
High-Concurrency Locking in R-Trees�

Douglas Banks Marcel Kornacker Michael Stonebraker

Computer Science Div., Dept. of EECS

University of California

Berkeley, California 94720

Abstract

In this paper we present a solution to the problem of concurrent operations in R-trees, a
dynamic access structure capable of storing multidimensional and spatial data. We describe
the R-link tree, a variant of the R-tree that adds sibling pointers to nodes, a technique �rst
deployed in B-link trees, to compensate for concurrent structure modi�cations. The main
obstacle to the use of sibling pointers is the lack of linear ordering among the keys in an
R-tree; we overcome this by assigning sequence numbers to nodes that let us reconstruct the
\lineage" of a node at any point in time. The search, insertion and deletion algorithms for
R-link trees are designed to lock at most two nodes at a time and the locking can be shown
to be deadlock-free. In addition, we describe how R-link trees can be made recoverable so
that they are instantly available after a crash and we further describe how to achieve degree
3 consistency with an inexpensive predicate locking mechanism.

1 Introduction

One of the future requirements for databases is the ability to support multidimensional and

spatial data. This support is crucial for non-traditional database applications such a s CAD,

Geographical Information Systems (GIS) or temporal databases, to name a few. A fundamental

aspect of support for spatial data is e�cient handling of range queries along multiple dimensions;

one example is the retrieval of points that intersect a given query rectangle. The most widespread

access method, the B-tree [BaMc72], does not handle multi-dimensional data very well.

[Gutt84] proposed a spatial access method designed to handle multidimensional point and

spatial data. Unlike other spatial access methods [Bent75, Niev84, Robi81, LoSa90], R-trees

are not restricted to storing multidimensional points, but can directly store multidimensional

spatial objects, which are represented by their minimal bounding box. R-trees have not bene�ted

greatly from the many re�nements and optimizations of concurrency mechanisms that have been

designed for B-trees. A particular modi�cation of B-trees, the B-link tree [LeYa81], connects

�This research was sponsored by the National Science Foundation under grant IRI-9107455, the Defense Ad-

vanced Research Projects Agency under grant T63-92-C-0007, and the Army Research O�ce under grant 91-G-

0183. Additional support was provided by the University of California and Digital Equipment Corporation under
Research Grant 1243. Other industrial and government partners include the State of California Department of

Water Resources, United States Geological Survey, Construction Engineering Research Laboratory (CERL) of the

U.S. Army Corps of Engineers, the National Aeronautics and Space Administration (NASA), Epoch Systems, Inc.,
Hewlett-Packard Corp., Hughes Aircraft Company, MCI, Metrum Corporation, PictureTel Corporation, Research

Systems Inc., Science Applications International Corporation, Siemens Inc., and TRW Space and Electronics.

1



the siblings on each level via rightward-pointing links and compensates for un�nished splits by

moving across these links. It has recently been shown that this technique o�ers the highest

performance among concurrency mechanisms for B-trees [SrCa91, JoSh93]. Unfortunately, the

B-link tree technique expects the underlying key space to have a linear order and therefore

cannot be directly applied to R-trees.

In this paper we present R-link trees, an extension of R-trees motivated by Lehman and

Yao's work that o�ers the same high level of concurrency as B-link trees. We circumvent the

requirement for linearly ordered keys by introducing a system of sequence numbers that are

assigned to each page and are used to determine when and how to traverse sibling links.

The remainder of this paper is organized as follows. Section 2 provides background on R-

trees and B-link trees. Section 3 goes into detail on the di�culties in applying the structural

modi�cation of B-link trees to R-trees, presents the formal de�nition of an R-link tree and

describes the search and insert algorithms. It also outlines the deletion algorithm. Section 4

presents a way to make R-link trees recoverable so that they are immediately available at restart.

Next, section 5 shows how to make scan results serializable. Section 6 provides a discussion of

related work. Finally, section 7 gives a brief summary.

2 Background and Motivation

2.1 R-Trees

R-Trees are a hierarchical, height-balanced indexing structure similar to B-Trees. Like a B-Tree,

R-Trees have leaf nodes and internal nodes with entries in leaf node pointing to disk records and

entries in internal nodes pointing to other internal nodes or leaf nodes. A node corresponds to a

disk page and has betweenm andM entries (1 < m �M). The only exception is the root, which

may hold between 1 and M entries. Unlike B-trees, R-trees are indexed on multi-dimensional

keys that have no linear order de�ned on them.

An entry in a leaf node of an R-Tree contains a disk tuple identi�er and the key, which is

either a multidimensional point or a rectangular outline of the spatial object it represents. An

entry in an internal node summarizes the node it points to by storing as the key the minimum

bounding rectangle that tightly encloses all the keys in the child node.

The information contained in an R-Tree is thus hierarchically organized and every level in the

tree provides more detail than its ancestor level. A pointer to an indexed object is stored in the

tree only once, but keys at all levels are allowed to overlap, possibly making it necessary even

for point queries to descend multiple subtrees. Since multidimensional keys cannot be linearly

ordered there is no single \correct" place for a particular key; consequently, it can conceivably

be stored on any leaf.

The search process in an R-Tree is very di�erent from that in a B-Tree due to the lack of

ordering and the possible overlap among keys. For example, to �nd all rectangles intersecting a

given range the search process will have to descend all subtrees that intersect or fully contain the

range speci�cation. Furthermore, since an entry in an internal node summarizes the child node

with a bounding rectangle, there is no guarantee that the child contains any keys of interest,

even if its bounding rectangle intersects our search range.

