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Abstract

Robotic storage devices offer huge storage capacity at a
low cost per byte, but with large access times. Integrating
these devices into the storage hierarchy presents a chal-
lenge to file system designers. Log-structured file systems
(LFSs) were developed to reduce latencies involved in ac-
cessing disk devices, but their sequential write patterns
match well with tertiary storage characteristics. Unfortu-
nately, existing versions only manage memory caches and
disks, and do not support a broader storage hierarchy.

HighLight extends 4.4BSD LFS to incorporate both sec-
ondary storage devices (disks) and tertiary storage devices
(such as robotic tape jukeboxes), providing a hierarchy
within the file system that does not require any application
support. This paper presents the design of HighLight, pro-
poses various policies for automatic migration of file data
between the hierarchy levels, and presents initial migration
mechanism performance figures.
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1. Introduction

HighLight combines both conventional disk secondary
storage and robotic tertiary storage into a single file sys-
tem. It builds upon the 4.4BSD LFS [10], which derives
directly from the Sprite Log-structured File System (LFS)
[9], developed at the University of California at Berke-
ley by Mendel Rosenblum and John Ousterhout as part of
the Sprite operating system. LFS is optimized for writ-
ing data, whereas most file systems (e.g. the BSD Fast
File System [4]) are optimized for reading data. LFS di-
vides the disk into 512KB or 1MB segments, and writes
data sequentially within each segment. The segments are
threaded together to form a log, so recovery is quick; it
entails a roll-forward of the log from the last checkpoint.
Disk space is reclaimed by copying valid data from dirty
segments to the tail of the log and marking the emptied
segments as clean.

Since log-structured file systems are optimized for
write performance, they are a good match for the write-
dominated environment of archival storage. However, sys-
tem performance will depend on optimizing read perfor-
mance, since LFS already optimizes write performance.
Therefore, migration policies and mechanisms should ar-
range the data on tertiary storage to improve read perfor-
mance.

HighLight was developed to provide a data storage file
system for use by Sequoia researchers. Project Sequoia
2000 [14] is a collaborative project between computer sci-
entists and earth science researchers to develop the nec-
essary support structure to enable global change research
on a larger scale than current systems can support. High-
Light is one of several file management avenues under
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exploration as a supporting technology for this research.
Other storage management efforts include the Inversion
support in the POSTGRES database system [7] and the
Jaquith manual archive system [6] (which was developed
for other uses, but is under consideration for Sequoia’s
use).

The bulk of the on-line storage for Sequoia will be
provided by a 600-cartridge Metrum robotic tape unit;
each cartridge has a capacity of 14.5 gigabytes for a total
of nearly 9 terabytes. We also expect to have a collection
of smaller robotic tertiary devices (such as the Hewlett-
Packard 6300 magneto-optic changer). HighLight will
have exclusive rights to some portion of the tertiary storage
space.

HighLight is currently running in our laboratory, with a
simple automated file-oriented migration policy as well as
a manual migration tool. HighLight can migrate files to
tertiary storage and automatically fetch them again from
tertiary storage into the cache to enable application access.

The remainder of this paper presents HighLight’s mech-
anisms and some preliminary performance measurements,
and speculates on some useful migration policies. We be-
gin with a thumb-nail sketch of the basic Log-structured
file system, followed by a discussion of our basic storage
and migration model and a comparison with existing re-
lated work in policy and mechanism design. We continue
with a brief discussion of potential migration policies and a
description of HighLight’s architecture. We present some
preliminary measurements of our system performance,
and conclude with a summary and directions for future
work.

2. LFS Primer

The primary characteristic of LFS is that all data are stored
in a segmented log. The storage consists of large contigu-
ous spaces called segments which may be threaded to-
gether to form a linear log. New data are appended to the
log, and periodically the system checkpoints the state of
the system. During recovery the system will roll-forward
from the last checkpoint, using the information in the log
to recover the state of the file system at failure. Obviously,
as data are deleted or replaced, the log contains blocks of
invalid or obsolete data, and the system must coalesce this
wasted space to generate new, empty segments for the log.

4.4BSD LFS shares much of its implementation with the
Berkeley Fast File System (FFS) [4]. It has two auxiliary
data structures not found in FFS: the segment summary

table and the inode map. The segment summary table
contains information describing the state of each segment
in the file system. Some of this information is necessary
for correct operation of the file system, such as whether
the segment is clean or dirty, while other information is
used to improve the performance of the cleaner, such as
the number of live data bytes in the segment. The inode
map contains the current disk address of each file’s inode,
as well as some auxiliary information used for file system
bookkeeping. In 4.4BSD LFS, both the inode map and
the segment summary table are contained in a regular file,
called the ifile.

When reading files, the only difference between LFS
and FFS is that the inode’s location is variable. Once the
system has found the inode (by indexing the inode map),
LFS reads occur in the same fashion as FFS reads, by
following direct and indirect block pointers1.

When writing, LFS and FFS differ substantially. In FFS,
each logical block within a file is assigned a location upon
allocation, and each subsequent operation (read or write)
is directed to that location. In LFS, data are written to the
tail of the log each time they are modified, so their location
changes. This requires that their index structures (indirect
blocks, inodes, inode map entries, etc.) be updated to
reflect their new location, so these index structures are
also appended to the log.

