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Abstract

Log-structured file systems (LFSs) were developed to eliminate latencies involved in accessing
disk devices, but their sequentia write patterns also match well with tertiary storage characteristics.
Unfortunately, existing versionsonly manage memory cachesand disks, and do not support abroader
storage hierarchy. Robotic storage devices offer huge storage capacity at a low cost per byte, but
with large access times. Integrating these devices into the storage hierarchy presents a challengeto
file system designers.

HighLight extends4.4BSD L FStoincorporate both secondary storage devices(disks) and
tertiary storage devices (such as robotictape jukeboxes), providing ahierarchy withinthefile system
that does not require any application support. Thisreport presentsthe design of HighLight, proposes
various policiesfor automatic migration of file data between the hierarchy levels, and presentsinitial
migration mechanism performance figures.

Log-structured file systems, with their sequentia write patterns and large transfer sizes,
extend naturally to encompassastorage hierarchy. HighLightisflexible enough to support avariety
of potential migration policies. When dataare disk-resident, accessis nearly asfast as accesstofiles
in the base 4.4BSD LFS. When disk arm contention is absent, transfers to tertiary devices can run

at nearly the tertiary device transfer speed. *

1 This report is substantially derived from an article originally published in the USENIX Association Conference
Proceedings, January 1993. Permission has been granted by the USENIX Association to incorporate portions of that
paper in other publications. Portions of this report Copyright © USENIX Association, 1993.
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1 Introduction

HighLight combinesboth conventional disk secondary storage and robotictertiary storage
into a singlefile system. It builds upon the 4.4BSD L og-structured File System (LFS) [11], which
derives directly from the Sprite LFS [9], developed at the University of Californiaat Berkeley by
Mendel Rosenblum and John Ousterhout as part of the Sprite operating system. LFSis optimized
for writing data, whereas most file systems (e.g. the BSD Fast File System [4]) are optimized for
reading data.

Since log-structured file systems are optimized for write performance, they are a good
match for the write-dominated environment of archival storage. However, system performance
will depend on optimizing read performance, since LFS already optimizes write performance.
Therefore, migration policiesand mechanisms should arrange the data on tertiary storageto improve
read performance.

The development of HighLight was predicated on the premise that the LFS on-disk data
layout, with large sequential writes, is a natura fit for typical tertiary storage devices (such as
robotic tape libraries). HighLight uses the same data format on both secondary and tertiary storage,
transferring entire L FS segments (portions of the log) between the levels of the storage hierarchy. It
arranges file data in these segments to improve read performance.

HighLight currently collects to-be-migrated files into to-be-migrated segments, imple-
menting a file-oriented migration policy. It iscurrently running in the laboratory with an automatic
migration mechanism as well as a manua migration tool. HighLight can migrate files to tertiary
storage and later demand-fetch them back onto a disk cache so that applications can access them.
Applicationsnever need know (except by reduced access times) that files are not alwaysresident on
secondary storage.

The remainder of this report presents HighLight's mechanisms, gives some preliminary



performance measurements, and speculates on some useful migration policies. HighLight's context
within Sequoiais described in Section 2. Section 3 provides a sketch of the basic log-structured
file system, which is followed in Section 4 by a discussion of the storage and migration model.
Section 5 briefly discussespotentia migration policies; Section 6 describesHighLight'sarchitecture.
Some preliminary measurements of the system performance appear in Section 7. A comparison
of HighLight to existing related work in policy and mechanism design is in Section 8. The report

concludeswith a summary and directionsfor future work.

2 Sequoia Background

HighLight was developed to provide a data storage file system for use by Sequoia re-
searchers. Project Sequoia 2000 [16] is a collaborative project between computer scientists and
earth science researchersto devel op the necessary support structureto enable global change research
on a larger scale than current systems can support. The bulk of the on-line storage for Sequoia
will be provided by a 600-cartridge Metrum robotic tape unit; each cartridge has a capacity of 14.5
gigabytes for a total of nearly 9 terabytes. Sequoia aso will use a collection of smaller robotic
tertiary devices, including a Hewlett-Packard 6300 magneto-optic changer with total capacity of
about 100GB and a Sony write-once optical disk jukebox with total capacity of about 327GB.

Thevariety of robotic storage devices available for Sequoia’s useresulted in the definition
of an abstract robotic deviceinterface, called Footprint. HighLight will have exclusiverightsto some
portion of the tertiary storage space, accessing it through Footprint. While it knows the capacities
of the tertiary volumes (be they tapes or optical disks), the abstract interface unburdens HighLight
from needing to understand the details of a particular device.

HighLight is one of severa file management avenues under exploration as a supporting
storage technology for thisresearch. Sequoia needs some storage management system to manage

the storage hierarchy so that it is not intrusive to the global change researchers’ work. Alternative



storage management efforts under investigation include the Inversion file system support in the

POSTGRES database system [7] and the Jaquith manual archive system [6] (which was devel oped
for other uses, but is under consideration for Sequoias use).  The systems are not mutually
exclusive; the best solution for Sequoia may involve some combination of these elements (perhaps
Inversion and/or POSTGRES will be hosted on top of HighLight). When each systemisinasuitable
condition, there will be a “bake-off” to compare and contrast the systems and see how well they

support an actual work load.

3 LFSPrimer

The primary characteristic of LFS is that all data are stored in a segmented log. The
storage consists of large contiguous spaces called segments that may be threaded together to form a
linear log. LFS dividesthe disk into 512KB or 1IMB segments and writes data sequentially within
each segment. New data are appended to the log, and periodically the system checkpointsits file
system metadata state. During recovery the systemwill roll-forward from thelast checkpoint, using
the information in the log to recover the state of the file system at failure. Obviously, as data are
deleted or replaced, thelog contains blocksof invalid or obsolete data, and the system must coal esce
thiswasted space to generate new, empty segments for the log. Disk space is reclaimed by copying
valid data from dirty segmentsto thetail of the log and marking the emptied segments as clean.

4.4BSD LFS shares much of itsimplementation with the Berkeley Fast File System (FFS)
[4]. It hastwo auxiliary data structures not found in FFS: the segment summary table and the inode
map. The segment summary table containsinformation describing the state of each segment in the
file system. Some of thisinformation, such as indications of whether the segment is clean or dirty,
is necessary for correct operation of the file system, while other information is used to improve
the performance of the cleaner, such as counts of the number of live data bytes (data that are still

accessible to a user, i.e. not yet deleted or replaced) in the segment. The inode map contains the



current disk address of each file's inode, as well as some auxiliary information used for file system
bookkeeping. In 4.4BSD LFS, both the inode map and the segment summary table are contained in
aregular file, called theifile.

When reading files, the only difference between LFS and FFSis that the inode’s location
is variable. Once the system has found the inode (by indexing the inode map), LFS reads occur in
the same fashion as FFS reads, by following direct and indirect block pointers?.

When writing, LFS and FFS differ substantialy. In FFS, each logical block withinafileis
assigned alocation upon allocation, and each subsequent operation (read or write) is directed to that
location. In LFS, dataare writtento thetail of the log each time they are modified, so their location
changes. Thisrequires that their index structures (indirect blocks, inodes, inode map entries, etc.)
be updated to reflect their new location, and these index structures are also appended to the | og.

Each segment of the log may contain several partial segments. A partial segment is
considered an atomic updateto thelog, and isheaded by a segment summary catal oging its contents.
A sample summary is shown in Table 1. The summary aso includes a checksum to verify that the
entire partial segment isintact on disk and provide an assurance of atomicity.

In order to provide the system with a ready supply of empty segments for the log, a
user-level process called the cleaner garbage collects free space from dirty segments. The cleaner
selects one or more dirty segments to be cleaned, appends all valid data from those segments to
the tail of the log, and then marks those segments clean. The cleaner communicates with the file
system by reading the ifile and calling a handful of LFS-specific system calls. The cleaner being a
user-level process simplifies the adjustment of cleaning policies.

For recovery purposes thefile system takes periodic checkpoints. During acheckpoint the
address of the most recent ifileinodeis storedin the superblock so that the recovery agent may findit.
During recovery the threaded log is used to roll forward from the last checkpoint. During recovery,

the system scans the log, examining each partial segment in sequence. When an incomplete partial

2In fact, LFS and FFS share thisindirection codein 4.4BSD.



