The Design and Implementation of

the Inversion

File System

Michael A. Olson -University of California at Berkeléely

ABSTRACT

This paper describes the design, implementation, and performance of the Inversion file

system.
tertiary data store.

Inversion provides a rich set of services to file system users, and manages a large
Inversion is built on top of thesTGRESdatabase system, and takes

advantage of low-level DBMS services to provide transaction protection, fine-grained time
travel, and fast crash recovery for user files and file system metadata. Inversion gets between

30% and 80% of the throughput oLTRIX NFS

backed by a non-volatile RAM cache. In

addition, Inversion allows users to provide code for execution directly in the file system
manager, yielding performance as much as seven times better than tharof NFS.

Introduction

Conventional file systems handle naming and
layout of chunks of user data. Users may move
around in the file system’s namespace, and may typi-
cally examine a small set of attributes of any given
chunk of data. Most file systems guarantee some
degree of consistency of user data. These observa-
tions make it possible to categorize conventional file
systems as rudimentary database systems.

Conventional database systems, on the other
hand, allow users to define objects with new attri-
butes, and to query these attributes easily. Con-
sistency guarantees are typically much stronger than
in file systems. Database systems frequently use an
underlying file system to store user data. Virtually
no commercially-available database system exports a
file system interface.

This paper describes the design and implemen-
tation of a file system built on top of a database sys-
tem. This file system, called “Inversion” because
the conventional roles of the file system and data-
base system are inverted, runs on topPOSTGRES
[MOSH92] version 4.0.1. It supports file storage on
any device managed BOSTGRES and provides use-
ful services not found in many conventional file sys-
tems.

The Inversion file system provides transactions
and fine-grained time travel to users by taking

IThis research was sponsored by the University of
California and Digital Equipment Corporation under
Digital's flagship research project “Sequoia 2000: Large
Capacity Object Servers to Support Global Change
Research.” Other industrial and government partners
include the California Department of Water Resources,
United States Geological Survey, MCI, ESL, Hewlett
Packard, RSI, SAIC, PictureTel, Metrum Information
Storage, and Hughes Aircraft Corporation. Additional
funding was provided by the Army Research Office under
grant number DAAL03-91-0183.

1993 Winter USENIX — January 25-29, 1993 — San Diego, CA

advantage of thePOSTGRES no-overwrite storage
manager. File data are stored in the database, so
that file updates are transaction-protected. In addi-
tion, the user may ask to see the state of the file sys-
tem at any time in the past. All transactions that
had committed as of that time will be visible, so the
file system state will be exactly the same as it was
at that moment. This is an important improvement
on the coarse-grained time travel provided by other
systems.

Another feature provided by Inversion is fast
recovery. No file system consistency checker needs
to run on the Inversion file system after a crash,
since recovery is managed by thesTGRESstorage
manager. File system recovery is essentially instan-
taneous. Any updates that were in progress at the
time of the crash, but had not committed, will be
rolled back. Any committed updates are guaranteed
to be persistent across crashes.

In addition, files in the Inversion file system
may be located on any device managed by
POSTGRES The Inversion namespace is uniform
across devices. This means that the Inversion file
system can span multiple devices (and device types)
transparently. For example, the current system
manages data stored on a 327Gbyte Sony optical
disk WORM jukebox, and on magnetic disk. In the
near future, a 9 TByte Metrum VHS-form factor tape
jukebox will also be supported.

Finally, the fact that Inversion is built on top of

POSTGRESMakes it possible to issuad hoc queries

on the file system metadata, or even file data itself.
Instead of mastering the use of many different pro-
grams, the user may examine the file system’s struc-
ture and contents by formulating sSimpiSTQUEL
gueries. In addition, indices may be defined to make
file system operations run faster, at the user’s discre-
tion.

The system described here currently supports a
group of physical scientists researching global

The Inversion File System

climatic change as part of the Sequoia 2000 research
project [STON91]. For this user community, tran-
saction protection and fine-grained time travel are
important services. The amount of storage managed
requires novel fast recovery techniques like those
provided by Inversion.

The rest of this paper is organized as follows.
First, related work in file systems and in database
management systems is presented. Next, the archi-
tecture of therosTGRESdatabase system is summar-
ized, with attention to the features used by Inversion.
Then the design and implementation of Inversion are
described. A discussion of user-level access to
Inversion files follows that. Next, Inversion’s per-
formance is measured on a benchmark based on the
access patterns of its primary users. Finally, the
conclusion summarizes the major points of the
paper, and instructions on obtaining the code are
given.

Related Work

File systems researchers have lately concen-
trated on providing new services to administrators
and to users. Important areas of research include
transaction protection, viewing past states of the file
system (“time travel”), and attribute-based naming
strategies.

QuickSilver [CABR88] is an early example of
a file system that allows users to protect file changes
with transactions.

The Wisconsin Storage System (WiSS)
[CHOUS85] was an early implementation of a storage
manager supporting access to large data objects.

Olson

reorganizes storage to recover space occupied by
obsolete data. [SELT90] proposes extending such
systems with support for transactions, and support
for time travel could be added with appropriate
changes to the cleaner process.

Finally, several libraries and toolkits have
recently appeared that offer transactional and other
services to users. 4.4BSD includes a database
access method librarydb(3), which provides keyed
access to user data [SELT92]. This library includes
support for transactions, allowing users to make con-
sistent changes to files managed by the library. Kala
[SIMM92] offers primitives allowing users to imple-
ment tailored transaction management and version
control systems on a persistent programming
language data store.

As very large storage devices, such as optical
disk and tape jukeboxes, become widely available,
many researchers are investigating ways of saving
historical file system states automatically. Users can
then travel in time over the file system, viewing old
file contents at will.

The Plan 9 file system [QUIN91] periodically
snapshots file system contents to an optical disk
jukebox. Only changed files need to be copied; the
system automatically reconstructs the complete state
of the file system from the set of snapshots on the
jukebox. The granularity with which snapshots are
taken is configurable, but is currently once a day.

