Analyzing and Improving the Performance of POSTGRES

Peter K. Lai

Computer Science Division
Electrical Engineering and Computer Sciences
University of California
Berkeley, CA 94720

Abstract

During the development of POSTGRES, little concern has been directed at improving perfor-
mance. A project was carried out to measure the actual performance of POSTGRES, determine
where it is slow, and impwe system performance. The project was divided into 3 subtasks. The
first was to obtain profile data and optimize the system according to those results. This resulted in
improvement in speed by a factor of three. In the second subtask, POSTGRES was benchmarked
using the Wisconsin Benchmark and the TP1 Benchmark. By fixing various problems discovered
during the benchmarking phase, the system’s TP1 rating was doubled. The third subtask involved
deriving tests to verify the decisions made by the optimizer when choosing among various scan
methods and join methods. Loop-holes found in the optimizer were corrected. Various sugges-
tions were given to the development team for enhancing both the performance and the features of
POSTGRES.

1. Introduction

POSTGRES [7] is a next-generation extensible relational database management system
being developed at the University of California. Since its design was published in early
1986, much effort has been expended to enhance the design as well as to implement the sys-
tem. As of early 1990, a large portion of POSTGRES is operational. The parser, optimizer,
executor, buffer manager, various access methods, and communication routines are completed.
Most rules described in the early design are supported by the rule manager and the query
rewrite system. POSTQUEL and C functions are also supported. The main design goals of
the system are fulfilled. However, little concern has been directed at improving the perfor-
mance of POSTGRES. The poor performance of POSTGRES makes it impractical for any
really useful work except as a research protocol. As a result, a performance analysis of
POSTGRES was conducted to discover the causes of its poor performance and to improve

that performance.

The main goal of this performance analysis project is to pinpoint the parts of the
code that slow the system down and to either awrithat code or make suggestions for
improvement to the development team. Though the operating system may also be partially
responsible for slowing down the DBMS, it was treated as a "given". Except for changes in
adjustable operating system parameters, modifications were limited to POSTGRES itself.
Besides speeding up the system, the project is also intended to benchmark POSTGRES to
better assess its performance and to provide a common ground for comparisons with other

DBMS's as well as a reference for future work on POSTGRES itself.

-3-

To achieve these goals, the project was divided into three subtasks. The first was to
obtain a profile of execution times for all routines in POSTGRES running a fixed set of
gueries and to optimize routines that take up too much execution time. The second subtask
was to benchmark POSTGRES using the Wisconsin Benchmark and the TP1 Benchmark, and
to compare the performance of POSTGRES with that of the university version of INGRES.
(INGRES is a relational database management system implemented at the University of Cali-
fornia during the period 1975-1977 [8].) The last subtask was to derive and carry out a set
of tests to ensure that the optimizer arranges reasonable execution plans to avoid degradation

of performance.

The rest of the report is organized as follows. Section 2 describes the approaches
and methodology employed in completing the subtasks. In Section 3, the results of the pro-
ject are presented and explained. Solutions for the problems discovered through out the pro-

ject are suggested in Section 4. Section 5 is a summary.

2. Methodology

This section describes the approaches and methods used to analyze awé itmgr
performance of POSTGRES and to do the benchmarking. It is further divided into four sec-
tions. Section 2.1 describes the environment in which all the tests were performed. In Sec-
tion 2.2, the profiling work is presented. Section 2.3 explains what benchmarks were chosen
and why they were used. Section 2.4 gives the tests used to search for faults in the opti-

mizer.

-4-

Before going into the details of the approaches and methods used, it is worthwhile to
point out the differences between the profiling work and the benchmarking work. Although
both profiling and benchmarking were done on the same databases with similar queries, their
goals, the ways of carrying out the subtasks, and the data collected were completely different.
The profiling work was aimed at finding out the breakdown of execution time among the rou-
tines and the subsystems so that optimizations could be made accordingly. As a result, only
the distribution of execution time and the number of times each routine was called were of
interest. On the other hand, the benchmarking work measured the performance of POST-
GRES on well-known benchmarks so that the system could be compared with other DBMSs.
The execution time for the whole system instead of for each routine was recorded. More-
over, the absolute execution time rather than the distribution of execution time was important.

The two subtasks were carried out parallelly and repeatedly throughout the project.

2.1 Test Environment

Currently, POSTGRES runs on DECstations 3100 running ULTRIX, SUN worksta-
tions running SUN OS 3.5, Sparc stations running SUN OS 4.0.3, and Sequent parallel
machines running DYNIX(R) V3.0.17. The work for comparing the performances of POST-
GRES and university INGRES on the Wisconsin Benchmark was done on a SUN 3/280
workstation. All other tests done in this project were run in single user mode on a DECsta-
tion 3100. The DECstation 3100 used has a 10 MIPS processor, 16M of main memory, and
is equipped with a local disk which can handle an average of 35 to 40 I/O accesses per sec-

ond. The executable code of POSTGRES and all the databases used in collecting the data

-5-

were stored on the local disk to minimize the effect of network traffic.

2.2 Profiling POSTGRES

The first step in speeding up a system is to find out in which routines the system
spends most of its execution time. The greatest improvements are likely to result from opti-
mizing those frequently called functions and from reducing the number of calls to those func-

tions. This is exactly the approach taken to iowprthe performance of POSTGRES.

The profiling work was done by using the DYNIX calls "prof* and "pixie". After the
system was compiled into executable code (called "postgres"), the command "pixie postgres"
was used to produce another executable file "postgres.pixie". When "postgres.pixie" was
executed, the profile data were written to a file called "postgres.Counts". By issuing the
command "prof -pixie postgres," the data were interpreted and a report of the execution time

for each routine called was generated.

Two databases with different sets of queries were used to obtain the profile data. The
first database is very similar to the one specified in the Wisconsin Benchmark [3] except that
4-byte integers were used instead of 2-byte integers. The database consists of one 1-K
(named "onek™ and two 10-K (named "tenkl," "tenk2") tables of 208-byte records. No B-
tree index has been created on any field of the relations. The set of POSTQUEL queries
executed on this database is shown in Figure 2.1. The set of queries is data-intensive [4],
meaning that the time required to process the data should be much greater than the overhead

processing time (e.g., communication, parsing, planning, and validity check times). It is data-

-6-

intensive because no index has been defined on the big relations, and for each of the few
gueries, the system has to touch all the records in a relation. The queries are a subset of
those included in the Wisconsin Benchmark [3] but do include all the basic query types:

retrieve (both selection and projection), replace, append, delete, and destroy. Aggregate func-
tions were not included because they did not exist in POSTGRES at the time the project was

undertaken.

retrieve into tempO (tenkl.all) where (tenk1.unique2 > 1) and (tenkl.unique2 < 102)

destroy temp0

retrieve into temp?2 (tenk2.all) where (tenk2.unique2 > 101) and (tenk2.unique2 < 202)

destroy temp2

retrieve into temp11 (tenkl.all) where (tenkl.unique2 > 1) and (tenkl.unique2 < 1002)

destroy temp11

retrieve into temp12 (tenk2.all) where (tenk2.unique2 > 101) and (tenk2.unique2 < 1102)

destroy temp12

retrieve (tenkl.all) where tenkl.unique2 =1

retrieve (tenk2.all) where tenk2.unique2 = 1001

retrieve into temp71 (onek.all)

destroy temp71

append tenkl (uniquel = 10001, unique2 = 10001, two =0, four = 0, ten = 0, twenty = 0, hundred = 0,
thousand = 0, twothousand = 0, fivethousand = 0, tenthousand = 0, odd = 1, even =0,
stringul = "MXXXXXXXX XXX XXX XXXXXXXK KKK G X KKK XXX XXX XXXXXXXXXXXXXXC,
stringu2 = "GXXXXXXXXXXXKKX XXX XX XX XXX X CHXXX XXX XXX XXKX XXX XXX XXKXXXA",
string4 = "OXXXXX XXX XXX XXX XXX XXXX XXX KX OXXXXXXXXXX XXX KKXXXXXXXXXO™)