12 per distinct file
in partial segment
+ 4 per file block
4 per inode block

Field name | Bytes description

Ss_sumsum | 4 check sum of summary block

ss datasum | 4 check sum of data

Ss_next 4 disk address of next segment in log
SS_create 4 creation time stamp

ss_nfinfo 2 number of file info structures
SS_ninos 2 number of inodesin summary

ss flags 2 flags; used for directory operations
ss_pad 2 extra space for word-alignment

file block description information

inode block disk addresses

Table 1: A partiad segment summary block. The end of the summary contains file block
information, describing the file data blocks in the partial segment, and inode disk addresses,

locating inode blocks within the partial segment.

segment is found, recovery is complete and the state of the filesystem is the state as of the last

complete partial segment.

Figure 1 illustrates the on-disk data structures of 4.4BSD LFS. The on-disk data space
is divided into segments. Each segment has a summary of its state (whether it is clean, dirty, or
active). Dirty segments contain live data. At the start of each segment there is a summary block
describing the data contained within the segment and pointing to the next segment in the threaded
log. In Figure 1 there are three segments, numbered O, 1, and 2. Segment O contains the current
tail of thelog. New data are being written to this segment, so it is active. It isalso dirty since it
contains data that are still valid. Once Segment O fills up, it will cease being active and the system

will activate and begin writing to Segment 1, which is currently clean and empty. Segment 2 was

written just before Segment O; it isdirty.
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Figure 1: LFS datalayout.

4 Storageand Migration model

HighLight extends LFS, using a “disk farm” to provide rapid access to file data, and one
or more tertiary storage devices to provide vast storage. It manages the storage and the migration
between thetwo levels. Thebasic storageand migration model isillustratedin Figure2. Application
programs see only a“normal” filesystem, accessiblethrough the usual operating system calls. They
may notice a degradation in access time due to the underlying hierarchy management, but they need
not take any special actionsto utilize HighLight.

HighLighthasagreat deal of flexibility, allowingarbitrary datablocks, directories, indirect
blocks, and inodesto migrate to tertiary storage at any time. It usesthe basic LFS layout to manage

the on-disk storage and applies a variant on the cleaning mechanism to provide the migration
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Figure 2: The storage hierarchy. A collection of disks provides initia storage for new files,
and fast access to tertiary-resident data. An automatic migration process copiesfile datato LFS
segments on tertiary storage when appropriate. If migrated file data are needed, the containing
segment(s) are cached on disk and the file data are read from the cached copy.

mechanism. A natural consequence of thislayout istheuse of LFS segmentsfor thetertiary-resident
data representation and transfer unit. By migrating segments, it is possible to migrate some data
blocksof afilewhileallowing othersto remain on disk if afile's blocks span more than one segment.

Data begin life on the “disk farm” when they are created. A file (or part of it) may
eventually migrate to tertiary storage according to a migration policy. The to-be-migrated data are
moved to an LFS segment in a staging area, using a mechanism much like the cleaner’s normal
segment reclamation. When the staging segment is filled, it is written to tertiary storage as a unit
and a new staging segment is created.

When tertiary-resident dataare referenced, their containing segment(s) arefetched intothe
disk cache. These read-only cached segments share the disk with active regular segments. Figure 3
shows a sampl e tertiary-resident segment cached in a disk segment. Datain cached tertiary-resident
segments are not modified in place on disk; rather, any changes are appended to the LFS log in the

normal fashion. Since read-only cached segments never contain the sole copy of ablock (thereisa



copy on tertiary storage as well), they may be discarded from the cache at any time if the spaceis
needed for other cache segments or for new data.

The key combination of features that HighLight providesare: theability to migrate al file
system data (not just file contents, but al so directories, inodes, and indirect blocks); making tertiary
placement decisions made at migration time, instead of file creation time; migrating data in units
of LFS segments; migrating using user-level processes; and implementing migration policy with a

user-level process.

5 Migration Policies

Because HighLight includes a storage hierarchy, it must move data up and down the
hierarchy. Migration between hierarchy levels can betargeted at several objectives, not al of which

may be simultaneously achievable:
¢ Minimize file access times (to applications)
¢ Maximizefile system data throughput (to applications)
¢ Minimize bookkeeping overhead
¢ Maximize disk utilization
¢ Minimizerequired ratio of secondary to tertiary storage capacity

Migration policies may make different tradeoffs between these goals. Locality of referenceislikely
to be present in most application loads, and so is likely to be assumed by migration policies.
Before describing the proposed migration policies, it is important to state the initial
assumptions regarding file access patterns, which are based on previous analyses of systems[5, 18,
13]. The basic assumptionsare that file access patterns are skewed, such that most archived dataare
never re-read. However, some archived datawill be accessed, and once archived data became active

again, they will be accessed many times before becoming inactive again.
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Figure 3: HighLight's data layout. Tertiary-storage resident segments are stored in the same
format as secondary-storage segments; demand-fetching copies tertiary segments to secondary
storage. A migrator process €jects cached segments when they lay dormant.
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Since HighLight optimizes writes by virtue of its logging mechanism, migration policies
must be aimed at improving read performance. When data resident on tertiary storage is cached
on secondary storage and read, the migration policy should have optimized the layout so that these
read operations are as inexpensive as possible. There needsto be atight coupling between the cache
fetch and migration policies.

HighLight has one primary tool for optimizing tertiary read performance: the segment
size. When data are read from tertiary storage, a whole IMB segment (which is the equivalent
of a cache line in processor caches) is fetched and placed in the segment cache, so that additional
accesses to datawithinthe segment proceed at disk accessrates. Policiesused with HighLight should
endeavor to cluster “related” datain a segment to improve read performance. The determination
of whether data are “related” depends on the particular policy in use. If related data will not fit in
the one segment, then their layout on tertiary storage should be arranged to admit a simple prefetch
mechanism to reduce latencies for reads of the “related” datain the clustered segments.

Given perfect predictions, policies should migrate data that provides the best benefit to
performance (which could mean something like migrating files that will never again be referenced,
or referenced after al other files in the cache). Without perfect knowledge, however, migration
policies need to estimate the benefits of migrating afile or set of files. Some estimating policiesthat
will be evaluated with HighLight are presented below. All the possible policy components discussed
below require some additiona mechanism support beyond that provided by the basic 4.4BSD LFS.
They require some basic migration bookkeeping and data transfer mechanisms, which are described
in the Section 6.

The foll owing sections examine some possible migration policiesin two parts: writing to
tertiary storage and caching from tertiary storage. Note that a running system is not restricted to a

single policy; some of the policies can coexist without undue interference.
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5.1 Accesstime-based rankings

An access time-based policy selects files for migration based on the interval since their
last use, preferentialy retaining active files on disk. This policy is based on locality of temporal
reference: active files are likely to be accessed soon, whileinactive files are not.

Earlier studiesby Lawrie et. al. [3] and Smith [14] conclude that time-since-last-access
alone does not work well for selecting files as migration candidates; they recommend using a
weighted space-time product (STP) ranking metric, taking the time since last access, raised to a
small power (possibly 1), timesfile sizeraised to asmall power (possibly 1). Strange [18] evaluated
different variations on the STP scheme for a typical networked workstation configuration. Those
evaluations considered different environments, but generally agreed on the space-time product as
a good metric. Whether these results still work well in the Segquoia environment is something
HighLight will evaluate.

The space-time product metric has only modest requirements on the mechanisms, needing
only the file attributes (available from the base LFS) and a whole-file migration mechanism. That
mechanism is described below in Section 6. The current migrator in fact uses STP with exponents

of 1 for thefile size and access times.

5.2 Choosing block ranges

In the simplest policies, HighLight could use whole-file migration, with mechanism sup-
port based on file access and modification times contained in the inode. However, in some environ-
ments whole file migration may be inadequate. In UNIX-like distributed file system environments,
most fil es are accessed sequentially and many of thoseare read completely [1]. Scientific application
checkpoints, such as those generated by some of the earth science researchers’ analysis or simula-
tion programs, tend to be read completely and sequentially. (Such checkpoints typicaly dump the

internal state of a computation to files, so that the state may be reconstituted and the computation
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resumed at a later time. When they resume, they read in the entire state from the checkpoint file.)
In these cases, whol e file migration makes sense.

