
Recycling Secondary Index Structures*

Paul M. Aoki

Department of Electrical Engineering and Computer Sciences
University of California

Berkeley, CA 94720-1776
aoki@CS.Berkeley.EDU

Abstract

Several important database reorganization techniques move tuples in a table from
one location to another in a single pass. For example, the Mariposa distributed
database system frequently moves or copies tables between sites. However, mov-
ing a table generally invalidates the pointers contained in its secondary indices.
Because index reconstruction is extremely resource-intensive, table movement has
been considered a expensive operation. In this paper, we present simple, efficient
mechanisms for translating index pointers. We also demonstrate their effective-
ness using performance measurements of an implementation in Mariposa. Use of
these mechanisms will enable parallel and distributed systems like Mariposa to
move tables more freely, pro viding many more options for performance-enhancing
reorganizations of the database.

1. Introduction

A variety of important database reorganization techniques move tuples in a table from one

location to another in a single pass. Examples of such techniques include movement of tables

between sites in a distributed database and certain types of space reclamation. However, the sim-

ple process of moving tuples has a side effect with serious performance implications: because

secondary indices in most systems contain tuple pointers that contain physical elements,1 moving

the table invalidates the links between the indices and the underlying table. Rebuilding an entire

set of secondary indices from scratch can be expensive, making reorganization a lengthy, heavy-

weight process. Although this process can be accelerated using parallel sorting and bulk-loading

algorithms [PEAR91], parallelism makes the process even more resource-intensive. Since sec-

ondary access methods are critical to performance, this expense has been an unavoidable tax.

* This research was sponsored in part by the Army Research Office under contract DAAH04-94-G-0223, the Advanced Research Projects
Agency under contract DABT63-92-C-0007, the National Science Foundation under grant IRI-9107455 and Microsoft Corp.

1 There are a few important exceptions, such as Tandem’s NonStop SQL, which use primary keys as tuple identifiers.

Reducing the expense of data movement has become an important factor in the design of

the Mariposa distributed database management system [STON94b]. The Mariposa model

assumes that there are many database sites with widely-varying network connectivity and pro-

cessing power. Many, if not most, database sites are workstation-class machines; Mariposa algo-

rithms must therefore work well on commodity desktop hardware as well as centrally-

administered, massively-parallel servers. Furthermore, the Mariposa design includes an eco-

nomic model for management of query processing and storage space [STON94a]. A lightweight

primitive for moving and copying tables between sites is critical to the system’s ability to per-

form automatic tuning and load balancing using this economic model.

In this paper, we explore the tradeoffs involved in preserving index structures when the

underlying tuples shift beneath them. The remainder of this introduction provides more precise

definitions of the problem, its applications and our cost and benefit metrics. In the rest of the

paper we discuss several implementation options, including some previously suggested in the lit-

erature, and present a comparative performance analysis based on an implementation of these

options in Mariposa.

Our study focuses on the class of reorganization operations in which a base table is copied

from a source table Sto a target table T; in the distributed database context,T may be on

another machine. (We assume thatS has a known number of pages, |S|, and a known cardinality,

||S||. These values can be approximate.) Even if we do not reorder the tuples while copying, it

still may not be possible to map the contents of a source page into a single target page (or a fixed

number of target pages that can be determineda priori). This kind of copying operation arises in

many situations, such as:

• Architecture interchange. Computer architectures impose varying restrictions on the size and

memory alignment of native data types. For example, when moving data from a Microsoft

Windows NT machine based on an Intel x86 processor to a UNIX machine based on a

Hewlett-Packard PA-RISC processor, the data manager must alter the tuples to ensure that

four-byte integers align on four-byte boundaries. The resulting changes in tuple size may

cause pages to overflow in a way that is entirely dependent on the contents of the tuples.

• Reorganization. Even within a single database, we may wish to copy a table without altering

the order of the tuples. Such situations include copying a table to a different disk partition,

changing a table’s page size, and compacting pages to reclaim storage space. In Mariposa,

the latter operation becomes very desirable after the vacuum cleaner [STON87] runs.

• Media interchange. Different storage devices may have different page sizes that are visible to

the data manager, either for performance or functional reasons.

2

We observe that a limited amount of preprocessing by the source site and the transmission

of part of the index structure can save a much greater amount of effort at the target site. This

becomes possible if the I/O complexity of preprocessing and moving the index is substantially

less than the I/O complexity of rebuilding it. For example, if moving the index requires a single

scan of the index and rebuilding requires a multi-passO(n log n) sort, there is great potential sav-

ings. If we are in fact moving the table across a network, we must also consider the relative costs

of network I/O and local processing.

Note that we do not necessarily want to preserve the existing index structure. Instead, we

want to take advantage of the information stored in the existing index structure in order to save

some of the work involved in building a new one from scratch. That is, instead of modifying the

existing index, we are essentiallyrecycling the materials (e.g., clustering/ordering, base table

page pointers, etc.).

Recycling has at least two interesting subproblems. These correspond to the different types

of nodes found in secondary index structures, which include:

• Index nodes that refer to base table tuples. For consistency, we will call theseleaf nodes for

all data structures, even those that are not trees. In essence, we are attempting to avoid redo-

ing the most expensive steps of a bulk-load process at the target site. For example, this would

be the sorting step in the case of a B+-tree index. The decision problem is to determine

whether it is possible and cost-effective to preserve clustering for the given access method.

The main implementation problem is that of efficientTID translation.

• Index nodes that refer exclusively to other index nodes. Suchinternalnodes are very different

from leaf nodes. They are generally far fewer in number, their organization has a far more

profound effect on search efficiency (because they are consulted early in a search) and they

can be reorganized independently of the base table tuples. The decision problem is to deter-

mine whether it is possible and cost-effective to preserve the internal structure. In this paper

we will not discuss techniques for recycling the internal nodes of an index.

