
Buffering of Intermediate Results in Dataflow Diagrams

Allison Woodruff and Michael Stonebraker
Department of Electrical Engineering and Computer Sciences

University of California at Berkeley 1

Berkeley, CA 94720
email: tioga@postgres.berkeley.edu

1 This research was sponsored by NSF under grants FD94-00773 and IRI-9411334.

Abstract
Buffering of intermediate results in dataflow diagrams

can significantly reduce latency when a user browses
these results or re-executes a diagram with slightly
different inputs. We define the optimal buffer allocation
problem of determining the buffer contents which
minimize the average response time to such user requests.
We show that this problem has several characteristics
which render traditional latency reduction techniques
ineffective. Since optimal buffer allocation is NP-hard,
we propose heuristic methods for buffer management of
intermediate results.

We present a simulation of the behavior of these
heuristics under a variety of conditions, varying graph
structure and access pattern. We argue that history
mechanisms which track user access patterns can be used
to improve performance. We further show that graph
structure and access pattern determine the factor of
improvement which is possible. The performance
enhancements we describe can be applied to minimize
query response time in visual dataflow languages.

1: Introduction
Dataflow languages apply a sequence of operations to

specified inputs. In many cases, the final output of a
dataflow diagram is the only result examined by a user.
However, when performing tasks such as debugging or
tuning, a user may wish to view intermediate results. In a
naive implementation, intermediate results are not saved
when a dataflow diagram executed. As a consequence, if
a user asks to view intermediate results, these results need
to be recalculated. Since computation costs may be
extremely high, the delay in response time can be
substantial. A more sophisticated implementation can
support buffering of intermediate results. Because blindly

buffering all intermediate results may not be feasible,
such a system must attempt to select for buffering those
intermediate results which most significantly minimize
latency.

We examine strategies for buffering of intermediate
results in dataflow diagrams in the context of Tioga [1], a
graphical application development tool which uses the
boxes and arrows notation popularized by scientific
visualization systems such as AVS [2], Data Explorer [3],
and Khoros [4]. Tioga improves upon these systems by
providing sophisticated data management using the
POSTGRES database management system (DBMS) [5].

In the Tioga programming model, boxes represent
user-defined database queries or browsers which display
data, and edges between boxes represent flow of data.
Although a limited number of boxes has currently been

Figure 1
A Sample Tioga Recipe

implemented, additional boxes may be programmed by
users. Nonexperts build visual programs called recipes by
interactively connecting boxes together using a graphical
editor. Current applications include a photographic
35mm slide library and a geoindexing system.

Figure 1 shows the recipe of the geoindexing system
which indexes text documents according to the
geographic locations to which these documents refer. At
the end of the recipe is a browser box which displays
documents according to the resulting indexes. The
default Tioga browsing paradigm allows users to visualize
data results in a multidimensional space. Users navigate
through their data using a flight-simulator interface.
Additional browsers may be implemented by advanced
users. Figure 2 shows a browser displaying the final
results of the recipe in Figure 1. Objects are displayed in
a latitude/longitude viewing space that contains
California. One object, a digitized 35mm slide, has been
selected and displayed.

Tioga was motivated by the needs of scientific users in
the SEQUOIA 2000 project [6]. In a typical task, these
users will construct a recipe, run it on a specified set of
inputs, and view the final result. If this result contains an
anomaly or some unintuitive or unwanted result, users
might want to perform the following types of actions:

• search query. In this case, the user examines
intermediate results of Tioga boxes to locate data of
interest, e.g. the source of an anomaly.

Intermediate results may be viewed by placing
browsers at arbitrary points in the recipe.

• modification query. Users may want to tune a
recipe. In this case, they will rerun it using
different parameters as input to specific functions.
Alternatively, they may wish to modify the code of
a particular box and rerun the entire recipe with
the new box. Finally, they may incrementally
develop an application, as supported by systems
such as Weaves [7].

Searching and modification may be performed
individually or in combination. For example, debugging
may entail a sequence of search and modification queries
to locate and correct a faulty processing step or data.