3DFS [ROOMB92] uses a similar snapshot stra-
tegy to capture and recover file system state. This
system extends the file system’s namespace to
include timestamps, making it possible to use pro-

WIiSS decomposes large objects into pages, changes grams likels(1) andcat(1) to look at a directory’s

to which are protected by transaction boundaries.
The WISS client controls physical layout of object
pages, making it easy to implement clustering stra-
tegies appropriate to particular large object applica-
tions. Indices on logical page locations make object
traversal fast.

The EXODUS storage manager [CARE86] pro-
vides a set of low-level abstractions for managing
large data objects. It supports efficient versioning of
these objects. Users can extend the system to sup-
port new object types and operations on them.

Episode [CHUT92] embeds transaction protec-
tion in the file system directly for file system meta-
data changes. These transactions permit faster
recovery after a crash than do graph-traversal pro-
grams like fsck(8). The file system manages a
write-ahead log of directory updates, and can detect
and remove transaction-inconsistent states quickly.
However, Episode does not provide transaction pro-
tection to users, so user files may be left inconsistent
by a system crash.

Log-structured file systems [ROSE91, SELT93]
append file system changes to the end of a log on
disk. A special “cleaner” process periodically

historical state, but complicating the user interface
and breaking things like shell filename globbing.

Finally, there has been much activity lately in
providing more robust query capabilities on file sys-
tems. The standardnix file system supports only
rudimentary query tools, likés andfind.

[SECH91] describes a strategy for doing
attribute-based lookups on files, where attributes are
not limited to name, size, creation time, and so forth.
[SECH91] makes the point that managing the
namespace of attributes is nearly as difficult as
managing the namespace of files.

The Semantic File SystertSFS), described in
[GIFF91], implements attribute-based naming by
allowing users to express queries as operations in the
file system namespace. “Virtual” directory names
may be constructed to refer to all of those files
whose attributes match values in the directory name.
The query mechanism is somewhat restrictive — the
current implementation supports only conjuncts, for
example — but the authors plan to extend the syntax.

SFS allows users to instaltansducers or pro-
cedures that compute attribute values for particular

1993 Winter USENIX — January 25-29, 1993 — San Diego, CA

Olson

files. The results of these transducers can be
indexed in Btrees for fast lookup later. An NFS

daemon accepts requests from network clients and
operates on SFS, providing these features to ordinary
users without requiring them to add code to their
systems.

The Inversion file system supports transactions
for both user data and file system metadata. It per-
mits finer-grained time travel than either Plan 9 or
3DFS. Like SFS, Inversion is extensible and sup-
ports indexing. It has a richer query language than
SFS, but does not at present support access via NFS.

Overview Of The POSTGRES Database System

Inversion is able to provide so rich a set of ser-
vices because it is built on top of a next-generation
database system. This section gives an overview of
the database system’s architecture, with an emphasis
on those feature used by Inversion.

The No-Overwrite Storage Manager

The PosTGRESdatabase system [MOSH92] uses
a novel no-overwrite technique for managing storage.
This technique allows the user to see the entire his-
tory of the database and obviates the need for a con-
ventional write-ahead log, speeding recovery
[STON87]. When a record is updated or deleted, the
original record is marked invalid, but remains in
place. For updates, a new record containing the new
values is added to the database. By using transac-
tion start times and a special status file which indi-
cates whether or not a transaction has committed,
POSTGRESCan present a transaction-consistent view
of the database at any moment in history. This
capability is referred to asime travel Since only
the start time and commit state of a transaction must
be recorded in the status file, no special log process-
ing is required at crash recovery time.

Periodically, obsolete records must be garbage-
collected from the database, and either moved else-
where or physically deleted. If the records are not
saved elsewhere, some historical state of the data-
base is lost. If time travel is desired, the records
must be saved forever somewhere. This process is
referred to asecord archiving

POSTGRES includes a special-purpose process,
called the vacuum cleaner that archives records.
Obsolete records are physically removed from the
table in which they originally appeared, and are
moved to an archive.

Type and Function Extensibility

POSTGRESallows users to define new types for
use in the database system. In addition, users may
write functions in C or inPOSTQUEL the query
language used bpoOSTGRES These functions may
be registered with the database system, and will be
dynamically loaded by the data manager when they
are invoked.

1993 Winter USENIX — January 25-29, 1993 — San Diego, CA

The Inversion File System

Inversion takes advantage of these two capabili-
ties to provide strong typing on user files, and to
support classification functions that describe files.

The Device Manager Switch

POSTGRESallows administrators to incorporate
new storage devices by writing a small set of inter-
face routines [STON93, OLS092]. Based on the
bdevsw switch in uNIX, the POSTGRES device
manager switch registers the devices that are avail-
able to the database system. For each device, the
required interface routines are listed. These routines
are specific to the database system, and include, for
example, code to create new tables and to commit
transactions.

Version 4.0.1 ofPOSTGRESsupports storage on
non-volatile RAM, magnetic disk, and a 327GByte
Sony optical disk WORM jukebox. The non-volatile
RAM and Sony jukebox device managers operate on
raw devices. In the current system, the magnetic
disk device manager uses the underlyimgx file
system to store data, but a future release of
POSTGRESWiIll probably change this.

Accesses to data are location-transparent — the
database manager finds the device storing the data
and issues calls through the device manager switch
to manipulate it. This allows users to store data on
any device known taePOSTGRESand manage it all
identically. Logically, the database has no upper
limit on its size.

The Design And Implementation Of Inversion

Inversion provides file system services to users
by taking advantage of database services provided by
POSTGRES Strictly speaking, the Inversion file sys-
tem is a small set of routines that are compiled into
the POSTGRESdata manager. Requests for file sys-
tem data call these routines, which carry out the
required database operations.

This section describes the Inversion support
routines and how files are stored in the database sys-
tem.

Decomposing Files into Tables

Files, generally viewed by users as byte
streams, are stored in conventional file systems as a
series of data blocks. The Inversion file system
similarly “chunks” user data. Figure 1 shows the
schema used to store file dataPoSTGREStables.

For every file, a uniquely-named table is
created. File data are collected into chunks slightly
smaller than 8kBytes. The size of the chunk is cal-
culated so that a single record will fit exactly on a
POSTGRESdata manager page. This page size was
chosen early in the design #fosTGRES and was
intended to make magnetic disk transfers fast.
Although Inversion does not require magnetic disk in
order to function, the inherited page size survives.

