
Single Query Optimization for Tertiary Memory�

Sunita Sarawagi Michael Stonebraker

Computer Science Division

University of California at Berkeley

Abstract

We present query execution strategies that are optimized for the characteristics of tertiary

memory devices. Traditional query execution methods are oriented to magnetic disk or main

memory and perform poorly on tertiary memory. Our methods use ordering and batching

techniques on the I/O requests to reduce the media switch cost and seek cost on these devices.

Some of our methods are provably optimal and others are shown to be superior by simulation

and cost formula analysis.

1 Introduction

Large capacity storage systems are essential for an increasing number of scienti�c and commercial
applications. For example, research on global change e�ects requires the storage and analysis
of massive amounts of satellite data [STO91]. The Earth Observation System (EOS) [DOZ91]
alone is expected to provide one terabyte per day of raw data to global change scientists. Such
volumes of data require high capacity tertiary memory devices [KAT91] for storage and smart
data base systems for e�cient query support.

Traditional DBMSs have assumed that all data reside on magnetic disk or main memory.
Therefore all optimization decisions were oriented towards this technology. Tertiary memory, if
used at all, functioned only as an archival storage system to be written once and rarely read.
With the inclusion of tertiary memory as an active part of the storage hierarchy it is necessary
to rethink the optimization decisions made by a DBMS [STO91a] [CAR93]. In this paper, we
propose improvements to existing query execution strategies to adapt them to tertiary storage
devices.

Tertiary memory devices have very di�erent performance characteristics than magnetic disks.
A typical device consists of a large number of storage media (tapes or disk platters) and a few
read-write drives. A robot arm switches the media between the shelves and drives, typically
in 5{10 seconds. We use the term extent to refer to the unit of data transfer from the tertiary
memory. An extent is generally much bigger than a magnetic disk page because the high

�This research was sponsored by the National Science Foundation under grant IRI-9107455, the Defense Ad-

vanced Research Projects Agency under grant T63-92-C-0007, and the Army Research O�ce under grant 91-G-

0183. Additional support was provided by the University of California and Digital Equipment Corporation under

Research Grant 1243. Other industrial and government partners include the State of California Department of

Water Resources, United States Geological Survey, Construction Engineering Research Laboratory (CERL) of the

U.S. Army Corps of Engineers, the National Aeronautics and Space Administration (NASA), Epoch Systems, Inc.,

Hewlett-Packard Corp., Hughes Aircraft Company, MCI, Metrum Corporation, PictureTel Corporation, Research

Systems Inc., Science Applications International Corporation, Siemens Inc., and TRW Space and Electronics.

1

Storage Exchange Average seek Data transfer Extent (128 KB) Worst/best

device time (sec) time (sec) rate (KB/sec) transfer time (sec) access (sec)

Optical disk 8 0.1 500 .256 32.4

Helical scan tape 6 45 4000 .032 4406

Optical tape >60 30 3000 .043 3488

Magnetic disk - .03 4250 .030 4

Table 1: Comparative study of the characteristics of di�erent storage devices

latency of tertiary memory is amortized by transferring data in larger quantities. In Table 1 we
summarize the storage characteristics of several tertiary memory devices. The characteristics
shown are exchange time (time to unload one medium from the drive and then load a new unit
and get it ready for reading), average seek time (one third of the maximum seek time), data
transfer rate, transfer time for an extent of size 128 KB, and the ratio between the worst case
and best case access times for an extent.

From the last column of Table 1 one can note that magnetic disks are a relatively uniform
storage medium. Worst case access times are only a factor of 4 larger than best case times.
However, tertiary memory devices have much higher variability. In fact, tape oriented devices
have 3 orders of magnitude more variation. This variability makes it crucial to carefully optimize
the order in which data blocks are accessed. Furthermore, since a typical tertiary memory device
has very high latency it can perform fewer I/Os per unit time than a magnetic disk. The greater
speed mismatch between I/O and CPU means that the query optimizer can a�ord to run more
expensive query optimization algorithms since the savings will more than compensate for the
additional optimization.