append tenk2 (uniquel = 10001, unique2 = 10001, two = 0, four = 0, ten = 0, twenty = 0, hundred = 0,
thousand = 0, twothousand = 0, fivethousand = 0, tenthousand = 0, odd = 1, even =0,
stringul = "MXXXXXXX XXX XXX XXXXXXXXKXKKGXKKX XX XXX XXX XXXXXXXXXXXXC,
stringu2 = "GXXXXXXXXXX KKK XXX XXX XXXXXXCXXXXXXXXXXHXHXHKKXXKX XXX XXX XXA",
string4 = "OXXXXXXX XXX XX XX XXX XXX XXX XX OX KKK XXX XXX XXX XX XXX XXX XXXO™)

delete tenk1 where tenkl1.unique2 = 10001

delete tenk2 where tenk2.unique2 = 10001

replace tenkl (unique2 = 10011) where tenkl.unique2 = 1491

replace tenk2 (unique2 = 10011) where tenk2.unique2 = 1491

Figure 2.1 A Subset of Queries in the Wisconsin Benchmark

create branch (bid = int4, balance = float8, string = text)

create teller (tid = int4, balance = float8, string = text)

create account (aid = int4, balance = float8, string = text)

create history (bid = int4, tid = int4, aid = int4, amount = float8, string = text)
copy branch () from "/a/guest/plai/tp/branch"

copy teller () from "/a/guest/plai/tp/teller”

copy account () from "/a/guest/plai/tp/account”

define index branch_index on branch using btree (bid int4_ops)

define index teller_index on teller using btree (tid int4_ops)

define index account_index on account using btree (aid int4_ops)

Figure 2.2 The Template for Setting up the Database for the TP1 Benchmark

The second database is very similar to the one used in measuring TP1 [1]. It consists
of a 1-K relation called "branch,” two 10-K relations called "teller* and "account,” and a
relation named "history" to which a record for each transaction is appended. The size of a
tuple in the "branch,” "teller," and "account" relations is 100 bytes, and a tuple in the "his-
tory" relation has 50 bytes. The POSTQUEL commands defining the relations are shown in
Figure 2.2. The set of queries executed includes 300 transactions, each of which is com-
posed of the POSTQUEL commands shown in Figure 2.3, except that vafapled and
$3 are replaced by numbers generated randomly. There are B-tree indices on the "bid," "tid,"
and "aid" fields of the "branch," "teller," and "account" relations respectively. The query set
is overhead-intensive [4], meaning that the time spent in the operating system and data man-
agement overhead is significant when compared with the time required to process the data. It
is overhead-intensive because there are a large number of commands (300 * 7 = 2100), each
requiring the fetching of a single record from a relation with useful storage structures (i.e. B-

tree indices).

begin
retrieve (account.all) where account.aii=
replace account (balance = account.balance + 10.0) where accouilaid =
replace teller (balance = teller.balance + 10.0) where tellergl =
replace branch (balance = branch.balance + 10.0) where brancBdid =
append history (bid $3, tid = $2, aid =$1, amount = 10.0,
StriNg = "XXXXXXXXXXXXXXXXXXXXXXXXXXXXKX)
end

Figure 2.3 The Definition of a Transaction

By profiing POSTGRES on two completely different sets of queries, the high traffic
routines under different access patterns could be identified. From the profile report, time
spent in each subsystem in POSTGRES (e.g. parser, optimizer) was also calculated. By look-
ing at the breakdown in execution time, one can tell easily whether the system has spent too
much time in a single subsystem. The reports were distributed among the development team
members and suggestions for modifications were made corresponding to the results obtained.
This process was repeated several times. The results and the interpretations of the profiling

work will be presented later in this paper (Section 3.1).

2.3 Benchmarking POSTGRES

To have a clearer idea of how the performance of POSTGRES compares to that of
university INGRES, and to provide a reference for future work in improving the performance
of POSTGRES, we decided to benchmark POSTGRES. The Wisconsin Benchmark [2] was
chosen as a common ground for comparing POSTGRES with university INGRES for the fol-

lowing reasons:

-0-

1) Although the Wisconsin Benchmark is not a comprehensive tool for measuring
performances of DBMS's, it tests basic functionalities that are provided in most
DBMS's.

2) The Wisconsin Benchmark is widely used in benchmarking DBMS'’s, so the results can

be used for quick comparisons with DBMS’s other than university INGRES.

NOTE: The original strategy was to benchmark POSTGRES and compare the results with
published Wisconsin Benchmark results for university INGRES [2]. Since the published
results were obtained by running university INGRES on a VAX 11/750, and the measure-
ments for POSTGRES were done on a DECstation 3100, a conversion factor accounting for
hardware and software differences between the two machines would have been needed for
meaningful comparison. However there is no single conversion factor that would apply to all
kinds of queries. For example, differences between the two machines in CPU speed as well
as for 1/0 processes would have to be reckoned for different types of queries. Due to the
difficulty and uncertainty in estimating accurate conversion factors, the idea of using pub-

lished benchmarking results for university INGRES was abandoned.

To have an accurate comparison between the DBMS’s, both university INGRES and
POSTGRES were set up on the same SUN workstation. A SUN workstation was used
because it is the only machine on which both DBMSs can run. The version of university
INGRES used was released in 1987, and included enhancements not found in the system
used to obtain previously published benchmarking results. Hence, performance results for
this version of INGRES were expected to be slightly better than the published results. The

benchmarking results that reflect all the optimizations done in this project will be given later

-10-

in this paper.

POSTGRES was also benchmarked using the TP1 Benchmark [1]. Reasons for using

the TP1 Benchmark in addition to the Wisconsin Benchmark are as follows:

1) The queries in the Wisconsin Benchmark are data-intensive. Without the TP1 Benchmark,
the performance of POSTGRES on overhead-intensive queries may not be obtained.

2) TP1 rating is also widely used as an index of the speed of a DBMS.

3) Lock and transaction managers can be tested by the TP1 Benchmark, and problems
not detected with the Wisconsin Benchmark may be discovered when running

the TP1 Benchmark.

The database and the queries used are the same as those described in Section 2.2.

The execution time was measured by the UNIX command "time,” which gives the
user time, system time, elapsed time, CPU usage, number of I/O accesses, and number of

page faults for a command.

During the benchmarking work, a number of problems not discovered in the profiling
stage were found. The system has been modified and re-benchmarked many times to
improve performance. The nature of the changes and the results will be described later in

this paper (Section 3.2).

2.4 Testing the Optimizer in POSTGRES

-11-

Besides optimizing the frequently called routines and trying to reduce the number of
calls to those routines, a DBMS can also be speeded up by eliminating faults in the opti-
mizer. The work is not aimed at producing a faster optimizer since it was found from the
profile data that the time spent in the optimizer is not significant compared to the execution
time. This part of the project focuses more on the quality of the execution plan produced by
the optimizer, e.g. whether the right join method or scan method is planned. It prevents the
performance of the system from being degraded for particular kinds of queries. For example,
the execution time may be a lot longer if a nested loop join (also called iterative substitu-
tion), rather than a merge join or a hash join, is planned for joining two large relations hav-

ing no indices.

retrieve into templ (tenkl.all) where (tenk1.unique002) and (tenkl.unique2 > 1)
destroy templ
retrieve into temp?2 (tenk2.all) where (tenk2.unique002) and (tenk2.unique2 > 1)
destroy temp2
retrieve into temp3 (tenkl.all) where (tenk1.unique003) and (tenkl.unique2 > 2)
destroy temp3
retrieve into temp4 (tenk2.all) where (tenk2.unique003) and (tenk2.unique2 > 2)
destroy temp4
retrieve into temp5 (tenk1.all) where (tenk1.unique004) and (tenkl.unique2 > 3)
destroy temp5
retrieve into temp6 (tenk2.all) where (tenk2.unique004) and (tenk2.unique2 > 3)
destroy temp6

Figure 2.4 The First Set of Optimizer Tests

It was expected that some of the faults in the optimizer, if any existed, could be
exposed during the benchmarking. Three additional sets of tests were designed to verify the
decisions made by the optimizer. The first set of tests runs on a database with two 10-K

tables of 208-byte records. Each record is identical to those described in Section 2.2. The

-12-

queries are listed in Figure 2.4. The two relations were alternated to minimize the effect of
buffering. The value oX was varied from 1 to 9 so that the selectivity changed from 0.1

to 0.9. Clustered B-tree indices were defined on the field "unique2" in all relations for all
gueries. This first set of tests was designed to examine the decisions made by the optimizer
in choosing between sequential scan and index scan. It checks if the optimizer correctly
switches from index scan to sequential scan when the selectivity of the queries increases

gradually.