The Inversion File System

When a user writes a new data chunk to a file,
a record is created consisting of tikbunk number
or index of this chunk into the file, and the data
chunk. This record is appended to the table storing
the file. Multiple small sequential writes during a
single transaction are coalesced to maximize the size
of the chunk stored in each database record.

filename chunk# chunk
S/ 0 <user datafor chunk 0>
POSTGRE!
records i 1 <user datafor chunk 1>
2 <user datafor chunk 2>

Figure 1: Decomposition of files into tables in
Inversion

The Inversion file system provides a set of
interface routines to create, open, close, read, write,
and seek on files. Byte-oriented operations are
turned into operations on chunks by calculating the
chunk numbers of the affected chunks.

A file is located on particular device manager
at creation. From that point on, accesses are
device-transparent, both to the user and to the Inver-
sion file system itself. The underlying device
manager is called to instantiate blocks of the table
storing the file.

When a file is modified, the records storing
changed chunks are replaced in the normal way: the
old record is marked as deleted by the current tran-
saction, and the new record is marked as inserted by
the current transaction. In order to speed up seeks
on files, Inversion maintains a Btree index on the
chunk number attribute.

Namespace and Metadata Management

Inversion stores the file system namespace in a
table

naming(filename = char]],
parentid = object_id,

file = object id)
where filename is the character string name of
the file, file is the file’s unique object identifier in

the database (akin to an inode number in a conven-
tional uNix file system), and parentid is the
object identifier of the directory containing the file.

A hierarchical namespace is imposed by having
individual files point at their parent’snaming
entries. For example, the entries to construct the
pathname *“/etc/passwd” might be as shown in
Table 1.

Olson

filename parentid file

/ 0 810
etc 810 1076
passwd 1076 23114

Table 1. naming table entries for “/etc/passwd”

The root directory, named “/”, appears in every
POSTGRES database as shipped from Berkeley. A
single database corresponds to a mount point in con-
ventional file system architectures; all of the files
stored by Inversion in a single database are rooted at
“/" in that database.

Inversion includes routines to parse pathnames
in order to find desired files, and to construct path-
names for particular file identifiers. Various
Btree indices on thenaming table speed up these
operations.

Besides the file system namespace, Inversion
must manage additional metadata for every file. For
example, the file’s owner, type, size, and last access,
modification, and creation times must be recorded.
These attributes are stored in the table

fileatt(file = object_id,
owner = owner_id,
type = type_id,
size = longlong,
ctime time,
mtime = time,
atime = time)

where the file entry matches thefile entry in
the naming table. A simple two-way table join of
naming and fileatt can construct all the meta-
data for a given Inversion file.

The naming and fileatt tables manage
only file system metadata. The actual file data are
stored in separate tables. The name of the table
storing data for a particular file is computed from the
file identifier in the naming table. For example,
the identifier of “/etc/passwd” in Table 1 was
23114. The name of theoSTGREStable storing data
chunks for /etc/passwd would bimv23114

Exploiting Type and Function Extensibility

Inversion supports typing of user files. A new
file type is declared by issuing alefine type
command to the database system [MOSH92]. Once
this command has been issued, files may be assigned
the new type.POSTGRESWiIll automatically enforce
type checking when, for example, functions are
called that operate on the file.

Functions that operate on a particular type may
also be registered with the database system; this
applies to file types as well as to smaller database
types like money and time. These functions may be
invoked from the query language, and their results
examined.

4 1993 Winter USENIX — January 25-29, 1993 — San Diego, CA

Olson

defined functions
keywords, wordcount,
linecount
keywords, wordcount,
linecount, fonts, sizes
pixelavg, pixelcount, getpixel

file type
ASCII document

troff document

Coastal Zone
Color Scanner
satellite image
Advanced Very
High Resolution
Radiometer
satellite image

snow, pixelcount, pixelavg,
getpixel, getband

Table 22 Example file types and functions

Several databases storing Inversion files exist at
Berkeley storing many different types of files. For
example, documentation, Hierarchical Data Format
files, and images from different kinds of satellites
are all stored as different file types. Table 2 lists
some of the existing types and functions that operate
on them. Invoking a function from the query
language is eagy

retrieve (filename)
where "RISC" in keywords(file)

would find all the files stored by Inversion for which
the keywords function was defined, and whose
keywords included “RISC".

Adding new functions t®POSTGRESIs straight-
forward. Functions may be written in C or FDST-
QUEL. In release 4.0.1 of the database system, these
functions are dynamically loaded into the data
manager process and executed with its permissions.
A future version ofPOSTGRESWiIll support an RPC
interface to address the obvious security problems
raised by this approach.

Caching and Layout Policy

Inversion does not implement cache manage-
ment or layout policies independent of those used by
the POSTGRES database system for regular user
tables. There are two reasons for this. First,
POSTGRESalready implements reasonably good poli-
cies for relational data. Second, we have chosen to
concentrate on providing new capabilities to clients
of the file system, rather than on extensive low-level
performance tuning.

This section describes cache management and
layout policies implemented bJOSTGRES Inversion
inherits these policies unchanged from the data
manager.

2The example queries in this paper have been simplified
somewhat for presentation. In particular, the range
variables and long names used bgsTQUEL have been
removed. The intent is to show how queries are
expressed, not to introduce the reader to the intricacies of
POSTQUELSYyNtax.

The Inversion File System

Cache Management

POSTGRES maintains an in-memory shared
cache of recently used 8KByte data pages. The size
of this cache is tunable when the file system is
installed; as shipped, the system uses 64 buffers, but
the version in use locally uses 300.

Data pages are kicked out of this cache in LRU
order, regardless of the device from which they
came. Dirty pages are written to backing store
before being deleted from the cache. How they are
written depends on the device backing them; for
magnetic disk pages iROSTGRES4.0.1, pages are
written to the file system buffer cache, but are not
necessarily forced to disk.