In order to provide the system with a ready supply of
empty segments for the log, a user-level process called
the cleaner garbage collects free space from dirty seg-
ments. The cleaner selects one or more dirty segments to
be cleaned, appends all valid data from those segments to
the tail of the log, and then marks those segments clean.
The cleaner communicates with the file system by read-
ing the ifile and calling a handful of LFS-specific system
calls. Making the cleaner a user-level process simplifies
the adjustment of cleaning policies.

For recovery purposes the file system takes periodic
checkpoints. During a checkpoint the address of the most
recent ifile inode is stored in the superblock so that the
recovery agent may find it. During recovery the threaded
log is used to roll forward from the last checkpoint. Each
segment of the log may contain several partial segments.
A partial segment is considered an atomic update to the
log, and is headed by a segment summary cataloging its
contents. The summary also includes a checksum to verify
that the entire partial segment is intact on disk and provide
an assurance of atomicity. During recovery, the system
scans the log, examining each partial segment in sequence.

1In fact, LFS and FFS share this indirection code in 4.4BSD.
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Figure 1: LFS data layout.

Figure 1 shows the on-disk data structures of 4.4BSD
LFS. The on-disk data space is divided into segments.
Each segment has a summary of its state (whether it is
clean, dirty, or active). Dirty segments contain live data
(data which are still accessible to a user, i.e. not yet deleted
or replaced). At the start of each segment there is a sum-
mary block describing the data contained within the seg-
ment and pointing to the next segment in the threaded log.
In Figure 1 we have shown three segments, numbered 0,
1, and 2. Segment 0 contains the current tail of the log.
New data are being written to this segment, so it is both
active and dirty. Once Segment 0 fills up the system will
begin writing to Segment 1, which is currently clean and
empty. Segment 2 was written just before Segment 0; it is
dirty and contains live data.

3. Storage and Migration model

HighLight has a “disk farm” to provide rapid access to file
data, and one or more tertiary storage devices to provide

disk farm

file system

reads; initial
     writes

... ...

tertiary jukebox(es)

    auto
migration

caching

Figure 2: The storage hierarchy.

vast storage. It manages the storage and the migration
between the two levels. The basic storage and migration
model is illustrated in Figure 2.

HighLight has a great deal of flexibility, allowing arbi-
trary data blocks, directories, indirect blocks, and inodes
to migrate to tertiary storage at any time. It uses the basic
LFS layout to manage the on-disk storage and applying
a variant on the cleaning mechanism to provide the mi-
gration mechanism. A natural consequence of this layout
is the use of LFS segments for the tertiary-resident data
representation. By migrating segments, it is possible to
migrate some data blocks of a file while allowing others
to remain on disk if a file’s blocks span more than one
segment.

Data begin life on the “disk farm” when they are created.
A file (or part of it) may eventually migrate to tertiary stor-
age according to a migration policy. The to-be-migrated
data are moved to an LFS segment in a staging area, us-
ing a mechanism much like the cleaner’s normal segment
reclamation. When a staging segment is filled, it is written
to tertiary storage as a unit.

When tertiary-resident data are referenced, their con-
taining segment(s) are fetched into the disk cache. These
read-only cached segments share the disk with active
non-tertiary segments. Figure 3 shows a sample tertiary-
resident segment cached in a disk segment. Data in cached
tertiary-resident segments are not modified in place on
disk; rather, any changes are appended to the LFS log in
the normal fashion. Since cached segments never contain

3



the sole copy of a block, they may be flushed from the
cache at any time if the space is needed for other cache
segments or for new data.

3.1. Related work

Some previous studies have considered automatic migra-
tion mechanisms and policies for tertiary storage manage-
ment. Strange [16] develops a migration model based on
daily “clean up” computation which migrates candidate
files to tertiary storage once a day, based on the next day’s
projected need for consumable secondary storage space.
While Strange provides some insight on possible policies,
we prefer not to require a large periodic migration run (our
eventual user base will likely span many time zones, so
there may not be any good “dead time” during which to
process migration needs); instead we require the ability to
run in continuous operation.

Unlike whole-file migration schemes such as Strange’s
or UniTree’s [2], we want to allow migration of portions
of files rather than whole files. Our partial-file migration
mechanism can support whole file migration, if desired
for a particular policy. We also desire to allow file sys-
tem metadata, such as directories, inode blocks or indirect
pointer blocks, to migrate to tertiary storage.2

A final reason why existing systems may not be appli-
cable to Sequoia’s needs lies with the expected access pat-
terns. Smith [11, 12] studied file references based mostly
on editing tasks; Strange [16] studied a networked work-
station environment used for software development in a
university environment. Unfortunately, those results may
not be directly applicable for our environment, since we
expect Sequoia’s file system references to be generated
by database, simulation, image processing, visualization,
and other I/O intensive-processes [14]. In particular, the
database reference patterns will be query-dependent, and
will most likely be random accesses within a file rather
than sequential access.

Our migration scheme is most similar to that described
by Quinlan [8] for the Plan 9 file system. He provides a
disk cache as a front for a WORM device which stores all
permanent data. When file data are created, their tertiary
addresses are assigned but the data are only written to
the cache; a nightly conversion process copies that day’s

2A back-of-the-envelope calculation suggested by Ethan Miller shows
why: Assuming 200MBfiles and a 4K block size, we have an overheadof
about 0.1% (200K) for indirect pointer blocks using the FFS indirection
scheme. A 10TB storage area then requires 10GB of indirect block
storage. Why not use this 10GB for cache area instead of wasting it on
indirect blocks of files that lay fallow?
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fresh blocks to the WORM device. A byproduct of this
operation is the ability to “time travel” to a snapshot of the
filesystem at the time of each nightly conversion. Unlike
that implementation, however, we do not wish to be tied
to a single tertiary device and its characteristics (we may
wish to reclaim tertiary storage), nor do we provide time
travel. Instead we generalize the 4.4BSD LFS structure
to enable migration to and from any tertiary device with
sufficient capacity and features.

