
Random Sampling from Databases

by

Frank Olken

B.S. (University of California at Berkeley) 1973

M.S. (University of California at Berkeley) 1981

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

GRADUATE DIVISION

of the

UNIVERSITY of CALIFORNIA at BERKELEY

Committee in Charge:

Professor Michael Stonebraker, Chair

Professor Alan J. Smith

Professor Leo Breiman

Professor Arie Segev

1993



The dissertation of Frank Olken is approved:

Chair Date

Date

Date

Date

University of California at Berkeley

1993



Random Sampling from Databases

Copyright 1993

by

The Regents of the University of California



1

Abstract

Random Sampling from Databases

by

Frank Olken

Doctor of Philosophy in Computer Science

University of California at Berkeley

Professor Michael Stonebraker, Chair

In this thesis I describe e�cient methods of answering random sampling queries of

relational databases, i.e., retrieving random samples of the results of relational queries.

I begin with a discussion of the motivation for including sampling operators in the

database management system (DBMS). Uses include auditing, estimation (e.g., approximate

answers to aggregate queries), and query optimization.

The second chapter contains a review of the basic �le sampling methods used in the

thesis: acceptance/rejection sampling, reservoir sampling, and partial sum (ranked) tree

sampling. I describe their usage for sampling from variably blocked �les, and sampling from

results as they are generated. Related literature on sampling from databases is reviewed.

In Chapter Three I show how acceptance/rejection sampling ofB+ trees can be employed

to obtain simple random samples of B+ tree �les without auxiliary data structures. Iterative

and batch algorithms are described and evaluated.

The fourth chapter covers sampling from hash �les: open addressing hash �les, sepa-

rately chained overow hash �les, linear hash �les, and extendible hash �les. I describe

both iterative and batch algorithms, and characterize their performance.

I describe and analyze algorithms for sampling from relational operators in Chapter Five:

selection, intersection, union, projection, set di�erence, and join. Methods of sampling from

complex relational expressions, including select-project-join queries, are also described.

In Chapter Six I describe the maintenance of materialized sample views. Here I com-

bine sampling techniques with methods of maintaining conventional materialized views. I

consider views de�ned by simple queries consisting of single relational operators.

The penultimate chapter covers sampling from spatial databases. I develop algorithms

for obtaining uniformly distributed samples of points which satisfy a spatial predicate rep-

resented as a union of polygons in the database. Sampling algorithms from both quadtrees

and R-trees are described, including spatial reservoir sampling algorithms.

I conclude with a summary of the thesis and an agenda for future work.
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Preface

This thesis has its origins in the 1980 dissertation of Jack Morgenstein [Mor80] and in

discussions at the Second Workshop on Statistical Data Management hosted by Lawrence

Berkeley Laboratory and held in Palo Alto, California in 1983. (This workshop series

eventually became the Statistical and Scienti�c Data Management Conferences, hereafter

referred to as SSDBM). Morgenstein's thesis was an early e�ort to address the issues of

sampling from databases. He was primarily interested in providing approximate answers to

aggregate (SUM, COUNT) queries quickly. From conversations with Jack and reading his

thesis, I was aware of his work and realized that much more remained to be done. At the

Second SSDBM there was much debate about which statistical and graphics functions should

be included in a statistical data management system. However, there was considerable

agreement that sampling operators should be included.

I began to work on sampling from databases in early 1984 with Doron Rotem, addressing

issues of sampling from relational operators �rst. Some early results were presented as part

of a talk I gave at the Interface Conference (Interface between Statistics and Computer

Science) in April of 1984. I gave a more extensive presentation at the SIAM Conference

Frontiers in Computational Statistics in October of 1984. The �rst paper [OR86] appeared

in the Kyoto VLDB Conference in August of 1986. I went on to look at sampling from B+

trees[OR89], hash �les [ORX90], the maintenance of materialized sample views [OR92a],

and sampling from spatial databases [OR92b, OR93].

The emphasis of this work has been on the algorithms to obtain random samples (usually

simple random samples) of database queries, rather than on estimation techniques. The

emphasis on algorithms reects my perception that the algorithmic issues had not been

adequately addressed, whereas there was already an extensive statistical literature on related

estimation problems.

Also, Neil Rowe persuaded me that database statistical abstracts (collections of sum-

mary statistics on database partitions) and a specialized inference system could generally

provide approximate answers to many routine aggregate queries much faster than sampling.

For many purposes (especially physical inspection of the \real world" objects corresponding

to the sampled database records) samples of database records are essential, and estimation

from database statistical abstracts is not an alternative.

x
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Chapter 1

Introduction

In this chapter I introduce the subject of this dissertation, random sampling of the

results of queries from relational databases. I provide some examples of random sampling

queries and discuss how such queries spawn the problems addressed in this thesis. Brief

de�nitions of some database terms and statistical terms related to sampling are included.

