to minimize the expense of applying them to the tuples of the relation being scanned.

If the access path for the query is an index scan, then all the predicates that match the index and can be applied
during the scan are applied first. This is because such predicates are essentially of zero cost: they are not actually
evaluated, rather the indices are used to retrieve only those tuples which qualify> We will represent each of the
subsequent non-index predicates as pi, . . ., pn, Where the subscript of the predicate represents its place in the order
in which the predicates are applied to each tuple of the base table. We represent the expense of a predicate p as ¢,
and its selectivity as s,,. Assuming the independence of distinct predicates, the cost of applying all the non-index
predicates to the output of a scan containing ¢ tuples is

e1 = ept+spept+ -+ 5p 5, Sp,_ et

The following lemma demonstrates that this cost can be minimized by a simple sort on the predicates. It is analogous
to the Least-Cost Fault Detection problem solved in [MS79].

Lemma 1 The cost of applying expensive restriction predicates to a set of tuples is minimized by applying the predicates in
ascending order of the metric
selectivity — 1
rank = sefectivity — 2
cost-per-tuple

Thus we see that for single table queries, predicates can be optimally ordered by simply sorting them by their
rank. Swapping the position of predicates with equal rank has no effect on the cost of the sequence.

To see the effects of reordering restrictions, we return to Example 1 from the introduction. We ran the query in
POSTGRES without the rank-sort optimization, generating Plan 1 of Figure 1, and with the rank-sort optimization,

31t is possible to index tables on function values as well as on table attributes [MS86, LS88]. If a scan is done on such a “function” index, then
predicates over the function may be applied during the scan, and are considered to have zero cost, regardless of the function’s expense.



Execution Plan Optimization Time Execution time
CPU Elapsed CPU Elapsed

Plan 1 0.12sec | 0.24sec || 20 min 34.36 sec | 20 min 37.69 sec
Plan 2 (ordered by rank) || 0.12sec | 0.24 sec 0 min 2.66 sec 0 min 3.26 sec

Table 3: Performance of Example 1

generating Plan 2 of Figure 1. As we expect from Lemma 1, the first plan has higher cost than the second plan,
since the second is correctly ordered by rank. The optimization and execution times were measured for both runs, as
illustrated in Table 3. We see that correctly ordering the restrictions can improve query execution time by orders of
magnitude.

3.2 Predicate Migration: Moving Restrictions Among Joins

In the previous section, we established an optimal ordering for restrictions. In this section, we explore the issue of
ordering restrictions among joins. Since we will eventually be applying our optimization to each plan produced by a
typical join-enumerating query optimizer, our model here is that we are given a fixed join plan, and want to minimize
the plan’s cost under the constraint that we may not change the order of the joins. This section develops a poly-time
algorithm to optimally place restrictions and secondary join predicates in a join plan. In Section 4 we show how to
efficiently integrate this algorithm into a traditional optimizer.

3.2.1 Definitions

The thrust of this section is to handle join predicates in our ordering scheme in the same way that we handle restriction
predicates: by having them participate in an ordering based on rank. However, since joins are binary operators,
we must generalize our model for single-table queries to handle both restrictions and joins. We will refer to our
generalized model as a global model, since it will encompass the costs of all inputs to a query, not just the cost of a
single input to a single node.

Definition 1 A plan tree is a tree whose leaves are scan nodes, and whose internal nodes are either joins or restrictions.
Tuples are produced by scan nodes and flow upwards along the edges of the plan tree.*

Some optimization schemes constrain plan trees to be within a particular class, such as the left-deep trees, which have
scans as the right child of every join. Our methods will not require this limitation.

Definition 2 A stream in a plan tree is a path from a leaf node to the root.

Figure 2 below illustrates a plan tree, with one of its two plan streams outlined. Within the framework of a single
stream, a join node is simply another predicate; although it has a different number of inputs than a restriction, it can
be treated in an identical fashion. We do this by considering each predicate in the tree — restriction or join — as
an operator on the entire input stream to the query. That is, we consider the input to the query to be the cartesian
product of the relations referenced in the query, and we model each node as an operator on that cartesian product. By
modeling each predicate in this global fashion, we can naturally compare restrictions and joins in different streams.
However, to do this correctly, we must modify our notion of the per-tuple cost of a predicate:

Definition 3 Given a query over relations a1, . . ., a,, the global cost of a predicate p over relations a1, . . ., a; is defined as:

cost-per-tuple(p)

lobal-cost(p) =
global-cost(p) card(a11) - - - card(a, )

where cost-per-tuple is the cost attribute of the predicate, as described in Section 2.

4We do not consider common subexpressions or recursive queries in this paper, and hence disallow plans that are dags or general graphs.