The strategy for placing entries on leaf nodes should therefore create an e�cient index struc-

ture that optimizes retrieval performance. The literature has identi�ed a variety of parameters

for the layout of keys on nodes that a�ect retrieval performance [BKSS90, SRF87]. These pa-

2



3

5

7

862 4 8
1

6

7

2 4
+

1

3

5

Figure 1: Overlap can be unavoidable after a split.

rameters are: minimal node area, minimal overlap between nodes, minimal node margins or

maximized node utilization. It is impossible to optimize all of these parameters simultaneously.

For instance, the original R-tree proposal [Gutt84] minimized overlap between nodes; the R*-

Tree variation [BKSS90] minimizes overlap for internal nodes and minimizes the covered area

for leaf nodes.

When a new key has to be inserted in an R-tree, it is necessary to descend to the leaf that

optimizes the parameter chosen by the particular R-tree variant. In contrast to B-trees, R-trees

have to recursively update the ancestor keys if a leaf's bounding rectangle changes. Splitting

a node also deviates noticeably from the B-tree pattern. Whereas the B-tree simply \cuts"

the sequence of keys stored in the over
owing node in half, the R-tree will partition the key

sequence according to its layout strategy. Figure 1 illustrates the scenario of a split where the

layout strategy is minimal overlap. Note in this example that it is impossible to completely

avoid any overlap.

2.2 Concurrency in B-Trees

When multiple search and insertion processes are carried out on a B-Tree in parallel, their

interactions may be interleaved in a way that leads to incorrect results. Simple solutions to

this problem have the insertion process lock the entire tree or the subtree that needs to be

modi�ed due to anticipated splits. Variations thereof lock the upper levels of the subtree so

that only readers can still access it [BaSc77]. In essence all of these methods employ top-down

lock-coupling: when descending the tree a lock on a parent node can only be released after the

lock on the child node is granted. Consequently, locks are held during an I/O operations, which

reduces concurrency.

A radically di�erent approach was proposed in [LeYa81]. Instead of avoiding possible con
icts

by lock-coupling, the tree structure is modi�ed so that the search process has the opportunity to

compensate for a missed split. The crucial addition is the rightlink, a pointer going from every

node to its right sibling on the same level (excluding the rightmost nodes). When a node is split

and a new right sibling is created, the old node's rightlink is copied to the new node and is then

changed to point to the new node itself. The e�ect is that all nodes at the same level are chained

together through the rightlinks. Furthermore, the sequence of the nodes in the rightlink chain

re
ects the sequence of their corresponding entries in the ancestor level; in short, the rightlink

chain orders the nodes by their keys. This is true for every level of the B-Tree and is a result of

the splitting strategy in B-Trees, where the upper half of the key sequence is moved to the new

right sibling.

Searching in a B-link tree can therefore be done without lock-coupling. When descending to

a node that was split after examining the parent, the search process discovers that the highest

key on that node is lower than the key it is looking for and correctly concludes that a split must

have taken place. It compensates for this split, or multiple splits, by moving right until it comes

3



to a node where the highest key exceeds the search key. Likewise, an insertion process does

not have to employ lock-coupling when descending the tree to the correct leaf. If the leaf has

to be split, it is also possible to avoid lock-coupling when installing a new entry in the parent,

as is shown in [LaSh86] and [Sagi86]. As soon as the page has been split and the new right

sibling inserted into the rightlink chain, the insertion process can drop the lock on the leaf that

was over
owing and then acquire a lock on the parent,1 possibly moving right to compensate

for concurrent splits and possibly splitting the parent itself, leading to recursive splits up the

tree. This locking strategy is deadlock-free and o�ers very high concurrency because search and

insertion processes only need to hold one node locked at a time.

3 R-Link Trees

We would like to achieve high concurrency for operations on R-trees, and given the similarities

in structure and functionality between B-trees and R-trees, it would seem natural to try to apply

the ideas and algorithms of [LeYa81] to create an \R-link tree." This is not a trivial matter,

however, because R-trees di�er from B-trees on a number of important points and the B-link

tree strategy itself is insu�cient.

The source of this problem is the lack of ordering on R-tree keys. The core of the link-tree

strategy is to account for splits that have not updated the parent by moving to the right. To

implement that strategy we must answer two questions: how do we detect that the child has

split and how do we limit the extent to which we move right. For R-trees, the latter question

is not only relevant for e�ciency, it is relevant because we descend multiple subtrees and may

therefore end up visiting the same node twice if we move too far to the right.

For B-link trees, the answer to those questions lies in the linear ordering that is de�ned on the

key space and the fact that the nodes on a single level are ordered through the rightlink chain

by their keys. This allows us to detect a split and to determine when to stop moving right based

on key comparisons. For spatial data, there is no such ordering, and therefore it is impossible

to apply the same strategy and to do key comparisons. Consider the following two situations:

� It is possible that the key of an entry in the parent intersects the search range, even if the

keys in the child do not. In this case, it would be wrong to conclude that the child has split

and move right. Using a notion analogous to the high key in a B-tree, we could recompute

the bounding rectangle of the child node and compare that to the key seen in the parent

in order to detect a split. Doing so might cause us to miss a split because taking entries

out of a node does not necessarily change its bounding rectangle (see �gure 1).