Attempts to reduce the latency of these types of queries
raise several interesting issues. Specifically, we observe
that buffering of intermediate results can significantly
improve performance. In this paper, we examine buffer
management strategies to improve the performance of
Tioga on search queries. The results presented are
directly relevant to modification queries.

In Section 2, we define the problem of optimal buffer
allocation. In Section 3, we present our assumptions. In
Section 4, we describe our mechanism for generating
graphs which are input to our model. In Section 5, we
present our simulation model and our heuristics. In
Section 6, we present our results. Finally, in Section 7,
we discuss our conclusions.

2: Problem definition
Consider the recipe graph of Figure 3 in which box A

is an input and box I represents the final output. In this
recipe, if the buffer is empty and box F is being
calculated, the results from boxes A, B, C, and E are
calculated as part of the computation of box F, and the
results of A, B, C, E, and F are therefore all candidates
for buffering. However, if there is insufficient buffer
space to contain all these intermediate results, we must
choose which box results to buffer. The worthiness of box
results (their potential to reduce latency) depends on a
variety of complex considerations, beginning with
compute cost and buffer space requirements.

The worthiness of a box result is also significantly

Figure 2
Data Displayed in a Tioga Browser

A B C F H

E

D G

I

Figure 3
Structure of a Sample Dataflow Diagram

affected by the structure of the recipe graph. Box results
in the buffer can save time during the computation of
other boxes by obviating the need to compute all their
ancestors. For example, if the results from boxes C and E
are in the buffer and box F is being queried, only box F
needs to be computed during this move (since boxes C
and E have guarded boxes A and B, making their
computation unnecessary). We additionally observe that
the current residency of the buffer pool affects the
worthiness of other box results.

Finally, the probability that a box result will be
accessed impacts its worthiness. This probability is
constructed according to a probabilistic move model
described in detail in section 5. In this model, we define a
query to be the user’s request to view the results of a
single box. A query path is a sequence of queries. The
current query is the user’s position in the query path. At
each position, a possible buffer allocation may be made.
A set of buffer allocations for the entire path is called a
solution.

We define the optimal buffer allocation at a given
position as the one which will minimize the average
response time to an unknown future sequence of queries
on intermediate results. This allocation will be made
based on a configuration which includes the following
information: the structure of the recipe graph, the user’s
current position in the recipe graph, the current contents
of the buffer, and the probability distribution of the user’s
expected movements. We assume that box results which
are in the buffer pool or the results of boxes which must
be computed at a given position are candidates for
inclusion in the buffer allocation at that position.

As a result of the complications listed above,
calculating the optimal buffer allocation is in fact NP-
hard. This can be shown by a polynomial reduction from
the Knapsack problem [8] to our problem of optimal
buffer allocation. In such a reduction, compute times and
buffer space requirements correspond to the value and
size of objects to be placed in the knapsack. Intuitively,
the search space is extremely large since it must consider
the impact of all possible allocations on the latency of all
possible query paths which could be followed in the future
(and in turn all the buffer allocations for each position in
each path). Performing an exhaustive search of all
buffering solutions for all future paths is not feasible.
Naively calculating the optimal allocation for positions in
short query paths through graphs with a small number of
boxes (e.g. 10) took days on a DEC Alpha.

However, we believe that near-optimal buffer
allocations can be made by heuristics. We further posit
that the following characteristics of optimal buffer
allocation render existing buffer management techniques
ineffective: (1) box results can guard other boxes; (2) the

sizes of box results vary; (3) the compute times of boxes
vary; and (4) the future reference stream is impossible to
predict. Because traditional caching and buffer
management techniques [9, 10, 11] such as LRU do not
consider guarding, items of variable size, or variable fetch
costs, they make poor buffer allocation decisions for
intermediate results. Register allocation is in many ways
more similar to the optimal buffer allocation problem we
are considering. However, heuristics to solve register
allocation are predicated on an understanding of the
future reference stream [12]. This understanding allows
the register allocation heuristics to eliminate many results
from consideration. Because the reference stream in
search query paths in dataflow diagrams is unpredictable,
it can not be constrained. Finally, although techniques
exist which minimize buffer usage within a single
execution of a dataflow diagram [13], these techniques do
not consider retaining intermediate results for search or
modification queries.