That is, to define the cost of a predicate over the entire input to the query, we must divide out the cardinalities of
those tables that do not affect the predicate. As an illustration, consider the case where p is a single-table restriction
over relation a;. If we push p down to directly follow the table-access of a1, the cost of applying p to that table
is cost-per-tuple(p)card(a; ). But in our new global model, we consider the input to each node to be the cartesian
product of a1, ..., a,. However, note that the cost of applying p in both the global and single-table models is the
same, i.e.,

global-cost(p)card(a; % ... x a,) = cost-per-tuple(p)card(ay ).

Recall that because of function caching, even if we pull p up to the top of the tree, its cost should not reflect the
cardinalities of relations as, . .., a,. Thus our global model does not change the cost analysis of a plan. It merely
provides a framework in which we can treat all predicates uniformly.

The selectivity of a predicate is independent of the predicate’s location in the plan tree. This follows from the fact
that card(a; x as) = card(ay )card(az). Thus the global rank of a predicate is easily derived:

Definition 4 The global rank of a predicate p is defined as

selectivity(p) — 1

k =
ran global-cost(p)

Note that the global cost of a predicate in a single-table query is the same as its user-defined cost-per-tuple, and hence
the global rank of a node in a single-table query is the same as its rank as defined previously. Thus we see that the
global model is a generalization of the one presented for single-table queries. In the subsequent discussion, when we
refer to the rank of a predicate, we mean its global rank.

In later analysis it will prove useful to assume that all nodes have distinct ranks. To make this assumption, we
must prove that swapping nodes of equal rank has no effect on the cost of a plan.

Lemma 2 Swapping the positions of two equi-rank nodes has no effect on the cost of a plan tree.

Knowing this, we could achieve a unique ordering on rank by assigning unique ID numbers to each node in the
tree and ordering nodes on the pair (rank, ID). Rather than introduce the ID numbers, however, we will make the
simplifying assumption that ranks are unique.

In moving restrictions around a plan tree, it is possible to push a restriction down to a location in which the
restriction cannot be evaluated. This notion is captured in the following definition:

Definition 5 A plan stream is semantically incorrect if some predicate in the stream refers to attributes that do not appear in
the predicate’s input.

Streams can be rendered semantically incorrect by pushing a secondary join predicate below its corresponding
primary join, or by pulling a restriction from one input stream above a join, and then pushing it down below the join
into the other input stream. We will need to be careful later on to rule out these possibilities.

In our subsequent analysis, we will need to identify plan trees that are equivalent except for the location of their
restrictions and secondary join predicates. We formalize this as follows:

Definition 6 Two plan trees7"and 7" are join-order equivalent if they contain the same set of nodes, and there is a one-to-one
mapping g from the streams of 7" to the streams of 7"/ such that for any stream s of 7', s and g(s) contain the same join nodes
in the same order.

3.2.2 The Predicate Migration Algorithm: Optimizing a Plan Tree By Optimizing its Streams

Our approach in optimizing a plan tree will be to treat each of its streams individually, and sort the nodes in the
streams based on their rank. Unfortunately, sorting a stream in a general plan tree is not as simple as sorting the
restrictions in a table access, since the order of nodes in a stream is constrained in two ways. First, we are not allowed
to reorder join nodes, since join-order enumeration is handled separately from Predicate Migration. Second, we must
ensure that each stream remains semantically correct. In some situations, these constraints may preclude the option
of simply ordering a stream by ascending rank, since a predicate p; may be constrained to precede a predicate p,
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Execution Plan Optimization Time Execution time
CPU Elapsed CPU Elapsed
Without Predicate Migration || 0.29sec | 0.30sec || 20 min 29.79 sec | 21 min 12.98 sec
With Predicate Migration 0.36 sec | 0.57 sec 0 min 3.46 sec 0 min 6.75 sec

Table 4: Performance of Plans for Example 2

even though rank(p;) > rank(pz). In such situations, we will need to find the optimal ordering of predicates in the
stream subject to the precedence constraints.

Monma and Sidney [MS79] have shown that finding the optimal ordering under arbitrary precedence constraints
can be done fairly simply. Their analysis is based on two key results:

1. A stream can be broken down into modules, where a module is defined as a set of nodes that have the same
constraint relationship with all nodes outside the module. An optimal ordering for a module forms a subset of
an optimal ordering for the entire stream.

2. For two predicates p;, ps such that p; is constrained to precede p» and rank(p,) > rank(pz), an optimal
ordering will have p; directly preceding ps, with no other predicates in between.