� Even if we are sure that a node has split, it is infeasible to limit the extent to which we

move right by doing key comparisons. The number of matching keys in the original node is

between 0 and M , but it is unknown in advance. In order to not miss any keys, we would

generally have to move right until we reach the end of the rightlink chain. In a multi-

gigabyte index, this strategy could force us to scan millions of leaf nodes for every search

request. Again, the basic problem is that the keys do not provide enough information to

correctly delimit the range of nodes to visit.

1Note that this makes it possible that an insertion is overtaken by another insertion on its way up the tree.

This can cause problems if the B-tree accepts duplicate keys. If two insertion processes split the same node and

the updates in the parent are done in reverse order, the order of entries in the parent will not re
ect the order of

nodes in the rightlink chain on the child level. This destroys the tree structure.

4



5 6 4 2 1

5

x

2

y
4

c5

w

1

zp1 p2

c2c1 c3 c4

Figure 2: A subsection of an R-link tree (circled numbers are LSNs).

We need to provide each operation on an R-tree with a way of determining whether it has

accurate information about the current state of any node it might examine, and how it should

proceed if it �nds that its information is obsolete.

3.1 Structure of an R-Link Tree

Clearly, if we are to provide high concurrency operations on R-trees through a rightlink-style

approach, we need to add some additional information to the standard R-tree that can be used to

correctly traverse a constantly-changing tree structure. We propose ful�lling this requirement

by assigning logical sequence numbers (LSNs) to each node. These numbers are similar to

timestamps in that they monotonically increase over time but are not synchronous with any

real-time clock. The node entries and the search and insert algorithms are designed so that

these LSNs can be used to make correct decisions about how to move through the tree.

An R-link tree is basically a standard R-tree, as described in section 2.1, with two key dif-

ferences. First, like a B-link tree, all of the nodes on any given level are chained together in

a singly-linked list via rightlinks. It is very important to note that, unlike the B-link tree, the

chain of nodes on a given level does not represent an ordering of the keys from smallest to

greatest, and, in general, it will not re
ect the ordering of their corresponding entries in the

nodes on the parent level. This is illustrated in �gure 2. In the rightlink chain of the parent

level, p1 precedes p2. However, c4, which is a child of p1, does not precede c2. This situation

can arise if p1 splits and moves the entry for c2 over to the new right sibling, p2.

Second, the main structural addition is an LSN in each node that is unique within the tree.

These LSNs give us a mechanism for determining when an operation's understanding of a given

node is obsolete. Each entry in a node consists of a key rectangle, a pointer to the child node

and the LSN that it expects the child node to have. If a node has to be split, the new right

sibling is assigned the old node's LSN and the old node receives a new LSN. A process traversing

the tree can detect the split even if it has not been installed in the parent by comparing the

expected LSN, as taken from the entry in the parent node, with the actual LSN. If the latter is

higher than the former, there was a split and the process moves right. When the process �nally

meets a node with the expected LSN, it knows that this is the rightmost node split o� the old

node.

R-link trees can be formally de�ned as a balanced tree in which index nodes consist of a set

of entries and a rightlink r. On each level of the tree the rightlinks form the nodes on that level

into a singly-linked list. Entries on internal nodes consist of a key rectangle k, a pointer p, and

an expected LSN l so that either:

5



1. p points to a child node N , where l is the LSN of N , and the rightlink of N points to

NULL or to some node R which is also pointed to by some entry in the level above. In

�gure 2, entry x points to node c1; both x's LSN and c1's LSN are matching and c1's

rightlink points to c2, which is also pointed to by entry w in p2. This situation represents

the normal case, where the node structure on the child level is fully re
ected in the entries

on the parent level.

2. p points to a child node N , where the LSN of N is greater than l, and there exists a node

N 0 whose LSN is l, which can be reached by following rightlinks from N through nodes

with LSNs higher than l which are not pointed to by any entry in the level above. N 0

also has no entry in the level above, but its right sibling, if N 0 is not the end of the chain,

does. An example from �gure 2 is the entry w in p2. The LSN in w is smaller than that

of c2 and equal to the LSN of c3, which in turn can be reached from c2 by following one

rightlink. Node c3 does not yet have an entry in the level above, but its right sibling, node

c4, is pointed to by entry y in p1. This situation was caused by a split of node c2, which

has not yet been installed in the parent node.

Note that in either case, the right sibling R of the node whose LSN matches the entry's

expected LSN has an entry in some node on the parent level. This entry can generally be

anywhere in the parent level. Node c4 in �gure 2 is an example where this entry is in a node to

the left of the parent node of c2.

3.2 The Search Algorithm

A search process has to �nd all the entries on leaf nodes that fall in the query range, and since

keys can overlap, it will generally have to descend multiple subtrees within the index. The

underlying data structure to support this is a stack, which is used to remember which nodes

still have to be visited. The process starts by initially pushing the root on the stack. A node

that has not yet been examined is popped o� the stack and all entries in the node that qualify

for the search condition are in turn pushed onto the stack and the whole process is repeated. If

a leaf node is popped o� the stack, we can return the qualifying entries that we �nd on it. The

search is terminated when the stack is empty.