As a consequence, we have developed new heuristics
which are more appropriate to the optimal buffer
allocation problem. In this paper, we compare the
behavior of a number of these heuristics on a variety of
graph types and user access patterns.

3: Assumptions
We make several assumptions. We assume the

existence of recipe graphs which have already executed
and materialized final results. All inputs and final results
are saved as tables in our underlying DBMS. However,
we assume that intermediate results of recipes are not
saved. We assume that the system has bookkeeping
information which tells us the exact compute time for
each box, as well as the exact size of its output.

For simplicity, we assume the common case in which
each graph has one box which is a terminal box. The
terminal box has no outputs and is saved in a DBMS
table. We refer to boxes which do not output data except
to the terminal box as sinks. These boxes are of interest
because queries to them can require the computation of a
large number of boxes, therefore providing a large set of
results as candidates for the buffer pool. Boxes which do
not take input from other boxes are called sources. In a
query path, a user views the results of the terminal box
and then performs a sequence of queries on the recipe
graph, visiting a number of boxes before terminating the
search. We assume that this sequence is not known in
advance and that the terminal box is never revisited.

We assume the existence of a workspace in which
computations are performed. For each recipe, we assume
the existence of a separate buffer of limited size. Each
time a user asks to view an intermediate result, our

strategies determine which box results they would like to
retain in the buffer after its computation. Desired box
results in the workspace are copied into the buffer. We
assume that box results may only be buffered in their
entirety. We assume without loss of generality that this
buffer space is on disk. In most cases the buffer space
available will not be sufficient to store all intermediate
results. Our goal is to choose which intermediate results
to buffer to minimize the average latency of future search
queries.

4: Graph generation
Because only a limited number of recipes generated by

users are available to us, we randomly generate recipe
graphs for our tests. We observe that boxes in dataflow
diagrams, both in Tioga and in other systems, are
typically composed of groups. While groups have a
relatively high degree of interconnectivity, there tends to
be a relatively low degree of connectivity between groups
in a graph.

Therefore, we generate groups as follows. The group
generator creates a certain number of boxes (a value
randomly chosen from a specified range). The graph
generator takes as input a range of orders of magnitude
for buffer sizes and compute times. To assign a value
from one of these ranges, we first randomly select an
order of magnitude from the specified range. We then
randomly select a number from within that order of
magnitude. The resulting distribution of numbers
generated resembles an exponential distribution. In our
studies, we focus on graphs in which buffer sizes vary by
up to three orders of magnitude (between 1 and 100) and
compute times vary by up to six orders of magnitude
(between 1 and 100,000). These values are based on
observations of the scientific applications which we
support. After the boxes have been assigned buffer sizes
and compute times, we add edges which result in acyclic
graphs with a controlled branching factor (the average
number of edges per box). In this study, we generated
graphs ranging from a low branching factor of
approximately 1.2 to a high branching factor of
approximately 1.8.

The graph generator makes calls to the group
generator a specified number of times. It then adds edges
between the groups as follows. The graph generator
connects a source, sink, or intermediate box in the first
group to a source, sink, or intermediate box in the second
group according to a specified probability function. In the
results presented in this paper, plausible values are chosen
based on informal observations of existing dataflow
diagrams. We designate the box in the first group a
source, sink, or intermediate box with probability 10%,

80%, and 10%, respectively. The box in the second group
is a source, sink, or intermediate box with probability
25%, 70%, and 5%, respectively. The probability
distribution of these connections controls the relative
numbers of sources and sinks in the final graph. Finally,
after all groups have been connected, all sinks are
connected to a terminal box.

5: Simulation model
We next implemented a simulator which would

measure the performance of a variety of buffering
strategies on various graphs. We defined a move model
which specifies the sequence of intermediate results
examined by a user. If a user is positioned at a given box,
it is possible for them to:

• move backward in the graph to a parent (e.g. from
box F to box C in Figure 3).

• move forward in the graph to a child (e.g. from
box C to box F).

• move sideways to a spouse box which shares a
child (e.g. from box F to box G).

• move to a random box in the graph (e.g. from box
G to box B).

• reset (the query path ends; terminate and clear the
buffer).