The key combination of features which we provide are:
the ability to migrate all file system data (not just file
contents); tertiary placement decisions made at migration
time, not file creation time; data migration in units of LFS
segments; migration performed by user-level processes;
and migration policy implemented by a user-level process.

4. Migration Policies

Because HighLight includes a storage hierarchy, it must
move data up and down the hierarchy. Migration policies
may be considered in two parts, writing to tertiary storage,
and caching from tertiary storage.

Before describing our migration policies, we must first
state our initial assumptions regarding file access patterns,
which are based on previous analyses of systems [5, 16,
11]. Our basic assumptions are that file access patterns
are skewed, and that most archived data are never re-read.
However, some archived data will be accessed, and once
archived data became active again, they will be accessed
many times before becoming inactive again.

Since HighLight optimizes writes by virtue of its log-
ging mechanism, migration policies must be aimed at im-
proving read performance. When data resident on tertiary
storage is cached on secondary storage and read, the mi-
gration policy should have optimized the layout so that
these read operations are as inexpensive as possible. There
needs to be a tight coupling between the cache fetch and
migration policies.

HighLight has one primary tool for optimizing tertiary
read performance: segment reads. When data are read
from tertiary storage, a whole 1MB segment (which is the
equivalent of a cache line in processor caches) is fetched
and placed in the segment cache, so that additional ac-
cesses to data within the segment proceed at disk access
rates. Policies used with HighLight should endeavor to
cluster “related” data in a segment to improve read perfor-
mance. The determination of whether data are “related”
depends on the particular policy in use. If related data

will not fit in the one segment, then their layout on tertiary
storage should be arranged to admit a simple prefetch
mechanism to reduce further latencies.

Given perfect predictions, policies should migrate data
which provides the best benefit to performance (which
could mean something like migrating files which will never
again be referenced, or referenced after all other files in the
cache). Without perfect knowledge, however, migration
policies need to estimate the benefits of migrating a file or
set of files. We speculate below on some policies that we
will evaluate with HighLight.

All the possible policy components discussed below
require some additional mechanism support beyond that
provided by the basic 4.4BSD LFS. They require some ba-
sic migration bookkeeping and data transfer mechanisms,
which are described in the next section.

4.1. File Size-based rankings

Earlier studies [3, 12] conclude that file size alone does
not work well for selecting files as migration candidates;
they recommend using a space-time product (STP) rank-
ing metric (time since last access, raised to a small power,
times file size). Strange [16] evaluated different variations
on the STP scheme for a typical networked workstation
configuration. Those three evaluations considered differ-
ent environments, but generally agreed on the space-time
product as a good metric. Whether these results still work
well in the Sequoia environment is something we will
evaluate with HighLight.

The space-time product metric has only modest require-
ments on the mechanisms, needing only the file attributes
(available from the base LFS) and a whole-file migration
mechanism.

4.2. Choosing block ranges

In the simplest policies, HighLight could use whole-file
migration, with mechanism support based on file access
and modification times contained in the inode. However,
in some environments whole file migration may be inade-
quate. In UNIX-like distributed file system environments,
most files are accessed sequentially and many of those
are read completely [1]. We expect scientific application
checkpoints to be read completely and sequentially. In
these cases, whole file migration makes sense. However,
database files tend to be large, may be accessed randomly
and incompletely (depending on the application’squeries),
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and in some systems are never overwritten [13]. Con-
sequently, block-based information is useful, since old,
unreferenced data may migrate to tertiary storage while
active data remain on secondary storage.

In order to provide migration on a finer grain than whole
files, HighLight must keep some information on each disk-
resident data block in order to assist the migration deci-
sions. Keeping information for each block on disk would
be exorbitantly expensive in terms of space, and often
unnecessary. It seems likely that tracking access at a
finer grain than whole files can yield a benefit in terms
of working set size. Such tracking requires a fair amount
of support from the mechanism: access to the sequen-
tial block-range information, which implies mechanism-
supplied and updated records of file access sequentiality.
We do not yet have a clear implementation strategy for this
policy.

4.3. Namespace Locality

When dealing with a collection of small files, it will be
more efficient to migrate several related files at once. We
can use a file namespace to identify these collections of
“related” files, and migrate directory trees or sub-trees to
tertiary storage together. This is useful primarily in an en-
vironment where whole subtrees are related and accessed
at nearly the same time, such as software development
environments. Such a tree could be considered in the
aggregate as a file for purposes of applying a migration
metric (such as STP).

Assuming such a tree is too large for a single tertiary
segment, a natural prefetch policy on a cache miss is to
load the missed segment and prefetch remaining segments
of the tree cluster.

The primary additional requirement of this policy is a
way to examine file system trees without disturbing the ac-
cess times; this is possible to do with a user program since
BSD filesystems do not update directory access times on
normal directory accesses, and file inodes may be exam-
ined without modification.