However, database files tend to be large, may be accessed randomly and incompletely
(depending on the application’s queries), and in some systems[15] are never overwritten. Even sim-
ple hash-based database packages such as the Berkeley hash package [12] can yield non-sequential
access patterns, depending on the application. Block-based migration can be useful, sinceit allows
old, unreferenced data within a file to migrate to tertiary storage while active data in the same file
remain on secondary storage.

In order to provide migration on afiner grain than wholefiles, HighLight must keep some
information on each disk-resident data block in order to assist the migration decisions. Keeping
information for each block on disk would be exorbitantly expensive in terms of space, and often
unnecessary. A compromise solutionisto keep track of access rangeswithin afile, with the potential
to resolve down to block granularity. In thisway files that are accessed sequentially and completely
have only a single record, while database files might potentially have a separate record for each data
block on disk. Each record’s chunk of blocks may then be separately considered for migration.

Thereis atradeoff inherent in this middle ground: by storing more information (at afine
sub-filegranularity), the policy can make better decisions at the cost of requiring more bookkeeping
space; less information (coarser granularity) may result in worse decisions (perhaps causing a
migration in or out when some of the blocks in the range should remain where they are) but
consumes less overhead. The dynamic nature of the granularity attemptsto get the most benefit for
the least overhead.

Such tracking requires a fair amount of support from the mechanism: access to the
sequential block-range information, which implies mechanism-supplied and updated records of file

access sequentiality. Thereis no clear implementation strategy for this policy yet.
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5.3 Namespace L ocality

When dealing with a collection of small files, it is more efficient to migrate several
related files at once. A file namespace can identify these collections of “related” files (units); such
directory trees or sub-trees can be migrated to tertiary storage together. Thisis useful primarily
in an environment where whole subtrees are related and accessed at nearly the same time, such as
software devel opment environments.

The file sizelaccess time criteria discussed above can be applied to these units. The
space-time metric then becomes a “ unitsize”-time product, where unitsize is the aggregate size of
all the component files, and time-since-last-access is the minimum over the files considered. If a
unit is too large for a single tertiary segment, a natural prefetch policy on a cache missisto load
the missed segment and prefetch remaining segments of the unit. Migrated units should then be
clustered according to their position in the naming hierarchy, so that units near each other in the
naming tree are near each other on tertiary storage.

Thispolicy could cause problemsif there arelarge unitswith only a handful of activefiles.
In these cases, the unit would never be migrated to tertiary storage, even though theinactivefilesare
polluting the active disk area. To alleviate this, the policy can establish secondary criteriafor units,
such as ignoring access times on the most-recently-accessed fileif it has not been modified recently.
This enables migration of units containing mostly-dormant files. Any active filesin the unit would
end up in atertiary segment cached on disk, which segment would be subject to gection from the
cache under the normal selection criteria If an activefile is stable (not being modified), say if itis
just a popular satellite image file, this migration will not consume any more tertiary storage space
than would be consumed by delaying migration until the file is truly dormant. 1t may, however,
consume more disk space if its active portionsdo not completely fill their ssgmentsin the cache.

Unitswith unstable (changing) files should probably not be migrated unlessthelocality is
not very important, since the unstable files will soon be written to a new disk segment. If the file

later stabilizes and is migrated to atertiary segment, the unit may end up scattered among several
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tertiary segments (potentially on different volumes). Rearranging tertiary-resident data (as described
below) may assist in remedying this pitfall.

The primary additional requirement of a namespace clustering policy isaway to examine
file system trees without disturbing the access times; this is possible to do with a user program
which just walks the file tree examining file access times, since BSD filesystems do not update
directory access times on normal directory accesses, and the file access time may be examined

without modification.

54 Cachingtertiary-stored data

Besides considering how to choose file data for migration, HighLight must consider how
to manage its secondary storage cache of tertiary storage segments. The cache is mostly read-only;
the exception is segments being assembled before transfer to tertiary storage.

The cache stages whole segments at a time from tertiary storage. In addition, the cache
may prefetch segments it expects to be needed in the near future. These prefetching decisions may
be based on hints left by the migrator when it wrote the data to tertiary storage, or they may be
based on observations of recent accesses. Cache flushing could be handled by any of the standard
policies: LRU, random, working-set observations, etc.

The cache provides opportunities to improve the tertiary access and overall file system
performance by considering access patternsand perhaps copying file datainto new tertiary segments
(in aprocess similar to the initial copies for migration). By rearranging file data, the policy may
improve access to related data by clustering them on a single volume. By considering overal file
system access patterns, it may improve performance by avoiding disk contention when writing fresh

tertiary segmentsto tertiary storage.
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Rearranging tertiary segments

Data access patterns to tertiary-backed storage may change over time (for example, if
several satellite data sets are loaded independently, and then those data sets are analyzed together).
Performance may be boosted in such cases by reorganizing the data layout on tertiary storage to
reflect the most prevalent access pattern(s). This reorganization can be accomplished by re-writing
and clustering cached segmentsto anew storagelocation on thetertiary device when segment(s) are
gjected from the cache. One good reason to do so would be to move segments to a different tertiary
volume with access characteristics more suited to those segments.

This approach could be a problem if the extra writes from the rearrangements begin
interfering with demand-fetch read traffic to the tertiary devices. This policy also unfortunately
tends to increase the consumption of tertiary storage, and it is not clear how closely segment cache
flushes are tied to access locality. A better approach might be to rewrite segmentsto tertiary storage
asthey are read into the cache. Thisis more likely to reflect true access locality.

Implicit inthis schemeisthe need to choose which cached segments should be rewrittento
anew location on tertiary storage. All of the questionsappropriateto migrating datain thefirst place
are appropriate, so the overhead involved here might be significant (and might be an impediment if
cache flushes are demand-driven and need to be fast reclaims).

A variant on thisschemeisto maintain several segment replicason tertiary storage, and to
have the staging code simply read the 0*closest” copy, where close means quickest access—whether
that means seeking on avolumealready inadrive, or selecting avolumethat will incur ashorter seek
timeto the proper segment, or perhapsavolumewith al the other ssgmentsthat should be prefetched
with the demand-fetched segment. One potentia problem with this approach is the bookkeeping
associated with determining when a tertiary-resident segment contains valid data (in order to allow
reclamation of empty tertiary media). This problem could be sidestepped simply by not counting
thereplicas as live data.

This policy will require additiona identifying information on each cache segment to
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indicate an appropriate locality of reference patterns between segments. Such information could
be a segment fetch timestamp or the user-id or process-id responsible for a fetch, and could be
maintained by the process servicing demand fetch requests and shared with the migrator. The
variant would require a catalog or other index to find the replicas and a method to choose the

“closest” one.

Writing fresh tertiary segments

HighLight needs to schedule the writing of migrated datato its tertiary device. Once a
tertiary segment is assembled in the staging segment, it needs to be written to the tertiary volume.
Thiswrite could be performed immediately upon compl etion of the assembly, or it could be del ayed.
Asis seen below, performance may suffer (due to disk arm contention) if the new tertiary segments
are copied to tertiary storage at the same time as other data are staged to another fresh cache-
resident tertiary segment. Thiswould occur if completed segments were copied out immediately
after preparation and a process was migrating several segments’ worth of filedata.  This suggests
delaying segment writes to a later idle period when there will be no contention for the disk drive
arm. Of course, if no such idle period arises, then this policy consumes some extra reserved disk
space (the uncopied segments cannot be reclaimed until they are copied out tertiary storage ) and
essentially reverts to the original style of copying to tertiary storage immediately upon completing
the tertiary segment assembly (but with a several-segment deep pipeline between completion and
copying).

This modification does not require extra mechanisms than those provided by the basic
cache control: an indication of whether the segment is clean (copied to tertiary storage) and whether

itsmigration or gjectionisin progress.
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5.5 Supporting migration policies

To summarize, there is potential use uses for (at least) the following mechanism features

in an implementation:

¢ Basic migration bookkeeping (cache |ookup control, data movement, etc.)