Each of these five possibilities is assigned a
probabilistic value; the five values sum to one hundred
percent. The probability of resetting indirectly controls
the length of a single query path. We studied a variety of
probability distributions including, for example, a largely
backwards, short query path characterized by 50-10-15-
10-15 and a relatively random, long query path
characterized by 13-13-18-53-3 (backward-forward-
sideways-random-reset).

The simulator generates a complete query path and
passes it to procedures which mimic the behavior of
buffering strategies on that path. At each position, the
buffering strategy has a list of candidate box results which
could be retained. This includes results which existed in
the buffer previously as well as results which must be
calculated at the current position. A viable candidate is
one which will fit in unallocated space in the buffer. At
each position, the strategies assume they have the entire
buffer space to allocate and fill it according to their
heuristic. The allocation ends when the strategies
determine the buffer is full or when they determine that
none of the unbuffered candidate box results is viable.

For each heuristic, the cost of the entire query path
using its solution is recorded. We have examined a large
number of strategies in this way. For the sake of brevity,
we discuss only the following in this paper:

• No Buffering: No intermediate results are cached.
This represents the worst case.

• First-in-first-out (FIFO): At each position in the
query path, FIFO buffers box results in reverse
timestamp order. Timestamps represent the
creation time of a box result within a query path.
Within a position, we assume the necessary boxes
are computed in topological order, since no box
may be computed until its ancestors are computed.
Timestamps are therefore assigned according to a
post-order, depth-first traversal.

• Random Average: At each position in the query
path, this strategy uniformly at random selects box
results and attempts to buffer them. A buffer
allocation is complete when the buffer is full or all
available box results have been buffered.

• k-Random: Random Average as above is run k
times on a fixed query path; the k-Random solution
is the one with the best running time. For data in
this paper, values for k range between 64 and 256;
separate simulations have established that higher
values of k yield only marginal improvements.

Note that the performance of k-Random may
not be achievable in practice. Because k-Random
runs multiple times on the same query path, its
solutions are based indirectly on knowledge of
future moves in the specific path being tested.
Consequently, it does not try to optimize for the
average case, but for the specific path which is
being tested. In other words, k-Random takes
advantage of information about future moves not
available to other heuristics.

• Path Cut: At a high-level, Path Cut’s heuristic is
to minimize the cost of hypothetical backward
query paths. These hypothetical paths are the set
of all paths which begin at any node and consist
only of backward and reset moves. The cost of
such backward paths can be decreased by the
buffering of their midpoint. Results of boxes which
have some combination of the following
characteristics are therefore desirable: (1) midpoint
of multiple backward query paths; (2) midpoint of
at least one expensive backward query path; or (3)
midpoint of at least one backward query path
which is likely to occur. At each position in the
fixed query path, Path Cut assigns the midpoint of
each hypothetical backward path a path cut value
(PCV). The worthiness of a box result is the sum
of its PCVs for all paths. A greedy algorithm is
used to attempt to buffer box results in the expected
order of their worthiness.

The worthiness function is computed as follows:
we assume that we are making a buffering decision
while computing a current box c. For every box in
the recipe graph, we construct all paths to each of
its ancestors. We calculate the sum Sp of the
compute costs for all boxes in a path p from a box
n to an ancestor a. The compute cost of a single
box is the sum of the costs of all its ancestors (all
the boxes on which it is dependent for input)
assuming that no box results are buffered. We
identify the computational midpoint m of path p.
m is the box along p such that the sum of the
compute costs between a and m is greater than or
equal to 50% of S. We then calculate two
probabilities. For this calculation, we assume that
we have perfect information about the probability
distribution of the moves described above. First,
we calculate the probability P(p) of the path
between n and a occurring given that the user
reaches box n (this is the probability of a
backwards move to the power of the length of p).
We then calculate the probability P(c→n) that n
will be the box visited immediately after c. The
PCV of m is equal to Sp * P(p) * P(c→n). The
worthiness is the sum of all PCVs for a given box.

• Path Cut No Probabilities (NP): This heuristic is
identical to that above, with the exception that the
PCV assignment considers no probabilities, i.e. the
PCV of m is equal to Sp.