Monma and Sidney use these principles to develop the Series-Parallel Algorithm Using Parallel Chains, an O(n logn)
algorithm for optimizing an arbitrarily constrained stream. The algorithm repeatedly isolates modules in a stream,
optimizing each module individually, and using the resulting orders for modules to find a total order for the stream.
We use their algorithm as a subroutine in our optimization algorithm:

Predicate Migration Algorithm: To optimizea plan tree, we push all predicates down as far as possible, ® and then repeatedly
apply the Series-Parallel Algorithm Using Parallel Chains [MS79] to each stream in the tree, until no more progress can be
made.

Upon termination, the Predicate Migration Algorithm produces a tree in which each stream is well-ordered (i.e.
optimally ordered subject to the precedence constraints). We proceed to prove that the Predicate Migration Algorithm
is guaranteed to terminate in polynomial time, and we also prove that the resulting tree of well-ordered streams
represents the optimal choice of predicate locations for the given plan tree.

Theorem 1 Given any plan tree as input, the Predicate Migration Algorithm is guaranteed to terminate in polynomial time,
producing a join-order equivalent tree in which each stream is semantically correct and well-ordered.

Theorem 2 For every plan tree 77 there is a unique join-order equivalent plan tree 7' with only well-ordered streams, and 7'y
is a minimal cost tree that is join-order equivalent to 75 .

Theorems 1 and 2 demonstrate that the Predicate Migration Algorithm produces our desired minimal-cost inter-
leaving of predicates. As a simple illustration of the efficacy of Predicate Migration, we go back to Example 2 from
the introduction. Figure 2 illustrates plans generated for this query by POSTGRES running both with and without
Predicate Migration. The performance measurements for the two plans appear in Table 4.

4 Implementation Issues

4.1 Preserving Opportunities for Pruning

In the previous section we presented the Predicate Migration Algorithm, an algorithm for optimally placing restriction
and secondary join predicates within a plan tree. If applied to every possible join plan for a query, the Predicate
Migration Algorithm is guaranteed to generate a minimal-cost plan for the query.

5Most systems perform this operation while building plan trees, since “predicate pushdown” is traditionally considered a good heuristic.
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Figure 2: Plans For Example 2, With and Without Predicate Migration

A traditional query optimizer, however, does not enumerate all possible plans for a query; it does some pruning
of the plan space while enumerating plans [SACt79]. Although this pruning does not affect the basic exponential
nature of join plan enumeration, it can significantly lower the amounts of space and time required to optimize queries
with many joins. The pruning in a System R-style optimizer is done by a dynamic programming algorithm, which
builds optimal plans in a bottom-up fashion. Unfortunately, this dynamic programming approach does not integrate
well with Predicate Migration.

To illustrate the problem, we consider an example. We have a query which joins three relations, A, B, C, and
performs an expensive restriction on C'. A relational algebra expression for such a query, after the traditional
predicate pushdown, is A X B X ¢,(C'). A traditional query optimizer would, at some step, enumerate all plans
for B X o,(C'), and discard all but the optimal plan for this subgoal. Assume that because restriction predicate p
has extremely high rank, it will always be pulled above all joins in any plan for this query. Then the join method
which the traditional optimizer saved for B X ,,(C') is quite possibly sub-optimal, since in the final tree we would
want the optimal subplan for B X ', not B X ¢,,(C'). In general, the problem is that the subgoals of the dynamic
programming algorithm may not actually form part of the optimal plan, since predicates may later migrate. Thus
the pruning done during dynamic programming may actually discard part of an optimal plan for the entire query.

Although this looks troublesome, in many cases it is still possible to allow pruning to happen. First, note that
pruning can take place for subtrees in which there are no expensive predicates; in such subtrees no restrictions will be
pulled up, and therefore traditional pruning techniques work correctly. The following lemma helps to isolate more
situations in which pruning may take place:

Lemma 3 For a restriction or secondary join predicate 1 in a subtree, if the rank of R is greater than the rank of any join in
any plan for the subtree, then in the optimal complete tree /2 will appear above the highest join in the subtree.

This lemma can be used to allow some predicate pullup to happen during join enumeration. While builing a join
node for some subgoal in the dynamic programming algorithm of System R, if the restrictions below the join are of
higher rank than the join node, the lemma shows that they may be pulled above the join. If we pull up all expensive
restrictions in all plans for the subgoal, then we may prune the plan space of the subgoal, just as we prune subtrees
which contain no expensive restrictions initially. Extending this idea to its logical conclusion, we see that if we pull all
expensive restrictions above the final, uppermost join in all plans, then Predicate Migration need not even be invoked
— the optimal plan after Predicate Migration has already been generated by the modified dynamic programming
algorithm.