The second set of tests runs on a database with two 1-K tables of 208-byte records
(same records as above). The queries are listed in Figure 2.5. This second set of queries
was designed to examine the decisions made by the optimizer in choosing between the three
join methods supported by POSTGRES: nested loop join, merge join, and hash join. Queries
1 and 2 test the quality of equal-join plans. Queries 3 and 4 check how restrictions affect
the plans. Queries 5 and 6 test to see if only nested loop join is planned for non-equal-joins.
Clustered B-tree indices were defined on "unique2" in all relations for queries 2, 4, and 6,
but not queries 1, 3, and 5. By running the same queries both with and without B-tree
indices, one can check if the optimizer can give plans that make good use of available

indices.

The third set of tests runs on the same database used for the second set of tests. The
queries are listed in Figure 2.6. They were designed to determine if the cost given by the
optimizer is sensitive only to the selectivity of a range qualification and not to the absolute

value of the range.

13-

queryl:
retrieve into templ (ull = onekl.uniquel, u21 = onekl.unique2, twol = onekl.two,
fourl = onekl.four, tenl = onek1.ten, twentyl = onekl.twenty, hl = onekl.hundred,
t1 = onekl.thousand, tt1 = onekl.twothousand, ft1 = onekl.fivethousand, tentl =
onekl.tenthousand, odd1 = onekl.odd, evenl = onekl.even, st1l = onekl.stringul,
st21 = onekl.stringu2, st41 = onekl.string4, ul2 = onek2.uniquel, u22 = onek2.unique2,
two2 = onek2.two, four2 = onek2.four, ten2 = onek2.ten, twenty2 = onek2.twenty,
h2 = onek2.hundred, t2 = onek2.thousand, tt2 = onek2.twothousand, ft2 = onek?2.fivethousand,
tent2 = onek2.tenthousand, odd2 = onek2.odd, even2 = onek2.even, st12 = onek?2.stringul,
st22 = onek2.stringu2, st42 = onek2.string4) where (onekl.unique2 = onek2.unique2)
query2:
same as queryl, except that Btree indices were defined on onekl, and onek2
query3:
retrieve into temp2 (ull = onekl.uniquel, u21 = onekl.unique2, twol = onekl.two,
fourl = onekl.four, tenl = onek1.ten, twentyl = onekl.twenty, hl = onekl.hundred,
t1 = onekl.thousand, tt1 = onekl.twothousand, ft1 = onekl.fivethousand, tentl =
onekl.tenthousand, odd1 = onekl.odd, evenl = onekl.even, st1l = onekl.stringul,
st21 = onekl.stringu2, st41 = onekl.string4, ul2 = onek2.uniquel, u22 = onek2.unique2,
two2 = onek2.two, four2 = onek2.four, ten2 = onek2.ten, twenty2 = onek2.twenty,
h2 = onek2.hundred, t2 = onek2.thousand, tt2 = onek2.twothousand, ft2 = onek?2.fivethousand,
tent2 = onek2.tenthousand, odd2 = onek2.odd, even2 = onek2.even, st12 = onek?2.stringul,
st22 = onek2.stringu2, st42 = onek2.string4) where (onekl.unique2 = onek2.unique2)
and (onek2.unique2 < 100)
query4:
same as query3, except that Btree indices were defined on onekl, and onek2
querys:
retrieve into temp3 (ull = onekl.uniquel, u21 = onekl.unique2, twol = onekl.two,
fourl = onekl.four, tenl = onekl.ten, twentyl = onekl.twenty, hl = onekl.hundred,
t1 = onekl.thousand, tt1 = onekl.twothousand, ft1 = onekl.fivethousand, tentl =
onekl.tenthousand, odd1 = onekl.odd, evenl = onekl.even, st11 = onekl.stringul,
st21 = onekl.stringu2, st41 = onekl.string4, ul2 = onek2.uniquel, u22 = onek2.unique2,
two2 = onek2.two, four2 = onek2.four, ten2 = onek2.ten, twenty2 = onek2.twenty,
h2 = onek2.hundred, t2 = onek2.thousand, tt2 = onek2.twothousand, ft2 = onek?2.fivethousand,
tent2 = onek2.tenthousand, odd2 = onek2.odd, even2 = onek2.even, st12 = onek2.stringul,
st22 = onek2.stringu2, st42 = onek2.string4) where (onekl.unique2 < onek2.unique2)
and (onekl.unique2 < 10) and (onek2.unigue2 < 100)
query6:
same as query5, except that Btree indices were defined on onekl, and onek2

Figure 2.5 The Second Set of Optimizer Tests

-14-

query 1:

retrieve (tenkl.all) where tenkl.unique2 < 502 and tenkl1.unique2 > 500
query 2:

retrieve (tenkl.all) where tenk1.unique2 < 502 and tenk1.unique2 < 500
query 3:

retrieve (tenkl.all) where tenkl.unique2 < 102 and tenkl1.unique2 > 100
query 4:

retrieve (tenkl.all) where tenkl.unique2 < 102 and tenkl.unique2 < 100

Figure 2.6 The Third Set of Optimizer Tests

The procedure for conducting theoab tests was as follows. First, the optimizer was
allowed to choose its own plan for each of the queries. Then internal flags were set to force
the system to use other alternatives for each of those same queries. The plans and timing
were compared to see if the optimizer was correct. Again, the UNIX command "time" was

used to do the measurement. The results will be presented later in Section 3.3.

3. Results

This section presents a description and interpretation of the results. Section 3.1 gives
the profiling data at different stages of the speed up process. It describes the changes that
account for the speedup factor of three and presents the incremental improvement resulting
from each change. Section 3.2 lists POSTGRES’s performances on the Wisconsin and TP1
Benchmarks. It also includes the problems discovered through out the benchmarking phase
and the corresponding solutions. Section 3.3 shows the results, with their implications, of the

optimizer tests described in Section 2.4.

-15-
3.1.1 The First Set of Profiling Data

Figure 3.1 shows the first set of profile data obtained by running the queries listed in
Figure 2.1. "Fastgetattr" appeared first in the list, occupying 18.14% of the total execution
time. It is a routine in the access methods which returns a certain field in a tuple when the
tuple and the attribute number of the requested field are given. It accounts for almost one-
fifth of the total execution time because it is called by nearly all the modules in the system,

and it is called whenever the value of a field in a tuple is accessed.