We simulated the above strategies on a variety of
graphs and with a variety of access patterns. We present
the results of these simulations in the next section.

6: Results
This section quantitatively demonstrates the benefits of

buffering of intermediate results. First we show that
significant gains can be achieved by such buffering. We
next show how these benefits vary with heuristic, graph
structure, and access pattern. We then examine the
behavior of heuristics for varying buffer sizes. Finally, we
discuss the results of additional experiments we
conducted.

We begin by characterizing the maximal reduction in
latency which can be achieved by buffering of
intermediate results. We assume the buffer is empty when
computation begins. The best possible performance
occurs when every box result which is computed is
inserted in the buffer and not removed until queries on the
graph are complete. (The computation cost in this case is
not simply the cost of executing the recipe since a user
may choose to examine only a subset of the intermediate
results.) In this situation, the buffer space needed is at

most the sum of the space requirements of all boxes in the
graph, since each box result need be stored at most once.

Figure 4 presents the relative performance (according
to average compute cost per path) of No Buffering and
100% buffering solutions to query paths for a variety of
graph structures and access patterns which can be
characterized as described in Table 1. The Size column
notes the average number of boxes in the graph. Graphs
with an average number of 18 boxes consist of three
groups. The BF column characterizes branching factor
(low of 1.2 and high of 1.8). The C and B columns
indicate the number of orders of magnitude variation
among the compute times and buffer space requirements
of box results in a recipe graph. P(back) and P(random),
indicate the probability of backwards movement and
random movement. PL represents the path length,
indirectly controlled by the probability of resetting.2

Size BF C B P(back) P(random) PL
baseline 18 low 6 1 high low short
random 18 low 6 1 low high long
bushy 18 high 6 1 high low long
variable 18 low 6 3 high low short
big 54 low 6 1 high low long

Table 1
Graph Structures and Access Patterns

For each type described above, we generated dozens of
graphs and ran thousands of query paths within each
graph. Figure 4 presents the average of the results. We
observe that if no buffering is done, three independent
conditions can make query paths expensive. First, longer
query paths are more expensive. Second, query paths
through larger graphs are expensive (because the

2 The complete move probability distributions are 50-10-15-10-15
(baseline), 13-13-18-53-3 (random), 53-13-18-13-3 (bushy), 50-10-15-10-
15 (variable), and 53-13-18-13-3 (big).

computation of a single box may depend on the
computation of a larger number of ancestors). Third,
query paths in bushy graphs are more expensive (a higher
degree of connectivity also implies that the computation
of a single box may depend on the computation of a larger
number of ancestors).

It is apparent that buffering 100% of the results as they
are computed significantly reduces the average compute
time per path. The greatest gain is achieved for the
random graph; 100% buffering in this case is 13% of the
cost of No Buffering. This data clearly demonstrates that
buffering of intermediate results is desirable.

We next examine the improvements which would be
possible with a smaller buffer. In Figures 5-7, we show
the relative benefits of the various buffer management
schemes under a variety of conditions. We note that there
is a certain minimum computational cost which will be
incurred by any solution. Therefore, we compare
solutions according to the computational cost they incur
above this minimum. We compare a heuristic solution
with the No Buffering solution as follows. If a heuristic
cost is h, the 100% buffering cost is B100, and the No
Buffering cost is NB, the Y axis contains (h - B100) / (NB -
B100). Values close to 0% mean the heuristic closely
approximates 100% buffering; higher values mean the
heuristic performs in a manner similar to No Buffering.

Figure 5 presents the performance of various heuristics
on the same graphs, access patterns, and query paths
detailed in Figure 4, assuming a buffer 10% of the size of
the 100% buffer. We see that graph structure and access
pattern affect the behavior of the heuristics. Considering
graph structure, we see that the heuristics are clustered
together fairly tightly for the variable size graph set. This
occurs because each heuristic attempts to fill the fixed size
buffer completely. As the buffer fills, an increasingly
small number of box results are viable candidates. As a