In order to remember a yet-to-be visited node on the stack, we push the pointer and the

LSN we found in the corresponding entry. If we examine a node p and �nd that the LSN is

higher than the one on the stack, we know that this node has been split in the meantime. To

compensate for the split we must examine all of the nodes that have been split o� from this node

since we �rst pushed its entry. Therefore we push nodes to the right of p, up to and including

the node with the LSN equal to the expected LSN for p.

The search process, as shown in �gure 3 is implemented with an iterator-like interface. The

�rst call to search will return the �rst record and subsequent calls to continueSearch will return

all other matching items until the stack is empty.

3.3 The Insertion Algorithm

An insertion proceeds in two stages: �rst we must locate the leaf to insert the key on, remem-

bering the path we take as we descend the tree; next, then the new key is inserted and the leaf

possibly split. If the leaf's bounding rectangle has changed, we must propagate the change to

its ancestor node. This is accomplished by backing up the tree until we arrive at a parent node

that does not need to be changed. If the leaf was split we must also install a new entry in the

6



search(Rect r)

{

push(stack, [root, root-lsn])

return reduceStack(r)

}

continueSearch(Rect r)

{

return reduceStack(r)

}

reduceStack(Rect r)

{

while not empty(stack) {

[p, p-lsn] = pop(stack)

if (p is pointer to indexed tuple)

return p

else {

r-lock(p)

if p-lsn < LSN(p) {

traverse the rightlink chain

starting at rightlink(p)

to the node with

LSN = p-lsn;

for each node n along the

rightlink chain:

r-lock(n)

push(stack, [n, LSN(n)])

r-unlock(n)

}

for all entries e of p

intersecting r:

push(stack,

[node-pointer(e), LSN(e)])

r-unlock(p)

}

}

return done

}

Figure 3: The Search Algorithm

parent node. If it is full, we recursively split nodes up the tree until we arrive at a node with

enough free space or alternatively split the root. The latter case requires special attention and

is further commented on below. Note that in contrast to a B-tree insertion, we must back up

the tree for two reasons: splitting a node requires the installation of a new entry and changing

the bounding rectangle requires the adjustment of the keys in the ancestor nodes.2 The latter

step is missing in B-trees.

When descending the tree to a leaf, we choose the geometrically optimal subtree. However, if

we detect that a node has been split, we must take into consideration all the nodes to the right

of the original node that were split o� it. As in the search algorithm, this chain is delimited

to the right by the node carrying the original LSN. When we are updating parent keys during

ascent, we also must move right if the parent node has split. Notice in this case that no LSN

is necessary to recognize the split or delimit the rightlink chain. An entry in a node can be

uniquely identi�ed by the node pointer3 it contains; for that reason, we move right until we �nd

the node with that particular entry.

When backing up the tree one level, we employ lock-coupling; that is, we hold the child node

write-locked until we obtain a write-lock on the parent. As explained in subsection 2.2, this is

generally not necessary in B-trees. It is necessary in R-trees because the key of the old entry

is modi�ed. If we do not couple the locks, another inserter causing a split can overtake us and

install the changes before us. When it is �nally our turn, we will update the key, unaware of

the previous changes to the child node. The key will not re
ect the bounding rectangle of the

child anymore and the tree structure will be incorrect. It is important to recognize that it is not

necessary to do lock-coupling when moving right. If another inserter overtakes us while we are

moving right and splits the nodes we are examining, it is impossible for us to miss the entry for

2These two changes have to be applied atomically in order to guarantee the R-link tree properties of section 3.1.

Atomicity is achieved by holding the lock on the parent node until both updates are done.
3Node pointers do not change after a split because the original node is kept in place.

7



x x

7

7 8

7

7 x7

7

8

8

c’

(a) (b) (c)

f

c

f

c

f’

c’

f

c

f’

Figure 4: An incorrect structure modi�cation.

the child node since a split can move entries only right.

After �nding the parent node and updating the entry's key, we may still have to install a

new entry for a new right sibling. If the parent node was split, we would like to insert the new

entry on the geometrically optimal node in the chain. Unfortunately, this is not possible and

the new entry has to be installed on the same page that contained the old entry (or its new

right sibling if the insertion causes a split). The reason for this can be seen in �gure 4. Suppose

a search process is looking for item x contained in leaf node c (situation a). Node f and c are

split independently and item x is moved to the new leaf c0 (situation b). If the splitting of f is

already re
ected in the parent level, the search process will navigate directly to f 0. In situation

c, the entry for c0 has been installed in f , because this results in a geometrically better node

layout than a placement on f 0, and the entry in f 0 for c has also been updated (key and LSN).

In this case, the search process will be unable to �nd leaf c0 because it never considers going

to f . On the other hand, if the entry for c0 had been installed in f 0, the search will have been

successful.

In principle, this requirement could deteriorate the tree structure by forcing its keys to have

more overlap than necessary. We expect this potential drawback to have little e�ect in practice

because only in rare cases will the geometrically optimal node di�er from the node containing

the entry for the old child.

The implementation of the insert algorithm is shown in �gure 5. The individual procedures

do the following: �ndLeaf descends to the geometrically optimal leaf, recording the path along

the way and �nally write-locks the leaf; extendParent is called after a leaf split to recursively

install an entry for the new leaf in the parent and to propagate the changed bounding rectangle

of the old leaf; updateParent is called only after a leaf's bounding rectangle has changed in order

to recursively propagate the new bounding rectangle of that leaf.