Total number of cycles = 2618063022

cycles | % cycles| cum % cycles/c#ll procedure (file)
474836539 18.14 18.1 26 fastgetattr (tuple.c)
349159913 13.34 314 4 NodelsType (inh.c)
126453252 4.83 36.3 125 prs2Retrieve (prs2retrieve.c)
107532633 4.11 40.4 3 BufferlsValid (bufmgr.c)
87267648 3.33 43.7 5 prs2ActivateBackwardChainingRules (prs2bkwd.c)
67328668 2.57 46.3 3 amgetattr (tuple.c)
59392116 2.27 48.5 58 attributeValuesCreate (prs2attr.c)
54332183 2.08 50.6 5 malloc (malloc.c)
50773180 1.94 52.6 33 fmgr (fmgr.c)
46864586 1.79 54.3 3 prs2ActivateForwardChainingRules (prs2bkwd.c)

Figure 3.1 The First Set of Profile Data

In POSTGRES, an execution plan produced by the optimizer is in the form of a tree.
During execution, the executor traverses the tree, performing actions according to the types
and the attributes stored in the nodes of the tree. Each node may have one of over 80 differ-
ent types, such as "Sort", "MergeJoin", "HashJoin", "Scan", etc. However, nodes cannot have

arbitrary types. For example, only "Material" nodes, "Sort" nodes or "Unique" nodes can be

-16-

children of a "Temp" node. The rules stating the valid types the children of a certain node
can have form a type inheritance tree. The second routine in the list shown in Figure 3.1,
"NodelsType", is a routine which determines if a given node has a type which is a descen-

dent of another given type in the type inheritance tree.

"BufferlsValid,” which was ranked fourth, checks to see if a given buffer descriptor

points to a valid buffer page managed by the POSTGRES buffer manager.

"Prs2ActivateBackwardChainingRules," "prs2ActiveForwardChainingRules" and
"prs2Retrieve” are routines within the rule manager. "Prs2Retrieve" is called for each tuple
whenever a retrieve operation is performed on a relation by the executor. It determines
whether the current tuple is affected by any rules defined, and if so, creates the resulting
tuple. "Prs2ActiveBackwardChainingRules" and "Prs2ActiveForwardChainingRules" are two
of those routines called by "prs2Retrieve”. They check to see if any backward chaining rules
and forward chaining rules defined will affect the current tuple, and if so, return the correct

result.

It is obvious that "fastgetattr” is called numerous times through out the execution and
that POSTGRES spends too much time there for each call. It is certainly not doing what its
name suggests! Some local optimizations were made in "fastgetattr.” For example, the value
of an expression tested many times within "fastgetattr" is saved in a variable to prevent the
expression from being evaluated more than once. Moreover, the executor and the rule man-
ager were modified to save results from "fastgetattr” whenever possible so that it might be

called less frequently. The changes reduced the number of CPU cycles per call to

-17-

"fastgetattr" from 262 to 167 and the number of calls by 88.81%, bringing it down from the

top to fifth in the list.

% time | subsystem

19.51 | access methods
19.09 | system functions
18.83 | lib
15.64 | rule manager
11.26 | storage manager
10.14 | utilities

4.66 | executor

0.88 | optimizer (planner)

Figure 3.2 The Timing Break Down for the First Set of Profile Data

Figure 3.2 gives the breakdown of the timing grouped by subsystems in POSTGRES.
Routines under the lib and utilities categories are shared by all subsystems in POSTGRES.
A significant portion of the execution time was spent in low level subsystems in the DBMS
(e.g. storage manager, access methods, etc.) because the queries are data-intensive. However,
the time taken by the rule manager was unexpectedly long. The whole rule subsystem took
up 15.64% of the total execution time even when no rule was involved in the queries, and
that did not include the time spent in the library, utility and access method routines called by
the rule manager. Such a slow rule manager is certainly undesirable. Most of that 15% of
execution time is used in setting up the rule environment and determining whether data being
manipulated are governed by any rules. The overhead is so great because "prs2Retrieve"

does not check as to whether there is a rule lock on the current relation. It defers the check

until individual rule activation routines are called for each related attribute in each tuple. Not

-18-

only is greater overhead incurred by doing that; checking is also repeated. The routine was
modified so that the check is now made at the very beginning. The rule manager returns

immediately if no rule is defined on the current relation.

3.1.2 The Second Set of Profile Data

Total number of cycles = 1424178040

cycles | %cycles| cum % cycles/ce#ll procedure (file)

361237275 25.36 25.3 4 NodelsType (inh.c)
83880093 5.89 31.2 3 BufferlsValid (bufmgr.c)
55489865 3.90 35.1 33 fmgr (fmgr.c)

33860943 2.38 37.5 16 fastgetattr (tuple.c)

30075291 2.11 39.6 5 malloc (malloc.c)

22713410 1.59 41.2 19 FindLocalBuffer (bufmgr.c)

20964390 1.47 42.7 1 BM_debug (buf_sync.c)

19796392 1.39 44.1 19 ExecMakeBogusScanAttributes (eutils.c)
19052880 1.34 454 3 MemoryContextAlloc (mcxt.c)

17320800 1.22 46.6 3 AllocSetAlloc (aset.c)

Figure 3.3 The Second Set of Profile Data

% time | subsystem

38.12 | lib
18.80 | storage manager
16.77 | utilities
6.71 | executor
5.84 | access methods
5.07 | system functions
1.03 | rule manager
0.58 | optimizer (planner)

Figure 3.4 The Timing Break Down for the Second Set of Profile Data

-19-

After the rule manager and the access method had been changed, the profiling was

repeated for the queries shown in Figure 2.1. Results are shown in Figure 3.3 and Figure

3.4. Note from the decrease in total number of cycles that POSTGRES was speeded up by

83.83% due to the modifications described above. "Fastgetattr" dropped from top of the list

to fifth, and the number of CPU cycles used per call dropped from 262 to 167. No routines

in the rule subsystem remained among the top ten time-consumers. The most heavily called

rule routine is in the 43rd position. The great improvement verifies that the approach used to

speed up the system is effective.

3.1.3 Profile Data for Transactions

Total number of cycles = 399556840

cycles | % cycles| cum 04 cycles/c#ll procedure (file)
65448041 16.38 16.3 28 _doprnt (doprnt.c)
38194770 9.56 25.9 5 NodelsType (inh.c)
30160232 7.55 33.4 36 fmgr (fmgr.c)
14040260 3.51 37.0 5 malloc (malloc.c)
10557409 2.64 39.6 3 BufferlsValid (bufmgr.c)
8791922 2.20 41.8 31 yylook (scan.c)
8298378 2.08 43.9 3 MemoryContextAlloc (mcxt.c)
6789582 1.70 45.6 2 AllocSetAlloc (aset.c)
6269200 1.57 47.1 2 fprintf (fprintf.c)
6005856 1.50 48.6 13 fastgetattr (tuple.c)

Figure 3.5 The Profile Data for Transactions

% time

subsystem

-20-

25.72 | system functions
22.08 | lib
18.84 | utilities
12.18 | storage manager
11.73 | access methods
2.66 | executor
1.37 | parser
1.00 | optimizer (planner)
0.05 | rule manager

Figure 3.6 The Timing Break Down for Profile Data for Transactions

The improved system was then profiled using the database described in Section 2.2
and the queries listed in Figure 2.3. The results are shown in Figure 3.5 and Figure 3.6.
"Doprnt" is a routine that performs the output for "sprintf”, which prints strings to a buffer
with a specified size. "Fmgr" is the function manager in POSTGRES, and it dispatches func-
tion calls through table look-ups. "Malloc" is a library function for dynamic memory alloca-
tion. Both "MemoryContextAlloc" and "AllocSetAlloc" are routines within the memory man-
ager in POSTGRES. The former is responsible for dynamic memory allocation in a given
context, and the latter allocates memory for a set of specified items. When comparing the
results shown in Figure 3.4 and Figure 3.6, it was noticed that the percentage of time spent
in the parser, the planner, and system functions increased while the percentage of time spent
in the storage manager and the executor decreased. The results confirm that the queries are
overhead-intensive. However, the change in execution time distribution is not dramatic.
Moreover, the time spent in parsing and choosing an execution plan is still low compared to

the data processing time. Routines like "NodelsType," "fmgr," "BufferlsValid" remain high in
the list. In subsequent runs, the profile data obtained by running the first set of queries

(shown in Figure 2.1) were chosen to be the common reference in comparing performances

-21-

in different stages of the speed up process.