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

ba
se

lin
e

ra
nd

om

bu
sh

y

va
ria

bl
e

si
ze

s bi
g

Graph Characteristics

A
ve

ra
g

e
C

o
m

p
u

te
 C

o
st

 p
er

 P
at

h

No Buf fering

100% Buf fering

Figure 4
Compute Costs For Varying Graph Structures

and Access Patterns

0%

10%

20%

30%

40%

50%

60%

70%

ba
se

lin
e

ra
nd

om

bu
sh

y

va
ria

bl
e

si
ze

s bi
g

Graph Characteristics

%
 o

f
N

o
 B

u
ff

er
in

g

k-Random
Path Cut

Path Cut NP
Random Average
FIFO

Figure 5
Performance of Heuristics with 10% Buffering

consequence, there is a certain set of box results with
small space requirements which is chosen by most
heuristics. This similarity in buffer allocations
compresses the difference among the heuristics.
Considering variations in access pattern, we see that in
the random graph set (which has longer query paths), the
heuristics only come within approximately 30% of the
100% buffering case. However, this is not because the
heuristics are making poor buffering decisions, but rather
is a result of the small buffer size. Even in the optimal
solution for these query paths, items must be removed
from the buffer and calculated again later.

We also see that in many cases, heuristics come close
to the performance of 100% buffering. Specifically, k-
Random and Path Cut tend to do extremely well. The
relative performance of the heuristics for each graph type
and access pattern is relatively consistent, with a few
interesting exceptions. For example, in most cases Path
Cut tends to outperform Path Cut NP. However, it loses
its advantage on query paths with a high degree of
randomness. This implies that the worthiness
assignment being used by Path Cut may be most effective
for access patterns in which the user has a high
probability of moving backward through the graph. We
also observe that in the bushy and big graphs, Path Cut
actually outperforms k-Random. This is because k-
Random has a much lower chance of finding a good
solution for a long query path than for a short query path
(since k is fixed and the set of solutions for a long query
path is much larger than the set of solutions for a short

query path). Also observe that FIFO does quite poorly in
general, often worse than Random Average. Intuitively,
since FIFO buffers the most recently generated box
results, it always attempts to buffer the result of the box
which is being visited. Since the user most often moves
away from that box, often to ancestors which have no
dependence on it, this is a poor strategy.

Figures 6 and 7 show the performance of heuristics as
a function of the size of the buffer. Error bars represent
95% confidence intervals. Note that the performance of
the heuristics quickly converges as the buffer size
increases. Observe also that for certain strategies, a buffer
which is approximately half the size of the maximum
buffer can yield the same performance as the maximum
buffer. This is largely because many query paths do not
access all box results, and so much of the maximum
buffer remains unused.

We tested many different types of heuristics. Due to
space constraints, we will not enumerate them here. We
simply note that, in general, the other heuristics we
examined performed slightly worse than Path Cut and
slightly better than Path Cut NP.

We also investigated the usefulness of approximate
rather than perfect information about the probability
distribution of the user’s movements. The performance of
heuristics using approximate information is quite close to
that of the heuristics using perfect information. Since
history mechanisms may be used to approximately predict
the user’s future movements, we conclude that keeping
history about the user’s access patterns is advisable.

0%

10%

20%

30%

40%

50%

60%

70%

80%

1
0%

2
0%

3
0%

4
0%

5
0%

6
0%

7
0%

8
0%

9
0%

10
0%

% of Maximum Buffer Space

%
 o

f
N

o
 B

u
ff

er
in

g

FIFO

Random Average

Path Cut NP

Path Cut

k-Random

Figure 6
Heuristic Performance for Baseline Case

0%

10%

20%

30%

40%

50%

60%

70%

80%

1
0%

2
0%

3
0%

4
0%

5
0%

6
0%

7
0%

8
0%

9
0%

10
0%

% of Maximum Buffer Space

%
 o

f
N

o
 B

u
ff

er
in

g

FIFO

Random Average

Path Cut NP

Path Cut

k-Random

Figure 7
Heuristic Performance with High Branching
Factor and Long Query Paths (C = 6, B= 1)

7: Conclusions
We have seen that buffering of intermediate results can

significantly reduce the latency of search queries in
dataflow diagrams. Use of a relatively small buffer can
provide substantial improvements over no buffering.
Further, traditional strategies such as FIFO are much less
effective than the new heuristics which we propose.
These heuristics approach the maximal improvement
possible. The most effective heuristics make predictions
about the user’s access pattern, suggesting that a history
mechanism is warranted.