Based on the above di�erences we have developed methods of executing queries that are
tuned to the tertiary memory characteristics. The main drive of our optimization methods is to
preprocess and plan I/O requests so that data is fetched in the order in which it is stored on the
tertiary memory instead of in a random order. To convert random I/Os to ordered I/Os, one
technique we use is, �rst �nd out all data to be fetched in the form of tuple identi�ers (TID)
(using sequential scans or index structures whenever possible), and then use this list of TIDs to
read tuples wisely. We suggest methods of doing I/O in batches that utilize the cache e�ectively
to amortize the high latency of tertiary memory devices. In this paper, we will discuss how these
ideas can be applied for executing single relation queries and two-way joins.

The paper is organized as follows. In Section 2 we discuss methods of optimizing index scans on
single relation queries. In Section 3 we consider methods of optimizing two way joins for relations
that are present on a single medium. We suggest methods for improving the traditional nested
loop join, sort merge join and hash join. Finally, we suggest future work and make concluding
remarks.

1.1 Notations and Assumptions

We assume that all relations are stored on tape-based or disk-based tertiary memory and that the
optimizer knows how a relation is laid out on this memory. In particular, it knows the media on
which each part of a relation is stored and the locations of the extents of a relation if the storage
medium is tape-based. Indices for relations are assumed to be stored on magnetic disk or on
some medium where the cost of accessing the index is small compared to the cost of accessing
the relation. A magnetic disk is used as the cache for tertiary memory. The size of the cache

2

TID tuple identi�er

M available cache

ER number of extents in relation R

TR number of tuples in relation R

EM number of extents that can �t in M

TM number of tuples of a relation that can �t in M

s tuple selectivity of a join operation

e extent selectivity of a join operation

Table 2: Notations

is usually small compared to the capacity of tertiary memory. For example, the Sequoia 2000
project [STO91b] has a 14 gigabyte magnetic disk cache attached to 9 terabyte tape robot. As
such, cache size is 0.16% of storage size and few cache \hits" can be expected. Therefore, the
optimizer assumes that all data has to be fetched from tertiary memory, and no data is already
present in the cache. The optimizer has a good estimate of the amount of free space available
in the cache and can control what extents should be kept in the cache and what extents should
be evicted. In this paper we will concentrate on optimizing I/O time for tertiary memory. We
ignore CPU time and I/O time for magnetic disk because the delay of tertiary memory is so
high that we expect it to be the dominant component. Other notations used are summarized in
Table 2.

2 Single Relation Queries

The conventional method of executing an index scan on a relation is to search the index tree,
fetching the relevant tuples in the order in which their TIDs occur in the index leaf pages. This
method is ine�cient for tertiary memory because it might fetch an extent for every tuple read
and might spend considerable time seeking between them if the order of the extents is random.
We propose a modi�cation called the deferred index scan method as follows:

We �rst scan the index and get the list of TIDs of qualifying tuples. The TID list is then
ordered so that the following conditions will hold if the TIDs are processed in that order:

� all extents on one medium are fetched before fetching extents on another medium.

� if the storage medium is tape all required extents on the tape are fetched by one forward
sweep across the tape rather than seeking back and forth.

� when an extent is fetched all qualifying tuples in that extent are read before fetching the next
extent.

The deferred index scan method fetches the minimum number of extents and incurs the least
I/O cost. So, according to our proposed cost model of considering only I/O cost, this scheme is
obviously optimal.

3 Two-way Joins on Single Medium Relations

In this section we propose modi�cations to the traditional methods of doing two way joins for
e�cient execution on tertiary memory when each relation is con�ned to a single medium.