4.4. Rewriting Cached Segments

It may be the case that data access patterns to tertiary-
backed storage will change over time (for example, if sev-
eral satellite-collected data sets are loaded independently,
and then those data sets are analyzed together). Perfor-
mance may be boosted in such cases by reorganizing the

data layout on tertiary storage to reflect the most prevalent
access pattern(s) (perhaps to move segments to different
tertiary media with access characteristics more suited to
those segments). This reorganization can be accomplished
by writing cached segments to a new storage location on
the tertiary device while the segment is in the cache.

Implicit in this scheme is the need to choose which
cached segments should be rewritten to a new location
on tertiary storage. All of the questions appropriate to
migrating data in the first place are appropriate, so the
overhead involved here might be significant (and might be
an impediment if cache flushes need to be fast reclaims).

This policy will require additional identifying informa-
tion on each cache segment to indicate an appropriate
locality of reference patterns between segments. Such
information could be a segment fetch timestamp or the
user-id or process-id responsible for a fetch. Such in-
formation could be maintained by the process servicing
demand fetch requests and shared with the migrator.

4.5. Supporting migration policies

To summarize, we can envision uses for (at least) the
following mechanism features in an implementation:

� Basic migration bookkeeping (cache lookup control,
data movement, etc.)

� Whole-file migration

� Directory and metadata migratable

� Grouping of files by some criterion (namespace)

� Cache fill timestamps/uid/pid

� Sequential block-range data (per-file)

The next section presents the design and implementation
of HighLight, which covers many (but not all) of these
desired features.

5. HighLight Design and Implementation

In order to provide “on-line” access to a large data storage
capacity, HighLight manages secondary and tertiary stor-
age within the framework of a unified file system based on
the 4.4BSD LFS. Our discussion here covers HighLight’s
basic components, block addressing scheme, secondary
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and tertiary storage organizations, migration mechanism,
and implementation details.

5.1. Components

HighLight extends 4.4BSD LFS by adding several new
software components:

� A second cleaner, called the migrator, which collects
data for migration from secondary to tertiary storage

� A disk-resident segment cache to hold read-only
copies of tertiary-resident segments and request I/O
from the user-level processes, implemented as a
pseudo-disk driver

� A pseudo-disk driver which stripes multiple devices
into a single logical drive.

� A pair of user-level processes (the service process and
the I/O process) to access the tertiary storage devices
on behalf of the kernel.

Besides adding these new components, HighLight slightly
modifies various portionsof the user-level and kernel-level
4.4BSD LFS implementation (such as changing the mini-
mum allocatable block size, adding conditionalcode based
on whether segments are secondary or tertiary storage res-
ident, etc.).

5.2. Basic operation

HighLight implements the normal filesystem operations
expected by the 4.4BSD file system switch. When a file is
accessed, HighLight fetches the necessary metadata and
file data based on the traditional FFS inode’s direct and
indirect 32-bit block pointers. The block address space
appears uniform, so that HighLight just passes the block
number to its I/O device driver. The device driver maps
the block number to whichever physical device stores the
block (a disk, an on-disk cached copy of the block, or a
tertiary medium).

The migrator process periodically examines the col-
lection of on-disk file blocks, and decides (based upon
some policy) which file data blocks and/or metadata blocks
should be migrated to a tertiary medium. Those blocks are
then assembled in a “staging segment” addressed by new
block numbers assigned to a tertiary medium. The staging
segment is assembled on-disk in a dirty cache line, us-
ing the same mechanism used by the cleaner to copy live

data from an old segment to the current active segment.
When the staging segment is filled, the kernel-resident
part of the file system requests the server process to copy
the dirty line (the entire 1MB segment) to tertiary storage.
The request is served asynchronously, so that the migration
control policies may choose to move multiple segments in
a single logical operation for transfer efficiency.

Disk segments can be used to cache tertiary segments.
Since the cached segments are read-only copies of the
tertiary-resident version, cache management is relatively
simple (involving no write-back issues). As in the normal
LFS, when file data are updated, a new copy of the changed
data are appended to the current on-disk log segment; the
old copy remains undisturbed until its segment is cleaned
or ejected from the cache. We don’t clean cached segments
on disk; any cleaning of tertiary-resident segments would
be done directly with the tertiary-resident copy.

If a process requests I/O on a file for which some neces-
sary metadata or file data are not on secondary storage, the
cache may satisfy the request. If the segment containing
the required data is not in the cache, the kernel requests
a demand fetch from the service process and waits for a
reply. The service process finds a reusable segment on
disk and directs the I/O process to fetch the necessary seg-
ment into that segment. When that is complete, the service
process registers the new cache line in the cache directory
and calls the kernel to restart the file I/O.

The service or I/O process may choose unilaterally to
eject or insert new segments into the cache. This al-
lows them to prefetch multiple segments, perhaps based
on some policy, hints, or historical access patterns.

5.3. Block addresses

HighLight uses a uniform block address space for all de-
vices in the filesystem. A single HighLight filesystem
may span multiple disk and tertiary storage devices. Fig-
ure 4 illustrates the mapping of block numbers onto disk
(secondary) and tertiary devices. Block addresses can be
considered as a pair: (segment number, offset). The seg-
ment number determines both the medium (disk device,
tape cartridge, or jukebox platter) and the segment’s loca-
tion within the medium. The offset identifies a particular
block in that segment.