In Section 2, we discuss the options for moving the leaf level of an index. In Section 3, we

present the details of our implementation in Mariposa and the results of our experiments.

Finally, in Section 4, we discuss future directions and conclusions.

2. Processing Leaf Nodes

In this section we describe when and how we can recycle the leaf nodes of an index struc-

ture. We first discuss some of the sufficient conditions for us to recycle indices. We then turn to

implementation mechanisms for actually doing so.

3

All of the techniques described below assume the following model for moving tables. First,

we copyS into T without reordering the tuples. While copying, we extract some information

which will allow us to determine where a givenS tuple can be found inT. Second, we copy the

leaf pages of a given index onS into the leaf level of an equivalent index onT. As we copy

index tuples, we translate the TIDs that point toS tuples into TIDs that point toT tuples.

Finally, we moveT and its (partially constructed) indices to the target site. (Alternatively, indi-

vidual pages of these files can be moved as we complete translation.) The target site then builds

the internal levels of the indices, completing the movement process.

2.1. When Can We Preserve Leaf Nodes?

In the most general terms, it can be cost-effective to preserve the leaf level of an index if we

can easily apply splitting/merging criteria to a collection of tuples. For example, say a target

index paget has overflowed because the page size ofT is smaller than that ofS. We now wish to

share some of its tuples with another page; we might also simply choose to splitt. If we must

perform an expensive calculation to splitt ’s tuples, or search a large portion of the original index

to find a suitable page on which to place overflow tuples, then this process may be prohibitively

expensive.

Tw o common properties can help determine whether we can profitably recycle a given

access method. First, if the access method has the notion of equivalent and/or sibling leaf nodes,

it is easier to find a node with which to share index tuples. Second, we need some kind of easily

computable clustering function so that we can make local decisions when splitting/merging. The

need for clustering to be computable rather than implicit in the index structure may not appear to

be necessary, inasmuch as we are free to reorganize leaf pages before splitting them or after

merging them; only the tuples on the base table pages are kept in order. Howev er, we wish to

avoid performing random searching probes of the source index structure and random insertions

into the target index structure; both of these lead to poor I/O behavior and generally increase the

cost of processing the index.

The common access methods vary in the ease with which they can be recycled. The B+-tree

is an example of an access method that is easy to process. The key ordering and side-links make

it easy to find nodes with which to exchange index tuples without damaging the index clustering,

and the ordering function is trivial to compute. The algorithm for processing the leaf levels of a

B+-tree is therefore trivial: one simply descends theS index to the least key on the leaf level and

reads the leaf pages in side-link order, filling theT index pages. Dynamic hashing access meth-

ods that use external overflow techniques, such as linear hashing [LITW80], should also be

amenable to recycling. Overflow chains make it easy to grow or shrink buckets. By contrast,

4

naive splitting/merging of unordered tree structures such as R-trees is easy but intelligent split-

ting/merging is much more difficult [BECK90].2

2.2. TID Translation

In the remainder of the paper, we will use the termstranslationandmappingto mean the

same thing: conversion ofS TIDs into validT TIDs within the target index pages.

Translating Individual References

One obvious solution is a simple TID mapping table, but a mapping table consisting of

old-TID → new-TID entries is useless because of its size. For 60-byte tuples and 12-byte

TID mapping entries, the mapping table is 20% of the base table size! The mapping table will

generally not fit in main memory, slowing translation unacceptably — TID translation in an

unclustered index will perform random probes of the mapping table and cause heavy paging.

TID translation mechanisms at the reference granularity have some similarity topointer

swizzling, or translation between object reference formats as stored in secondary and primary

memory, in object-oriented databases. When primary memory pointers are OIDs, the “how” (as

opposed to the “when”) part of swizzling is known as theOID mappingproblem. The mecha-

nisms used include segmented mapping tables (e.g., ObServer [HORN87]), hash tables (e.g.,

Itasca [EICK95]) and B-trees (e.g., GemStone [MAIE87]). Simple data structures full of

OID → address entries work in this environment because programs frequently exhibit locality

of reference and have small reference sets. This means that the portion of the mapping structure

kept in memory will be small and well-utilized. However, when moving an index, we know we

are processing all references contained in the index in a short period of time without locality

guarantees. Pointer-mapping techniques will not perform well in this bulk-translation environ-

ment.

Translating Only Page Numbers

Since the main problem with simple TID-mapping structures is the size of the mapping

table, an obvious option is to change the mapping granularity in some way. If we constrain the

problem, we can reduce the size of the mapping table by storing only per-page information

instead of per-TID information. For example, assume for the moment that (1) we are using phys-

ical {page,offset} TIDs, (2) tuples cannot change size and cannot be reordered, and (3) old

2 Fortunately, in some cases we can impose an inexpensive linear ordering that clusters the data (e.g., least Hilbert value clustering
[KAME94]), which makes the R-tree more closely resemble the B+-tree in terms of our ability to make local clustering decisions.

5

pages map directly to a fixed number of new pages (e.g., using a constant expansion or contrac-

tion factor). In this case, we can use a translation table to map source page numbers to target

page numbers and then use a simple arithmetic formula to map the source offsets to target off-

sets. This solution achieves our goal of storing only page-level mapping information, but the

assumptions violate the conditions we stated in Section 1.

Aside from simple but impractical solutions such as the one just described, there exist at

least two proposed TID translation algorithms. Both use page number translation tables that fit

in main memory. Howev er, as we will see, both algorithms also fail to translate the source byte

offset into a target byte offset without high cost.