In traditional DBMSs the disk I/O cost is measured only in terms of the number of pages
fetched. This is inadequate for tertiary memory since media switches and seek distance account

3

for a signi�cant fraction of the I/O cost. Hence, in addition to the number of extents fetched

we use the number of switches between the two component relations as a cost metric.
The latter quantity refers to the number of times a request changes from one relation to the
other. By multiplying this number with the total time of switching from one relation to the other
we can measure the seek time involved in moving between the two relations and also the number
of media switches since we have assumed that a relation is con�ned to a single medium. For
deriving the cost formulas for di�erent join methods, we assume that the tertiary memory has
only one read-write drive, the size of the disk cache is small compared to the size of the relations,
the bu�er management policy used during query processing for traditional join methods is LRU,
and the join attribute is unclustered.

3.1 Nested Loop Method

This method, also called the iterative substitution method, computes the join of two relations
by scanning the outer relation (R) and for each tuple of R scanning the inner relation (S) to
get the matching tuples. We propose three improved techniques based on the method used for
scanning R and S:

1. Fragmented Nested Loop: applies when the join attribute of neither R nor S is indexed.

2. Alternating Nested Loop-1: applies when the join attribute of one of R or S is indexed.

3. Alternating Nested Loop-2: applies when the join attributes of both R and S are indexed.

3.1.1 Fragmented Nested Loop

When there are no indices on the join attribute for either the inner relation or the outer relation
the traditional method of executing the join is to sequentially scan the inner relation for each
tuple of the outer relation. We propose a modi�cation to this method that requires fewer I/Os:

The cache can hold only EM extents at a time. Divide the smaller relation (say R) into
fragments of size EM . We will get n = ER=EM fragments of R (call them R1; R2 : : :Rn). The
join will be done in n passes. In the ith pass, cache all extents in fragment Ri and do standard
nested loop between Ri and S choosing S as the outer relation. During this join, tuples of S
are fetched sequentially and for such tuple of S, a pass is made over Ri that remains in cache.
Cost Analysis

Assume neither R nor S �ts in cache. For the sake of comparison assume R is the outer relation
in the original nested loop method.
Original nested loop: For each tuple of R we need to fetch all extents of S. So the total number
of extents fetched is TRES +ER. The tuples of R are fetched sequentially but once an extent of
R is fetched it remains in cache until all tuples in it have formed joins. Therefore, a switch is
made from R to S and back to R for every extent of R except the last for which we do not need
to switch back to R. So, the total number of switches between the two relations is 2ER � 1.
Fragmented nested loop: For each fragment of R, one sequential scan is made on S. Also, an
extent of R is fetched only once from tertiary memory. So, the total number of extents fetched
is ER+nES . For each fragment of R, data requests to tertiary memory change from R to S and
then from S back to R. So, the number of switches is 2 for every fragment except the last for
which we do not need to switch from S back to R. This adds up to a total of 2n� 1 switches.
The estimated cost in terms of the number of extents fetched and the number of switches is
summarized next.

4

1000 2000 3000 4000 5000 6000 7000 8000 9000
10

1

10
2

10
3

Memory size

sw

itc
he

s
(lo

g
sc

al
e)

original nested loop

fragmented nested loop

1000 2000 3000 4000 5000 6000 7000 8000 9000
10

3

10
4

10
5

10
6

10
7

10
8

Memory size

E

xt
en

ts
 (

lo
g

sc
al

e)

original nested loop

fragmented nested loop

Figure 1: I/O costs as a function of memory size

fragmented nested loop original nested loop
of switches between R & S: 2n� 1 2ER � 1
of extents fetched: ER + nES TRES + ER

The above cost formulas are plotted in Figure 1. The broken line corresponds to the traditional
method and the solid line to the modi�ed method. The parameters used for the plots are given
in Table 3. The time taken by the modi�ed method decreases when the available cache size
increases and levels out when all of the smaller relation �ts in the cache.

Claim: With the above method the number of extents fetched and the number of switches is the

minimum possible for executing a nested loop join.