HighLight allocates a fixed number of segments to each
tertiary medium. Since some media may hold a variable
amount of data (e.g. due to device-level compression),
this number is set to be the maximum number of segments
the medium is expected to hold. HighLight can tolerate
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HighLight.

device-based compression on tertiary storage since it can
keep writing segments to a medium until the drive returns
an “end-of-tape” message, at which point the medium
is marked full and the last (partially written) segment is
re-written onto the next tape. If the compression factor
exceeds the expectations, however, all the segments will
fit on the tape and some storage at its end may be wasted.

When HighLight’s I/O driver receives a block address,
it simply compares the address with a table of component
sizes and dispatches to the underlying device holding the
desired block. Disks are assigned to the bottom of the
address space (starting at block number zero), while ter-
tiary storage is assigned to the top (starting at the largest
block number). Tertiary media are still addressed with
increasing block numbers, however, so that the end of the
first medium is at the largest block number, the end of
the second medium is just below the beginning of the first
medium, etc.

The boundary between tertiary and secondary block ad-

dresses may be set at any segment multiple. There will
likely be a “dead zone” between valid disk and tertiary ad-
dresses; attempts to access these blocks results in an error.
In principle, the addition of tertiary or secondary storage is
just a matter of claiming part of the dead zone by adjusting
the boundaries and expanding the file system’s summary
tables. However, we do not currently have a tool to make
such adjustments after a file system has been created.

We use a single block address space for ease of imple-
mentation. By using the same format block numbers as the
original LFS, we can use much of its code as is. However,
with 32-bit block numbers and 4-kilobyte blocks, we are
restricted to less than 16 terabytes of total storage. One
segment’s worth of address space is unusable for two rea-
sons: (a) we need at least one out-of-band block number
(“�1”) to indicate an unassigned block, and (b) the LFS
allocates space for boot blocks at the head of the disk.

We considered using a larger block address and seg-
menting it into components directly identifying the de-
vice, medium, and offset, and using the device field to
dispatch to the appropriate device driver. However, the de-
vice/medium identity can just as well be extracted implic-
itly from the block number by an intelligent device driver
which is integrated with the cache. The larger block ad-
dresses would also have necessitated many more changes
to the base LFS, a task which we declined. We considered
having the block address include both a secondary and ter-
tiary address, but the difficulty of keeping disk addresses
current when blocks are cached (and updating those disk
addresses where used) seemed prohibitive. We instead
chose to locate the cached copy of a block by querying a
simple hash table indexed by segment number.

Using 4-kilobyte blocks necessitates an increased par-
tial segment summary block size (it is only 512 bytes in
4.4BSD LFS). Since the summaries include records de-
scribing the partial segment, the larger summary blocks
could either reduce or increase overall overhead, depend-
ing on whether the summaries are completely filled or not.
If the summaries in both the original and new versions
are completely full, overhead is reduced with the larger
summary blocks. However, the larger summary blocks
are almost always too large to be filled in practice, since
doing so would require a segment summary to cover an
entire segment, and that segment would need to be filled
with one block from each of many files. This is possible
but not likely given the type of files we expect to find in
our environment.
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5.4. Secondary Storage Organization

The disks are concatenated by a device driver and used as
a single LFS file system. Fresh data are written to the tail
of the currently-active log segment. The cleaner reclaims
dirty segments by forwarding any live data to the tail of the
log. Both the segment selection algorithm, which chooses
the next clean segment to be consumed by the log, and
the cleaner, which reclaims disk segments, are identical
to the 4.4BSD LFS implementations. Unlike the 4.4BSD
LFS, though, some of the log segments found on disk are
read-only cached segments from tertiary storage.

The ifile, which contains summaries of segments and
inode locations, is a superset of that from the 4.4BSD LFS
ifile. It has additional flags available for each segment’s
summary, such as a flag indicating that the segment is
being used to cache a tertiary segment and should not be
cleaned or overwritten. We also add an indication of how
many bytes of storage are available in the segment (which
is useful for bookkeeping for a compressing tape or other
container with uncertain capacity).

To record summary information for each tertiary
medium, HighLight adds a companion file similar to the
ifile. It contains tertiary segment summaries in the same
format as the secondary segment summaries found in the
ifile.

Other special support which a migrator might need to
implement its policies can be constructed in additional dis-
tinguished files. This might include sequentiality extent
data (describing which parts of a file are sequentially ac-
cessed) or file clustering data (such as a recording of which
files are to migrate together). For efficiency of operation,
all the special files used by the base LFS and HighLight
are known to the migrator and always remain on disk.

The support necessary for the migration policies may
only require user-level support in the migrator, or may
involve additional kernel code to record access patterns.

If a need arises for more disk storage, it is possible to
initialize a new disk with empty segments and adjust the
file system superblock parameters and ifile to incorporate
the added disk capacity. If it is necessary to remove a disk
from service, its segments can all be cleaned (so that the
data are copied to another disk) and marked as having no
storage. Tertiary storage may theoretically be added or
removed in a similar way.

5.5. Tertiary Storage Organization

Tertiary storage in HighLight is viewed as an array of de-
vices each holding an array of media volumes, each of
which contains an array of segments. Media are currently
consumed one at a time by the migration process. We ex-
pect that the migrator may wish to direct several migration
streams to different media, but do not support that in our
current implementation.