3.1.4 The Third Set of Profile Data

After the improvements in "fastgetattr” and the rule manager were made,
"NodelsType" became the top time-consumer. The next step was to seek improvements there.
It was discovered that "NodelsType" is sometimes called to determine whether a node has a
certain inherited type although the answer is known beforehand. To provide a way to bypass
those tests, a compilation directive (NO_NODE_CHECKING) was added. With
NO_NODE_CHECKING defined, the system was profiled again. The results are shown in
Figure 3.7. As indicated by the total number of cycles, POSTGRES has increased in speed

by another 26.18%.

Total number of cycles = 1128683572

cycles | %cycles| cum % cycles/ce#ll procedure (file)

119778377 10.61 10.6 5 NodelsType (inh.c)
83880093 7.43 18.0 3 BufferlsValid (bufmgr.c)
55491325 4.92 22.9 33 fmgr (fmgr.c)

33861375 3.00 25.9 16 fastgetattr (tuple.c)

30075282 2.66 28.6 5 malloc (malloc.c)

22713410 2.01 30.6 19 FindLocalBuffer (bufmgr.c)

20964390 1.86 32.4 1 BM_debug (buf_sync.c)

19796392 1.75 34.2 19 ExecMakeBogusScanAttributes (eutils.c)
19052880 1.69 35.9 3 MemoryContextAlloc (mcxt.c)

17320800 1.53 37.4 3 AllocSetAlloc (aset.c)

Figure 3.7 The Third Set of Profile Data

-22-

3.1.5 The Fourth Set of Profile Data

Examination of the source code of POSTGRES revealed that there are many validity
checks in the program. For example, there are numerous places where a pointer is checked
to see if it points to valid data; if not, the system gives an error message and then either con-
tinues or stops. In POSTGRES, most of these checks are implemented by the following
macro functions: Assert(), AssertState(), AssertArg(), LogAssert(), LogAssertState(), and
LogAssertArg(). These checks are quite useful in the development phase when the system is
incomplete and not fully tested. However, checking cases that could not occur when the sys-
tem functions normally represents an overhead and degrades the performance unnecessarily.
Accordingly, a compilation directive (NO_ASSERT_ CHECKING) was added to the code so
that those checks could be easily turned on or off by defining or undefining
NO_ASSERT_CHECKING. The profile data for the system with NO_ASSERT CHECKING
defined are given in Figure 3.8. Another speedup of 23.42% was attained, as indicated by

comparing the new total number of cycles with the old total.

Total number of cycles = 914535407

cycles | % cycles| cum 04 cycles/c%ll procedure (file)
60438523 6.61 6.6 4 NodelsType (inh.c)
55493874 6.07 12.6 33 fmgr (fmgr.c)
53619029 5.86 18.5 3 BufferlsValid (bufmgr.c)
32231012 3.52 22.0 15 fastgetattr (tuple.c)
30075282 3.29 25.3 5 malloc (malloc.c)
22713410 2.48 27.8 19 FindLocalBuffer (bufmgr.c)
19796392 2.16 30.0 19 ExecMakeBogusScanAttributes (eutils.c)
19232925 2.10 32.1 1 BM_debug (buf_sync.c)

-23-

15588720 1.70
14461436 1.58

33.8 2 AllocSetAlloc (aset.c)
35.3 14 ExecMakeFunctionResult (qual.c)

Figure 3.8 The Fourth Set of Profile Data

3.1.6 The Fifth Set of Profile Data

It is interesting that "BM_debug,” a routine used to print debugging information for
the buffer manager, appeared 8th in the profile shown in Figure 3.8 although most of the
calls to it had already been suppressed. It was found that "BM_debug" was called by
another debugging routine, "flag_print", which was called by "RelationGetBuffer," itself called
numerous times during normal execution. Although "BM_debug" returned without doing
anything when it was not in debug mode, the two levels of useless calls caused an overhead
of 2.1%. The inefficient code was corrected and profile data showing the improvement are

given in Figure 3.9.

Total number of cycles = 876602510

cycles | % cycles| cum 04 cycles/c%ll procedure (file)
60438523 6.89 6.8 4 NodelsType (inh.c)
55494963 6.33 13.2 33 fmgr (fmgr.c)
53616101 6.12 19.3 3 BufferlsValid (bufmgr.c)
32231801 3.68 23.0 15 fastgetattr (tuple.c)
30075282 3.43 26.4 5 malloc (malloc.c)
22713410 2.59 29.0 19 FindLocalBuffer (bufmgr.c)
19796392 2.26 31.3 19 ExecMakeBogusScanAttributes (eutils.c)
15588720 1.78 33.0 2 AllocSetAlloc (aset.c)
14461436 1.65 34.7 14 ExecMakeFunctionResult (qual.c)
14315412 1.63 36.3 14 heapgettup (access.c)

Figure 3.9 The Fifth Set of Profile Data

-24-

3.1.7 The Sixth Set of Profile Data

After getting fruitful results from eliminating some of the validity checks, it was
thought that similar optimization could be made to "BufferisValid", which checks whether a
given buffer descriptor points to a valid buffer page. The routine was modified so that it
simply returned true whenever called. The system crashed after the modification. The source
code was then carefully examined, and it was found that some of the calls to "BufferisValid"
are meaningful. It is sometimes used to see if a certain buffer page exists. If not, the buffer
page is fetched. So blindly returning true from "BufferisValid" will undermine the normal
execution. As a result, every call to "BufferisvValid" was examined. A compilation directive
(NO_BUFFERISVALID) was added to each call to "BufferlsValid" that serves only as an
error check. Those calls that affect decision making were left intact. In this way, checks on
buffer pointers can be turned off when they are not necessary. The profile data shown in
Figure 3.10 indicate a further speedup of 2.75% can be obtained by setting
NO_BUFFERISVALID. Altogether, POSTGRES’s speed has been raised by 206.86% (three

times as fast as before).

Total number of cycles = 853181733

cycles | % cycles| cum 04 cycles/c%ll procedure (file)
60438523 7.08 7.0 4 NodelsType (inh.c)
55492049 6.50 13.5 33 fmgr (fmgr.c)
36907901 4.33 17.9 3 BufferlsValid (bufmgr.c)
32230512 3.78 21.6 15 fastgetattr (tuple.c)
30075291 3.53 25.2 5 malloc (malloc.c)
22408604 2.63 27.8 19 FindLocalBuffer (bufmgr.c)

19796392 2.32 30.1
15588720 1.83 31.9
14461436 1.70 33.6
13679448 1.60 35.2

-25-

19

14
13

ExecMakeBogusScanAttributes (eutils.c)

AllocSetAlloc (aset.c)
ExecMakeFunctionResult (qual.c)
heapgettup (access.c)

Figure 3.10 The Sixth Set of Profile Data

3.2.1 Performance on the Wisconsin Benchmark

Figure 3.11 shows the results for running the Wisconsin Benchmark on both POST-

GRES and university INGRES. The benchmarking was done near the end of the project

when all optimizations described @t had been made.