Proof. Assume S consists of m partitions of size EM and R consists of n partitions (n � m).
To complete the nested loop, each partition of R has to join with m other partitions and each
partition of S has to join with n other partitions. There must be a total of nm joins between
partitions. The cache can hold only 1 partition at a time. For every partition in the cache,
a join with the partition will require fetching one other partition. But a cached partition can
participate in at most m other joins. Hence for every m joins between partitions a minimum of
m + 1 partitions have to fetched. So the number of partitions to be fetched for nm joins must
be at least n(m + 1) = n + nm and since each partition consists of EM extents, the number of
extents fetched must be at least nEM + n(mEM) = ER +nES . Similarly, it can be argued that
a minimum of 2 switches is required for every m joins between partitions. However, for the last
partition one switch is enough because it is not necessary to switch back to R for fetching the
next partition. So, for nm joins between partitions the number of switches has to be at least
2n� 1. Hence, the modi�ed method achieves the lower bound and is therefore optimal. []

3.1.2 Alternating Nest Loop-1

This method can be applied when there is an index on the join attribute of one of the two
relations. Let us assume the indexed relation is S and the inner relation used for the join is S.
The traditional method is to sequentially scan the outer relation R, and for each of its tuples do
an index scan on S and fetch the qualifying tuples (if any). Hence, for each extent of R we need
to switch to S, complete the join between all tuples in the extent and S, then switch back to R
to fetch the next extent. We propose a modi�cation to this method that avoids the random I/O

5

t tuple size 200 bytes

E extent size 100 KB

TR number of tuples in R 100000 tuples

TS number of tuples in S 100000 tuples

TM number of tuples that can �t in the cache 1000 tuples { 10000 tuples

s selectivity of join 0.2

Table 3: Graph Parameters

on S and the frequent switches between the two relations by ordering the I/O requests using
the TID list obtained from the index on S and a sequential scan on R.

We proceed in two phases. In the �rst phase, called the initialization phase, we �nd the list
of TIDs of tuples of R and S that participate in a join using the index of S and a sequential
scan on R. In the second phase, called the join build phase, the TID list is used to fetch relevant
extents and process the join between R and S. During the join phase, the tuples are read in a
manner that reduces the number of times an extent is fetched, and the number of times a switch
is made. Details of the algorithm follow:

Initialization phase:
To get the TID list, sequentially scan R, and for each tuple of R search the index of S. This
will tell if the R tuple participates in a join and the TIDs of the S tuples it joins with (if any).

Join build phase:
We use the term qualifying tuples for tuples that participate in the join. The TID list is used
to get the TIDs of qualifying tuples. Here are the steps in this phase:

(1) Cache as many qualifying tuples of R as possible. There can be at most TM of them. Call
these cached tuples R0. This step can be combined with the initialization phase above to
avoid fetching the tuples of R0 again from tertiary memory.

(2) Next switch to S and process the join between R0 and S, caching as many qualifying tuples
of S as possible in the space freed by tuples of R0 once they are done with their joins. We
suggest the following method of doing this task e�ciently.

For the tuples in R0, consult the TID list data structure to get the TIDs of S tuples it
joins with. Fetch the extents that hold these S tuples in the order prescribed in Section
2. When an extent E of relation S is fetched, process the join for all tuples of E with R0.
Tuples of S and R0 that �nish their joins are removed from the qualifying TID list and
tuples of R0 that are done with their joins are removed from the cache. Before E is evicted
from the cache, all qualifying tuples in E that are not done with their joins are cached if
space is available.

At the end of this operation, all tuples in R0 have been removed from the cache since they
are �nished with their joins. Some qualifying tuples of S that were cached in the above
step are still in the cache. If space is available, cache as many more qualifying tuples of S
as possible. Call the set of S tuples in the cache S0. These are the tuples of S that need
to form joins with R. Switch to relation R and do the join between S 0 and R repeating
the process described above.