We expect the need for tertiary media cleaning to be rare,
because we make efforts to migrate only stable data, and to
have available an appropriate spare capacity in our tertiary
storage devices. Indeed, the current implementation does
not clean tertiary media. We will eventually have a cleaner
for tertiary storage, which will clean whole media at a time
to minimize the media swap and seek latencies.3

Since tertiary storage is often very slow (sometimes with
access latencies for loading a medium and seeking to the
desired offset running over a minute), the relative penalty
of taking a bit more access time to the tertiary storage
in return for generality and ease of management of the
tertiary storage access path is an acceptable tradeoff. Our
tertiary storage is accessed via “Footprint”, a user-level
controller process which uses Sequoia’s generic robotic
storage interface. It is currently a library linked into the
I/O server, but the interface could be implemented by an
RPC system to allow the jukebox to be physically located
on a machine separate from the file server. This will
be important for our environment due to hardware and
device driver constraints. Using Footprint also simplifies
our utilization of multiple types of tertiary devices, by
providing a uniform interface.

5.6. Pseudo Devices

HighLight relies heavily on pseudo device drivers, which
do not communicate directly with a device but instead
provide a device driver interface to extended functionality
built upon other device drivers and specialized code. For
example, a striped disk driver provides a single device
interface built on top of several independent disks (by
mapping block addresses and calling the drivers for the
respective disks).

HighLight uses pseudo device drivers for:

� A striping driver to provide a single block address
space for all the disks.

3Minimizing medium insertion and seek passes is also important, as
some tape media become increasingly unreliable after too many readings
or too many insertions in tape readers.
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� A block cache driver which sends disk requests down
to the striping disk pseudo driver, and which sends
tertiary storage requests to either the cache (which
then uses the striping driver) or the tertiary storage
pseudo driver.

� A tertiary storage driver to pass requests up to the
user-level tertiary storage manager.

Figure 5 shows the organization of the layers. The block
map driver, segment cache and tertiary driver are fairly
tightly coupled for convenience. The block map pseudo-
device handles ioctl() calls to manipulate the cache
and to service kernel I/O requests, and handles read()
and write() calls to provide the I/O server with access
to the disk device to copy segments on or off of the disk.

To handle a demand fetch request, the tertiary driver
simply enqueues it, wakes up a sleeping service process,
and then sleeps as usual for any block I/O. The service
process directs the I/O process to fetch the data to disk.
When it has been fetched, the service process completes
the block I/O by calling into the kernel and restarting the
I/O through the cache. It completes like any normal block
I/O and wakes up the original process.

5.7. User level processes

There are three user-level processes used in HighLight that
are not present in the regular 4.4BSD LFS: the kernel re-
quest service process, the I/O process, and the migrator.
The service process waits for requests from either the ker-
nel or from the I/O process: The I/O process may send
a status message, while the kernel may request the fetch
of a non-resident tertiary segment, the ejection of some
cached line (in order to reclaim its space), or the transfer
to tertiary storage of a freshly-written tertiary segment.

If the kernel requests a “push” to tertiary storage or a
demand fetch, the service process records the request and
forwards it to the I/O server. For a demand fetch of a
non-resident segment, the service process selects an on-
disk segment to act as the cache line. If there are no clean
segments available for that use, the service process selects
a resident cache line to be ejected and replaced. When
the I/O server replies that a fetch is complete, the service
process calls the kernel to complete the servicing of the
request. The service process interacts with the kernel via
ioctl() and select() calls on a character special
device representing the unified block address space.

The I/O server is spawned as a child of the service
process. It waits for a request from the service process,

executes the request, and replies with a status message.
It accesses the tertiary storage device(s) through the Foot-
print interface, and the on-disk cache directly via the cache
raw device. Direct access avoids memory-memory copies
and pollution of the block buffer cache with blocks ejected
to tertiary storage (of course, after a demand fetch, those
needed blocks will eventually end up in the buffer cache).
Any necessary raw disk addresses are passed to the I/O
server as part of the service process’s request.

The I/O server is a separate process primarily to provide
for some overlap of I/O with other kernel request servic-
ing. If more overlap is required, the I/O server or service
process could be rewritten to farm out the work to several
processes or threads to perform overlapping I/O.

The third HighLight-specific process, the migrator, em-
bodies the migration policy of the file system, directing
the migration of file blocks to tertiary storage segments. It
has direct access to the raw disk device, and may examine
disk blocks to inspect inodes, directories, or other struc-
tures needed for its policy decisions. It selects file blocks
by some criteria, and uses a system call (lfs_bmapv())
to find their current location on disk. If they are indeed
on disk, it reads them into memory and directs the kernel
(via the lfs_migratev() call, a variant of the call the
regular cleaner uses to move data out of old segments) to
gather and rewrite those blocks into the staging segment
on disk. Once the staging segment is filled, the kernel
posts a request of the service process to copy the segment
to tertiary storage.

6. Performance micro-benchmarks

To understand and evaluate the performance of HighLight
and the impact of our modifications to the basic LFS mech-
anism, we ran benchmarks with three basic configurations:

1. The basic 4.4BSD LFS.

2. The HighLight version of LFS, using files which have
not been migrated.

3. The HighLight version of LFS, using migrated files
which are all in the on-disk segment cache.

We ran the tests on an HP 9000/370 CPU with 32 MB
of main memory (with 3.2 MB of buffer cache) running
4.4BSD-Alpha. We used a DEC RZ57 SCSI disk drive
for our tests, with the on-disk filesystem occupying an
848MB partition. Our tertiary storage device was a SCSI-
attached HP 6300 magneto-optic (MO) changer with two
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Figure 5: The layered architecture of the HighLight implementation. Heavy lines indicate data or data/control paths;
thin lines are control paths only.

drives and 32 cartridges. One drive was allocated for the
currently-active writing segment, and the other for reading
other platters (the writing drive also fulfilled any read
requests for its platter). When running tests with storage
To force more frequent medium changes, we constrained
HighLight’s use of each platter to 40MB (since we didn’t
have large amounts of data with which to fill the platters
to capacity).