Like the simple proposal just described, the original Mariposa design [STON93] uses a sim-

ple page number translation table. However, the Mariposa design does assume that tuples can

change size in unpredictable ways. This means that an arithmetic expression can no longer be

used to calculate byte offsets. Instead, the translation algorithm extracts the source page number

from the TID and maps it into a set of one or more eligible target pages. It then searches each of

the target page(s) for the desired tuple. (The means of matching the source and target tuples is

not specified in the paper, but index keys can be used.) When the desired tuple is located, the

page number and byte offset returned by the search routine must be the final target TID.

The original Mariposa approach works for any access method but has several important

shortcomings. First, if the base table is not clustered on the indexed column(s), searching the

base table pages to complete the TID translation will result in many random page faults. Second,

this strategy fails if the indexed column(s) do not form a primary or candidate key. Howev er,

since real B+-tree implementations nearly always enforce key uniqueness (through addition of

system-generated unique identifiers, if necessary), the latter point is not a serious problem.

Finally, the translation table does not provide us with a unique page within the target base table,

only a set of potential pages. This makes the search for the matching tuple much more ineffi-

cient.

Sunet al. [SUN94] address the TID translation problem for the special case of B+-trees.

Like the Mariposa design, they use a page-level translation table and therefore cannot compute

the target byte offset without great effort. However, their page-mapping solution is superior to

the original Mariposa solution because it accurately maps a source TID to the correct target page.

Figure 1 shows how the byte-offset technique works. We show how the base table is reor-

ganized, how the translation table is created, how the translation table is used, and how the trans-

lation table can be made more compact. Values shown in Times-Roman are page numbers or

byte offsets that are valid forS. Values shown inbold italic are page numbers or byte offsets that

6

= value valid at source
= byte offset ‘x’

1
1

= value valid at target

1
s

2

page
start
[0]

bold italic

2
[x]

source

[200]

end
[0]

[300][1]

[100]

1
2
3
3
4

target

roman

[301]

page

[0]

source

[101]

[600]

target page

ssource page
valid on

offsets from

{3,[?]}{2,[0]}

page

= derived (implicit) value

s

2
1

t

st source page

0 300 600 0 100 200

Page 1 Page 2

a b c d e f

byte offsets

0 0 0 300 400 0

a b c d e f

Page 1 Page 2 Page 3 Page 4

target - 512B pagessource - 1KB pages

tuples

(a) Changes in base table page layout.

[0],[300],[600]
[100],[200]

t,t+1,t+2,...
on target page

last tuple from
source offset of

(c) Compact byte offset translation table.

1
3

first
target
page

t

(b) Byte offset translation table.

Figure 1. Example using byte offsets.

are valid forT.

In Figure 1(a), we see that the source machine has 1KB pages, whereas the target machine

has 1/2 KB pages. Furthermore, tuples are being packed on target pages in order to fit them into

the minimal number of pages possible without reordering; note that the tuples from source pages

1 and 2 have been mixed in target page 3.

Figure 1(b) shows the contents of the translation table corresponding to Figure 1(a) and an

example of how the translation table is used. The translation table is loaded whenS is copied

into T and contains an entry corresponding to a source pages and a target paget iff any tuple

from s has been placed ont. In fact, because tuples are not reordered when they are packed on

the target pages, we know that a contiguous set of one or more tuples froms has been placed on

t. Therefore, in addition to the source and target page numbers, the table contains a range of byte

offsets. If the page number from a source TID matches the page numbers of some translation

table entry and the TID’s byte offset falls within the matching range of byte offsets, we know that

the tuple corresponding to that TID has been placed ont.

7

Consider the tupled in Figure 1(a). Tupled has source TID{2,[0]} . When we

encounter an index tuple containing{2,[0]} , we examine the translation table entries corre-

sponding to source page 2. There are two such entries, but the source byte offset[0] matches

the byte offset range in the fourth row of the translation table. We therefore know thatd is

located on page 3 ofT. Notice, however, that there is no way for us to determine thatd starts at

byte offset 300 of target page 3. The offset must be determined by searching the target page

using the key.

The translation table in Figure 1(b) is highly redundant and can be converted into a much

more compact form. All of the table cells shown in gray can be derived from other values within

the table. Eliminating these cells results in the representation shown in Figure 1(c). If page

numbers are 32 bits and byte offsets are 16 bits, we need at least

8|S| + 2(|S| − 1) + 2|T| ≈ 10|S| + 2|T| bytes to construct the table. In fact, [SUN94] uses a hash

table instead of an array and therefore requires more memory.

We note again that the final, key-based translation can be very costly for the two algorithms

just described. We can attempt to reduce this cost in two ways: we can modify the query pro-

cessing engine to handle partially-valid TIDs, or we can implement algorithms that perform this

translation efficiently. We discuss each of these options in turn.

If the table being moved is not very active and we are unlikely to use the table or its indices

in the near future, it may make sense to leave the byte offsets untranslated. If the index is ever

traversed on the target site, the query processing engine can detect the invalid byte offsets. The

page number will be valid, so the query processor can simply search the page for the desired

tuple instead of accessing it directly. We can even hav e the database update the TIDs in an index

as it dereferences them and determines the correct offsets. For this kind of lazy translation to be

desirable, we must make sev eral assumptions. First, we must assume that it is acceptable to slow

down traversal of recycled indices (base table pages must now be searched instead of being

accessed with the byte offset). Second, we must assume that it is possible to turn index reads

into index writes (such may not be the case if the index is on an archival medium, such as a

WORM optical drive). Third, we must assume that it will be considered worthwhile to modify

the query processing engine in this way. This special case falls into the index scan code and it

may not be desirable to slow down all index scans to support this functionality. Finally, we must

assume that it is worthwhile to recycle the indices of a table that will not be accessed very fre-

quently in the first place.