(3) This process of caching tuples from one relation, switching to the other relation, and doing

6

1000 2000 3000 4000 5000 6000 7000 8000 9000
10

0

10
1

10
2

10
3

Memory size

sw

itc
he

s
(lo

g
sc

al
e)

original nested loop

alternating nest loop-1

1000 2000 3000 4000 5000 6000 7000 8000 9000
10

2

10
3

10
4

10
5

Memory size

E

xt
en

ts
 (

lo
g

sc
al

e)

original nested loop

alternating nest loop-1

Figure 2: I/O cost as a function of memory size

the joins in batches is repeated until the TID list becomes empty.

Cost Analysis

The cost formula of the above method as compared to the original method follows. For this
analysis we assume a tuple of R joins with only one tuple of S and vice versa. Let XR be the
expected number of extents of R over which TM tuples are spread and XS is the corresponding
value for S.

alternating nested loop-1 original nested loop
of switches between R & S: n = sTR=TM 2eER
of extents fetched: ER + n(XR +XS) sTS + ER

Original nested loop: The number of extents of R and S fetched is ER (since R is the outer
relation and is scanned sequentially) and sTS (since S is the inner relation and the sTS tuples
are fetched randomly) respectively. The number of switches is 2eER since for each extent of R
that contains any qualifying tuple, we need to switch to S and back again to R.
Alternating nested loop-1: De�ne a pass of the algorithm as the interval between two successive
switches from R to S. In each pass 2TM tuples of R can be joined. Hence the total number
of passes required to join all (sTR) tuples of R is sTR=(2TM). We make two switches in each
pass, so the total number of switches is equal to sTR=TM . For the initial TID list computation
we fetch ER extents of R. For each pass of the algorithm, we fetch 2(XR +XS) extents on an
average as explained next. To process the join with the TM tuples of R that are cached, we
fetch TM tuples of S. These TM tuples of S require fetching of XS extents because an extent
that contains any of those TM tuples is fetched only once. Next, to cache TM tuples of S (the
set we called S0) we fetch another XS extents of S. For ease of analysis, we assume no tuples
of S0 are cached during the join with cached R. Similarly after switching to R we need to fetch
2XR extents of R. Hence the total number of extents fetched during the join build phase is the
number of passes (= n

2
) times the total number of extents fetched per pass (= 2(XR + XS))

which is equal to n(XR +XS). An approximate value for XR is ER(1� (1� 1

ER
)TP).

Figure 2 shows the number of extents fetched and the number of switches for the two di�erent
join methods. The two cost metrices are plotted (on a log scale) against varying cache size. The

7

broken lines represent the estimated cost formulas tabulated earlier and the points show the
values obtained from a simulation of the two join methods for the parameters in Table 3. The
observed number of switches between the two relations agrees very closely with the predicted
cost formula. The number of extents fetched for the modi�ed method is overestimated slightly by
the cost formula because these are derived under the assumption that no caching is done during
the join processing stage. In reality, since the caching and the join stages are combined, fewer
extents are fetched in the caching stage. Even so, the improvement achieved by the modi�ed
method is signi�cant. For instance, for a cache size of 5000 tuples, our modi�cation results in
the number of switches dropping from 400 to 6 and the number of extents fetched dropping from
19,500 to 750. The relative performance of the modi�ed method improves when the available
cache increases because cache utilization is better than in the traditional method.

3.1.3 Alternating Nest Loop-2

This method applies when there is an index on the join attribute of both R and S. An index
scan on the outer relation is better than a sequential scan only when there is a restriction on
the join �eld of R. In the traditional scheme, the index for R is scanned to get a quali�ed tuple
of R. This tuple is used to do an index scan of S, and if there is a match the matching tuples of
S are fetched to complete the join. This means that, in the worst case, every join tuple requires
a switch between R and S and the fetching of at least two extents. A more e�cient method is
now suggested.

This method is the same as the previous case (Section 3.1.2) except that the method used to
get the initial qualifying TID list is di�erent. Instead of sequentially scanning tuples of R to get
the list of quali�ed TIDs we use the indices of R and S. The leaf nodes of the index trees store
the (key, TID) pair for the join attribute. The index tree can then be used to create a sorted

list of the (key, TID) pair for each relation. These lists are joined using sort merge on the key

�eld to get a list of qualifying tuples as above.