Unfortunately, our autochanger device driver does not
disconnect from the SCSI bus, and any media swap trans-
actions “hog” the SCSI bus until the robot has finished
moving the cartridges. Such media swaps can take many
seconds to complete.

6.1. Large object performance

To test performance with large “objects”, we used the
benchmark of Stonebraker and Olson [15] to measure I/O
performance on relatively large transfers. It starts with a
51.2MB file, considered a collection of 12,500 frames of
4096 bytes each (these could be database data pages, com-
pressed images in an animation, etc). The buffer cache is
flushed before each phase of the benchmark. The follow-

ing operations comprise the benchmark:

� Read 2500 frames sequentially (10MB total)

� Replace 2500 frames sequentially (logically over-
write the old ones)

� Read 250 frames randomly (uniformly distributed
over the 12500 total frames, selected with the 4.4BSD
random() function with the time-of-day as the
seed)

� Replace 250 frames randomly

� Read 250 frames with 80/20 locality: 80% of reads
are to the sequentially next frame; 20% are to a ran-
dom next frame.

� Replace 250 frames with 80/20 locality.

Note that for the HighLight version with migrated files,
any modifications go to local disk rather than to tertiary
storage, so that portions of the file live in cached tertiary
segments and other portions in regular disk segments. In
practice, our migration policies attempt to avoid this situ-
ation by migrating only file blocks which are stable.
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Phase FFS Base LFS HLFS HLFS
(on-disk) (in-cache)

time throughput time throughput time throughput time throughput
10MB sequential read 10.46 s 1002KB/s 12.8 s 819KB/s 12.9 s 813KB/s 12.9 s 813KB/s
10MB sequential write 10.0 s 1024KB/s 16.4 s 639KB/s 17.0 s 617KB/s 17.6 s 596KB/s
1MB random read 6.9 s 152KB/s 6.8 s 154KB/s 6.9 s 152KB/s 7.1 s 148KB/s
1MB random write 3.3 s 315KB/s 1.4 s 749KB/s 1.4 s 749KB/s 1.3 s 807KB/s
1MB read, 80/20 locality 6.9 s 152KB/s 6.8 s 154KB/s 6.9 s 152KB/s 7.1 s 148KB/s
1MB write, 80/20 locality 1.48 s 710KB/s 1.2 s 873KB/s 1.4 s 749KB/s 1.4 s 749KB/s

Table 1: Large Object performance tests. Time values are elapsed times; throughput is calculated from the elapsed
time and total data volume. The FFS measurements are from a version with read and write clustering. For the LFS
measurements, the disk had sufficient clean segments so that the cleaner did not run during the tests.

File FFS HLFS access times
size access times in-cache uncached

First byte Total First byte Total First byte Total
10KB 0.06 s 0.09 s 0.11 s 0.12 s 3.57 s 3.59 s
100KB 0.06 s 0.27 s 0.11 s 0.27 s 3.59 s 3.73 s
1MB 0.06 s 1.29 s 0.10 s 1.55 s 3.51 s 8.22 s
10MB 0.07 s 11.89 s 0.09 s 13.68 s 3.57 s 44.23 s

Table 2: Access delays for files, in seconds. The time to first byte includes any delays for fetching metadata (such as an
inode) from tertiary storage. The FFS measurements are from a version with read and write clustering.

Table 1 shows our measurements for the large object
test. We were able to test this benchmark on the plain
4.4BSD-Alpha Fast File System (FFS) as well; we used
4096-byte blocks for FFS (the same basic size as used by
LFS and HighLight) with the maximum contiguous block
count set to 16 (to result in 64-kilobyte transfers in the
best case). The base LFS compares unfavorably to the
plain FFS; this is most likely due to extra buffer copies
performed inside the LFS code. For HighLight, when
data have not been migrated to secondary storage, there
is a slight performance degradation versus the base LFS
(due to the slightly modified system structures). Even
when data have been “migrated” but remain cached on
disk, the degradation is small.

6.2. Access Delays

To measure the delays incurred by a process waiting for
file data to be fetched into the cache, we migrated some
files, ejected them from the cache, and then read them
(so that they were fetched into the cache again). We
timed both the access time for the first byte to arrive in

user space, and the elapsed time. The files were read
from a newly-mounted filesystem (so that no blocks were
cached), using the standard I/O library with an 8KB-buffer.
The tertiary medium was in the drive when the tests began,
so time-to-first-byte does not include the media swap time.
Table 2 shows the first-byte and total elapsed times for
disk-resident (both HLFS and FFS) and uncached files.
FFS is faster to access the first byte, probably because it
fetches fewer metadata blocks (LFS needs to consult the
inode map to find the file). The time-to-first-byte is fairly
even among file sizes, indicating that HighLight does make
file blocks available to user space as soon as they are on
disk. The total time for the uncached file read of 10MB
is somewhat more than the sum of the in-cache time and
the required transfer time (computable from the value in
Table 5), indicating some inefficiency in the fetch process.
The inefficiency probably stems from the extra copies of
demand-fetched segments: they are copied from tertiary
storage to memory, thence to raw disk, and are finally
re-read through the file system and buffer cache. The
implementation of this scheme is simple, but performance
suffers. A mechanism to transfer blocks directly from
the I/O server memory to the buffer cache might provide
substantial improvements.
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Phase Percentage of
time consumed

Footprint write 62%
I/O server read 37%
Migrator queuing 1%

Table 3: A breakdown of the components of the
archiver/migrator elapsed run times while transferring
data from magnetic to magneto-optical (MO) disk.