query POSTGRES (sec)) INGRES (se#:.) ratio (POSTGRES/INGRES)
1: select 1% into temp, no index a47\7 4.04
2: select 10% into temp, no index 59/0 2.80
3: select 1% into temp, clust. index 51 2.22
4: select 10% into temp, clust. index 39.4 2.88
5: select 1% into temp, non-clust. inde 7.5 1.67
6: select 10% into temp, non-clust. index 61.4 2.33
7: select 1 to screen, clust. index 12 1.20
8: select(1%) to screen, clust. index 5.2 5.20
9: joinAselB, no index 228.0 0.28
10: joinABprime, no index 234.0 0.30
11: joinCselAselB, no index 244.0 1.39
12: joinAselB, clust. index 266.(5.22
13: joinABprime, clust. index 279.(5.81
14: joinCselAselB, clust. index 298.0 3.10
15: joinAselB, non-clust. index 261.0 3.39
16: joinABprime, non-clust. index 201.0 3.65
17: joinCselAselB, non-clust. index 277)0 2.39
18: project 1% into temp 169.0 2.64
19: project 100% into temp 55.0 3.93
20: min scalar aggr., no index --
21: min aggr. func., no index ---
22: sum aggr. func., no index
23: min scalar aggr., with index ----

-26-

24: min aggr. func., with index -—--
25: sum aggr. func., with index
26: insert, no index 10.00
27: delete, no index 5.52
28: update key, no index 6.71
29: insert, with index 4.67
30: delete, with index 5.75
31: update key, with index 7.60
32: update non-key, with index 7.34

Figure 3.11 Comparisons between POSTGRES and INGRES on the Wisconsin Benchmark

In general, POSTGRES is about three times slower than university INGRES (after all
modifications mentioned previously have been made). It does retrievals faster than insertions
and deletions. When no index is defined on the relations, it performs joins around four times
faster than university INGRES does. The reason is that university INGRES can do joins only
by nested loop join, while POSTGRES is equipped with hash join and merge join as well.
When no index is defined on the relations, nested loop join has to scan the relations many
more times than either hash join or merge join. This is the only circumstance in which
POSTGRES bests university INGRES at the present time. It should be noted that compar-
isons were not made for queries 20 to 25 in the Wisconsin Benchmark because no aggregate

function is currently supported by POSTGRES.

There are several reasons why POSTGRES is slower than university INGRES. First,
university INGRES is a mature research project, while POSTGRES is an active one. So vari-
ous parts of the POSTGRES design and implementation are still under development, and fur-
ther optimization is possible. Second, POSTGRES is a much larger DBMS, including many
extended features not found in university INGRES such as rules, user defined types, history

gueries, transitive closure queries, and attributes of type relation. Although a query may not

-27-

involve them directly, overhead is required to support these additional features.

3.2.2 Performance on the TP1 Benchmark

The TP1 benchmarking work was started after modifications to "fastgetattr" and the
rule manager were made. In the first stage, POSTGRES could do 0.699 transactions per sec-
ond when a single backend was run. The CPU usage was 42%, and the numbers of input
and output requests to the disk were 11.86 and 13.79 per transaction respectively. Since the
CPU usage was rather low, the measurement was repeated using two backends at the same
time. With the help of parallelism, POSTGRES could do 0.893 TP1. The CPU usage was
found to be 58%, and the numbers of input and output requests were 9.98 and 13.35 per
transaction respectively. Note that in theoabtests, POSTGRES had a buffer pool of six-
teen 8K pages (default value). Several strange phenomena were observed. First, theoreti-
cally, if the CPU cycles and the 1/0O requests of the two parallel backends overlap perfectly,
POSTGRES should be able to perform 1.21 TP1, and the CPU usage should be 72.41%.

However, the actual results were not close to the theoretical ones.

Second, the number of I/O requests per transaction was too high. In the worst case,
when tuples accessed by consecutive transactions fall on different pages, there should not be
more than six reads and six writes per transaction in steady state. The explanation is as fol-
lows. It is assumed that in steady state, all system catalogs are in the buffer. Since the
database used is large (218 8K pages per relation), each B-tree has two levels. It is assumed

that the root page is in the buffer pool all the time, but the leaf pages are not due to the

-28-

random accesses. Tuples accessed by consecutive transactions are assumed to be on different
pages since the database is very large and the accesses are random. For each transaction, a

tuple from each of the relations "account,” "teller,” and "branch" has to be read. For each

tuple, two reads are generated, one for the B-tree leaf page and one for the page containing
the tuple. Therefore a total of six reads is needed. POSTGRES does no over-write storage
scheme [6], so whenever there is a replacement, the old tuple is marked invalid instead of
being updated in-place, and a new tuple is inserted into the relation. Assuming the new

tuples are always appended at the end of a relation, that page will remain in the buffer over
transactions and a write is not generated for each appending. However, invalidated tuples for
consecutive transactions are assumed to fall on random pages. Similar tooveecade,

then, six writes are needed to invalidate the B-tree leaf page and the old tuple page for each

of the three relations.

To examine the first problem, we wrote a small C program to test the environment.
The program alternated among read, computation, and write for 5000 iterations. Parameters
were adjusted so that the program did I/O around 50% of the time. When the program was
run in single user mode, it took 7:44 minutes to complete and the CPU usage was 57%.
When two copies of it were run in parallel, it took 10:46 minutes to complete both, and the
CPU usage was 80% as compared to 100% in case of perfect overlapping between 1/O and
computations. The results confirmed that the problem is not unique to POSTGRES, and per-
fect overlapping between I/O and CPU time does not exist in the system. There are several
reasons for this imperfection. The primary reason is that there is time when both processes

are reading, so both have to be blocked and the CPU is wasted until one of the reads has

-29-

been completed. Moreover, heavier paging activities are generated with two parallel pro-

cesses. That lengthens the elapsed time, and thus lowers the CPU usage.

To examine the second problem more closely, we traced the read-write activities and
buffer page replacements. The buffer manager generated over eighty read and ten write
requests to the disk in the first transaction. The reason for the extremely high number of
reads is that, for every execution of a query, several system catalogs like "pg_attribute,"
"pg_operator,” and "pg_relation" were scanned sequentially. The table "pg_attribute” alone
consumed nine buffer pages, and the total size of all system relations was found to be
twenty-five. With only sixteen buffers, the system catalogs were paged out in between
queries within a transaction; hence, unnecessary /O requests occurred. The buffer pool was
enlarged, and the system was traced again. Forty-eight buffer pages were used since it was

determined that the working set for a transaction should be less than that number.

With a larger buffer pool, the situation improved slightly. >From the tracing, it was
found that data pages were touched unnecessarily. The reason was found to be related to a
design within the replacement routine. As described above, a replacement is actually imple-
mented as an invalidation and an insertion in POSTGRES. When trying to insert the new
tuple, the routine randomly selects a page in the relation and determines whether space is
available for the insertion. If insufficient space is found, the process is repeated. After the
random checks fail three times, the new tuple is appended to the end of the relation. It
should be noted that the pages selected may not be in the buffer pool, and if so, extra disk
reads are needed. The main objective of the design is to make use of the space in existing

pages of a relation before allocating new ones. However, the trace data showed that those

-30-

random checks failed most of the time. Moreover, the scheme does not completely remove
the need for garbage collection. It still relies on the vacuum daemon to reclaim unused
memory. It was decided that trading real time performance for little improvement in memory
usage is not worthwhile. As a result, the replacement routine was changed to bypass the ran-
dom checks and by default append the new tuple to the end immediately. (One still can get
the old behavior by setting a flag during compilation.) With this change, POSTGRES was

able to do 0.99 TP1, and the average number of reads per transaction was reduced to 4.77.

The almve modification helps to reduce only the number of reads, not writes, per
transaction. There are two reasons for the high number of writes per transaction. First, since
POSTGRES does no over-write storage management, the logging scheme for crash recovery
can be simplified [6]. Instead of logging the the operations of a transaction (logical logging)
or saving the before and after images (physical logging), a log entry can record only the sta-
tus of a transaction, i.e., whether it is committed, aborted, or running. Since the old tuples
have never been over-written, no undo is necessary. The right image of a tuple can be
retrieved by consulting the log to find out which image has the latest committed transaction
identifier. The only requirement for this scheme is that all changes within a transaction have
to be written to disk before it is committed; otherwise, those changes are subject to being
lost if a crash occurs. This is one reason that the number of writes per transaction is larger

than six.