Cost Analysis

The cost formula of the above method as compared to the original method is as follows:

alternating nested loop-2 original nested loop
of switches between R & S: n = sTR=TM 2sTR
of extents fetched: n(XR +XS) sTS + TR

Original nested loop: The number of switches between R and S is 2sTR, since for each tuple of
R that participates in a join, it might be necessary to fetch a new extent of S and then switch
back to R to fetch the next tuple of R. Since tuples of R are not accessed sequentially, for each
tuple of R it might be necessary to fetch an extent from tertiary memory. So, the number of
extents of R fetched is TR. The number of extents of S fetched is sTS since only qualifying
tuples of S are fetched.
Alternating nested loop-2: The number of switches is the same as in alternating nested loop-1.
The number of extents fetched di�ers only in the extra ER extents fetched during initial TID
list formation.

The graph in Figure 3 shows a comparison of the number of extents fetched and the number
of switches for the two methods. The parameter settings are the same as in the previous case.
From the graph it is clear that the original nested loop method requires almost a thousand times
more switches than the modi�ed method. For instance, for cache size of 5000 tuples, the number

8

1000 2000 3000 4000 5000 6000 7000 8000 9000
10

0

10
1

10
2

10
3

10
4

10
5

Memory size

sw

itc
he

s
(lo

g
sc

al
e)

original nested loop

alternating nest loop-2

1000 2000 3000 4000 5000 6000 7000 8000 9000
10

2

10
3

10
4

10
5

10
6

Memory size

E

xt
en

ts
 (

lo
g

sc
al

e)

original nested loop

alternating nest loop-2

Figure 3: I/O cost as a function of memory size

of switches drops from 40,000 to 10 implying a 55 hour di�erence in execution time assuming a
media switch cost of 5 seconds.

TID List Organization

The success of both of the above methods depends on the e�cient manipulation of the TID list
structure to do the following operations:

� Given the TID of a tuple of R, retrieve the TID of all tuples of S it joins with and vice versa.

� Find all qualifying tuples in a given extent.

� Remove a TID from the TID list.

All these operations can be done relatively cheaply when the TID structure is in main memory.
This will be true when the number of qualifying join tuples is small. When the number of entries
in the qualifying TID list gets large it is necessary to design structures that scale well with the
list length. We suggest the following scalable method for handling large TID lists.

Let N denote the number of TIDs of R that can �t in the main memory TID data structure.
Instead of constructing the initial TID list for the entire relation, R is divided into subparts
R1; R2; : : :Rm such that each partition except possibly the last one contains N qualifying tuples.
For each partition Ri, we use the methods described earlier for joining tuples in Ri with the
corresponding tuples in S. The partitions of R can be easily determined by modifying the initial
TID list formation method as follows:

If the initial method of constructing a TID list involves a sequential scan of R, we simply need
to remember the ending point of the previous partition and start forming the new TID list from
that tuple. When N TIDs are inserted in the list we stop. If the initial method of constructing
the TID list involves an index tree search, we need to remember the index key of the last tuple
in the previous partition and start the new TID list formation from that key.

3.2 Two-level Hash Join

If the smaller relation, R, �ts in the disk cache, any conventional hash join method [SHA86] will
work well for tertiary memory databases. Otherwise, the conventional methods of partitioning
the two relations into buckets that �t in the cache and doing the join between the partitioned

9

buckets can be ine�cient for some tertiary memory devices. In the partitioning phase, this
method requires reading from a source �le and writing N hash partitions. On a tape, this might
require random seeks between N +1 di�erent data clusters during the partitioning phase. Also,
some tertiary memory devices are write-once and hence writing out temporary partitions may
not be feasible. We propose a variation of the hybrid hash join that is adopted for the tertiary
memory environment.