As an additional optimization, note that the choice of an optimal join algorithm is sometimes independent of
the sizes of the inputs. For example, if both of the inputs to a join are sorted on the join attributes, one may safely
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conclude that merge join will be a minimal-cost algorithm, regardless of the sizes of the inputs. Heuristics such as
this may be used to allow pruning in cases where there is no way to verify which restrictions will be in the subtree
after Predicate Migration. We believe that the observations of this section compensate for most of the pruning
opportunities lost when enhancing a System R optimizer to support Predicate Migration. Particularly, note that no
pruning opportunities are lost for traditional queries without expensive predicates.

4.2 Implementation in POSTGRES, and Further Measurement

The Predicate Migration Algorithm, as well as the pruning optimizations described above, were implemented in the
POSTGRES next-generation DBMS, which has an optimizer based on that of System R. The addition of Predicate
Migration to POSTGRES was fairly straightforward, requiring slightly more than one person-month of programming.
The implementation consists of two files containing a total of about 2000 lines, or 600 statements, of C language code.
It should thus be clear that enhancing an optimizer to support Predicate Migration is a fairly manageable task.

Given the ease of implementation, and the potential benefits for both standard SQL and extensible query lan-
guages, it is our belief that Predicate Migration is a worthwhile addition to any DBMS. To further motivate this, we
present two more examples, which model SQL queries that would be natural to run in most commercial DBMSs. We
simulate an SQL correlated subquery with a Postquel query language function, since POSTGRES does not support
SQL. As noted above, SQL’s correlated subqueries and Postquel’s query language functions require the same pro-
cessing to evaluate, namely the execution of a subplan per value. The only major distinction between our Postquel
queries and an SQL system is that Postquel may return a different number of duplicate tuples than SQL, since
Postquel assigns no semantics to the duplicates in a query’s output. In our benchmark database the example queries
return no tuples, and hence this issue does not affect the performance of our examples.

Example 3. This query finds all technical departments with either low budgets or an employee over the
age of 65. In SQL, the query is:

SELECT nane FROM dept d1
WHERE d1.category = 'tech’
AND (d1.budget < 1000
OR EXI STS (SELECT 1 FROM enp
VWHERE enp.dno = d1.dno AND enp.age > 65));

Since the existential subquery is nested within an OR, the subquery cannot be converted to ajoin [PHH92].
To simulate this query in Postquel, we define a function seni or s, which takes one argument ($1) of type
integer, and executes the Postquel query:

retrieve (x = "t")
where enp.dno = $1 and enp.age > 65

Given this function, the SQL query is simulated by the following Postquel query:

retrieve (dept.nane)
where dept.category = "tech"
and (dept.budget < 1000 or seniors(dept.dno))

Predicate Migration ensures that the expensive OR clause containing seni or s is applied after the restric-
tion dept . category = "tech".% Asshown in Table 5, Predicate Migration speeds up execution time
by orders of magnitude, while affecting optimization time only marginally.

6 As an additional optimization, POSTGRES orders the operands of CR by rank, and quits evaluating the OR expression as soon as any operand
evaluates to true. Thisissue was left out of the discussion previously in order to simplify matters. Itis a straightforward extension to the techniques
presented here.
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Execution Plan Optimization Time Execution time
CPU Elapsed CPU Elapsed
Unoptimized Plan || 0.34sec | 0.75sec || 2min 25.61sec | 2 min 26.32 sec
Optimized Plan 0.34sec | 0.88sec 0 min 0.06 sec 0 min 0.39 sec

Table 5: Performance of Plans for Example 3

Execution Plan Optimization Time Execution time
CPU Elapsed CPU Elapsed
Unoptimized Plan || 0.13sec | 0.42sec || 2min24.51sec | 2 min 25.69 sec
Optimized Plan 0.16 sec | 0.52sec 0 min 0.06 sec 0 min 0.39 sec

Table 6: Performance of Plans for Example 4

Example 4. Our final example uses a subquery and a join to find the managers of the departments found
in the previous example. The SQL version of the query is:

SELECT dept. name, ngr.name FROM dept d1, enp ngr
WHERE d1.category = 'tech’
AND d1.dno = ngr.dno
AND (d1.budget < 1000 OR EXISTS (SELECT 1 FROM enp el
VWHERE el.dno = dl1.dno AND el.age > 65));

Since this uses the same subquery as the previous example, the equivalent Postquel query can reuse the
function seni or s:

retrieve(dept.name, ngr.name) fromngr in enp
where dept.category = "tech" and dept.dno = mgr.dno
and (dept.budget < 1000 or seniors(dept.dno))

Predicate Migration in this query pulls the expensive OR clause above the join of dept and enp, resulting
in the dramatic execution speedup shown in Table 6. Once again, the increase in optimization time is
comfortably low.

These examples demonstrate that even for reasonable queries in standard SQL, the techniques presented in this

paper can improve execution time by orders of magnitude.