In addition to the flushing of dirty buffers at the end of a transaction, a bug in the
append routine also contributes to the high number of writes per transaction. When a new

tuple is appended to the end of a relation during a replacement, irrespective of whether the

-31-

random checks have been executed or bypassed, the new tuple is put in a new page and the
page is appended to the last page of the relation. Memory is thus wasted, and consecutive
appends could not be written to disk by flushing a single page since the changes are on dif-

ferent pages.

To fix these problems, several modifications were made. First, a command line argu-
ment was added to POSTGRES so that if a user has stable main memory, dirty buffers are
written to disk only when they are paged out, but not at the end of each transaction. Second,
the append routine was changed to determine if there is space in the last page for the append
before allocating new pages. After the modifications, POSTGRES is able to do 1.25 TP1
while stable main memory is assumed, and the numbers of reads and writes to disk per trans-

action are reduced to 4.43 and 5.1 respectively.

In the following three sections, the results for all the optimizer tests and their implica-

tions will be presented.

3.3.1 Results for the First Set of Optimizer Tests

X plan | planned/forced time cal. cost
index scan planned 2:21 9.19e-05

seq. scan forced 5:32 1021

2 | index scan planned 3:22 9.19e-05
seq. scan forced 5:45 1021

3 | index scan planned 4:26 9.19e-05
seq. scan forced 6:13 1021

4 | index scan planned 5:24 9.19e-05

-32-

seq. scan forced 6:48 1021
5 | index scan planned 6:11 9.19e-05
seq. scan forced 7:16 1021
6 | index scan planned 7:18 9.19e-05
seq. scan forced 7:49 1021
7 | index scan planned 8:08 9.19e-05
seq. scan forced 8:05 1021
8 | index scan planned 9:08 9.19e-05
seq. scan forced 8:06 1021
9 | index scan planned 10:11 9.19e-05
seq. scan forced 8:55 1021

Figure 3.12 Results for the First Set of Optimizer Tests

The results for running the queries shown in Figure 2.4 are given in Figure 3.12. If
sequential scan is used, the whole relation has to be scanned once and only once to get the
correct answers no matter what selectivity a query has. When the selectivity of a query is
small, only a small portion of the relation has to be scanned if B-tree indices exist, and so a
big performance gain can be obtained by using an index scan. When the selectivity of a
guery is close to 1, most of the pages of a relation have to be scanned anyway. Using an
index scan requires the scanning of the B-tree pages also, and thus may be slower than using
a sequential scan in this case. The data given in Figure 3.12 show that the optimal switch-
over point occurs when the selectivity is about 0.7. However, POSTGRES always chose to
use index scan. Moreover, the cost for doing an index scan should vary according to the
selectivity of a query, but the cost computed by the optimizer in POSTGRES did not change

throughout the tests. Also, the optimizer's cost estimate was unreasonably small.

-33-

qualification equation

key < constant| (constant - min. key value) / (max. key value - min. key value)

key > constant| (max. key value - constant) / (max. key value - min. key value)

Figure 3.13 Equations for Calculating Selectivities

These problems happened for the following reasons. First, the wrong function for
calculating the selectivity of a qualification was registered for the "greater than" operator.
Second, the way of calculating the selectivity for a "less than" or "greater than" qualification
was also wrong. The optimizer set the selectivity to 3 / (number of distinct values appear in
that field in the whole relation). The number of distinct values for "unique2" in either
"tenk1" or "tenk2" was 10,000, so the selectivity calculated was very close to zero. As a
result, the optimizer thought that just very few tuples had to be examined to get the correct
answer by doing an index scan. That explained why the calculated cost was unreasonably
small. Since the number of distinct key values stayed at 10,000 throughout the tests, the cal-

culated cost did not change over different selectivities, as noted above.

X plan planned/forced‘ timé cal. cost
1 | index scan planne 11 235.434
2 | index scan planne 2:1 408.534
3 | index scan planne 3:2 581.634
4 | index scan planne 4:3 754.734
5 | index scan planne 5:4 927.834
6 seq. scan planne 6:22 1021
7 seq. scan planne 6:58 1021
8 seq. scan planne 7:35 1021
9 seq. scan planne 8:13 1021

-34-

Figure 3.14 Revised Results for the First Set of Optimizer Tests

The first bug was fixed by entering the right selectivity function into the appropriate
system catalog ("pg_operator"). To solve the second problem, the optimizer was changed to
calculate the selectivity according to the equations shown in Figure 3.13 [5]. Note that the
high and low key values have to be inserted into the system catalog "pg_statistic" before the
optimizer can calculate the right selectivity. Furthermore, the equations assumed an even dis-
tribution for the values in a field. After the changes were made, the tests were run again.
The results are shown in Figure 3.14. The system was found to switch over to sequential
scan from index scan when the selectivity was raised over 0.6. Although the switch-over
point can be moved closer to the optimal point mentioneveafD.7) by tuning the I/O-to-

CPU factor in the cost function, the current results are considered acceptable. Further tuning
may not be meaningful because the switch-over point is already close to the optimal point.
Moreover, there is uncertainty in estimating the optimal point due to experimental variations
(varying test parameters as well as error). In addition, it was (necessarily) determined in an

ad hoc fashion.

3.3.2 Results for the Second Set of Optimizer Tests

query plan| planned/forced time
1 hash join planned 0:23
merge join forced 1:06

nested loop forced toolong

2 | nested loop planned 0:32

-35-

hash join forced 0:32
merge join forced 1:06
3 | nested loop planned >22:21
hash join forced 0:18
merge join forced 0:34
4 | nested loop planned 0:13
hash join forced 0:23
merge join forced 0:46
5 | nested loop planned 2:35
hash join| not appropriate
merge join | not appropriate
6 | nested loop planned 0:25
hash join| not appropriate
merge join | not appropriate

Figure 3.15 Results for the Second Set of Optimizer Tests

The results for running the optimizer tests given in Figure 2.5 are shown in Figure

3.15. The results verify that the optimizer can pick the right plan for equal-joins. Further-

more, the optimizer does not plan any merge join or hash join for non-equal-joins at all.
However, when there was a "less than" restriction in an equal-join and no B-tree index was
defined, the optimizer made the wrong choice. It chose nested loop join (i.e. iterative substi-
tution) instead of hash join or merge join. This is partly because of the bugs in the selectiv-
ity function (mentioned above). Moreover, the the optimizer did not set the expected size of
the results. After correcting the errors, the optimizer was able to pick the right choice. For

non-equal-joins, the optimizer made the correct decision, i.e. choosing nested loop join.

3.3.3 Results for the Third Set of Optimizer Tests

-36-

query cal. cost
1: retrieve (tenkl.all) where tenkl.unique2 < 502 and tenkl.unique2 > 500 141.69800
2: retrieve (tenkl.all) where tenk1.unique2 < 502 and tenkl.unique2 < 500 12.19500
3: retrieve (tenkl.all) where tenkl.unique2 < 102 and tenkl1.unique2 > 100 78.87540
4: retrieve (tenkl.all) where tenkl.unique2 < 102 and tenk1.unique2 < 100 3.17048

Figure 3.16 Results for the Third Set of Optimizer Tests

The results for running the optimizer tests given in Figure 2.6 are shown in Figure
3.16. They are totally unexpected. First, the cost for query 1 is much greater than the cost
for query 2, although the opposite should happen because more tuples are retrieved in query
2 (500) than in query 1 (1). The same error can be observed in query 3 and query 4. Sec-
ond, the cost for query 1 and query 3 should be more or less the same since they retrieve the
same number of tuples (1). However, the resulting costs differ by a factor of 2. The reason
for these problems is that the optimizer does not recognize that the two qualifications joined
by the "and" are correlated, and it merely multiplies the selectivities of the two qualifications
to get the overall selectivity. The selectivity of (unigue2 < 502) is 0.05, and the selectivity
of (unique2 > 500) is 0.95, and so the overall selectivity is set to 0.0475 (should actually be
0.0001). By the same token, the overall selectivity of query 2 is set to 0.0025 (should actu-
ally be 0.05). This explains the poor cost estimates in the tests. Fixing the optimizer so that
it can recognize correlated range qualifications requires significant modification. As a result,
the development team was notified of the problem, and changes were left for the team mem-

bers to make.