The main steps of the algorithm are:

Partitioning phase:

� Scan R and form a hash table organized as follows. Store only the TIDs of the hashed tuples
for each of the buckets except the �rst n. For the �rst n buckets (call them B0) store the
entire tuples. The value of n is chosen so that all tuples of B0 can �t in the cache. Unlike the
traditional method we do not require all tuples of B0 to �t in main memory { they can spill
over to the disk cache.

� Switch to S and partition tuples of S the same way. For tuples hashing into the �rst n buckets,
directly process the join.

� Flush buckets that contain TIDs of only one of the component relations since they do not
participate in any join. All the tuples in buckets of B0 are �nished with their joins and can
be evicted.

Join build phase:

At the end of the partitioning phase we have a list of the TIDs of the tuples of R and S in each
bucket. A multi-pass algorithm is used to form joins between tuples in these buckets. A pass of
this algorithm consists of the following steps:

� Estimate the next x buckets (call them Bi) that can cache tuples of S by counting the TIDs
of S hashed into each bucket. The TID list of the S tuples in Bi will yield a list of S tuples
(S0) to be fetched. The TID list of S0 can be ordered as described in Section 2 to read the
tuples of S0 e�ciently from tertiary memory. With these tuples build a hash table for S0.

� Switch to R and process the join between tuples in the bucket set Bi. The tuples of R required
for processing this join are fetched in the ordered prescribed in Section 2.

� Build a hash table for the next y buckets that can hold tuples of R, switch to S, and process
the join using the hash table as described in the above two steps but with the roles of R and
S interchanged.

For joining tuples within a bucket we suggest using classic hash [SHA86] because it requires
only one scan for tuples of the outer relation and hence does not require any cache space for
the probing relation. The main argument against using the classic hash method is that it can
cause too many page faults and hence too many reads on the magnetic disk cache if the hash
table does not �t in main memory. However, this is acceptable to us since we save on the more
expensive reads to tertiary memory. If we restrict our attention to hash tables that �t in main
memory, fewer tuples can be joined in each pass, causing the number of switches to increase.
Also, in our method of reading the tuples of a relation in a pass, we order the reads so that an
extent is fetched at most twice in each pass of the algorithm. So, having a smaller number of
passes also means that the number of extents fetched is smaller.
Cost Analysis

Assume for ease of explanation that all partitions have the same number of tuples (TP) of R

10

and S. Let N be the number of partitions where N = TR=TP . Let XR be the expected number
of extents of R over which TP tuples are spread.

modi�ed hybrid hash original hybrid hash
of switches between R & S: N 2N
of extents read/written: 2XR(N � 1) +ER +ES 3(ER +ES)� 4EP

Original hybrid hash: The number of switches is 2N because joins within each partition require
2 switches { one from R to S and a second from S back to R. The accounting for the number
of extents is as follows:
ER +ES : for the initial partitioning phase
ER +ES � 2EP : for writing out all but the �rst partitions for both relations
ER +ES � 2EP : for reading the partitions in the subsequent join phases.

Modi�ed hybrid hash: A pass of the algorithm completes the join of two partitions, one with R

as the probing relation, and the other with S as the probing relation and requires two switches {
once from R to S and then from S back again to R. The total number of switches is 2(N=2) = N .
The number of extents read in the initial partitioning phase is ES +ER. In the subsequent join
phase, for each partition except the �rst one, TP tuples are fetched from each of R and S. If
XR is the number of extents over which TP tuples are spread, the number of extents fetched per
partition is 2XR. Hence the total number of extents fetched in the join phase is 2XR(N � 1).

The superiority of the modi�ed method over the original method is di�cult to decide by just
examining the cost formulas. Also, it is di�cult to analyze the seek overhead of the partitioning
phase in the original method. So, we will simply list some of the advantages of the modi�ed
method over the original method.

� There is no need to write the partitions into tertiary memory. This is useful for both

- write once tertiary memory and

- tape-based tertiary memory (since writing out N buckets during hashing can result in many
seeks between the relation partitions).