Whole-file migration

Directories and file system metadata migratable

Grouping of files by some criterion (namespace)

Cachefill timestamps/uid/pid
¢ Sequentia block-range data (per-file)

The next section presents the current design and implementation of HighLight, which covers the
first three features. File grouping could be added with a new user-level migrator process; cache fill

annotationsand sequential block-range datawould require additional in-kernel file system support.

6 HighLight Design and Implementation

In order to provide “on-line” access to a large data storage capacity, HighLight manages
secondary and tertiary storage within the framework of a unified file system based on the 4.4BSD
LFS. Thediscussion herecoversHighLight'sbasic components, bl ock addressing scheme, secondary

and tertiary storage organizations, migration mechanism, and other implementation details.

6.1 Components

HighLight extends 4.4BSD LFS by adding several new software components:
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¢ A second cleaner, called the migrator, that collects data for migration from secondary to

tertiary storage

A disk-resident segment cache to hold read-only copies of tertiary-resident segments

A kernel space/user space interface modul e which reguests 1/0 from the user-level processes,

implemented as a pseudo-disk driver

A pseudo-disk driver that stripes multiple devicesinto asinglelogical drive

A pair of user-level processes (the service process and the 1/0O process) to access the tertiary

storage devices on behalf of the kernel.

Besides adding these new components, HighLight slightly modifies various portionsof the user-level
and kernel-level 4.4BSD L FSimplementation (such as changing the minimum all ocatable bl ock size,

adding conditional code based on whether segments are secondary or tertiary storage resident, etc.).

6.2 Basicoperation

HighLight implements the normal filesystem operations expected by the 4.4BSD file
system switch. When afile is accessed, HighLight fetches the necessary metadata and file data
based on the traditional FFS inode’s direct and indirect block pointers. (The pointers are 32 bits,
but they address 4-kilobyte units, so a single filesystem and a single file is limited to 16 terabytes.
Thereisno support for block fragmentsin either thebase 4.4BSD LFSor in HighLight.) Theblock
address space appears uniform, so that HighLight just passes the block number to its I/O device
driver. The device driver maps the block number to whichever physical device stores the block (a
disk, an on-disk cached copy of the block, or atertiary volume).

The migrator process periodically examines the collection of on-disk file blocks, and
decides (based upon some policy) which file data bl ocks and/or metadata bl ocks should be migrated

to a tertiary volume. Those blocks are then assembled in a “staging segment” addressed by the
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block numbers the segment will use on the tertiary volume.  The staging segment is assembled
on-disk in adirty cache line, using the same mechanism used by the cleaner to copy live data from
an old segment to the current active segment. When the staging segment isfilled, the kernel-resident
part of thefile system requests the server process to copy the dirty line (the entire IMB segment) to
tertiary storage. The request is serviced asynchronously, so that the migration control policies may
choose to move multiple segmentsin asingle logical operation for transfer efficiency.

The migrator is a separate process from the 4.4BSD LFS cleaner. Although it uses very
similar mechanisms to assemble data into staging segments, its selection policies and function are
sufficiently different that integrating it with the cleaner does not make much sense. Keeping them
separate also alows migration and cleaning to proceed simultaneously.

Disk segments can be used to cache tertiary segments. Since the cached segments are
almost aways read-only copies of the tertiary-resident version, cache management is relatively
simple, because read-only lines may be discarded at any time.  Caching segments sometimes
contain freshly-assembled tertiary segments; they are quickly scheduled for copying out to tertiary
storage.

As in the normal LFS, when file data are updated, a new copy of the changed data is
appended to the current on-disk log segment; the old copy remains undisturbed until its segment is
cleaned or gjected from the cache. HighLight doesn’t clean cached segments on disk; any cleaning
of tertiary-resident segments would be done directly with the tertiary-resident copy in a process
similar to the regular on-disk cleaning process. However, HighLight does not currently implement
atertiary volume cleaner.

If a process reguests I/O on a file for which some necessary metadata or file data are
stored on tertiary storage, a cached segment may satisfy the request. If the segment containing the
required datais not in the cache, the kernel requests a demand fetch from the service process and
waitsfor areply. The service process finds areusable sesgment on disk and directsthe 1/0 processto

fetch the necessary tertiary-resident segment into that segment. When that is complete, the service
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process registers the new cache linein the cache directory and calls the kernel to restart the file I/O.
The service or 1/0 process may choose unilaterally to gect or insert new segments into
the cache. Thisallows them to prefetch multiple segments, perhaps based on some policy, hints, or

historical access patterns.

6.3 Addressingtertiary storage

HighLight uses a uniform block address space for all devicesin the filesystem. A single
HighLight filesystem may span multiple disk and tertiary storage devices. Figure 4 illustrates the
mapping of block numbers onto disk (secondary) and tertiary devices. Block addresses can be
considered as a pair: (segment number, offset). The segment number determines both the volume
(disk device, tape cartridge, or jukebox platter) and the segment’s location within the volume. The
offset identifies a particular block within the segment.

HighLight allocates a fixed number of segments to each tertiary volume. Since some
media may hold a variable amount of data (e.g. dueto device-level compression), this number is set
to be the maximum number of segments the volume is expected to hold. If the compression factor
exceeds the expectations, however, al the ssgmentswill fit on the volumeand some storageat itsend
may be wasted. HighLight can tolerate | ess-€fficient-than-expected compression on tertiary storage
sinceit can keep writing segmentsto avolume until thedrivereturnsan “ end-of-medium” indication,
at which point the volume is marked full and the last (partially written) segment is re-written onto
the next volume.

When HighLight's I/O driver receives a block address, it simply compares the address
with atable of component sizes and dispatches to the underlying device holding the desired block.
Disksare assigned to the bottom of the address space (starting at block number zero), whiletertiary
storageisassigned to thetop (starting at thelargest block number). Tertiary mediaare still addressed

with increasing block numbers, however, so that the end of the first volume is at the largest block
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Figure 4: Allocation of block addresses to devicesin HighLight.

number, the end of the second volume is just below the beginning of the first volume, etc.

The boundary between tertiary and secondary block addresses may be set at any segment
multiple. There will likely be a“dead zone” between valid disk and tertiary addresses; attempts to
access these blocks resultsin an error. In principle, the addition of tertiary or secondary storageis
just a matter of claiming part of the dead zone by adjusting the boundaries and expanding the file
system’s summary tables. However, there currently isnotool to make such adjustments after afile
system has been created.

HighLight uses a single block address space for ease of implementation. By using the
same format block numbers asthe original LFS, HighLight can use much of itscode asis. However,

with 32-bit block numbers and 4-kilobyte blocks, it is restricted to less than 16 terabytes of total



23

storage. (This limitation is not problematical at the moment, but may prove limiting for future
expansion of storagefacilities.) One segment’s worth of address spaceis unusablefor two reasons:
(a) the need for at least one out-of-band block number (“—1") to indicate an unassigned block, and
(b) the LFS allocates space for boot blocks at the head of the disk, shifting all the segment base
addresses up and rendering the last addressable segment too short.

44BSD LFS uses a 512-byte block for the partial segment summary, since its block
pointers address 512-byte blocks. HighLight block addresses are for 4-kilobyte blocks, so it must
use a 4-kilobyte partial segment summary block. Since the summaries include records describing
the partial segment, the larger summary blocks could either reduce or increase overall overhead,
depending on whether the summaries are completely filled or not. If the summaries in both the
original and new versions are completely full, overhead is reduced with the larger summary blocks.
In practice, however, HighLight's larger summary blocks are almost aways left partially empty.
Consuming all the space in the summary block would require that the partial segment contain one
block from each of many files (recall from Table 1 that each distinct file with blocks in the partial
segment consumes an extra file block description field). Thisis possible but not likely given the

type of files expected in the Sequoiaenvironment.