-37-

4. Suggestions

Throughout the project, different problems have been discovered and most were
solved. However, it is possible to ingwe the performance of POSTGRES further. Some
suggestions are made here. First, only sequential scan is currently available to access the
system catalogs. That may be appropriate when the system catalogs are small. If the
database gets very big, some of the system catalogs like "pg_attribute” may become too large
for a sequential scan to be efficient. Currently, one can define a B-tree index on any field of
any system catalog. However, it will not be used because the normal optimizer is not used
to plan the access to system catalogs. Instead, plans are hard-wired to reduce the planning
overhead. As shown in the TP1 benchmarking, that may degrade the performance and make
the set of working buffers unnecessarily large. Therefore, the code should be modified to
make good use of indices defined on system catalogs. An even better but more involved
solution is to have specific hash access method for system catalogs. For example, access to
"pg_attribute™ is normally achieved by retrieving a certain attribute tuple given a relation
identifier and the attribute number. If the entries are hashed on the two fields, the fetch can

be done in one access and there is no need to bring in all the pages for a complete scan.

Within the source code of POSTGRES, there are numerous error checks. They verify
that that the system is in the expected state, or that the data structure has not been damaged.
Note that they are intended to detect bugs within the system, not to check for mistakes made
by users at run time. Results presented in Section 3.1 showed that great performance gains
can be obtained by commenting out those checks. However, in most subsystems of POST-

GRES, the routines that do internal error checks are not used just for bug detecting; they are

-38-

used also for making decisions and detecting user mistakes in run time. Note that these tests
or checks are essential for the normal functioning of the system. For example, "Bufferls-
Valid" is used as an validity check throughout the system, and is also used in the buffer man-
ager to test if a given tuple is already in the buffer pool. Since the routines are used for
more than one purpose, there is no easy way to separate calls for different purposes. It is
suggested that error-checking routines used only in the debugging phase be coded separately
from those needed in normal operation so that the debugging checks can be suppressed easily
when performance becomes important. It would be even easier to suppress them if they were

macros.

The functions that calculate selectivities are now smart enough to make use of the
maximum and minimum values of a certain key. However, those values are not provided by
the system. They have to be inserted into the system catalog "pg_statistic® by the user.
There are several drawbacks. First, the users have to know their data sets. Furthermore, the
identifiers of the relation, the attribute, and the operator involved have to be entered together
with the maximum and minimum values. A user has to make several queries to various sys-
tem catalogs to find out those values before actually inserting the tuple to "pg_statistic".
This is an unreasonable burden. It is good, however, if those high and low values of an
attribute can be inserted into the system catalog automatically when an index is created for it,

and when the vacuum daemon wakes up.

Currently, the optimizer does not know whether an index is clustered or not. A clus-
tered index can only be created by loading the tuples of a relation in the sort order of the

indexed field. By default, the optimizer assumes that the tuples are non-clustered. When

-39-

doing tests with clustered indices, the cost function has to be changed manually to assume
clustering. The customization is something that may be unknown to most users, and is cer-
tainly not flexible. As seen in Figure 3.11, the time to perform a retrieve on a relation with
clustered indices is much shorter than the time for doing the same operation on a relation
with non-clustered indices. Performance may suffer greatly if the optimizer calculates the
cost function using only the default assumption about clustering (either clustered or non-
clustered) without knowing the real circumstance. It would certainly be useful if the system
were to have the capability to cluster any relation over any attribute, and if the optimizer
were to know whether a relation is clustered over a certain field. Clustering should not be
omitted from a DBMS if performance is important. Before clustering is supported by POST-
GRES (and especially if it will never be supported), there should be a command to allow a
user to declare that a certain relation is loaded in the sort order of a certain field. With such
a command, the optimizer could rely on this information in calculating costs, and there would

be no need for a user to change the cost function in POSTGRES to customize with its data.

5. Summary

The main goal of this project was to irope the performance of POSTGRES. The
project was divided into three subtasks. First, we profiled the DBMS, and based on the
observations, we revised key modules within the DBMS. This phase increased the system’s

speed by a factor of three.

-40-

Second, POSTGRES was benchmarked with the Wisconsin Benchmark and the TP1
Benchmark. Various problems were discovered in doing the benchmarking. They were 1)
the buffer pool was too small, 2) the replacement routine did useless random inspections
before appending a tuple to the end of a relation, 3) the buffer manager flushed all dirty
buffers before committing, and 4) the append routine put the appended tuple in a new page
and appended the page to the end of a relation instead of putting the appended tuple into the
last page (if space was indeed available) of the relation. By fixing these problems, the sys-
tem’s TP1 rating was doubled. After all modifications mentioned previously have been made,

we found that POSTGRES is about three times slower than university INGRES.

Third, three sets of tests were designed to verify the decisions made by the optimizer.
The first set determined whether the optimizer chose correctly between sequential scan and
index scan when the selectivity of a query changed. By running the tests, bugs in the func-
tions that calculate selectivities were discovered. After those bugs were fixed, the optimizer
switched from index scan to sequential scan at the correct time when the selectivity of a
query increased gradually. The second set tested whether the optimizer made the correct
choice among the various join methods, namely nested loop join, merge join, and hash join.
It also examined how restrictions in a query and indices affected the decisions. It was dis-
covered that the optimizer gave the wrong plan when there was a range qualification and no
index had been defined. The third set determined whether the cost calculated by the opti-
mizer was sensitive only to the selectivity of a range qualification and not to the absolute
value of the range. It was discovered that the optimizer did not handle correlated qualifica-

tions correctly.

-41-

Through out the project, various suggestions have been made to the development team
concerning the performance of POSTGRES. Potentially useful suggestions were 1) to have
more efficient methods for accessing system catalogs, 2) to separate error checks that can be
suppressed after debugging from those that are essential for the normal execution of the sys-
tem, 3) to insert maximum and minimum values of an attribute when an index is created on
that attribute and also when the vacuum daemon wakes up, and 4) to have the capability to

cluster any relation, or at least let the user declare that a certain relation has been clustered.

-42-
References

[1] Anon Et Al, "A Measure of Transaction Processing Power," Datamation, 1985.

[2] Dina Bitton, David J. DeWitt, Carolyn Turbyfill, "Benchmarking Database
Systems, a Systematic Approach," Proc. 9th International Conference on

Very Large Data Bases, November 1983.

[3] Dina Bitton, Carolyn Turbyfill, "A Retrospective on the Wisconsin Benchmark".

[4] Paula Hawthorn, Michael Stonebraker, "The use of Technological Advances to
Enhance Data Management System Performance,” Technical Report, University

of California, Berkeley.

[5] P. Griffiths Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, T. G.
Price, "Access Path Selection in a Relational Database Management System,"

Proceedings of the 1979 SIGMOD Conference, 1979.

[6] Michael Stonebraker, "The Design of the POSTGRES Storage System," Readings
13th International Conference on Very Large Data Bases, Brighton, England,

1987.

[7] Michael Stonebraker, Lawrence A. Rowe, "The Design of Postgres," Proceedings
1986 ACM-SIGMOD Conference on Management of Data, Washington, D. C., May,
1986.

[8] M. Stonebraker, E. Wong, P. Kreps, "The Design and Implementation of INGRES,"
ACM-TODS, September 1976.