� The TID list allows one to estimate the number of tuples in each bucket. This enables one
to cache a variable number of buckets during each pass and thus utilize the available bu�er
space e�ectively. This pays o� when the hash function is highly skewed.

� Knowing the TID list one can fetch the qualifying tuples in one pass in a manner that makes
accesses e�cient. This also means that subsequent passes over the relations will not require
fetching the entire relation but only the extents that contain tuples for the selected sets of
buckets.

3.3 Fragmented Merge Sort Join

If both R and S are sorted on the join attribute, the sort merge method pays o� for joins. Again,
the conventional method of fetching a tuple of one relation, switching to the other, and scanning
it for a match can be very ine�cient and we suggest the following modi�cation. Cache as many
tuples of the smaller relation, R, as �t in the cache, switch to S, and do the join between cached
tuples of R and S. Whenever a tuple is passed over in the sort-merge operation it is evicted
from the cache. Starting from the �rst unpassed tuple, cache as many tuples of S as possible,
switch to R and continue as before.

The comparative cost estimates of the two methods is given next:

11

fragmented merge sort original merge sort
of switches between R & S: 2ER=EM 2ER
of extents fetched: ER +ES ER + ES

For the traditional method, the number of switches is 2ER because for each extent of R we
need to switch once from R to S and then back again to R to get the next extent. For the
modi�ed method the number of switches is 2ER=EM since for every EM extents of R we might
need two switches in the worst case.

4 Conclusions and Future Work

In this paper we have presented methods of executing single relation queries and two way joins
on tertiary memory. We extended the cost model of traditional query optimizers to include
the cost components of both tape-based and disk-based tertiary memory devices. However,
just changing the weighting factor on the cost formula is not su�cient for adapting traditional
methods to tertiary memory and we need to change the execution methods to do I/O more
carefully. Some of the main ideas of our methods are:

� avoid fetching extents randomly { fetch data in batches �lling the cache as much as possible
to amortize latency of tertiary memory.

� convert random I/Os to ordered I/Os by preprocessing the I/O requests using TID lists
(obtained from relation indices or sequential scans)

We compared our methods against the traditional methods using analytical models and simula-
tions and showed why traditional methods fare poorly on tertiary memory. Our modi�cations
achieve 10 to 1000 fold reduction in I/O cost for a synthetic workload.

A number of issues are still unexplored for query optimization on tertiary memory. First we
intend to extend the two way join methods for relations spread over more than one medium.
Next, we need to devise methods for doing general n-way joins. Since I/O is expensive, it might
pay to do multiple query optimization so that multiple queries can share access to one relation.
Finally, we wish to develop methods of doing query scheduling on tertiary memory databases.

References

[CAR93] M.J. Carey, L.M. Haas, and M. Livny. Tapes hold data, too: challenges of tuples on tertiary

store. SIGMOD Record, 22(2):413{417, 1993.

[DOZ91] J. Dozier and H.K. Ramapriyan. Planning for the EOS data and information system. In

Global Environment Change, volume 1. Springer-Verlag, Berlin, 1991.

[KAT91] R.H. Katz et al. Robo-line storage: High capacity storage systems over geographically dis-

tributed networks. Sequoia 2000 Technical Report 91/3, University of California at Berkeley,

1991.

[STO91] M. Stonebraker and J. Dozier. Large capacity object servers to support global change re-

search. Sequoia 2000 Technical Report 91/1, University of California at Berkeley, 1991.

[SHA86] L.D. Shapiro. Join processing in database systems with large main memory. ACM Transac-

tions on database systems, 11(3):239{264, 1986.

[STO91a] M. Stonebraker. Managing persistent objects in a multi-level store. SIGMOD Record,

20(2):2{11, 1991.

[STO91b] M. Stonebraker. An overview of the Sequoia 2000 project. Sequoia 2000 Technical Report

91/5, University of California at Berkeley, 1991.

12