To keep the algorithm as short as possible, we do not consider the case where multiple inser-

tions are carried out at the same time and a splitting of the root by one inserter goes unnoticed

by the others. This is problematic when the remaining inserters have to change the bounding

rectangle of what they believe is the root or if the \root" has to be split a second time. A

solution can be found in [LaSh86] and [Sagi86]; both suggest using an anchor page to make root

splits visible to other insertion processes and allow for compensating actions.

3.4 Deletion

Deleting a key from an R-tree can be implemented by allowing each leaf to have fewer than its

lower bound of m entries. The deletion algorithm then simply removes the key from the leaf, or

multiple leaves if the deletion is given a key range, and adjusts the bounding rectangles of the

ancestor nodes. This is e�ectively combining a search with a subset of the insertion algorithm,

the actual implementation of which is not shown here. The adjustment phase of a deletion has

8



insert(Rect r)

{

stack = findLeaf(root, r, root-lsn)

leaf = pop(stack)

insert r on leaf

if leaf was split {

extendParent(leaf,

bounding-rect(leaf),

LSN(leaf), right sibling,

bounding-rect(right sibling),

LSN(right sibling), stack)

} else {

if bounding-rect of leaf changed {

updateParent(leaf,

bounding-rect(leaf), stack)

} else {

w-unlock(leaf)

}

}

}

Stack findLeaf(RTreeNode p, Rect r, LSN p-lsn)

{

if p is leaf {

w-lock(p)

} else {

r-lock(p)

}

if p-lsn < LSN(p) {

p = geometrically optimal node to take

r in rightlink chain starting at p

and ending at node with

LSN = p-lsn

}

if p is leaf {

push(stack, p)

return stack

} else {

e = entry on p leading to

geometrically optimal subtree

for r

entry = findBestEntry(p, r)

push(stack, p)

r-unlock(p)

return findLeaf(e, r, LSN(e))

}

}

extendParent(RTreeNode p, Rect p-rect,

LSN p-lsn, RTreeNode q, Rect q-rect,

LSN q-lsn, Stack stack)

{

if empty(s) {

create new root (w-locked) with 2

entries:

- for child, key: p-rect

- for sibling, key: q-rect

w-unlock(q)

w-unlock(p)

w-unlock(new root)

return

} else {

parent = pop(s)

w-lock(parent)

find the entry for node p in parent

or one of its right siblings;

let parent = that node and

entry = that entry

w-unlock(q)

w-unlock(p)

update entry with p-rect and p-lsn

insert q on parent

if parent split {

extendParent(parent,

bounding-rect(parent),

LSN(parent),

right sibling,

boundingRect(right sibling),

LSN(right sibling), stack)

} else {

if bounding-rect(parent) changed {

updateParent(parent,

bounding-rect(parent),

stack)

} else {

w-unlock(parent)

}

}

}

}

updateParent(RTreeNode p, Rect p-rect,

Stack stack)

{

if empty(stack) {

w-unlock(p)

return

} else {

parent = pop(stack)

w-lock(parent)

find the entry for node p in parent or

one of its right siblings; let

parent = that node and

entry = that entry

w-unlock(child)

update key in entry with p-rect

if bounding-rect(parent) changed {

updateParent(parent,

bounding-rect(parent), stack))

}

}

Figure 5: The Insertion Algorithm.

9



the same locking behaviour as that of an insertion. Since a deletion never merges any nodes, it

interacts with other search, insertion, or deletion processes like an insertion.

A deletion algorithm that never attempts to merge nodes will not degrade space utilization

in the tree to unacceptable levels if the rate of insertions and deletions is about the same. If

there are occasional bursts of delete requests that together remove a large fraction of the tree's

entries and cause the space utilization to drop considerably, the entire tree can be write-locked

and reorganized o�-line.

4 Recovery

R-link trees can be made instantly recoverable from system failures with the same strategy that

was originally proposed for B-link trees. The updated nodes are immediately written to disk

and the results of node splits are written back in a particular order: �rst, the newly created right

child; next, the original left child; �nally, the updated parent. This ordering guarantees that

the disk copy maintains the structure of the tree as was de�ned in section 3.1, and regardless

of when a crash intercepts the writes, no information in the tree is lost or doubly-visible at any

time. Writing the new child clearly does not a�ect the disk copy of the tree, since no node entries

on the disk copy point to it. Writing the old child also makes the now disk-resident right child

visible at the same time. Although the disk copy of the parent node remains unaware of the

split, the parent entry for the old child is correct according to the second part of the de�nition

in 3.1. Note that no entries are hidden or doubly-visible at this point|the old child no longer

contains the entries that were moved to the new child and the new child is visible through the

rightlink pointer from the old child and the LSN in the parent entry. Finally, writing the parent

also maintains the correctness of the tree on disk; in one indivisible step we insert an entry for

the new child and change the key and expected LSN for the old child so that the new child

will no longer be accessed via the old child's rightlink. If the parent splits the write-ordering is

carried over to the next higher tree level.

A crash after the second write makes an un�nished split permanently visible in the tree.

Although it does not violate the structural requirements of an R-link tree according to our

de�nition, it has two undesirable side e�ects. First, when descending to a leaf through the

region of an un�nished split, we compensate for it as we do for an ongoing split. This forces us

to regularly traverse the rightlink and access an extra node, adding to the total number of I/Os.