Alternatively, we might define the problem in terms of finding a more efficient way to per-

form a join of the entire index with its underlying base table. One might think of applying one of

8

the many TID-join techniques to make this more efficient. Such techniques make the process of

dereferencing many TIDs more I/O-efficient by reordering the references. For example, one

might try to adapt ideas from hybrid join [CHEN91]. However, hybrid join requires several sort-

ing steps (something we are trying to avoid because of its expense, especially since we join the

entirety of both tables). Another alternative, the nested-block join algorithm, does not scale well.

If |S| is large, the probability of having a large number of TIDs with duplicate page numbers on

any giv en index page is rather low. Unless an index page (or set of index pages) has a large pro-

portion of duplicate page numbers, we must still fault in many random base table pages.

Translating Page Numbers and Slots

Notice that we have discussed what amount to several kinds of TIDs. Just as one can have

physical, logical or physiological logging, one can havephysical TIDs (e.g., relative byte

addresses of the form{page,offset}), logical TIDs (e.g., primary key addresses of the form

{key}), and any number of hybridphysiologicalTIDs (e.g.,{page,key}). This is discussed

in more detail in [GRAY93, p. 760]. All are used in one system or another. For example, object

systems (e.g., POMS [COCK84]) often use relative byte addresses, whereas a few relational sys-

tems (e.g., NonStop SQL) use primary keys as TIDs.

In fact, most database systems use a particular kind of TID instead of the physical TIDs dis-

cussed in [SUN94]. These systems useslotted pages; that is, they store an array ofitem identi-

fiers (also known asslotsor line arrays) at a known location on each disk page.3 Item IDs con-

tain the byte offset within the page of each tuple on that page; TIDs, therefore, are of the form

{page,index} whereindex is the array index of the item ID that contains the byte offset of

the desired tuple onpage . Although index is an index into a physical array, it is immutable

(as long as the tuple does not move to a different page) and is therefore a logical identifier within

the page. This scheme is discussed in more detail elsewhere [GRAY93, p. 755]. Systems using

this scheme include a wide range of relational and object-relational (e.g., Rdb/VMS [HOBB91,

p. 79], nearly all IBM relational systems [MOHA93],POSTGRES[STON91], Illustra) as well as

object-oriented (e.g., ObServer [HORN87], ESM [CARE88]) data managers.

The main advantage of the slotted page scheme is that the added level of indirection allows

the system to reorganize the storage of tuples within a page without updating all of the TIDs that

point to those tuples; this is generally held to outweigh the added space and time overhead of the

indirection. Furthermore, unlike tuples, item IDs have the critical property of being fixed-size.

3 Or, in some systems, segments (groups of pages).

9

As we will see, if we can figure out how to combine the item ID arrays of several pages, we can

calculate the position of a given tuple’s item ID on the target page given only its original TID and

some amount of additional per-page information.

Figure 2 demonstrates our proposed method for creating translation tables. Just as in Figure

1, we show how the base table pages are copied fromS to T, how the translation table entries are

constructed and used, and how the translation table can be made more compact. Times-Roman

andbold italic indicate values valid forS andT, respectively.

In Figure 2(a), the shifting of the base table tuples due to page size changes and page com-

paction is the same as in Figure 1(a). Note that each page now contains an array of item IDs; for

simplicity, we depict this array as being stored in a separate part of the page from the tuples.

When a tuple is copied to a page, its item ID is copied to the same page.

Figure 2(b) shows how the translation table is constructed and used. Our translation table is

similar to the byte offset translation table in several ways. First, the translation table is loaded

the same way and contains an entry for source pages and target paget iff any tuple froms has

s
1
2
3
3
4

target
page

t

ton target page
sof items from

page

(1)

source

(1)
(1)

array indices

first
(1)
(1)
(1)

of items from

1
3

s
on target page

t

first
t

(1)

(3)

page
s

s
last

(3)

on page

array index

(3)
(2)

(1)
on page t,t+1,...

(2)
(1)

target

(2)

page

2
1

last

(3)

(3)
(1)

source

= derived (implicit) value

from

(2)
(1)
first

= item ID array index ‘x’
= value valid at source
= value valid at target

t
from

of first item
s

bold italic

(x)
roman

source - 1KB pages target - 512B pages

a b c d e f a b c d e f

tuples item ID spaceitem IDsitem ID array index

Page 1 Page 2 Page 1 Page 2 Page 3 Page 4

(a) Changes in base table layout.

(c) Compact slotted page translation table.

1

1
1

2
2

array indices

(1) (2) (3) (1) (2) (3) (1) (1) (1) (2) (3) (1)

(1)
(2)

(1),(2),(3)
(2),(3)

array index
of last item

(b) Slotted page translation table.

{2,(1)} {3,(2)}

a b c d e f a b c d e f

Figure 2. Example using slotted pages.

10

been placed ont. Second, if more than one tuple froms has been copied tot, those tuples are

contiguous. Finally, each entry contains a range of item ID array indices that are valid ont.

However, there are also several important differences. Unlike byte offsets, item ID array indices

form continuous sequences. Suppose thatt contains three tuples froms, and that these tuples

have source TIDs{ s,4} , { s,5} and{ s,6} . If { s,4} corresponds to{ t,2} , then{ s,5} and

{ s,6} must correspond to{ t,3} and { t,4} . Therefore, if our translation table records the

first and last array indices in each of these sequences for both the source and the target files, we

can translate any array index that falls within a given sequence by simple interpolation.

Recall the example in Figure 1(b), in which we could not recover the byte offset of tupled.