Other options considered

Theuniform block addressing scheme with 32-bit block addresses split among tertiary and
secondary storage arose out of discussionsof other potential schemes. Thefirst design considered
used a block tertiary address mapping table that would locate file data blocks on tertiary storage
by indirecting through the table, indexed by inode-number.  Blocks on disk would be fetched
in the normal fashion. The size of this table would be prohibitive: assuming a 4-byte entry per
tape-resident 4KB block, 1/1024 bytes are needed per block for the table itself; thisis far too much

overhead for a9TB tape jukebox.
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An dternative design maintained a hash table per tertiary volume to hold a “table of
contents,” with entries being tuples of <inumber, block range, volume offset>. The table would
be indexed by hashing the inumber and a portion of the file system block number. The top 8
bits of a 32-bit block number would indicate whether a block was on disk or tertiary storage; one
distinguished value for those 8 bits would indicate that the remaining 24 bits should be sliced into a
tertiary volume identifier and offset to select theright hash table to locate the desired logical block.
On-disk cached blocks would be found by a separate hash table indexed by inumber and logical
block number.

Another possibility used alarger block address and segmented it into components directly
identifying the device, volume, and offset, and using the device field to dispatch to the appropriate
device driver. However, the device/volume identity can just as well be extracted implicitly from
the block number by an intelligent device driver that is integrated with the cache. The larger block
addresses would also have necessitated many more changes to the base LFS. If the block address
were to include both a secondary and tertiary address, the difficulty of keeping disk addresses
current when blocks are cached (and updating those disk addresses where they appear in other file
system metadata) would seem prohibitive. HighLight instead locates the cached copy of a block
by querying a simple hash table indexed by its segment number (which is easily extracted from the

block number), and locates the tertiary-resident copy by direct interpretation of the block number.

6.4 Secondary Storage Organization

The disks are concatenated by a device driver and used as asingle LFSfile system. Fresh
data are written to the tail of the currently-active log segment. The cleaner reclaims dirty segments
by forwarding any live data to the tail of the log. Both the segment selection agorithm, which
chooses the next clean segment to be consumed by the log, and the cleaner, which reclaims disk

segments, are identical to the 4.4BSD L FSimplementations. Unlikethe4.4BSD LFS, though, some
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of the log segments found on disk are cached segments from tertiary storage.

HighLight'sdisk spaceissplitinto two portions: cache-eligible segmentsand the remain-
ing segments. A static upper limit (selected when thefile system is created) is placed on the number
of disk segments that may be in use for caching; after a suitable warm-up time, that many segments
would normally bein usefor cache space (unlessthe disk was entirely filled with normal segments).
The remainder of the disk is reserved for non-cached segments.

The ifile, containing summaries of segments and inode locations, is a superset of that
from the 4.4BSD LFS ifile. It has additional flags available for each segment’s summary, such
as a flag indicating that the segment is being used to cache a tertiary segment. HighLight also
adds an indication of how many bytes of storage are available in the segment (which is useful for
bookkeeping for acompressing tape or other container with uncertain capacity) and acache directory
tag.

To record summary information for each tertiary volume, HighLight adds a companion
file similar to theifile. It containstertiary segment summaries in the same format as the secondary
segment summaries found in theifile. For efficiency of operation, all the special files used by the
base LFS and HighLight are known to the migrator and always remain on disk.

As an example of the overhead needed, the ifile requires 1 block for cleaner summary
information, 1 block for each 102 on-disk segments, and 1 block for each 341 files. Assuming 10GB
of disk space, a IMB ifile would support over 52,000 files; each additional megabyte would support
an additional 87,296 files. The tape summary file requires 1 block for each 102 tertiary volumes, an
almost negligible amount for the tertiary devices Sequoia has at hand.

The support necessary for the migration policies may only require user-level support in
the migrator, or may involve additional kernel code to record access patterns. Other special state
that a migrator might need to implement its policies can be constructed in additional distinguished
files. This might include sequentiality extent data (describing which parts of afile are sequentially

accessed) or file clustering data (such as arecording of which files are to migrate together).
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If aneed arises for more disk storage, it is possible to initialize a new disk with empty
segments and adjust the file system superblock parameters and ifile to incorporate the added disk
capacity. If itisnecessary to remove adisk from service, its segments can all be cleaned (so that the
data are copied to another disk) and marked as having no storage. Tertiary storage may theoretically

be added or removed in asimilar way, but there isno current tool to make such changes.

6.5 Tertiary Storage Organization

Tertiary storage in HighLight is viewed as an array of devices each holding an array of
media volumes, each of which contains an array of segments. Media are currently consumed one
at atime by the migration process. The migrator may wish to direct several migration streams to
different media, but HighLight does not support that in the current implementation.

The need for tertiary media cleaning should be rare, because the migrator attempts to
migrate only stable data, and to have available an appropriate spare capacity in the tertiary storage
devices. Indeed, the currentimplementation doesnot clean tertiary media. HighLightwill eventualy
have a cleaner for tertiary storage that will clean whole media at atime to minimize the media swap
and seek latencies?

Since tertiary storage is often very slow (sometimes with access latencies for loading a
volume and seeking to the desired offset running over a minute), the relative penalty of taking a
bit more time to access the tertiary storage in return for generality and ease of management of
the tertiary storage is an acceptable tradeoff. The tertiary storage is accessed via “Footprint”, a
user-level controller process that uses Sequoia's generic robotic storage interface. It is currently
alibrary linked into the 1/0 server, but the interface could be implemented by an RPC system to
allow the jukebox to be physically located on a machine separate from the file server. Thiswill be

important for the future environment due to hardware and device driver constraints. Using Footprint

#Minimizing volume insertion and seek passesis also important, as some tapes become increasingly unreliable after
too many readings or too many insertions in tape readers.
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also simplifies the utilization of multiple types of tertiary devices by providing auniform interface.

6.6 Pseudo Devices

HighLight reliesheavily on pseudo device driversthat do not communicate directly with a
devicebut instead provide a devicedriver interfaceto extended functionality built upon other device
drivers and speciaized code. For example, a striped disk driver provides a single device interface
built on top of several independent disks (by mapping block addresses and calling the driversfor the
component disks).

HighLight uses pseudo device driversfor:

¢ A striping driver to provide a single block address space for all the disks.

¢ A block cache driver that sends disk requests down to the striping disk pseudo driver and
tertiary storage requeststo either the cache (which then uses the striping driver) or the tertiary

storage pseudo driver.

¢ A tertiary storage driver to pass requests up to the user-level tertiary storage manager.

Figure 5 shows the organization of the layers. The block map driver, segment cache and tertiary
driver are fairly tightly coupled for convenience. The block map pseudo-device handlesi oct | ()
callsto manipulatethe cache and to servicekernel 1/0 requests, and handlesr ead() andwri t e()
callsto provide the 1/O server with access to the disk device to copy segments on or off of the disk.
To handle ademand fetch request, thetertiary driver simply queuesit, wakesup asleeping
service process, and then sleeps as usua for any block 1/0. The service process directs the 1/0
processtofetch thedatatodisk. When the segment has been fetched, the service process completes
the block 1/0O by calling into the kernel with a completion message. The kernel then restarts the
original 1/0O that resulted in the demand fetch; thistime it is satisfied by the cache and completes

like any normal block 1/0. The origina process receives its data and continues its execution.
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Figure5: Thelayered architecture of the HighLight implementation. Heavy linesindicate data
or data/control paths; thin lines are control paths only.

6.7 User level processes

There are three user-level processes used in HighLight that are not present in the regular
4.4BSD LFS: the kernel request service process, the 1/0O process, and the migrator. The service
process waits for requests from either the kernel or from the 1/O process: The I/O process may
send a status message, while the kernel may request the fetch of a non-resident tertiary segment,
the gection of some cached line (in order to reclaim its space), or a write to tertiary storage of a
freshly-assembled tertiary segment.

If the kernedl requests a write to tertiary storage or a demand fetch, the service process

records the request and forwardsit to the 1/O server. For ademand fetch of a non-resident segment,
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the service process selects an on-disk segment to act as the cache line. If there are no clean
segments available for that use, the service process selects a resident cache line to be gected and
replaced. When the1/O server repliesthat afetch is complete, the service process calls the kernel to
complete the servicing of the request. The service process interacts with the kernel viai oct | ()
andsel ect () callson acharacter special device representing the unified block address space.

The /O server is spawned as a child of the service process. It waits for requests from the
service process, executing each request and replying with a status message. It accesses the tertiary
storage device(s) through the Footprint interface, and the on-disk cache directly viaa character (raw)
pseudo-device. Direct access avoids memory-memory copies (for outgoing segments) and pollution
of the block buffer cache with blocks jected to tertiary storage (of course, after a demand fetch,
those needed blockswill eventually end up in the buffer cache). Any necessary raw disk addresses
are passed to the I/O server as part of the service process's request.