5 Conclusions and Future Work

In this paper we highlight the fact that database query optimization has up until now ignored the costs associated
with restriction. We present a framework for measuring these costs, and we argue the necessity of caching expensive
functions in an RDBMS. We develop the Predicate Migration Algorithm, which is proven to transform query plans
in a way that optimally interleaves restriction and join predicates.
measurements show that Predicate Migration is a low-overhead optimization that can produce query plans that run
orders of magnitude faster than those produced by systems without Predicate Migration. This work can be applied
not only to advanced research DBMSs such as POSTGRES, but also to any DBMS that supports SQL. There are not
many additions to current DBMSs that can produce dramatic performance gains with modest implementation cost.

Predicate Migration is one such addition.
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The optimization schemes in this paper are useful for run-time re-optimization. That is, if a query is optimized
and the resulting plan is stored for a period of time, the statistics that shaped the choice of the optimal plan may
have changed. Predicate Migration can be re-applied to the stored plan at runtime with little difficulty. This may not
produce an optimal plan, since the join orders and methods may no longer be optimal. But it will optimize the stored
plan itself, without incurring the exponential costs of completely re-optimizing the query. This could be particularly
beneficial for queries with subqueries, since the costs of the subqueries are likely to change over time.

This paper represents only an initial effort at optimizing queries with expensive predicates, and there is substantial
work remaining to be done in this area. The first and most important question is whether the assumptions of this
paper can be relaxed without making query optimization time unreasonably slow. The two basic assumptions in the
paper are (1) that function caching is implemented, and (2) that join costs are linear in the size of the inputs. Without
either of these assumptions, there are no obvious directions to pursue a poly-time algorithm for Predicate Migration.
If one does not have function caching, then our cost model no longer applies, since a restriction function will be called
once for every tuple that flows through its predicate, rather than once per value of the attributes on which it is defined.
If one does not assume linear join costs, then the algorithm of [MS79] no longer applies. It would be interesting to
discover whether the problem of Predicate Migration can be solved in polynomial time in general, or whether the
assumptions made here are in fact crucial to a poly-time solution.

The implementation of function caching in POSTGRES has not been completed. Once that is accomplished, we
will be able to perform more complex experiments than the ones presented here, which were carefully tailored to
produce no duplicate function calls after pullup. A more comprehensive performance study could develop a test
suite of queries with expensive functions, and compare the performance of the Predicate Migration Algorithm against
more naive predicate pullup heuristics.

It would be interesting to attempt to extend this work to handle queries with common subexpressions and recur-
sion. The Magic Sets optimization technique for recursive and non-recursive queries [MFPR90] actually generates
predicates in a query plan and pushes them down. It is not clear when this generation is cost-effective, and our
model here may be useful for making that decision.

Finally, our cost analyses for user-defined functions could be dramatically improved by techniques to more
correctly assess the expected running-time of a function on a given set of inputs. Particularly, the POSTGRES define
functi on command includes an implicit assumption that users’ functions will have complexity that is linear in the
size of their data objects. This simplifying assumption was made to ease implementation, but it is certainly possible
to add curve-fitting algorithms to better model a function’s running time and complexity.
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A Proofs

Lemma 1 The cost of applying expensive restriction predicates to a set of tuples is minimized by applying the predicates in
ascending order of the metric

selectivity — 1
ank = SETECHVIY — ~
cost-per-tuple

Proof. Although this result is essentially identical to the solution in [MS79] of the Least-Cost Fault Detection problem,
we review it in our context for completeness.

Assume the contrary. Then in an minimal cost ordering py, . .., p,, for some predicate p; there is a predicate
pr+1 Where rank(p;) > rank(pr+1). Now, the cost of applying all the predicates to ¢ tuples is

e1 = ep b+ Spiepl - 5p,8p, Spy_epl F SpySpy Spyep b Sp Spy Sp, g ep L

But if we swap p; and pz 11, the cost becomes

€2 = eplt + Splepzt +- Sp1Sps 'Spk—lepk+1t + Sp1Spy " Spryr epkt +- Sp1Spy - 'Spn—lepnt'

By subtracting e; from e, and factoring we get

€2 —€1 = t5p15p2 o SpLa (epk+1 + Spr+1€pr — Cpr — Spi epk+1)

Now recall that rank(py) > rank(pr41), i.e.

(5px — 1)/ eps > (Spays — 1)/ €prya
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After some simple algebra (taking into account the fact that expenses must be non-negative), this inequality reduces
to

6pk+1 + 5pk+1 €pr — Epr — Spi 6pk+1 <0

i.e. this shows that the parenthesized term in the equation & — e; is less than zero. By definition both ¢ and the
selectivities must be non-negative, and hence e; < e, demonstrating that the given ordering is not minimal cost, a
contradiction. ]

Lemma 2 Swapping the positions of two equi-rank nodes has no effect on the cost of a plan tree.