In Figure 2(b) we show how we can recoverd’s item ID array index. Here,d has source TID

{2,(1)} . First, we examine the translation table entries that correspond to source page 2. We

then find the entry such that our source index falls between the “first” and “last” source array

index values in the second and third columns. Our array index,(2) , falls in the range

(1),(2) . This means that we need the fourth row of the table. This row indicates that

{2,(1)} maps to{3,(2)} and that{2,(2)} maps to{3,(3)} . The target TID ford is

therefore{3,(2)} .

Note that the ordering and spacing of the item ID arrays must be preserved so that an index

into the source page’s array can be used to index into a set of item IDs that may be spread over

several target pages. In practice, item ID arrays have gaps corresponding to item IDs for deleted

tuples, but preserving these gaps is not a problem because gaps will eventually be reused when

new tuples are inserted on a page. Note also that the slotted page indirection means that the

physical location of the tuple corresponding to a given item ID does not matter as long as it is

still on the same page as its item ID. Hence, our original constraint that tuples are not reordered

can be relaxed slightly.4

Figure 2(c) shows how we can make the translation table more compact. After using the

same redundancy-reducing techniques applied in Figure 1(c), the translation table is relatively

small. Each page number is 32 bits and each item ID array index is 16 bits, so the overhead is at

worst 10|S| + 2(|S| − 1) + 2|T| ≈ 12|S| + 2|T| bytes. The nominal overhead of the mapping table is

therefore only 2 bytes more per source page than in [SUN94]; in fact, because we use an array

and do not have to store the source page number (the hash table key), our structure is actually

8|S| + 2|T| bytes (i.e., 2|S| bytes smaller than theirs). In general, for typical page sizes, the table

4 In fact, most slotted page implementations allow a tuple to be replaced by a forwarding TID. The query processing engine will follow
such forwarding pointers, which makes possible the relocation of tuples between pages. However, a high proportion of forwarding pointers great-
ly degrades performance by adding yet another level of indirection and every effort is made to avoid such relocation.

11

will be two to three orders of magnitude smaller than the base table. This should easily fit in

main memory.

2.3. Implementation Issues

There are several interesting issues that arise in the implementation of these array-based

mapping tables. For the most part, these fall into the realm of future work.

2.3.1. Parallelism

Index recycling is “embarrassingly parallel.” We can partition the index pages into contigu-

ous sections (as defined by the clustering/ordering imposed by the access method) and translate

each section in parallel. The only cost is that the last page in each section might not be as fully

packed as it might have been if the entire index had been translated as one section. Furthermore,

there is no locking contention for the base table pages, the index leaf pages, or the sections of the

mapping table. By contrast, the mapping hash table of the offset method must have conventional

mutual exclusion.

2.3.2. Compression

Instead of sending leaf pages, we can send projections of the leaf pages. For example, we

can send only the TIDs for each index tuple, gathering the keys from the base table pages and

constructing the index leaf pages at the target site. If the base table is well-clustered then this

gathering process has good I/O behavior and greatly reduces the amount of data transmitted (we

are no longer sending the index tuple header and key). For example, for our experimental

indices, this would reduce the amount of transmitted data by a factor of 6. If the data is poorly-

clustered then this has the same I/O cost as the Sunet al. method on unclustered data. In addi-

tion, we can reduce the amount of data transmitted by another factor of 2 by observing that many

tables will only need 16 bits for page numbers and 8 bits for item ID indices. It costs nothing to

determine whether this additional compression can be applied because it will be known immedi-

ately after we build the translation table. (Note that we cannot know this before we start translat-

ing because, in general, we do not knowa priori how many target pages will be required.)

Another interesting option is the application of system compression utilities to the transmit-

ted data stream. We hav e observed that our database files have similar average-case compression

characteristics to ordinary files; 3:1 and 4:1 compression ratios are common. This becomes very

attractive if the source and target site have fast processors and poor network connectivity; in a

high-speed LAN environment, however, compression can easily make the transmission process

slower by similar factors.

12

2.3.3. Concurrency Control and Recovery

In the techniques as described, recovery is trivial. Because we use a technique similar to

“old-master/new-master” rather than in-place translation, we never modify the source base table

or index table as part of the translation process.

One problem with naive old-master/new-master techniques is that they are not highly con-

current. However, known techniques used to improve concurrency of index-building (e.g.,

[MOHA92, SRIN92]) and other forms of reorganization [SOCK93] can be applied. For exam-

ple, base table updates can be saved into side files during the translation process and then applied

to both the source and target tables.

An additional possibility involves keeping reference counts for the source base table pages

in our translation table. When we make our translation pass on the base table, we obtain share

locks on each pages and initialize the reference count fors to the number of tuples it contains.

Then, when we process the index leaf pages, each mapping operation involving a pointer tos

decreases its reference count; when the reference count reaches zero,s is unlocked and can then

be modified by other processes. As in the last paragraph, however, we must have some method

(not necessarily a side file) for tracking these updates so that they can be applied to the target

copy.

3. Performance Analysis

We hav e implemented several alternative algorithms for building indices, recycling indices,

and translating TIDs (i.e., routines to translate base table pages and process B+-tree pages

accordingly). This section describes our implementation and the experiments performed.

3.1. Implementation in Mariposa

A small number of important changes were needed to support the experiments described

below. First, we modified the Mariposa storage system to support several required abstractions.

We then reimplemented some existing routines to provide credible base cases for our perfor-

mance comparisons. Finally, we implemented the additional functionality need to perform the

TID translation.

The Mariposa storage system code is based on thePOSTGRESstorage system (e.g., the

buffer manager, storage device manager and access methods). However, thePOSTGREScode

had to be modified. For example, all of the originalPOSTGRES, storage system code used com-

pile-time constants to determine the size of disk pages. In order to support building base table

and index pages of varying sizes, the Mariposa buffer manager and storage manager now sup-

ports variable-size buffers. We had to make another set of modifications because thePOSTGRES,

13

disk page structures were not uniformly self-describing. For example, each of thePOSTGRES

access methods defined its own special page format for its internal metadata pages. These spe-

cial page formats ignored the existing page structure conventions; if followed, these conventions

would allow access-method-independent routines to determine (for example) the size of the page.