The I/O server is a separate process primarily to provide for some overlap of 1/0 with
other kernel request servicing. If more overlap is required (e.g. to better utilize multiple tertiary
volume reader/writers), the 1/0O server or service process could be rewritten to farm out the work to
several processes or threads to perform overlapping 1/0.

The third HighLight-specific process, the migrator, embodies the migration policy of the
file system, directing the migration of file blocksto tertiary storage segments. It has direct access to
the raw disk device, and may examine disk blocksto inspect inodes, directories, or other structures
needed for its policy decisions. It selectsfile blocks by some criteria, and usesasystemcall (I fs_
brapv() , thesame call used by theregular cleaner to determine which blocksin asegment are il
valid) to find their current location on disk. If they are indeed on disk, it reads them into memory
and directsthekernel (viathel fs_mi grat ev() cal, avariant of the call theregular cleaner uses
to move data out of old segments) to gather and rewrite those blocks into the staging segment on
disk. Once the staging segment isfilled, the kernel requests the service process to copy the segment

to tertiary storage.
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To migrate an entirefile, the migrator simply uses| f s_brmapv() system call to locate
all thefile's blocks, reads them directly from the disk device into memory, and passes them to the

| fs_mgratev() systemcal.

6.8 Desgn Summary

HighLight's design incorporates both kernel support and user-level utility support to
provide its storage hierarchy management. Applicationscall the kernel like usual for file service; it
gathers assistance from the user-level utilitieswhen needed to service a request or to copy segments
to tertiary storage. The user-level utilities provide migration policy (with the kernel mechanism
actually preparing tertiary segments) and tertiary storage access (viathe Footprint library).

There are some potential problems that this design can generate. Since the file accesses
to HighLight seem just like those to other file systems, it is possible that an application may be
delayed much longer than expected due to a wait for tertiary storage access. There is no good way
for an application to anticipate this, and no way for an application to abort such an access. Also, the
performance impact of migration policies (gathering access traces, analysis of the traces or of file

status information, bookkeeping, etc.) is not clear, and may be fairly detrimental to performance.

7 Performancemicro-benchmarks

The benchmarks were designed to answer two basic questions: (a) how do the HighLight
modificationsto 4.4BSD LFS affect its performance, and (b) does the migration mechanism perform
well enough to keep up with the slowest device'stransfer speed. The modificationshave only asmall
impact, and in some situations HighLight can get close to the transfer speed of the magneto-optical
disk.

Thetestsran on an HP9000/370 CPU with 32 MB of main memory (with 3.2 MB of buffer

cache) running 4.4BSD-Alpha. HighLight had a DEC RZ57 SCSl disk drive for the tests, with the
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on-disk filesystem occupying an 848MB partition. The tertiary storage device was a SCS|-attached
HP 6300 magneto-optic (MO) changer with two drivesand 32 cartridges. Onedrivewasallocated for
the currently-active writing segment, and the other for reading other platters (the writing drive aso
fulfilled any read requestsfor its platter). Some of the testswere run for aversion of FFS with read-
and write-clustering, which coalesces adjacent block 1/0 operations for better performance. LFS
uses the same read-clustering code. To force more frequent volume changes, the tests constrained
HighLight's use of each platter to 40MB (since the tests didn’t have large amounts of data with
which to fill the plattersto capacity). The false size of 40MB was used so that the “large objects’
(described bel ow) would span more than one volume.

Unfortunately, the autochanger device driver does not disconnect from the SCSI bus, and
any media swap transactions*hog” the SCSI bus until the robot has finished moving the cartridges.
Thisisaresult of asimple device driver implementation; programmer resources to modify the driver
to release the SCSI bus on media change operationswere not available. Such media swaps can take

many seconds to compl ete.

7.1 Largeobject performance

The benchmark of Stonebraker and Olson[17] tested HighLight's performance with large
“objects’, measuring 1/0 performance on relatively large transfers. To compare HighLight to the

basic L FS mechanism, the benchmark ran with three basic configurations:
1. Thebasic4.4BSD LFS.
2. The HighLight version of LFS, using files that have not been migrated.
3. TheHighLight version of LFS, using migrated files that are all in the on-disk segment cache.

Thebasic 4.4BSD LFS provides a baseline from which to evaluate HighLight's performance. Using

HighLight with non-migrated files | ets us examine the extra overhead imposed by its modifications
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to the basic LFS structures; using it with cached files lets us examine the overhead of the caching

mechanism. (Thereare separatefile-accessbenchmarksfor uncached filesin thefollowing section.)
The large object benchmark starts with a 51.2MB file, considered a collection of 12,500

frames of 4096 bytes each (these could be database data pages, etc.). The buffer cache is flushed

before each operationin the benchmark. The following operations comprise the benchmark:

¢ Read 2500 frames sequentially (10MB total)

¢ Replace 2500 frames sequentialy (logically overwrite the old ones)

¢ Read 250 frames randomly (uniformly distributed over the 12500 total frames, selected with

the4.4BSD r andon() function with the sum of the time-of-day and processid as the seed)

¢ Replace 250 frames randomly

¢ Read 250 frames with 80/20 locality: 80% of reads are to the sequentially next frame; 20%

are to arandom next frame.

¢ Replace 250 frames with 80/20 locality.

Notethat for the tests using HighLight with migrated files, any modifications go to local disk rather
than to tertiary storage, so that portions of thefile live in cached tertiary segments and other portions
in regular disk segments. In practice, the migration policies attempt to avoid this situation by
migrating only file blocksthat are stable.

Table 2 shows measurements for the large object test. This benchmark ran on the plain
4.4BSD-AlphaFast File System (FFS) as well, using 4096-byte blocksfor FFS (the same basic size
as used by LFS and HighLight) with the maximum contiguous block count set to 16.  With that
configuration, FFS tries to allocate file blocksto fill up a contiguous 16-block area on disk, so that
it can perform 1/O operations with 64-kilobyte transfers.

The base LFS compares unfavorably to the plain FFS for sequential writes; this is most

likely dueto extrabuffer copies performed insidethe LFS code (it copiesblock buffersinto astaging
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Phase FFS Base LFS

time | throughput | time | throughput
10MB sequential read 10.46s | 1002KB/s | 128s| 819KB/s
10MB sequentia write 100s | 1024KB/s | 16.4s| 639KB/s
1MB random read 69s| 152KB/s| 6.8s| 154KB/s
1MB random write 33s| 315KB/s| 14s| 749KB/s
1MB read, 80/20 locality 69s| 152KB/s| 6.8s| 154KB/s
1IMB write, 80/20 locality | 1.48s| 710KB/s| 1.2s| 873KBI/s

Phase HighLight HighLight
(on-disk) (in-cache)
time | throughput | time | throughput
10MB sequential read 129s| 813KB/s| 129s| 813KB/s
10MB sequentia write 170s| 617KB/s| 17.6s| 596KB/s
1MB random read 6.9s 152KB/s | 7.1s 148KB/s
1MB random write 14s| T749KB/s| 13s| 807KBI/s

1MB read, 80/20 locality 6.9s 152KB/s | 7.1s 148KB/s
1MB write, 80/20 locality 14s 7T49KB/s | 14s 749K B/s

Table 2: Large Object performance tests. Time vaues are elapsed times; throughput is cal cu-
lated from the elapsed time and total data volume. The dlight differences between on-disk and
in-cache HighLight values may be negligible due to the variation in the measurements between
test runs. The FFS measurements are from a version with read and write clustering. For the
L FS measurements, the disk had sufficient clean segments so that the cleaner did not run during
the tests.

areabeforewritingto disk, so that thedisk driver can do asinglelargetransfer). For HighLight, when
data have not been migrated to secondary storage, there is a slight performance degradation versus
the base LFS (due to the slightly modified system structures). When data have been “migrated”
but remain cached on disk, the degradation is small (and may be due to experimental fluctuations
between test runs). From these measurements, it appears that HighLight's modifications do not
significantly impact performance if file data are resident on secondary storage, whether they bein a

cached tertiary segment or in aregular on-disk segment.
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7.2 Access Delays