Proof. Note that swapping two nodes in a plan tree only affects the costs of those two nodes. Consider two nodes p
and ¢ of equal rank, operating on input of cardinality ¢. If we order p before ¢, their joint cost is ey = te, + ts,e,.
Swapping them results in the cost e; = te, + ts,¢,. Since their ranks are equal, it is a matter of simple algebra to
demonstrate that e; = e5, and hence the cost of a plan tree is independent of the order of equi-rank nodes. [

A.l Pseudocode, Complexity and Optimality

In this section we present the Predicate Migration Algorithm in detail, and prove that it optimizes a plan tree in
polynomial time.

Pseudocode for the Predicate Migration Algorithm is given in Figure 3, and we provide a brief explanation of the
algorithm here. The function pr edi cat e_m grati on first pushes all predicates down as far as possible. The rest of
predi cat e_m gration is made up of a nested loop. The outer do loop ensures that the algorithm terminates only
when no more progress can be made (i.e. when each stream is optimally ordered). The inner loop cycles through all
the streams in the plan tree, applying Monma and Sidney’s Series-Parallel Algorithm using Parallel Chains.

The Series-Parallel Algorithm repeatedly finds modules of the stream to optimize, and calls the Parallel Chains
algorithm to optimize each module. Once all modules are optimized, the Parallel Chains algorithm can be used to
optimize the entire stream.

The Parallel Chains algorithm expects as input a set of nodes that can be partitioned into two subsets: one of
nodes that are constrained to form a chain, and another of nodes that are unconstrained relative to any node in the
entire set. Note that by traversing the stream from top down, seri es paral | el always provides correct input to
paral | el _chai ns.” The Parallel Chains algorithm first finds groups of nodes in the chain that are constrained to
be ordered sub-optimally (i.e. by descending rank). As shown in [MS79], there is always an optimal ordering in
which such nodes are adjacent, and hence such nodes may be considered as an undivided group. The find gr oups
routine identifies the maximal-sized groups of poorly-ordered nodes. After all groups are formed, the module can
be sorted by the rank of each group. The resulting total order of the module is preserved as a chain by introducing
extra constraints. These extra constraints are discarded after the entire stream is completely ordered.

Thus when predi cat e_ni grati on terminates, it leaves a tree in which each stream has been ordered by the
Series-Parallel Algorithm using Parallel Chains. The interested reader is referred to [MS79] for justification of why
the Series-Parallel Algorithm using Parallel Chains optimally orders a stream.

Lemma A.1 Given a join node J in a module, adding a restriction or secondary join predicate 2 to the stream does not raise
the rank of J’s group.

Proof. Assume J is initially in a group of k£ members, p; ...p;_1Jp;j41 ... pr (from this point on we will represent
grouped nodes as an overlined string). If R is not constrained with respect to any of the members of this group,
then it will not affect the rank of the group — it will be placed either above or below the group, as apropriate. If
R is constrained with some member p; of the group, it is constrained to be above p; (by semantic correctness); no
predicate is ever constrained to be below any node. Now, the Predicate Migration Algorithm will eventually call
par al | el _chai ns on the module of all nodes constrained to follow p;, and R will be pulled up within that module
so that it is ordered by ascending rank with the other groups in the module. Thus if R is part of J’s group in any

"Note also that for each module S’ that seri es _paral | el constructs from a stream .S, each node of S is constrained in exactly the same way
with each node of $ — S’. Thus par al | el _chai ns is always passed a valid Job Module, in the terminology of [MS79].
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/* Optimally locate restrictions in a query plan tree. */
predi cate_migration(tree)
{
preprocess:
push al |l predicates down as far as possible;
do {
for (each stream
series_paral l el (stream;
} until no progress can be nade;

}

/* Monma & Sidney's Series-Parallel A gorithm*/
series_parallel (strean);

{

for each join node J in stream fromtop to bottom

if (there is a node constrained to follow J
and it is not constrained to precede anything el se)
paral I el _chains(all nodes constrained to fol low J);

paral | el _chains(strean;

discard any constraints introduced by parallel_chains;
}

/* Monme and Sidney's Parallel Chains A gorithm */
paral | el _chai ns(nodul e)
{
chain = {the nodes in modul e that forma chain of constraints};
/* all nodes in the tree are in groups by thenselves by default */
find_gr oups(chai n);
if (groups in nodule are not sorted by their group’s ranks) {
progress = TRUE;
sort nodes in module by their group’s ranks;
}
[* the resulting order reflects the optinized nmodule */
introduce constraints to preserve the resulting order;