There are many potential directions for further
research. Certainly a variety of other heuristics could be
examined. Additionally, extending our model and
simulator to consider modification in addition to search
queries would be straightforward. Further, we could
consider optimal buffer allocation for a multiuser buffer
pool, i.e. when the amount of buffer space for a recipe can
vary over the course of the query path.

A more complex extension would consider buffering of
partial results. First, modifications may affect only part of
a box result. Second, since browsers can display a subset
of a box result, it may not be necessary to calculate an
entire box result. We believe the buffering of partial
results is a fruitful direction and have begun to study these
issues. In this context, slaved browsers [14] raise an
additional complication. When two browsers are slaved
together, examining a partial result in one browser
spawns a process which generates a corresponding partial
result in another browser. Our model could be extended
to consider this type of dependency in the access pattern.

References
[1] Stonebraker, M., Chen, J., Nathan, N., Paxson, C., and Wu,

J., “Tioga: Providing Data Management for Scientific
Visualization Applications,” Proceedings of the 1993
VLDB Conference, Dublin, Ireland, August 1993.

[2] Upson, C., Faulhaber Jr., T, Kamins, D., Laidlaw, D.,
Schlegel, D.,. Vroom, J., Gurwitz, R., and VanDam, A.,
“The Application Visualization System: A Computational
Environment for Scientific Visualization,” IEEE Computer
Graphics and Applications, 9:4, July 1989, pp. 32-40.

[3] Lucas, B., Abram, G., Collins, N., Epstein, D., et al., “An
Architecture for a Scientific Visualization System,”
Proceedings of the 1992 IEEE Visualization Conference,
Boston, Massachusetts, October 1992.

[4] Rasure, J. and Young, M., “An Open Environment for
Image Processing Software Development,” Proceedings of
the 1992 SPIE Symposium on Electronic Image
Processing, San Jose, California, February 1992.

[5] Stonebraker, M. and Kemnitz, G., “The POSTGRES Next-
Generation Database Management System,”
Communications of the ACM, 4:10, October 1991, pp. 78-
92.

[6] Stonebraker, M. and Dozier, J., “SEQUOIA 2000: Large
Capacity Object Servers to Support Global Change
Research,” SEQUOIA 2000 Technical Report 91/1,
University of California, Berkeley, March 1992.

[7] Gorlick, M., and Razouk, R., “Using Weaves for Software
Construction and Analysis,” Proceedings of the 13th
International Conference on Software Engineering, Austin,
Texas, May 1991.

[8] Garey, M. and Johnson, D., Computers and Intractability:
A Guide to the Theory of NP-Completeness, W.H. Freeman
and Company, New York, New York, 1979.

[9] Smith, A., “Cache Memories,” ACM Computing Surveys,
14:3, September 1982, pp. 473-530.

[10] Denning, P., “Virtual Memory,” ACM Computing Surveys,
2:3, September 1990, pp. 153-188.

[11] Chou, H.-T., and DeWitt, D., “An Evaluation of Buffer
Management Strategies for Relational Database Systems,”
Proceedings of the 1985 VLDB Conference, Stockholm,
Sweden, August 1985.

[12] Steenkiste, P., “Advanced Register Allocation,” in
Advanced Language Implementation (P. Lee, ed.), MIT
Press, Cambridge, Massachusetts, 1991.

[13] Tsui, K., Fletcher, P., and Hutchins, M., “PISTON: A
Scalable Software Platform for Implementing Parallel
Visualization Algorithms,” Proceedings of Computer
Graphics International, Melbourne, Australia, June 1994.

[14] Woodruff, A., Wisnovsky, P., Taylor, C., Stonebraker, M.,
Paxson, C., Chen, J., and Aiken, A., “Zooming and
Tunneling in Tioga: Supporting Navigation in
Multidimensional Space,” Proceedings of the IEEE
Symposium on Visual Languages, St. Louis, Missouri,
October 1994.