To measure the delays incurred by a process waiting for file data to be fetched into the
cache, thistest migrated some files, gected them from the cache, and then read them (so that they
were fetched into the cache again). Both the access timefor thefirst byteto arrive in user space and
the elapsed time to read the whole files were recorded. The files were read from a newly-mounted
filesystem (so that no blocks were cached), using the standard I/O library with an 8K B-buffer. The
tertiary volumewasin thedrivewhen thetestsbegan, so time-to-first-bytedoesnot includethe media
swap time. Table 3 shows the first-byte and total elapsed times for disk-resident (both HighLight
and FFS) and uncached files. FFSisfaster to access thefirst byte, probably becauseit fetches fewer
metadata blocks (LFS needs to consult the inode map to find the file). The time-to-first-byte is
fairly even among file sizes, indicating that HighLight does make file blocks available to user space
as soon as they are on disk. The total time for the uncached file read of 10MB is somewhat more
than the sum of the measured in-cache access time and the required transfer time (computable from
the value in Table 5), indicating some inefficiency in the fetch process. The inefficiency probably
stems from the extra copies of demand-fetched segments: they are copied from tertiary storage to
memory, thence to raw disk, and are finally re-read through the file system and buffer cache. The
implementation of this scheme is simple, but performance suffers. A mechanism to transfer blocks
directly from the I/O server memory to thebuffer cache might providesubstantial improvements, but
would involve substantial modificationsto the virtual memory subsystems of the operating system.
Such modifications were not feasiblein the time frame of this project. They would al so upset some

of the modularity of 4.4BSD, and complicate any porting effort of thisimplementation.

7.3 Migrator throughput

To measure the available bandwidth of the migration path and seeif it can keep pace with

thetransfer rate of the slowest device, the original 51.2MB file from the large object benchmark was



File FFS HighLight access times

size access times in-cache uncached
Firstbyte | Total | Firstbyte | Tota | Firstbyte | Tota

10KB 0.06s| 0.09s 0.11s| 0.12s 357s| 359s

100KB 0.06s| 0.27s 011s| 0.27s 359s| 373s

1MB 0.06s| 1.29s 0.10s| 155s 35ls| 822s

10MB 0.07s | 11.89s 0.09s | 13.68s 357s | 44.23s
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Table 3: Access delays for files, in seconds. The time to first byte includes any delays for
fetching metadata (such as an inode) from tertiary storage. The FFS measurements are from a
version with read and write clustering.

Phase Percentage of

time consumed
Footprint write 62%
I/O server read 37%
Migrator queuing 1%

Table 4: A breakdown of the components of the I/O server/migrator elapsed run times while
transferring data from magnetic to magneto-optical (MO) disk.
migrated entirely to tertiary storage, while the components of the migration mechanism were timed.
Thisinvolved the migrator process, which collected the file data blocks and directed the kernel file
system to write them to fresh cache segments, the server process, which dispatched kernel requests
to copy out dirty cache segments, and the I/O process, which performed the copies.

The migration path measurements are divided into time spent in the Footprint library
routines (which includes any media change or seek as well as transfer to the tertiary storage), time
spent in the 1/0 server main code (copying from the cache disk to memory), and queuing delays.
Table 4 shows the percentage of real time spent in each phase; the MO disk transfer rate is the main

factor in the performance, resulting in the Footprint library consuming the bulk of the running time.

To get a baseline for comparison with HighLight, the raw device bandwidth available

was measured by reading and writing with the same 1/0 sizes as HighL ight uses (whole segments).
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1/0 type Performance
Raw MO read 451KB/s
Raw MO write 204K B/s

Raw RZ57 read 1417KB/s
Raw RZ57 write 993K B/s
Raw RZ58 read 1491KB/s
Raw RZ58 write 1261KB/s
Volume change 13.5s

Table 5: Raw device measurements. Raw throughput was measured with a set of sequentia
1-MB transfers. Media change measures time from an g ect command to a completed read of
one sector onthe MO platter. The RZ58 read performance may reflect alimitationin the SCSI-I
busrather than the disk drive’'s maximum transfer rate.

Read tests used dd; writes were measured with a simple program to write from memory to disk. A
final measurement determined the average time from the start of a volume swap to the replacement
volume being ready for reading. Table 5 shows the raw device measurements.

Table 6 shows measurements of two distinct phases of migrator throughput when writing
segmentsto MO disk. Thetwo phasesaroseinthemigrationtest: theinitial phasewhen the migrator
was copyingfiledatato new cache segmentsand the I/O server was copying dirty segmentsto tertiary
storage; and the second phase when the migrator completed and only the I/O server accessed the
cache segments.

The total throughput provided when the magnetic disk is in use simultaneously by the
migrator (reading blocksand creating new cached segments) and by thel/O server (copying segments
out to tape) is significantly less than the total throughput provided when the only access to the
magnetic disk isfrom the 1/O server. When thereis no disk arm contention, the 1/O server can write
at nearly thefull bandwidth of thetertiary volume. The magnetic disk and the optical disk shared the
same SCSI bus; both were in use simultaneously for the entire migration process. Since both disks
were in use for both the disk arm contention and non-contention phases, this suggests that SCS|
bandwidth was not the limiting factor and that performance might improve by using a separate disk

spindlefor the staging cache segments. An additional test using a slower HPIB-connected disk (an
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Phase Throughput Throughput Throughput
(RZ57) | (RZ57+RZ58) | (RZ57+HP7958A)

Magnetic disk

arm contention 111KB/s 127KB/s 46.8KB/s

No arm contention 192K B/s 202K B/s 145K B/s

Overadl 135K B/s 149K B/s 99K B/s

Table 6: Migrator throughput measurements for the migration throughput benchmark, showing
the phases with and without disk arm contention.

HP7958A) as the staging area showed significant degradation; using a faster SCSI disk (an RZ58)
for the staging area showed a modest (almost 15%) improvement in the contention phase. Thereis
still some disk arm contention between the migrator writing out staging segments and the archiver
reading those segments, but they do not compete with the disk arm used by the migrator gathering

blocks for migration from the regular segments.

7.4 Measurement summary

The benchmarks showed that HighLight's modifications to 4.4BSD LFS only slightly
reduceits performance (when file data are disk-resident), and that in some casesit can utilize nearly

the full transfer speed of the magneto-optical disk.

8 Related Work

There are severa systems either available or under development that might also provide
storage management to meet Sequoia’s needs; there are also some studies on migration that may
provide insight applicable to HighLight's migration policies.  The following subsections survey

these works.
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8.1 Storagesystems

Inversion [7] provides file service as an integrated facility of the POSTGRES object-
oriented relational database system. Files may be stored and manipulated using the database
interface; they may be accessed by using library routinessimilar to the standard POSIX file-related
systemcals(read() ,wite(),etc). ThePOSTGRES systemincludesastorage manager for the
Sony WORM jukebox, and will soon support the Metrum tape jukebox. The no-overwrite storage
manager provides a magnetic disk cache to speed access to WORM-resident data.

UnlikeHighLight, Inversion currently does not support access to files through the regul ar
operating system interface. Its implementors plan to provide NFS [10] access to its files at some
future date. However, Inversion does provide access within the framework of POSTGRES, which
is used for storing much of the current Sequoia global-change data. One possibility for future work
isto build Inversion on top of HighLight rather than directly on the tertiary devices.

The Jaguith system provides user toolsto archive or fetch datafrom an Exabyte EXB-120
Cartridge Handling Subsystem (arobotictape changer); it isintended as a supplement to magnetic-
disk file storage, and not as a replacement. Users explicitly decide which files to store or fetch;
Jaquith handles 1/0 to and from and catal oging of the tapes and provides a magnetic disk cache for
the tape metadata. There are no plans to extend its interface to provide operating system-like file
service.

Jaquith serves adifferent user model than HighLight. It expectsusersto explicitly identify
files to be sent to tertiary storage, with the implicit assumption that users will expect delays in
fetching/storing files through Jaguith. HighLight may incur those same delays, but has no way for
an the application to predict a delay or determine if a delay is just due to slow access or due to a
hardware or software fault.