Second, unlike in a B-link tree, an insertion process now has to be aware of un�nished splits

during the ascending phase. Under normal processing, splits are invisible to insert operations

propagating changes up the tree because we do lock-coupling. An insert operation ascending the

tree can safely assume that it can �nd a parent entry for any node it passed through on the way

down. With an un�nished split, however, the insertion process will still not �nd an entry for

a node it passes through on its way up. This becomes a problem when the bounding rectangle

of that node changes or the node splits. In either case, a non-existent parent entry has to be

updated. An example of a situation that can result from an un�nished split is shown in �gure 2.

An inserter expanding the bounding rectangle of node c3 will not �nd a corresponding parent

entry to update.

One way to take care of un�nished splits is to have a recovery phase at restart that traverses

the entire tree and repairs it, making it unnecessary for inserters to take them into account but

considerably delaying the availability of the index after a crash. We can avoid a restart phase if

we extend the insertion algorithm to detect un�nished splits and repair them by supplying all

10



of the missing entries to the parent and updating the original entry with a new key and LSN.

The steps involved are as follows:

1. We become aware of the un�nished split during ascent when we cannot �nd an entry at the

parent level for the child node that was split or updated. The entry in the parent level has

to carry the valid LSN of the child or the pre-split LSN, otherwise it is obsolete and also

indicates an un�nished split. Going back to �gure 2, the LSN in the parent entry for node

c2 (4) di�ers from c2's actual LSN (6) and shows that there is an un�nished split. Taking

into account that the entry might be missing, we have to put a limit on how far we move

right when looking for the entry. We must also remember the LSN of the parent node on

the stack during descent in order to notice when we have to stop crossing rightlinks.

2. Once we know about an un�nished split, we have to acquire locks on the entire chain of

nodes that are part of the un�nished split(s)4 before we can do the repair. In order to

identify the relevant part of the rightlink chain, we have to add two more items to each

stack entry: the node through which we entered the particular tree level and the LSN we

expected it to have. Consider �gure 2 again for an example. If we had to pass through

c2 and c3 on our way to a leaf, we would have remembered the pair (c2; 4) to indicate the

starting point and extent of a potential un�nished split.

Before acquiring the locks on the chain, we have to drop any locks we still hold, otherwise

we violate the locking ordering for nodes and can cause a deadlock. After we locked

the chain, we have to verify that the tree structure has not been repaired already by a

competing insertion process. This can be done by checking the parent for a valid entry

(with the matching LSN) for the starting node of the chain. In fact, a valid entry for any

of the nodes on the chain tells us that the structure is already repaired because, once the

locks are set the parent is updated atomically to re
ect the entire chain of nodes. After

repairing the un�nished split, we can proceed with the insertion as usual, propagating

changes in the parent's bounding rectangle and possibly a split further up the tree.

The above approach of repairing the tree structure during normal processing does not add

any extra overhead to an insertion process not encountering un�nished splits. Looking for an

un�nished split can be done at no extra cost when propagating updates or splits up the tree.

The only drawback in comparison to a separate repair phase at restart is that we cannot make

any guarantees when un�nished splits will be repaired. Since the frequency of crashes is typically

very low, we do not expect temporary un�nished splits in the tree to become a performance

problem.

5 Consistency

A common requirement for concurrenct access in database systems is degree 3 consistency, or

repeatable read (RR) [Gray78]. A simple solution employed for B-trees is to keep all leaf pages

that were read by an index scan locked until the end of the transaction. This strategy depends

on the linear order of the keys and leaves and the fact that index scans always visit a contiguous

sequence of leaves.

4There can be at most three unparented nodes left after a crash: after a node is split and written back but

before the parent is written back and unlocked, each of the resulting child nodes can be split exactly once. No
further splits are possible, because the most recent insertion processes block on the parent node while still holding

locks on the children.

11



In R-trees, keys can be inserted on arbitrary leaves and an insertion into the key range of a

previous scan can succeed even though the scan locked all of the leaves it read. If the insertion

commits, the new key will be visible to a re-scan, giving rise to a phantom. An example for a

two-dimensional key space is shown in �gure 6. Boxes 1 and 2 are the bounding rectangles of

internal nodes, boxes 3 to 6 are the bounding rectangles of leaves and the dashed box is the

query rectangle. If the scan is looking for overlapping keys, only leaf 4 quali�es and consequently

it is the only leaf that is visited and locked. The insertion of a new key into leaf 5 extends its

bounding box into the query rectangle, so that a re-scan will be able to see the new key, violating

degree 3 consistency.

One way to avoid the phantom problem is for scans to keep every node they traversed locked

until the end of the transaction, including internal nodes. This way, even a successful insertion

into a leaf cannot propagate the new key so far up the tree that a scan with a con
icting key

range can see it. The major disadvantages are that by setting locks on internal nodes it reduces

concurrency more than necessary and also introduces deadlocks. A searcher descending the tree

can now collide with an inserter propagating changes up the tree.