I/O type Performance
Raw MO read 451KB/s
Raw MO write 204KB/s
Raw RZ57 read 1417KB/s
Raw RZ57 write 989KB/s
Media change 13.5s

Table 4: Raw device measurements. Raw throughput
was measured with a set of sequential1-MB transfers.
Media change measures time from an eject command
to a completed read of one sector on the MO platter.

6.3. Migrator throughput

To measure the available bandwidth of the migration path,
we took the original 51.2MB file from the large object
benchmark and migrated it entirely to tertiary storage,
while timing the components of the migration mechanism.
The migration path measurements are divided into time
spent in the Footprint library routines (which includes any
media change or seek as well as transfer to the tertiary stor-
age), time spent in the I/O server main code (copying from
the cache disk to memory), and queuing delays. Table 3
shows the measurements; the MO disk transfer rate is the
main factor in the performance, resulting in the Footprint
library consuming the bulk of the running time.

To get a baseline for comparison with HighLight, we
measured the raw device bandwidth available by using
dd with the same I/O sizes as HighLight uses (whole
segments). We also measured the average time from the
start of a medium swap to medium ready for reading.
Table 4 shows our raw device measurements.

Table 5 shows our measurements of two distinct phases
of migrator throughput when writing segments to MO disk.
The total throughput provided when the magnetic disk
is in use simultaneously by the migrator (reading blocks

Phase Throughput
Magnetic disk
arm contention 111KB/s
No arm contention 192KB/s
Overall 135KB/s

Table 5: Migrator throughput measurements for
phases with and without disk arm contention.

and creating new cached segments) and by the I/O server
(copying segments out to tape) is significantly less than
the total throughput provided when the only access to the
magnetic disk is from the I/O server. When there is no disk
arm contention, the I/O server can write at nearly the full
bandwidth of the tertiary medium. The magnetic disk and
the optical disk shared the same SCSI bus; both were in
use simultaneously for the entire migration process. Since
both disks were in use both the disk arm contention and
non-contention phases, this suggests that SCSI bandwidth
was not the limiting factor and that performance might
improve by using a separate disk spindle for the staging
cache segments.

7. Conclusions

Sequoia 2000 needs support for easy access to large vol-
umes of data which won’t economically fit on current
disks or file systems. We have constructed HighLight as
an extended 4.4BSD LFS. It manages tertiary storage and
integrates it into the filesystem, with a disk cache to speed
its operation. The mechanisms provided by HighLight
are sufficient to support a variety of potential migration
control policies, and provide a good testbed for evaluat-
ing these policies. The performance of HighLight’s basic
mechanism when all blocks reside on disk is nearly as
good as the basic 4.4BSD LFS performance. Transfers
to magneto-optical tertiary storage can run at nearly the
tertiary device transfer speed.

We intend to evaluate our candidate policies to deter-
mine which one(s) seem to provide the best performance
in the Sequoia environment. However, it seems clear that
the file access characteristics of a site will be the prime
determinant of a good policy. Sequoia’s environment may
differ sufficiently from others’ environments that direct ap-
plication of previous results may not be appropriate. Our
architecture is flexible enough to admit implementation of
a good policy for any particular site.
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8. Future Work

To avoid eventual exhaustion of tertiary storage, HighLight
will need a tertiary cleaning mechanism that examines
tertiary volumes, a task which would best be done with at
least two access points to avoid having to swap between
the being-cleaned medium and the destination medium.

Some other tertiary storage systems do not cache tertiary
resident files on first reference, but bypass the cache and
return the file data directly. A second reference soon
thereafter results in the file being cached. While this is
less feasible to implement directly in a segment-based
migration scheme, we could designate some subset of the
on-disk cache lines as “least-worthy” and eject them first
upon reading a new segment. Upon repeated access the
cache line would be marked as part of the regular pool for
replacement policy (this is essentially a cross between a
nearly-MRU cache replacement policy and whatever other
policy is in use).

As mentioned above, the ability to add (and perhaps
remove) disks and tertiary media while on-line may be
quite useful to allow incremental growth or resource re-
allocation. Constructing such a facility should be fairly
straightforward.

There are a couple of reliability issues worthy of study:
backup and media failure robustness. Backing up a large
storage system such as HighLight would be a daunting
effort. Some variety of replication would likely be easier
(perhaps having the Footprint server keep two copies of
everything written to it). For reliability purposes in the
face of a medium failure, it may be wise to keep certain
metadata on disk and back them up regularly, rather than
migrate them to a potentially faulty tertiary medium. Do-
ing so might avoid the need to examine all the tertiary
media in order to reconstruct the filesystem after a tertiary
medium failure.

Code Availability

Source code for HighLight will be available via anony-
mous FTP from postgres.berkeley.eduwhen the
system is robust enough for external distribution.
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