}

/* find adjacent groups that are constrained to be ordered by decreasing rank, and nerge them */
find_gr oups( chai n)
{
initialize each node in chain to be in a group by itself;
while any two adjacent groups a, b are not ordered by ascending group rank {
forma group ab of a and b;
group_cost (ab) = group_cost(a) + group_selectivity(a) * group_cost(b);
group_sel ectivity(ab) = group_selectivity(a) * group_selectivity(b);

}

Figure 3: Predicate Migration Algorithm
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module, it is only because the nodes below /2 form a group of higher rank than R. (The other possibility, i.e. that the
nodes above R formed a group of lower rank, could not occur since par al | el _chai ns would have pulled 12 above
such a group.)

Given predicates p;, p2 such that rank(p;) > rank(p2), itis easy to show that rank(p,) > rank(pipz). Therefore
since R can only be constrained to be above another node, when it is added to a subgroup it will not raise the
subgroup’s rank. Although 2 may not be at the top of the total group including J, it should be evident that since it
lowers the rank of a subgroup, it will lower the rank of the complete group. Thus if the rank of J’s group changes, it
can only change by decreasing. [

Lemma A.2 For any join .J and restriction or secondary join predicate 0 in a plan tree, if the Predicate Migration Algorithm
ever places I2 above J in any stream, it will never subsequently place J below R.

Proof. Assume the contrary, and consider the first time that the Predicate Migration Algorithm pushes a restriction
or secondary join predicate R back below a join J. This can happen only because the rank of the group that .J is now
in is higher than the rank of J’s group at the time R was placed above J. By Lemma A.1, pulling up nodes can not
raise the rank of J’s group. Since this is the first time that a node is pushed down, it is not possible that the rank of
J’s group has gone up, a contradiction. [

As a corollary to Lemma A.2, we can modify the par al | el _chai ns routine: instead of actually sorting a module, it
can simply pull up each restriction or secondary join above as many groups as possible, thus potentially lowering
the number of comparisons in the routine. This optimization is implemented in POSTGRES.

Theorem 1 Given any plan tree as input, the Predicate Migration Algorithm is guaranteed to terminate in polynomial time,
producing a join-order equivalent tree in which each stream is semantically correct and well-ordered.

Proof. From Lemma A.2, we know that after the pre-processing phase, the Predicate Migration Algorithm only moves
predicates upwards in a stream. In the worst-case scenario, each pass through the do loop of pr edi cat e ni grati on
makes minimal progress, i.e. it pulls a single predicate above a single join in only one stream. Each predicate can only
be pulled up as far as the the top of the tree, i.e. h times, where A is the height of the tree. Thus the Predicate Migration
Algorithm visits each stream at most Ak times, where & is the number of expensive restriction and secondary join
predicates in the tree. The tree has r streams, where r is the number of relations referenced in the query, and each time
the Predicate Migration Algorithm visits a stream of height % it performs Monma and Sidney’s O(h log k) algorithm
on the stream. Thus the Predicate Migration Algorithm terminates in O(hkrhlogh) steps.

Now the number of restrictions, the height of the tree, and the number of relations referenced in the query are
all bounded by n, the number of operators in the plan tree. Hence a trivial upper bound for the Predicate Migration
Algorithm is O(n*logn). Note that this is a very conservative bound, which we present merely to demonstrate
that the Predicate Migration Algorithm is of polynomial complexity. In general the Predicate Migration Algorithm
should perform with much greater efficiency. After some number of steps in O(n* log n), the Predicate Migration
Algorithm will have terminated, because each stream will be optimally ordered under the constraints of the given
join order and semantic correctness. [

We have now seen that the Predicate Migration Algorithm correctly orders each stream within a polynomial number
of steps. All that remains is to show that the resulting tree is in fact optimal. We do this by showing the that there is
only one tree of well-ordered streams, and that such a tree is in fact of minimal cost.

Theorem 2 For every plan tree 77 there is a unique join-order equivalent plan tree 7' with only well-ordered streams, and 7',
is a minimal cost tree that is join-order equivalent to 75 .

Proof. Theorem 1 demonstrates that for each tree there exists a join-order equivalent tree of well-ordered streams
(since the Predicate Migration Algorithm is guaranteed to terminate). To prove that the tree is unique, we proceed by
induction on the number of join nodes in the tree. Following the argument of Lemma 2, we assume that all groups
are of distinct rank.

20



Base case: The base case of zero join nodes is a simply a Scan node followed by a series of restrictions, which can
be uniquely ordered as shown in Lemma 1.

Induction Hypothesis: For any tree with £ join nodes or less, the lemma holds.