Individual devices are managed via the device
manager switch table. Every device manager may
use a private cache for its data. For example, the
file system buffer cache is a secondary buffer cache
for magnetic disk pages POSTGRES

A more interesting example of device manager
caching is the Sony optical disk device manager.
Due to extremely high setup costs (many seconds to
load an optical platter) and relatively low transfer
rates, using the jukebox directly for every transfer
would be very slow. Instead, the Sony jukebox dev-
ice manager caches recently-used blocks on mag-
netic disk. The size of this cache is tunable, and
defaults to 10MBytes.

Data Layout

POSTGRES uses several strategies to improve
performance by exploiting locality of reference.
First, the selection of a relatively large page size
(8192 bytes) means that a single data page in
memory contains a good deal of user data. Second,
individual device managers are free to implement
sensible layout policies of their own on backing
store.

Since the magnetic disk device manager uses
the nativeunix file system, it inherits the layout pol-
icy used by that code. For systems that use cylinder
group strategies like that described in [MCKU84],
data for a single file are kept close together. As
smart SCSI disks proliferate, this strategy becomes
less effective, since many SCSI controllers silently
remap blocks to physically distant locations on the
storage medium.

The Sony jukebox device manager allocates
tables in units ofextents where an extent is a col-
lection of physically contiguous 8KByte data pages.
The extent size is tunable wheROSTGRES is
installed, but defaults to 16 pages. The choice of
extent size involves a tradeoff; for small tables,
much of the extent will go unused, while large tables
would benefit from the overhead reductions in
transferring very large extents.

1993 Winter USENIX — January 25-29, 1993 — San Diego, CA 5

The Inversion File System

Services Provided by Inversion

Because it is built on top of an extensible data-
base management system, Inversion is able to pro-
vide the following services:

e Transaction protection for changes to file data
and file system metadata.

e Fast recovery after a system crash.

e Time travel on any data managed by Inver-
sion, including metadata, data, and functions
defined by users that operate on files.

e Typed files, with user-defined functions that
can operate on them.

o Management of very large files.

e Strong consistency guarantees.

o Powerful query support on the file system’s
contents and metadata.

Transaction Protection

Transaction protection allows users to make
multiple interdependent changes to a set of files
atomically. For example, programmers working on a
large software project may need to be able to check
in several fixed source code files at the same time.
If the system crashes when some, but not all, of the
files have been checked in, then the software
project's master directory will be in an inconsistent
state.

Similarly, file system metadata changes must
be made atomically. For example, when a new file
is created in a directory, the directory (or file system

namespace) must be updated, and the new file must

be created. If only one of these operations takes
place, then the file system’s structure is corrupt.

Inversion supports transactions encompassing
changes to arbitrary numbers of files, and commits
or aborts all changes atomically. The transaction
mechanism is provided byoSTGRES No special
code was required for Inversion.

In addition, a standard database two-phase
locking protocol [GRAY76] allows concurrent access
to files while preventing simultaneous changes from
interfering with one another.

Fast Recovery

The POSTGRES transaction mechanism was

designed to permit fast recovery of the database sys-

tem after a crash. Data stored by Inversion is recov-
erable in the same way as ordinary relational data.
No special boot-time file system check program
needs to be run. By examining the commit state of

Olson

Although the current version of the system does not
do this, space has been reserved in the tables storing
file data for this purpose.

Time Travel

POSTGRES allows users to examine any
transaction-consistent historical state of the database.
Since transactions are committed atomically, users
can “change time” to any instant in history, and see
the database exactly as they would have seen it then.

Inversion inherits this fine-grained time travel
from the data manager. All old versions of files are
visible. Since user-defined functions are stored in
the database in the same way that ordinary files are,
users can even run old versions of these functions.

Inversion does not create copies of entire files
every time a change is made. Instead, only the
changed blocks are saved. The appropriate historical
version of a file is constructed using an index on all
of the file’'s available data, including both old and
current blocks. For files in which the user has no
interest in maintaining historyPOSTGRES can be
instructed not to save old versions.

As was mentioned in the section on related
work, both Plan 9 [QUIN91] and 3DFS [ROOM92]
support time travel, but only at relatively coarse
granularity. These systems snapshot file system
state once a day or so. Intervening states of the file
system are not visible.

The ability to see all of history can be impor-
tant; for example, it allows users to undelete files
removed accidentally, or to recover a working ver-
sion of a program which they have changed. Inver-
sion provides no direct support for annotating ver-
sions of files (though this capability would be easy
to add as a user-defined function), but if it did, it
would provide a superset of the services offered by
revision control programs likecs(1).

Typed Files

Conventional file systems offer little or no sup-
port for typing of files; conventions have evolved
among users to deal with this. For example, C pro-
grams by convention have suffixes of “.c” on most
UNIX systems.

Some systems, such as Locus [WALK83] and
CODA [KIST90], support typing, but provide only a
small number of file types, and do not permit users
to add functions managing these types easily.
[GIFF91] makes it easy to add new functions to the

records encountered in the database, any changes storage system. Inversion supports strong typing and

that were not committed before a system crash are
automatically detected and ignored.

The only difficulties arise when the physical

allows users to add new functions easily. Functions
operating on Inversion files may be written in C or
in POSTQUEL and will be dynamically loaded and

storage medium is damaged, or when garbage has executed on demand by the database system.

been written to the medium by hardware or software
failures. Inversion could detect these cases by mak-
ing all blocks self-identifying every block could be
tagged with its file identifier and block number.

Large Files

The practical upper limit on file sizes in the
currentuNix Fast File System is 4GBytes. Inversion
files can be 17.6TBytes in length. Support for very

6 1993 Winter USENIX — January 25-29, 1993 — San Diego, CA

Olson

large files is
datasets.
large files up into pieces and to reassemble them
inside applications; this is not necessary under Inver-

sion.
Consistency Guarantees

Since many files have complicated structure
and are semantically rich, it is important to guaran-
tee that they remain structurally consistent. The
symbol table and text space of a program, for exam-
ple, contain mutually dependent entries, and neither
should be changed without corresponding changes to
the other. Use of transaction processing and the
POSTGRES rules system [MOSH92] can guarantee
this consistency.

More fundamentally, scientific users have his-
torically managed some of their data in databases,
and some in file systems. Typically, the reason for
this has been that the database did not provide good
support for management of large data files. This
meant that records in the database could refer to files
entirely outside the control of the database manage-
ment code. Dividing responsibility in this way made
it impossible to guarantee that references were main-
tained correctly. Inversion alleviates this problem by
allowing users to store both tabular and file data in
the same storage management system.