Consequently, Mariposa access method code now uses the correct page structure.

We spent a fair amount of effort implementing and tuning a B+-tree bulk-load routine to

replace thePOSTGRES4.2 insertion-load routine. Our bulk-load routine uses the standard tech-

nique of extracting{key,TID} pairs from the base table, sorting the pairs into index leaf pages

and then building the rest of the tree bottom-up. Our external sorting routine follows the recent

trend [DEWI91, GRAE92, NYBE94] toward quicksort-based run generation and uses large pri-

vate buffers to accelerate its sequential I/O. A credible sort/build bulk-load is important as a base

case for our tests, inasmuch as insertion-load is not used in practice. The reason for this is fairly

clear — in the experimental environment described below, building an index on 100MB of uni-

form random base table data takes over 3.5 hours using thePOSTGRESinsertion-load routine and

takes under six minutes using our bulk-load routine.

Finally, we implemented the Sunet al. byte offset TID translation routines as well as our

own slotted page TID translation routines. We did not actually convert Mariposa into a system

using byte offset TIDs; instead, we simulated their algorithm by performing all of the steps

required and then placingPOSTGRESTIDs into the index tuples. The algorithms are imple-

mented as described in the respective papers, with the following exception: we do not need the

MAP array described in [SUN94] becausePOSTGRESpage numbers are already logical page

numbers within a file instead of physical disk block addresses. The target site therefore does not

need to perform this step.

3.2. Experimental Environment

Our experimental environment consists of DECstation 3000/300 desktop workstations.

These machines have a single 150MHz DECchip 21064 Alpha AXP processor with a 256KB L2

cache and are rated at 66 SPECint92. All machines were configured with Digital UNIX 2.1 or

3.2, 64MB of main memory5 and a single internal RZ26/26L disk drive.

5 Mariposa servers were configured with default buffer pools (512KB shared, 512KB per-server unshared). These are small, but this does
not affect the results as much as might be expected; because the server buffer manager does not support either asynchronous (read-ahead or write-
behind) or multi-page I/O requests, utilities such as the sort/build routine perform their own bulk I/O using private buffers.

Efforts were made to enforce strict “cold cache” conditions. Server buffer pools were completely flushed between experiments, forcing out
ev en metadata pages. This errs on the side of conservatism because it means that the startup transient (opening tables, etc.) is larger than in the
steady state. Further, since Mariposa tables are ordinary files, the file system cache was flushed between experiments by reading and writing large
files.

14

Tables are stored as ordinary UNIX files. All base tables were organized as primary heaps

but varied in cardinality (104, 105 and 106 tuples). Tuple size was fixed, resulting in approximate

base table sizes of 1MB, 10MB and 100MB, respectively. Index tables were one-third the size of

the corresponding base tables. We built indices using four-byte integer primary keys in both

clustered (sorted) and unclustered (uniform random) heap distributions.

Page access counts include both reads and writes. Counts are measured in the file system

routines below the buffer manager (i.e., they measure the number of file system requests made by

the buffer manager and bulk I/O routines) and therefore do not necessarily correspond to physical

I/Os because of file system caching.

3.3. Experimental Results

We performed a large number of experiments, the most significant of which we report here.

Motivated by the analytic results of [SUN94], we measured the performance of our algorithms

using some of the same parameters used in their study. The figures show comparisons between

the Sunet al. byte offset translation mechanism, our ownslotted page translation mechanism,

and the standardsort/build mechanism. The latter forms our base case.

The next two figures show the difference in performance between the three mechanisms

under different parameters. In these figures, we do not include the cost of reformatting or trans-

mitting the base table over the network because these costs are the same for all three. In addi-

tion, we ignore the transmission delay incurred by sending the index over the network; this cost

obviously varies widely depending on the type of network used and will be considered in Figure

5.

The parameters we varied include the file size (characterized in the figures by the table car-

dinality), the target page size and whether the source heap tuples were clustered on the indexed

column or not. We performed additional experiments that varied the amount of buffer space

available to the sort/build routine, but varying this parameter did not make an appreciable differ-

ence because very large I/O units provided diminishing returns. Merge fan-in was fixed at seven,

a typical value according to [SUN94], for all experiments.

Figure 3 shows how the various algorithms scale up with increasing file size. Predictably,

the elapsed time and the number of I/Os increases in a linear fashion. Even the sort/build algo-

rithm appears to scale linearly, sincen log n growth is difficult to distinguish from linear growth

whenn is large. However, as hoped, index recycling provides significant time and I/O-cost sav-

ings over sort/build.

15

 650

 600

 550

 500

 450

 400

 350

 300

 250

 200

 150

 100

 50

 0

 0 50000 1000000

 700

Seconds

 Tuples

 slotted

 offset, unclustered

 sort/build

 offset, clustered

 0 50000 1000000

Blocks

800000

700000

600000

500000

400000

300000

200000

100000

 0

 Tuples

 offset, unclustered

 slotted

 sort/build

 offset, clustered

(a) Elapsed time. (b) Number of block I/Os.

Figure 3. Effects of increasing file size (4KB pages).

Observe that clustering has varying effects on the different algorithms. We do not differen-

tiate between the clustered and unclustered cases for sort/build and slotted-page translation; the

performance of these algorithms is not sensitive to clustering because they only perform one end-

to-end scan of the base table. Because the offset algorithm must randomly probe the base table

many times, it is very sensitive to base table clustering. This is true for Figure 4 as well. As pre-

dicted in Section 2, translating byte offsets by searching base table pages is extremely time-

consuming.