A more e�ective solution to the phantom problem is to use a simpli�ed form of predicate locks

[EGLT76], where exclusive predicates consist of a single key value and shared predicates consist

of a query rectangle and scan operation such as inclusion or overlap. A new scan request would

check the list of still-active insertions and suspend itself if its query rectangle collides with any

of the unommitted new keys. A new insertion would in turn check the list of active scans and

also suspend itself on a collision with a query rectangle. If a scan commits and leaves the system

it is removed from the active list and the waiting inserters are rechecked to see if some can be

activated; the case of an inserter committing is handled symmetrically. The advantages of this

over the former page-locking scheme are that no deadlocks are possible and concurrency is not

unnecessarily restricted, since an insertion can still propagate changes up to the root as long as

it does not fall in the speci�ed ranges of active scans. The disadvantages attributed to general-

purpose predicate locks for tables, exponential runtime and overly pessimistic behaviour, do not

apply here. To evaluate a predicate we simply check a key value against a query rectangle and

a lock request is only rejected if there is a guaranteed collision with another active lock.

6 Related Work

So far there has not been much work published on the concurrency control problem in R-trees.

None of the algorithms known to us attempt to adapt the B-link tree strategy to R-trees in

order to achieve higher concurrency.

Ng and Kameda [NgKa93] present three algorithms varying in complexity and possible con-

currency. The simplest of the three algorithms locks the entire tree so that an insertion would

23

4

5

6

1

Figure 6: An example where 2-phase locking of leaves cannot guarantee RR.

12



exclude all searchers. The second algorithm postpones page splits by adding bu�er space to each

node to accommodate over
ows. When over
ows or under
ows take place, a separate mainte-

nance process exclusively locks the entire tree and reorganizes it, splitting and merging several

nodes in the same run. Because an insertion never performs a split itself, there is no need for

concurrent search processes to do lock-coupling. The highest-concurrency algorithm is modeled

after one presented in [BaSc77] for B-trees. Readers do top-down lock-coupling when descending

the tree in order to avoid having to deal with splitting pages. Insertions lock the entire subtree

that needs modi�cation on their way to the leaf.

Biliris [Bili89] presents an approach to B-tree locking that can be applied to R-trees. The

structure of a regular B-tree node is modi�ed to contain left and rightlink pointers. Unlike

in [LeYa81], a search process does top-down lock-coupling in order to descend to a leaf and

does not make use of the link pointers to account for splits. The link pointers are used to link

side branches|the left or right halves of over
owing pages|into the tree. This is done by the

insertion process without acquiring exclusive locks on the corresponding full nodes. After the

insertion process creates the side branches bottom-up they are incorporated top-down into the

tree, exclusively locking the entire subtree. For B-trees, the height of the subtree to lock is

determined by the highest unsafe node on the path to the leaf. The author mentions that, for

R-trees, the algorithm also must address the case where bounding rectangles have to be changed.

This can easily be incorporated into the algorithm.

[Moha90, MoLe92] and [LoSa92] discuss making access structures recoverable in a write-

ahead logging environment; the former papers also present a solution for guaranteeing degree 3

consistency with row-level locking.

ARIES/KVL and ARIES/IM both use a conventional, non-link tree structure, yet they are

able to propagate splits bottom-up without locking subtrees and to let top-down traversing

processes recover from them. Instead of following rightlinks, pages that are involved in a split are

marked so that a search that runs into an ongoing split is able to notice it and retraverse the tree

starting from the lowest unmodi�ed parent node. A particular consideration for a write-ahead

logging environment is that modi�cations of the tree structure would normally be logged within

the context of the transaction that initiated the modi�cation. Under theses circumstances, if the

transaction were to do a page-oriented rollback it would also automatically undo the structure

modi�cations. Therefore, access to the newly created or modi�ed pages has to be prevented until

the transaction commits, otherwise the updates of other transactions on those pages would also

disappear. In order to circumvent this severe concurrency limitation, tree structure modi�cations

are separated from all transactions via nested top level transactions. Unlike in a B-link tree,

a partially executed structure modi�cation may leave parts of the tree temporarily invisible.

Taking into account that some operations might have to be rolled back logically, requiring tree

traversal, it is necessary to serialize complete splits, including propagation, so that no two splits

can take place at the same time. Moreover, there are situations in which insert or delete requests

also have to be serialized with structure modi�cations. To avoid the phantom problem when

doing record-level locking, ARIES/IM and ARIES/KVL employ next key locking, where a scan

also sets a shared lock on the next-highest key past its scan range. Again, this is not applicable

in R-trees because the key space is not linearly ordered and the notion of a next-highest key

does not exist.

The �-tree presented in [LoSa90] is a generalization of a B-link tree where nodes can have

multiple parents, which turns the tree structure into a DAG. Their solution for recoverability

13



capitalizes a the property of link-type trees, namely, that un�nished splits leave all parts of the

tree accessible. As in [MoLe92], modi�cations of the tree structure are done separately from

inserting or deleting transactions in order to avoid holding commit-duration locks on nodes.

However, becaus the index remains fully accessible even if a split is interrupted by a crash and

cannot be fully propagated upward, it is not necessary for structure modi�cations in the �-

tree to be serialized or for access operations on a �-tree to synchronize with ongoing structure

modi�cations. This recovery method is also applicable to B-link trees.