Query Processing

Since all Inversion data are managed by
POSTGRES in tables, the user may run arbitrarily
complex queries over the file system’s namespace,
metadata, file contents, and user-defined functions in
order to find files of interest. A full-function query
language makes it possible to do very sophisticated
searches of the file system easily.

Services Under Investigation

In addition to the services listed above, we are
exploring several other novel features in Inversion.

Users are often interested in saving only
compressed versions of their files. Random access
to compressed files is typically impractical; files
compressed sequentially must be entirely
uncompressed before random access on them is
efficient.

Inversion supports compression and uncompres-
sion of “chunks” of user files. Special indices are
maintained indicating the sizes of the uncompressed
and compressed chunks. Random access on the
uncompressed version is straightforward. Inversion
determines which compressed chunk contains the
bytes of interest, uncompresses it, and returns the
user only the desired data. This approach provides
good storage utilization and maintains reasonable
random access times for files. We are investigating
suitable compression strategies for the scientific data
files stored in Inversion at Berkeley.

important in managing scientific

1993 Winter USENIX — January 25-29, 1993 — San Diego, CA

Researchers are currently forced to break very large file systems [MILL93].

The Inversion File System

File migration is also of interest to users of
Files that meet
some selection criteria should be moved from fast,
expensive storage like magnetic disk to slower,
cheaper storage, such as magnetic tape. We are
exploring strategies for using tlreoSTGRESpredicate
rules system to allow users and administrators to
define migration policies. Arbitrarily complex rules
controlling the locations of files or groups of files
would be declared to the database manager. When a
file met the announced conditions, it would be
moved from one location in the storage hierarchy to
another. The primary advantage of this strategy over
more conventional ones is its flexibility; the rules
system allows detailed migration conditions to be set
up for as many different kinds of files as necessary.

Finally, distributed file systems are a subject of
strong interest among both computer scientists and
physical scientists. Users would like to have their
files located nearby, but to have access to files stored
at remote sites. For Inversion, this has implications
in database cache management, migration, transac-
tion control, and locking. Several researchers at
Berkeley are exploring these issues.

Comparison to Other Database Systems

Many relational databases suppbihary large
objects or BLOBs. Typically, BLOB values can be
stored in the database or fetched from it, but not
manipulated from the query language in any useful
way.

POSTGRES supports large object storage by
creating Inversion files to store object data. All of
the services available to Inversion users are also
available to users of BLOBs. This includes strong
typing, the ability to manipulate BLOBs from the
query language, and a file-oriented interface to the
data they contain. Commercial vendors of relational
databases do not offer these services. Some research
systems, such as Starburst [HAAS90], do offer typed
large objects. Starburst provides access to large
objects via an extension to the SQL cursor mechan-
ism [LEHM89].

The integration of large database objects with
Inversion means that two different clients can share
data that they use in different ways. The same
Inversion file can be used by a database application
and by a file system client simultaneously. This
means that existing programs, which store their data
in a file system, continue to work. New applications
can be developed that use the database directly, and
can operate on the same data as the older code.

Access To Inversion Files

User files stored in Inversion may be opened,
read, and written using calls modeled on those sup-
ported for ordinaryunix files. The current imple-
mentation requires programmers to link a special
library in order to access Inversion file data.

The Inversion File System

int

p_creat(char *path, int mode)

int

p_open(char *fname, int mode,
int timestamp)

int

p_close(int fd)

int

p_read(int fd, char *buf,
int len)

int

p_write(int fd, char *buf,
int len)

int

p_lseek(int fd,
long offset_high,
long offset_low,
int whence)

Figure 2: Interface routines for Inversion clients

The routines that manipulate Inversion files are
shown in Figure 2. The important differences are in
the routines p_open and p_lIseek Since the
user may ask to see any historical state of the file
system, the p_open call includes a parameter to
specify the time for which the file should be viewed.
Historical files may not be opened for writing.
POSTGRES supports storage of objects up to
17.6TBytes in size, which means that an Inversion
file may be that big. The extra parameter to
p_lseek allows the user to specify a wider range
of byte positions. Finally, the mode flag to
p_open and p_creat encodes the device on
which the file should reside at creation time.

Inversion also supports three interface new rou-
tines, p_begin() , p_commit() , and
p_abort() These routines begin, commit, and
abort a transaction, respectively. NeitlFySTGRES
nor Inversion supports nested transactions, so a sin-
gle application program may only have one transac-
tion active at any time.

In the near term, we plan to provide NFS
access to Inversion. In order to do so, we will be
forced to support the standard interfaces for creating,
opening, and seeking on files. We plan to do so, but
to provide new fnctl() support to provide access
to time travel and very large files.

However, we are unsure how to support tran-
sactions via NFS. The NFS protocol makes every
operation an atomic transaction, which severely lim-
its the utility of transactions in Inversion. We are
most likely to follow the protocol specification, and
to provide no multi-operation transaction protection
for Inversion files accessed via NFS. Users who
want the richer services may still link with the spe-
cial library, and users who simply want to list

Olson

directory or file contents will not need to concern
themselves with transaction management.

Finally, Inversion supports ad-hoc queries on
file system metadata by using t®STQUEL query
language processor. Users may run the query
language monitor program to execute arbitrarily
complex queries. For example, the query

retrieve (filename)
where owner(file) = "mao"”
and (filetype(file) = "movie"
or filetype(file) = "sound")
and dir(file) = "/users/mao"

would return the names of all movie or sound files
owned by user “mao” and found in the directory
/users/mao.

Inversion currently stores several hundred satel-
lite images from by the Thematic Mapper satellite a
device which records five spectral bands for each
image. A function has been written to find snow in
these imagesPOSTGRESpermits the query

retrieve (snowf(file), filename)
where filetype(file) = "tm"
and snow(file)/size(file) > 0.5
and month_of(file) = "April"

which will find all TM images stored anywhere in
the file system which are from the month of April
and which contain more than 50% snow. The
snow function returns a count of the number of pix-
els that contain snow in the image. The query
returns the actual number of pixels covered by snow
and the name of the file storing the image.