Figure 4 shows the effect of target page size on our algorithms. In each plot, we show the

performance of reformatting 8KB pages into 2KB, 4KB and 8KB pages. The plots of the

sort/build and slotted page algorithms resemble the predictions of [SUN94] for sort/build and

16

800

700

600

500

400

300

200

100

0

40962048

Seconds

8192

Bytes

 sort/build

 offset, clustered

 offset, unclustered

 slotted

1000000

900000

800000

700000

600000

500000

400000

300000

200000

100000

0

819240962048

Blocks

Bytes

 slotted

 offset, clustered

 sort/build

 offset, unclustered

(a) Elapsed time. (b) Number of block I/Os.

Figure 4. Effects of increasing page size (106 tuples).

their own algorithm. Both sort/build and the slotted page recycling algorithm do slightly better

as target page size increases because the I/O that goes through the buffer manager is mostly

sequential (which is more efficient with larger I/O units). Also, as predicted, sort/build benefits

slightly more than index recycling from the increased page size. By contrast, the byte-offset

algorithm degrades as page size increases, particularly in the unclustered case. The number of

page faults does go down as the page size increases because the probability of the next heap tuple

being on the same page as the current heap tuple increases. However, misses are still more com-

mon than not, and doubling the page size increases the disk wait (miss penalty). The increased

page size therefore makes the byte-offset algorithm less efficient.

17

Delay by Network Type,s.

FDDI-LAN Ethernet-LAN Regional-MAN National-WAN
File Size,MB (tuples)

0.3 (104) 0.28 0.39 1.66 6.78

3 (105) 1.3 2.63 13.7 79.0

30 (106) 13.3 27.1 84.0 735

Table 1. Representative network transmission delays for index files.

 0 50000 1000000

 Tuples

Seconds

100

0

1000

200

300

400

500

600

700

800

900 sort/build

 offset

 slotted

 0 50000 1000000

 Tuples

200

300

100

400

500

600

700

800

900

1000

0

Seconds

 sort/build

 offset

 slotted

 comp. slotted

(a) MAN case. (b) WAN case.

Figure 5. Total additional end-to-end costs (8KB pages, clustered).

Our final set of results show how network bandwidth limitations affects the relative perfor-

mance of the algorithms. The performance analysis in [SUN94] was limited to the Ethernet

LAN case. Table 1 shows mean network transmission delays obtained by repeated measurement

18

on representative local area (Berkeley), metropolitan area (BARRNet) and wide area

(MCINet/AlterNet) networks. These were obtained by simple measurement at various times;

they represent neither the best case nor the worst case, but simply indicate the kind of bandwidth

available in the US networks in mid-1995. Figure 5 shows the effects of these delays on the rela-

tive performance of the various algorithms. Algorithms that translate and transmit the leaf pages

work well in the bandwidth-rich MAN case (and, by extension, the LAN case). As bandwidth

becomes more scarce, as in the WAN case, sending the leaf pages of the index takes far more

time than simply rebuilding the index.

The WAN result is not encouraging, but we can make index recycling marginally cheaper

than sort/build by compressing the index (i.e., sending only the TIDs). However, as previously

discussed, such compression can only be applied effectively in the clustered case.

Under the characteristics described in this section, index recycling appears to be practical in

local area (10-100 Mb/s) as well as metropolitan area networks (≈ 1 Mb/s). However, below 100

Kb/s the scheme uses too much network bandwidth to be competitive.

4. Conclusions

While the ideas proposed in [SUN94] are useful, the algorithms described are not a good fit

for implementation in existing systems. By adapting their algorithms for use with slotted pages,

we have produced practical techniques for recycling secondary indices. Our techniques do not

require modification of the query execution engine, novel index/heap join methods or pro-

hibitively expensive translation steps. Furthermore, unlike [SUN94], we have demonstrated the

performance benefits by implementation and measurement and have provided evidence that our

techniques may have wider applicability than LANs.

We are investigating several new directions in data movement algorithms. In terms of mak-

ing movement more efficient, the following questions should be answered:

• What are the performance tradeoffs of lazy and eager translation, given that the table and its

indices may not be heavily used before the next time they are moved?

• Are there convincing arguments for recycling internal nodes?

• What performance improvements are possible when recycling access methods in which

reclustering can be extremely expensive (e.g., R-trees without an ordering heuristic)?

• The Mariposa design in [STON94b] proposes aMariposa canonical representation(MCR)

for tables and indices. MCR is an architecture- and page-size-neutral format on which all

sites can perform minimal processing; this format minimizes (1) the number of formats sites

must be able to send/receive and (2) the amount of translation required to receive a table. (2)

19

is critical for sites such as tertiary storage file servers which house mostly-cold data and have

low processing power relative to the amount of data they store. What are the costs and bene-

fits of moving tables using MCR?

In support of our general goal of finding non-quiescing (on-line) data movement algorithms, we

are studying concurrency control and recovery issues. As previously mentioned, variations of the

techniques used during on-line index building can be employed.

References
[BECK90] N. Beckmann, H. Kriegel, R. Schneider and B. Seeger, “The R*-tree: An Efficient and Robust Access Method for

Points and Rectangles”,Proc. 1990 ACM-SIGMOD Conf. on Management of Data, Atlantic City, NJ, June 1990.

[CARE88] M. J. Carey, D. J. DeWitt, G. Graefe, D. M. Haight, J. E. Richardson, D. T. Schuh, E. J. Shekita and S. L.

Vandenberg, “The EXODUS Extensible DBMS Project: An Overview”, CS Tech. Rep. 808, Univ. of Wisconsin,

Madison, WI, Nov. 1988.