The StorageServer 100 product from Digital Equipment Corporation provides a magnetic
disk front-end for an optical jukebox; files may live on magnetic disk, optical disk, or both. Fixed-

size pieces of files (64 kilobyte chunks) may be migrated individually. The system administrator
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may set parameters for the automatic file migration policies. It appearsfairly flexible, but will not
completely fulfill Sequoia's capacity needs since it does not support robotic tape jukeboxes.

UniTree [2] provides network access (either NFS or FTP) to its storage arena. It migrates
files between magnetic disk, optical disk, robot-loaded tapes, and manual-mount tapes, using a
space-time product metric for its migration decisions, coupled with a high-water mark/low-water
mark scheme to start and stop the purging process. It copies files from magnetic disk (their first
home) to other devices soon after creation, so that disk space may be quickly reclaimed if needed by
just deleting enough files from disk. HighLight issimilar in those two respects, in that it initialy
putsfiles on disk and it copies segments out to tape when they are ready rather than when their disk
spaceis needed.

UniTree supports only whole-file migration between storage devices, while HighLight
can support finer-grained migration. It is important to alow such fine-grained migration since
POSTGRES will be used for some Sequoia data, and its accesses within arelation (stored in afile)
are page-oriented and data-driven. Dormant tuplesin arelation should be eligible for migration to

tertiary storage; thisrequires amigration unit finer than the file.

8.2 Migration

Some previous studies have considered automatic migration mechanisms and policiesfor
tertiary storage management. Strange [18] develops a migration model based on daily “clean up”
computation that migrates candidate files to tertiary storage once a day, based on the next day’s
projected need for consumable secondary storage space. While Strange provides some insight
on possible policies, HighLight should not require a large periodic computation to rank files for
migration; instead it allows a migrator process to run continuously, monitoring storage needs and
migrating file data as required.

Unlike whole-file migration schemes such as Strange’s or UniTree's, HighLight should
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allow migration of portions of files rather than wholefiles. A partia-file migration mechanism can
support whole file migration, if desired for a particular policy. HighLight also should alow file
system metadata, such as directories, inode blocks or indirect pointer blocks, to migrate to tertiary
storage. Because it migrates whole segments as a unit, it uses the same indexing structures for all
file data, whether they reside on tertiary or secondary storage. It is somewhat wasteful of storage
to continue using the full block addressing scheme when file data are laid out in large contiguous
chunks on tape. However, using the same format is extremely convenient, since it can just copy
segments in toto to and from tertiary storage, without needing any data format conversion during
the transfer. The convenience and simplicity of this scheme outweighs the potential space savings
of using a more compact encoding.

A back-of-the-envel ope calculation suggested by Ethan Miller shows why migration of
indirect blocksis useful: Assuming 200MB files and a4K block size, there is an overhead of about
0.1% (200K B) for indirect pointer blocks using the Fast File System (FFS) indirection scheme. A
10TB storage area then requires 10GB of indirect block storage. It seems better to use this 10GB
for a cache areainstead of wasting it on indirect blocks of files that lay fallow.

Migrating indirect blocks and other metadata may be a two-edged sword, however: while
theremay be considerabl e space savingsby migrating such blocks, the potential for disaster isgreatly
increased if atertiary volume contains metadata required to access some other tertiary volume. If at
all possible, policies should arrange that any migrated metadata are contained on the same volume
as the datathey describe, so that a media failure does not necessitate atraversal of al tertiary media
during recovery. If the metadata are self-contained, then there are no “pointers’ leaving the volume
which could result in inaccessiblefile data. The only data rendered inaccessible would be those on
thefailed volume. If the metadata are not self-contained, then acomplete traversal of thefile system
tree (all media volumes) would be needed to reattach or discard any orphaned file blocks, files,
or directories which were attached to the file system tree via pointers on the failed volume. This

suggeststhat al migration policies should make vigorous attemptsto keep the metadata on volumes
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self-contained, and perhaps if space alows should just keep metadata on secondary storage.

A fina reason why existing systems may not be applicable to Sequoia's needs lies with
the expected access patterns. Smith [13, 14] studied file references based mostly on editing tasks;
Strange [18] studied a networked workstation environment used for software development in a
university environment. Unfortunately, those results may not be directly applicable for the target
environment, since Sequoia’s file system references will be generated by database, simulation,
image processing, visualization, and other 1/0 intensive-processes [16]. In particular, the database
reference patterns will be query-dependent, and will most likely be random accesses within a file
rather than sequential access.

HighLight's migration scheme is most similar to that described by Quinlan [8] for the
Plan 9 file system. He providesadisk cache asafront for aWORM devicethat stores all permanent
data. When file data are created, their tertiary addresses are assigned but the data are only written
to the cache; a nightly conversion process copies that day’s fresh blocks to the WORM device. A
byproduct of thisoperationisthe ability to “timetravel” to a snapshot of thefilesystem at the time of
each nightly conversion. Unlikethat implementation, however, HighLight is designed not to be tied
to asingle tertiary device and its characteristics (it may wish to reclaim and reuse tertiary storage,
which is not possible when using a write-once medium), nor does HighLight provide time travel.
Instead it generalizesthe 4.4BSD LFS structure to enable migration to and from any tertiary device

with sufficient capacity and features.

9 Conclusions

Sequoia 2000 needs support for easy access to large volumes of data that won’t econom-
icaly fit on current disks or file systems. HighLight is constructed as an extended 4.4BSD LFSto
manage tertiary storage and integrate it into the filesystem, with a disk cache to speed its operation.

The extension of LFS to manage a storage hierarchy isfairly natural when segments are used asthe
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transfer unit and as the storage format on tertiary storage.

The mechanisms provided by HighLight are sufficient to support a variety of migration
control policies, and provide a good testbed for evaluating these policies. The Footprint interface to
tertiary storage made simple the utilization of a non-tape based tertiary storage device, even though
HighLight was designed with tape devices as the target. The performance of HighLight's basic
mechanism when all blocksreside on disk is nearly as good as the basic 4.4BSD LFS performance.
Transfers to magneto-optical tertiary storage can run at nearly the tertiary device transfer speed.

Futurework will evaluate the candidate migration policiesto determine which one(s) seem
to provide the best performance in the Sequoia environment. However, it seems clear that the file
access characteristicsof asitewill bethe prime determinant of agood policy. Sequoia’s environment
may differ sufficiently from others’ environmentsthat direct application of previousresults may not
be appropriate. The architecture is flexible enough to admit implementation of a good policy for

any particular site.

10 FutureWork

To avoid eventual exhaustion of tertiary storage, HighLight will need a tertiary clean-
ing mechanism that examines tertiary volumes, a task that would best be done with at least two
reader/writer devicesto avoid having to swap between the being-cleaned volume and the destination
volume.

Some other tertiary storage systems do not cache tertiary resident files on first reference,
but bypass the cache and return the file data directly. A second reference soon thereafter resultsin
thefile being cached. Whilethisislessfeasible toimplement directly in a segment-based migration
scheme, it is achievable in the current implementation by designating some subset of the on-disk
cache lines as “least-worthy” and gjecting them first upon reading a new segment. Upon repeated

access the cache line would be marked as part of the regular pool for replacement policy (thisis



43

essentially a cross between anearly-MRU cache replacement policy and whatever other policy isin
use).

Asmentioned above, theability to add (and perhapsremove) disksand tertiary mediawhile
on-linemay be quiteuseful to allow incremental growth or resource reallocation. Constructing such
afacility should befairly straightforward.

There are acouple of reliability issuesworthy of further investigation: backup and media
failurerobustness. Backing up alarge storage system such as HighLight would be a daunting effort.
Some variety of replication would likely be easier (perhaps having the Footprint server keep two
copies of everything written to it). For reliability purposes in the face of media failure, it may be
wise to keep critical metadata on disk and back them up regularly, rather than migrate them to a
potentially faulty tertiary medium.

It would be niceif the user could be notified about a file access which is delayed waiting
for atertiary storage access. Perhaps the kernel could keep track of a user notification agent per
process, and send a“hold on” message to the user.

The cache size is currently fixed statically at file system creation time. A worthwhile
investigation would study different dynamic policiesfor alocating disk space between on-disk and

cached segments.
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