Induction: We consider two join-order equivalent plan trees, 7" and 77, each having & 4+ 1 join nodes and well-
ordered, semantically correct streams. We will show that these trees are identical, hence proving the uniqueness
property of the lemma.

Figure 4: Two Join-Order Equivalent Plan Trees with Semantically Correct, Well-Ordered Streams

As illustrated in Figure 4, we refer to the uppermost join nodes of 7" and 7’ as .JJ and .J’ respectively. We refer to
the uppermost join or scan in the outer and inner input streams of J as O and I respectively (O and I’ for .J’). We
denote the set of restrictions and secondary join predicates above a given join node p as f3,, and hence we have, as
illustrated, Ry above J, R;: above J’, Ro between O and J, etc. We call a predicate in such a set mobile if there is
a join below it in the tree, and the predicate refers to the attributes of only one input to that join. Mobile predicates
can be moved below such joins without affecting the semantics of the plan tree. First we establish that the subtrees
O and O’ are identical. The corresponding proof for I and 7 is analogous.

Consider a plan tree Ot composed of subtree O with a rank-ordered set R+ of predicates above it, where R+
is made up of the union of Ry and those predicates of R; that do not refer to attributes from /. If O and J are
grouped together in 7', then let the cost and selectivity of O in Ot be modified to include the cost and selectivity
of J. Consider an analogous tree Ot’, with R+, being composed of the union of Ko and those predicates of ;.
that do not refer to I’. Modify the cost and selectivity of (Y in O’ as before. It should be clear that Ot and O’
are join-order equivalent trees of less than k nodes. Since 7" and 1’ are assumed to have well-ordered streams, then
clearly so do O and O’. Hence by the induction hypothesis OT and O/ are identical, and therefore the subtrees O
and O’ are identical.

Thus the only differences between 7" and 7" must occur above O, I, O’, and I’. Now since the sets of predicates
in the two trees are equal, and since O and O, I and I’ are identical, clearly Ro U R; U Ry = Ro: URp U Ry:.
Semantically, predicates can only travel downward along asingle stream, and hence we seethat o UR; = Ro'UR 1,
and R; U Ry = Rp U Ry Thus if we can show that Ry = R/, we will have shown that 7" and 7" are identical.

Assume the contrary, i.e. that Ry # Rj.. Then without loss of generality Ry — Ry # (). Recalling that both trees
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are well-ordered, this implies that either
e The minimal-rank mobile predicate of Ky has lower rank than the minimal-rank mobile predicate of £y, or
e Ry contains no mobile predicates.

In either case, we see that Ry is a superset of R;:.

Knowing that, we proceed to show that 1y cannot contain any predicate not in Ry, hence demonstrating that
R; = Ry, and therefore that 7' is identical to 7”, completing the proof.

We have assumed that 7" and 7" have only well-ordered streams. The only distinction between 7" and 7’ is that
more predicates have been pulled above J than above /. Thus it must be possible to pull the predicates in J — .J'
above J/ and make 7" identical to 7". Since 7" is well ordered, this means pulling a predicate p above ./ such that
rank(p) is strictly less than the rank of the group containing .J. Recall from Lemma A.1 that after pulling p above .J
the rank of .J’s group cannot increase. Each subsequent “pullup” can only change the rank of J’s group by decreasing
it, and hence after we transform 77 to be identical to 7", we can still be assured that rank(p) is less than the rank of
the group containing J'. Since p is above .J after these pullups, then we know that that when 7’ is transformed to
be identical to 7', 7" has a stream that is not well-ordered. This contradicts the assumption that 7" is well-ordered,
and hence it must be that 7" and 7" were identical to begin with; i.e. there is only one unique tree with well-ordered
streams.

Having established the uniqueness of the well-ordered tree, it is easy to see that this tree is of minimal cost.
Assume the contrary, i.e. that there is a tree 7" of minimal cost that has a stream that is not well ordered. Then in this
stream there is a group v adjacent to a groupw such that™ andw are not well-ordered, and@ andw may be swapped
without violating the constraints. Since swapping the order of these two groups affects only the cost of the nodes in
v and w, the total cost of 7" can be made lower by swapping v and w, contradicting our assumption that 7" was of
minimal cost. ]

Lemma 3 For a restriction or secondary join predicate 1 in a subtree, if the rank of R is greater than the rank of any join in
any plan for the subtree, then in the optimal tree X will appear above the highest join in the subtree.

Proof. Recall that rank(p,) > rank(pipz). Thus the highest-rank group containing nodes from the subtree is of rank
less than or equal to the rank of the highest-rank join node in the subtree. A restriction of higher rank than the
highest-rank join node is therefore certain to be placed above the subtree in the optimal tree. [
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