[CHEN91] J. Cheng, D. Haderle, R. Hedges, B. R. Iyer, T. Messinger, C. Mohan and Y. Wang, “An Efficient Hybrid Join

Algorithm: A DB2 Prototype”,Proc. 7th IEEE Int. Conf. on Data Eng., Kobe, Japan, Apr. 1991, 171-180.

[COCK84] W. P. Cockshot, M. P. Atkinson, K. J. Chisholm, P. J. Bailey and R. Morrison, “Persistent Object Management

System”,Software—Practice & Experience 14, 1 (Jan. 1984), 49-71.

[DEWI91] D. J. DeWitt, J. F. Naughton and D. A. Schneider, “Parallel Sorting on a Shared-Nothing Architecture Using

Probabilistic Splitting”,Proc. 1st Int. Conf. on Parallel and Dist. Info. Sys., Miami Beach, FL, Dec. 1991, 280-291.

[EICK95] A. Eickler, C. A. Gerlhof and D. Kossmann, “A Performance Evaluation of OID Mapping Techniques”,Proc. 21st

VLDB Conf., Zurich, Switzerland, Sep. 1995. (To appear.).

[GRAE92] G. Graefe and S. S. Thakkar, “Tuning a Parallel Database Algorithm on a Shared-Memory Multiprocessor”,

Software—Practice & Experience 22, 7 (July 1992), 495-517.

[GRAY93] J. Gray and A. Reuter,Tr ansaction Processing: Concepts and Techniques, Morgan Kaufmann, San Mateo, CA, 1993.

[HOBB91] L. Hobbs and K. England,Rdb/VMS: A Comprehensive Guide, Digital Press, Bedford, MA, 1991. DEC Order

Number EY-H873E-DP.

[HORN87] M. F. Hornick and S. B. Zdonik, “A Shared, Segmented Memory System for an Object-Oriented Database”,Tr ans.

on Office Info. Systems 5, 1 (Jan. 1987), 70-95.

[KAME94] I. Kamel and C. Faloutsos, “Hilbert R-tree: An Improved R-tree Using Fractals”, CS-TR-3032 , Univ. of Maryland

Institute for Advanced Computer Studies, Dept. of Computer Science, Univ. of Maryland, Feb. 1994.

[LITW80] W. Litwin, “Linear Hashing: A New Tool for File and Table Addressing”,Proc. 6th VLDB Conf., Montreal, Quebec,

Oct. 1980, 212-223.

[MAIE87] D. Maier and J. Stein, “Development and Implementation of an Object-Oriented DBMS”, inResearch Directions in

Object-Oriented Programming, B. Shriver and P. Wegner (editor), MIT Press, 1987, 355-392. Reprinted in:

Readings in Object-Oriented Database Systems, S. B. Zdonik and D. Maier (eds.), Morgan Kaufmann, San Mateo,

CA, 1990.

[MOHA92] C. Mohan and I. Narang, “Algorithms for Creating Indexes for Very Large Tables Without Quiescing Updates”,Proc.

1992 ACM-SIGMOD Conf. on Management of Data, San Diego, CA, June 1992, 361-370.

[MOHA93] C. Mohan, “IBM Relational DBMS Products: Features and Technologies”,Proc. 1993 ACM-SIGMOD Conf. on

Management of Data, Washington, DC, May 1993, 445-448.

20

[NYBE94] C. Nyberg, T. Barclay, Z. Cvetanovic, J. Gray and D. Lomet, “AlphaSort: A RISC Machine Sort”,Proc. 1994 ACM-

SIGMOD Conf. on Management of Data, Minneapolis, MN, May 1994, 233-242.

[PEAR91] C. Pearson, “Moving Data in Parallel”,Digest of Papers, 36th IEEE Computer Society Int. Conf. (COMPCON Spring

’91), Feb. 1991, 100-104.

[SOCK93] G. H. Sockut and B. R. Iyer, “Reorganizing Databases Concurrently with Usage: A Survey”, Document Nr. TR

03.488, IBM Santa Teresa Laboratory, San Jose, CA, June 1993.

[SRIN92] V. Srinivasan,On-Line Processing in Large-Scale Transaction Systems, Ph.D. thesis, Univ. of Wisconsin, Madison,

WI, Jan. 1992. Also available as CS Tech. Rep. 1071.

[STON87] M. Stonebraker, “The Design of the POSTGRES Storage System”,Proc. 13th VLDB Conf., Brighton, England, Sep.

1987, 289-300.

[STON91] M. Stonebraker and G. Kemnitz, “The POSTGRES Next-Generation Database Management System”,Comm. of the

ACM 34, 10 (Oct. 1991), 78-92.

[STON93] M. Stonebraker, P. M. Aoki, R. Devine, W. Litwin and M. Olson, “Mariposa: A New Architecture for Distributed

Data”, Sequoia 2000 Tech. Rep. 93/31, Univ. of California, Berkeley, CA, May 1993.

[STON94a] M. Stonebraker, R. Devine, M. Kornacker, W. Litwin, A. Pfeffer and C. Staelin, “An Economic Paradigm for Query

Processing and Data Migration in Mariposa”,Proc. 3rd Int. Conf. on Parallel and Dist. Info. Sys., Austin, TX, Sep.

1994, 58-67.

[STON94b] M. Stonebraker, P. M. Aoki, R. Devine, W. Litwin and M. Olson, “Mariposa: A New Architecture for Distributed

Data”,Proc. 10th IEEE Int. Conf. on Data Eng., Houston, TX, Feb. 1994, 54-65.

[SUN94] W. Sun, W. Meng, C. Yu and W. Kim, “An Efficient Way to Reestablish B+ Trees in a Distributed Environment”,

Information Sciences 77, 3-4 (Mar. 1994), 227-251.

21