7 Summary

In this paper, we have presented R-link trees, an extension on R-trees designed to support high

concurrency. R-link trees look and work very similar to B-link trees, with each operation holding

only a few locks at one time and handling unexpected splits by moving across link pointers to

sibling nodes on the same level. The key di�erences in the design of B-link trees and R-link

trees are a result of the fact that spatial keys cannot be ordered linearly. Where B-link trees

rely on the actual keys involved in the search to resolve unexpected splits, R-link trees have to

use a system of sequence numbers assigned to each node. The degree of concurrency obtainable

with R-link trees should be as good as the best B-tree algorithm, the B-link tree. Descending

an R-link tree to a leaf requires no lock-coupling; consequently, only a single node needs to be

locked at any time. An insert or delete process ascending the tree only needs to hold a maximum

of two nodes locked, allowing many updates of the index to take place concurrently. An R-link

tree can be made instantly recoverable from system crashes by forcing out changed nodes in

a particular order. To enforce degree 3 consistency of index scans, an inexpensive variant of

predicate locking is more e�ective than commit-duration locks of nodes.

Acknowledgement

We would like to thank Paul Aoki, Bob Devine, Sunita Sarawagi, Paul Brown, Mike Olson and

Joe Hellerstein for their comments on this paper. Paul Aoki deserves special thanks for his

almost inexhaustible patience. We would also like to acknowledge Megan Metters who helped

to make this paper more readable.

References

[BaMc72] R. Bayer and E. McCreight, \Organization and Maintenance of Large Ordered In-

dexes," Acta Informatica, Vol. 1, No. 3, pp. 173{189, 1972.

[BaSc77] R. Bayer and M. Schkolnick, \Concurrency of Operations on B-Trees," Acta Inf., Vol.

9(1977), pp. 1{21.

[Bent75] J. L. Bentley, \Multidimensional Binary Search Trees Used for Associative Searching,"

CACM, September 1975, Vol. 18, No. 9, pp. 509{517.

[Bili89] A. Biliris, \Operation-Speci�c Locking in Balanced Structures," Information Sci-

ences, June 1989, Vol.48, (No.1):27{51.

[BKSS90] N. Beckmann, H.-P. Kriegel, R. Schneider and B. Seeger, \The R*-tree: An E�cient

and Robust Access Method for Points and Rectangles," Proc. 1990 ACM SIGMOD

Conf., pp. 322{331.

14



[EGLT76] K. Eswaren, J. Gray, R. Lorie and I. Traiger, \On the Notions of Consistency and

Predicate Locks in a Database System," Comm. ACM, November 1976, Vol. 19, No.

11, pp. 624{633.

[Gray78] J. Gray, \Notes on Data Base Operation Systems," Operating Systems, R. Bayer et

al. (Eds.), LNCS Volume 60, Springer-Verlag, 1978.

[Gutt84] A. Guttman, \R-Trees: A Dynamic Index Structure for Spatial Searching," Proc.

1984 ACM SIGMOD Conf., pp. 47{57.

[JoSh93] T. Johnson and D. Shasha, \The Performance of Current B-Tree Algorithms," ACM

TODS, Vol. 18, No. 1, pp. 51{101, March 1993.

[LaSh86] V. Lanin and D. Shasha, \A Symmetric Concurrent B-Tree Algorithm," 1986 Fall

Joint Computer Conference (Dallas, Tex., Nov. 1986), pp. 380{389.

[LeYa81] P. Lehman and S. Yao, \E�cient Locking for Concurrent Operations on B-Trees,"

ACM TODS, Vol 6, No. 4, December 1981.

[LoSa90] D. Lomet and B. Salzberg, \The hB-Tree: A Multiattribute Indexing Method with

Good Guaranteed Performance," ACM TODS, Vol 15, No. 4, pp. 625{685, December

1990.

[LoSa92] D. Lomet and B. Salzberg, \Access Method Concurrency with Recovery," Proc. 1992

ACM SIGMOD Conf., pp. 351{360.

[Moha90] C. Mohan, \ARIES/KVL: A Key-Value Locking Method for Concurrency Control of

Multiaction Transactions," Proc. 16th Int'l Conf. on Very Large Databases (VLDB),

Brisbane, August 1990.

[MoLe92] C. Mohan and F. Levine, \ARIES/IM: An E�cient and High Concurrency Index

Management Method Using Write-Ahead Logging," Proc. 1992 ACM SIGMOD Conf.,

San Diego, June 1992.

[NgKa93] V. Ng and T. Kameda, \Concurrent Accesses to R-Trees," Proceedings of Symposium

on Large Spatial Databases, pp. 142{61, Springer-Verlag, Berlin 1993.

[Niev84] J. Nievergelt, H. Hinterberger and K.C. Sevcik, \The Grid File: An Adaptable,

Symmetric Multikey File Structure," ACM TODS, Vol. 9, No. 1, March 1984.

[Robi81] J. T. Robinson, \The K-D-B-Tree: A Search Structure for Large Multidimensional

Dynamic Indexes," Proc. 1981 ACM SIGMOD Conf., pp. 10{18.

[Sagi86] Y. Sagiv, \Concurrent Operations on B*-Trees with Overtaking," Journal of Com-

puter and System Sciences, Vol. 33, No. 2, pp. 275{296, 1986.

[SrCa91] V. Srinivasan and M. Carey, \Performance of B-Tree Concurrency Control Algo-

rithms," Proc. 1991 ACM SIGMOD conf., pp. 416{425.

[SRF87] T. Sellis, N. Roussopoulos, and C. Faloutsos, \The R+-tree: A Dynamic Index for

Multidimensional Objects," Proc. 13th Int'l Conf. on Very Large Databases (VLDB),

Sep. 1987, pp. 507{518.

15