The expressive power of a full-fledged query
language is clear. However, the language can also
be cumbersome and difficult for database novices to
master. Although we have no plans to do so, a
simpler query interface like that used by the Seman-
tic File System [GIFF91] could be constructed.
Similarly, an NFS server could manage time travel
by extending the file system namespace and passing
dates along to the database system for processing.
This approach has been explored by [ROOM92].

Performance Of The Inversion File System

This section presents measurements of the per-
formance of the Inversion file system. Inversion is
intended to support physical scientists working on
the Sequoia 2000 project [STON91], [KATZ91]. In
general, these scientists use Inversion as a network
file server. The system configuration evaluated here
is that used by Sequoia researchers. Inversion is
compared to NFS [SANDS85] running on identical
hardware.

System Configuration

Inversion was installed on a DECsystem 5900
with 128MBytes of main memory. The operating
system running on the machine wasTRIX 4.2.

8 1993 Winter USENIX — January 25-29, 1993 — San Diego, CA

Olson

Files were located on a 1.3GByte DEC RZ58 disk
drive attached to the DECsystem 5900.

Files were opened, read, and written from a
remote client running on a DECstation 3100 under
ULTRIX 4.2. Client/server communication was via
TCP/IP over a 10Mbit/sec Ethernet.

Inversion was compared to theLTRIx 4.2
implementation of NFS. The NFS server was run on
the same DECsystem 5900, using the same disk, as
Inversion. The NFS client was the same DECstation
3100.

The NFS implementation on the DECsystem
5900 used a service called PRESTOserve to speed
up writes. To guarantee that NFS servers remain
stateless, NFS must force every write to stable
storage synchronously [SAND85]. PRESTOserve
consists of a board containing 1MByte of battery-
backed RAM and driver software to cache NFS
writes in non-volatile memory. As will be seen
below, this substantially improved the write
throughput of NFS undewLTRIX. This non-volatile
memory was not used by Inversion.

The Benchmark

The benchmark consisted of the following

operations:

o Create a 25MByte file.

® Measure the latency to read or write a single
byte at a random location in the file.
Read 1MByte in a single large transfer.
Read 1MByte sequentially in page-sized units.
The page size was chosen to be efficient for
the file system under test.
Read 1MByte in page-sized units distributed
at random throughout the file.
Repeat the 1MByte transfer tests, writing
instead of reading.

All caches were flushed before each test.
These tests measure worst-case throughput for opera-
tions that Sequoia researchers are likely to carry out.

Benchmark Results

Figure 3 shows the elapsed time to create a
25MByte file under Inversion and undesLTRIX
NFS. As shown, Inversion gets about 36% of the
throughput of NFS for file creation. This difference
is due primarily to the extra overhead in maintaining
indices in Inversion. For every page written to the
file, Inversion must create a Btree index entry so that
the page can be located quickly later. Btree writes
are interleaved with data file writes, penalizing
Inversion by forcing the disk head to move fre-
guently. The NFS implementation does not maintain
as much indexing information on the data file, and
so can postpone writing its index until all data
blocks have been written. This means that NFS
writes the data file sequentially, improving
throughput.

1993 Winter USENIX — January 25-29, 1993 — San Diego, CA

The Inversion File System

150.0 7~

100.0 7~

50.0 T

Ultrix
NFS

Figure 3: 25MByte file creation times

Inversion

Figure 4 shows the overhead for reading or
writing a single byte at a random location in the
25MByte file just created.

Since all caches were flushed prior to running
the test, a disk access is required. For single-byte
reads, Inversion gets 70 percent of the throughput of
NFS. Single-byte writes are slightly worse; Inver-
sion is 61 percent of NFS. Since Inversion never
overwrites data in place, a new entry must be written
to the Btree block index, accounting for the differ-
ence.

Sec

0.031

0.02—

001+ . .
read write read write
Inversion Ultrix NFS

Figure 4: Random byte access

Figure 5 compares Inversion taTRIXx NFS on
large and small reads. The first pair of bars com-
pares throughput using a single large transfer to
move data from the server to the client. In this case,
Inversion gets eighty percent of the throughput of
NFS. When smaller transfers are used, Inversion
drops to 47 percent of NFS. Profiling reveals that
extra work is done in allocating and copying buffers
in Inversion. If some of this overhead were elim-
inated, Inversion’s performance could be brought
closer to that of NFS. Since single-byte transfer
times are much closer under the two file systems,
there is reason to believe that tuning will improve
Inversion.

The final pair of bars in Figure 6 compares the
transfer rates of Inversion and TrRix NFS when the
pages read are distributed at random throughout the
25MByte file. In this case, Inversion gets 43 percent
the throughput of NFS. The additional overhead

The Inversion File System

incurred by traversing the Btree page index in Inver-
sion accounts for much of the slowdown.

Figure 6 presents the write performance of
Inversion anduLTrRIX NFS. The tests run were
identical to those performed for Figure 5, except that
reads became writes. In these tests, the effect of the
PRESTOserve board used by NFS is dramatic.

Since NFS must flush every write to stable
storage, Inversion should have much better perfor-
mance than NFS without non-volatie RAM. The
reason for this is that NFS is forced to treat every
write as a single transaction, and commit it to disk
immediately. Inversion, however, can obey the tran-
saction constraints imposed by the client program,
and commit a large number of writes simultaneously.

Figure 6 shows that Inversion is slower than
ULTRIX NFS backed by PRESTOserve. For a single
large write request, Inversion gets 43 percent the
throughput of NFS. For page-sized sequential
writes, Inversion does worse, getting only 31 percent
of NFS’ throughput. For random accesses, Inversion
has only 28 percent the performance of NFS. In
fact, the NFS measurements show no degradation

Olson

due to random accesses, since the whole 1MByte
write fits in the PRESTOserve cache, and is not
flushed to disk.

Evaluation of Benchmark Results

The benchmark results indicate that Inversion is
penalized for not using a non-volatiie RAM buffer
such as PRESTOserve, and by its relatively heavy-
weight network communication protocol, which is
based on TCP/IP.

An obvious strategy would be to disable PRES-
TOserve and rerun the benchmark. We used produc-
tion file systems to collect the measurements shown
here. Both the Ultrix and Inversion file systems are
served by the same DECsystem 5900, and political
considerations made it impossible to reconfigure the
Ultrix NFS server for this test.

Another sensible strategy would be to run the
benchmark on local file systems, so that network
communication costs and the benefit of PRES-
TOserve were eliminated. [STON93] presents the
results of such a benchmark on a 12-processor
Sequent Symmetry machine running the Dynix
operating system. Those results show that Inversion

seconds
6.0 T Inversion
50 4 Inversion]
40T |nversion I
4 Ultrix :
3.0 Ultrix Ultrix
20 T
10
Single IMByte read 1MByte read 1MByte read
sequentially in at randomin
page-sized chunks page-sized chunks
Figure 5. Read throughput
seconds _ Inversion
6.0 - In\@ on —
50 T Inversion
40 T
30 T)
20 -+ Ultrix Ultrix Ultrix
Single IMByte write 1IMByte written 1MByte written
sequentialy in at randomin
page-sized chunks page-sized chunks

Figure 6: Write

10

throughput

1993 Winter USENIX — January 25-29, 1993 — San Diego, CA

Olson

gets better than 90% of the throughput of the native
file system on large sequential transfers, and roughly
70% of the throughput on small, uniformly random
transfers.

A final strategy is to exploit the extensibility of
Inversion to run the benchmark directly in the file
system, rather than using a separate application pro-
gram. The results of such an implementation are
presented below.

In this case, the routines for the benchmark
were declared teOSTGRESas user-defined functions,
and were dynamically loaded into tr®STGRESdata
manager on invocation. This represents the best per-
formance available to users under Inversion, since
the benchmark and the file system are running in the

The Inversion File System

The important comparison is between Inversion
running on two machines and Inversion running in a
single process. For 1MByte operations, remote
access adds between three and five seconds to the
elapsed time of each test. It is clear that the
client/server communication protocol used by the file
system is much too heavy-weight, and should be
optimized. The current implementation uses TCP/IP
for communication. Given optimization of the pro-
tocol, it is reasonable to expect performance within
fifty percent ofuLTRIX NFS and PRESTOserve from
Inversion.

Conclusions
Inversion provides significant new services to

same address space, and no data must be copied file system users by agjding a small amount of code
between them. Note that the same files can be used O the POSTGREsextensible database system. These

simultaneously by dynamically-loaded code and by
the more conventional client/server architecture.

Table 3 shows the performance of the single-
process benchmark. Comparable performance
numbers foruLTRIX are not included, since the
native ULTRIX file system does not support this
approach. For convenience, the performance of
client/server Inversion andLTRIX NFS, presented in
the previous section, are included.

The elapsed time for each test is reported in seconds.
The measurements shown are the means of ten runs.
In all cases, the standard deviation was negligible.

As Table 3 shows, the single-process Inversion
benchmark is faster than either of the network
benchmarks in virtually all categories. The impor-
tant exception is in random write time, for which
ULTRIX NFS using PRESTOserve is fastest, since no
disk seeks are required. Note, however, that the
single-process implementation of Inversion is faster
than ULTRIX with PRESTOserve for sequential
transfers. File creation is slower in both Inversion
benchmarks, due to the overhead of creating the
Btree index of blocks.

services include transaction protection for file
updates, fast recovery in the face of system crashes,
time travel on file data and metadata, strong typing,
the ability to add new functions that operate on file
types to the storage system, and support for complex
gueries on the file system name and and attribute
spaces.

The current implementation of the system
requires clients to link a special library in order to
use Inversion files. In the near future, we plan to
extend the system with support for NFS, although
the NFS interface will probably not support transac-
tions.

Performance of the system as a network file
server is reasonable, although continued tuning is
certainly necessary. Depending on the access pat-
tern, Inversion is between 30 and 80 percent as fast
as the nativauLTRIX file system over NFS carrying
out the same operationsILTRIX is able to exploit a
large non-volatile RAM cache that is not used by
Inversion, which skews performance in favor of
ULTRIX. For applications in which performance is
critical, users can arrange for their code to be run by
the Inversion file system directly, by creating user-

Inversion Inversion
Operation client/server ULTRIXNFS single process

Create 25MByte file 1415 50.6 1116
Single 1MByte read 34 2.8 0.4
Page-sized sequential 1MByte read 4.8 2.2 0.4
Page-sized random 1MByte read 55 2.4 0.8
Single 1MByte write 4.6 20 14
Page-sized sequential 1MByte write 5.6 1.7 1.4
Page-sized random 1MByte write 6.0 1.7 2.9
Read single byte 0.02 0.01 0.01
Write single byte 0.03 0.02 0.02

Table 3. Elapsed time in seconds for benchmark tests in three configurations

1993 Winter USENIX — January 25-29, 1993 — San Diego, CA

11

The Inversion File System Olson

defined functions and registering them with the data-
base system. In this case, performance is nearly as

13th ACM Symposium on Operating Systems
Principles Pacific Grove, CA, October 1991.

good as the nativeLTRrIX file system used locally.
The Inversion installation at Berkeley currently

manages approximately seven hundred megabytes of
user file data, spread across magnetic, magneto-

optical, and write-once optical disks. A number of
special-purpose functions that operate on satellite

image files have been written and are in regular use.

More are under development by Sequoia 2000
researchers.

Availability

Inversion is supported in release 4.0.1 of the
POSTGRESdatabase systemROSTGRES4.0.1 is avail-
able for anonymous ftp from
postgres.CS.Berkeley.EDU (128.32.149.1) in direc-
tory pub/, as file postgres-v4rOrl.tar.Z. If you prefer
to be mailed a tape, you may send a check for US
$150.00 to

POSTGRESProject

557 Evans Hall

University of California at Berkeley
Berkeley, CA 94720

Attn: Claire Mosher
Be sure to specify the kind of tape you want. We
are able to write 9track tapes at 1600bpi and
6250bpi, Exabyte cartridges, TK50s, and QIC tapes.

Acknowledgments

Wei Hong, Randy Katz, Ray Larson, Margo
Seltzer, Mike Stonebraker, and Mark Sullivan

offered guidance during early phases of the design of

Inversion. John Kohl reviewed an early draft of this

paper, and made useful suggestions for its improve-

ment. Jim Frew and the entire Sequoia 2000 com-

munity have been gracious test subjects, exercising

the file system and helping to identify its problems.

References

[CABR88] Cabrera, L., and Wyllie, J., “QuickSilver
Distributed File Services: An Architecture for
Horizontal Growth”, Proc. 2nd IEEE Confer-
ence on Computer Workstatigngarch 1988.

[CARES86] Carey, M. et al, “Object and File
Management in the Exodus Extensible Data-
base System,”Proc. 1986 VLDB Conference
Kyoto, Japan, August 1986.

[CHOUS85] Chou, H., Dewitt, D., Katz, R., and
Klug, A., “Design and Implementation of the
Wisconsin Storage System’Software Practice
and Experiencel5(10), October 1985.

[CHUT92] Chutani, S.,et al, “The Episode File
System”, Proc. USENIX Winter 1992 Techni-
cal Conference San Francisco, CA, January
1992.

[GIFF91] Gifford, D., Jouvelot, P., Sheldon, M., and
O'Toole, J., “Semantic File Systems”Proc.

12

[GRAY76] Gray, J., Lorie, R., Putzolu, F., and
Traiger, I., “Granularity of locks and degrees
of consistency in a large shared data base”,
Modeling in Data Base Management Systems
Elsevier North Holland, New York, pp. 365-
394.

[HAAS90] Haas, L.et al, “Starburst Midflight: As
the Dust Clears,” IEEE Transactions on
Knowledge and Data Engineeriniylarch 1990.

[KATZ91] Katz, R., et al, “Robo-line Storage: Low
Latency, High Capacity Storage Systems Over
Geographically Distributed Networks,” Sequoia
2000 Technical Report 91/3, UC Berkeley,
October 1991.

[KIST91] Kistler, J. J. and Satyanarayanan, M.,
“Disconnected Operation in the CODA File
System”, Proc. Thirteenth ACM Symposium on
Operating Systems PrinciplesdPacific Grove,
CA, October 1991.

[LEHM89] Lehman, T., “Long Field Support in
Starburst,” Proc. 1989 VLDB Conference
Amsterdam, Netherlands, September 1989.

[MCKU84] McKusick, M., Joy, W., Leffler, S., and
Fabry, R., “A Fast File System for UNIX",
ACM Transactions on Computer Syste@{(8),
August 1984.

[MILL93] Miller, E., Katz, R., and Strange, S., “An
Analysis of File Migration in a Unix Super-
computing Environment”,Proc. Winter 1993
USENIX San Diego, CA, January 1993.

[MOSH92] Mosher, C.,ed, “The POSTGRESRefer-
ence Manual, Version 4", UCB Technical
Report M92/14, Electronics Research Labora-
tory, University of California at Berkeley,
Berkeley, CA, March 1992.

[OLS092] Olson, M., “Extending thePOSTGRES
Database System to Manage Tertiary Storage”,
Master’'s thesis, University of California at
Berkeley, May 1992.

[QUIN91] Quinlan, S., “A Cached WORM File Sys-
tem”, Software — Practice and Experience
21(12), December 1991.

[ROOM92] Roome, W.D., “3DFS: A Time-Oriented
File Server”, Proc. USENIX Winter 1992
Technical Conferenge San Francisco, CA,
January 1992.

[ROSE91] Rosenblum, M. and Ousterhout, J., “The
Design and Implementation of a Log-Structured
File System”, Proc. 13th Symposium on
Operating Systems PrinciplesdPacific Grove,
CA, October 1991.

[SECH91] Sechrest, S., “Attribute-Based Naming of
Files”, University of Michigan Technical
Report CSE-TR-78-91, January 1991.

[SELT90] Seltzer, M., and Stonebraker, M., “Tran-
saction Support in Read Optimized and Write

1993 Winter USENIX — January 25-29, 1993 — San Diego, CA

Olson

Optimized File Systems,"Proc. 16th Interna-
tional Conference on Very Large Data Bases
Brisbane, Australia, August 1990.

[SELT92] Seltzer, M., and Olson, M., “LIBTP:
Portable, Modular Transactions for UNIX”,
Proc. USENIX Winter 1992 Technical Confer-
ence San Francisco, January 1992.

[SELT93] Seltzer, M., Bostic, K., McKusick, M, and
Staelin, C., “An Implementation of a Log-
Structured File System for UNIX", Proc.
Winter 1993 UsenixSan Diego, CA, January
1993.

[SIMM91] Simmel, S., and Godard, ., “The Kala
Basket — A Semantic Primitive Unifying Object
Transactions, Access Control, Versions, and
Configurations”, Proc. 1991 Conf. on Object-
Oriented Programming Systems, Languages,
and Applications 1991.

[STON87] Stonebraker, M., “Th@0STGRESStorage
System”, Proc. 1987 VLDB Conferenc@®righ-
ton, England, Sept. 1987.

[STON91] Stonebraker, M., and Dozier, J., “Sequoia
2000: Large Capacity Object Servers to Sup-
port Global Change Research,” Sequoia 2000
Technical Report 91/1, UC Berkeley, July
1991.

[STON93] Stonebraker, M., and Olson, M., “Large
Object Support inPOSTGRES, Proc. 9th Int'l
Conf. on Data EngineeringVienna, Austria,
April 1993 (to appear).

[WALKS83] Walker, B., et al, “The LOCUS Distri-
buted Operating System”QOperating Systems
Reviewv. 17 no. 5, November 1983.

Author Information

Michael Olson is a graduate student in Com-
puter Science at the University of California at
Berkeley, where he has attracted much notoriety by
wearing clothes. His research interests include
managing very large data stores and a categorical
ranking scheme for all the local breweries. The first
of these may someday lead to a Ph.D. Reach him
via US Mail at:

Mike Olson
571 Evans Hall
UC Berkeley
Berkeley, CA 94720
His electronic mail address is mao@cs.Berkeley.EDU.

1993 Winter USENIX — January 25-29, 1993 — San Diego, CA

The Inversion File System

13

14

1993 Winter USENIX — January 25-29, 1993 — San Diego, CA