The remainder of the chapter is devoted to discussion of the motivation for including

random sampling query facilities in database management systems. A number of major

applications of random sampling from databases are described.

In Chapter 2 I will discuss basic sampling techniques, and related literature on sampling

from databases.

1.1 Random Sampling Queries

A random sampling query returns a random sample of the results of a relational retrieval

query. More generally, the sampling operator might appear anywhere in a nested SQL query

where a SELECT could appear.

For example, given two relations EMPLOYEE(EMP ID, NAME, ADDR, SALARY) and

DOCTORS(EMP ID, SPECIALTY), a query such as:

SAMPLE 100 OF

SELECT EMP ID, ADDR

FROM EMPLOYEE WHERE SALARY > $50K

will produce a random sample of size 100 from all employees who make over $50K.

Another query:

SELECT AVG(SALARY),MAX(SALARY)

FROM EMPLOYEE

WHERE EMP ID IN (SAMPLE 100 OF

SELECT EMP ID

FROM DOCTORS

WHERE SPECIALTY = "SURGEON")

1
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will produce the average and the maximum salaries computed from a random sample of 100

surgeons.

Note that for these queries the user has explicitly speci�ed the desired sample size.

Throughout the thesis I will generally assume that the user has speci�ed the desired sample

size exactly, after reckoning that additional sample elements are too expensive to process

(inspect) and that smaller samples are large enough to permit su�ciently accurate estima-

tion or hypothesis testing. Since postprocessing (usually inspection) costs concerning the

sample usually dwarf the cost of sampling from the database the assumption of external

sample size speci�cation is plausible.

There are other applications of sampling from databases, e.g., aggregate statistic (AVG,

COUNT) estimation or internal use by the query optimizer, in which the sample size would

not be speci�ed externally. In such contexts the sample size may be determined during the

course of the sampling, e.g., sequential (a.k.a. adaptive) sampling processes. Such cases are

treated in Chapter 2.

Having seen examples of sampling queries, I now begin to examine the central question

of this thesis: how does one e�ciently answer such sampling queries?

1.2 Issues of Sample Query Processing

This thesis is concerned with the question of how to e�ciently process the sorts of

random sampling queries described above.

Sampling can be thought of as a funny kind of selection operator. Thus, as with selection,

one would like to push the sampling operator down the query processing plan tree (a.k.a.

query tree) as far as possible toward the leaves (reading the base relations).

Such a strategy spawns a set of problems which are addressed in this thesis:

� How does one push the sampling operator down the query tree? What modi�cations

of the relational operators are needed? What other information must be passed up

the query tree? What are the constraints on pushing down the sampling operators?

� How does one implement sampling of base relations stored according to various access

methods: variably blocked records, B+ trees, hash �les, etc.

� How does one implement on-the-y sampling of intermediate results, of unknown size?

� How does one maintain materialized views of sampling queries? i.e., if one computes

and stores a view de�ned by a sampling query, then how does one update it as the

underlying relations are updated?

� For spatial databases, how does one obtain a uniform sample from the region speci�ed

by the union of polygons stored in a spatial data structure?

Before proceeding further, I pause to de�ne some of the terms I will need throughout

the dissertation.
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1.3 Database Terminology

I assume that the reader has some familiarity with the idea of a relational database

(see [Ull88, Dat90]). The following de�nitions are included for those readers who are less

familiar with database terminology.

� A selection operator selects a subset of tuples (records) from a relation (table) which

satisfy some logical predicate, e.g., all persons whose salary exceeds $100K.

� Predicate selectivity refers to the number (or proportion) of records which satisfy a

particular selection predicate.

� The projection operator, �A;B(R), selects a subset of attributes (columns) A;B of a

relation R removing duplicate rows remaining after the columnar restriction.

� The natural join, (a.k.a equi-join) operator, written R >< S, is used to merge rela-

tions. It computes the cross-product of two relations, and then selects the elements

of the cross-product which satisfy an equality-predicate on speci�ed attributes. For

example, one might perform an equi-join on the student ID number between a relation

containing student enrollment records (i.e., student ID, course no., section no.) and

a student name relation (i.e., student ID, student name). Unless otherwise speci�ed

join will always refer to the natural join.

� The semijoin of relation R by relation S, written R >< S, is the natural join of R

and S projected onto the attributes of R. In plain English these are the records in R

which match (on the join attribute) some record in S, e.g., match on name or social

security number.

� An attribute of a relation is a key, if its value uniquely identi�es each tuple in the

relation, e.g., bank account number.

� A view is a derived relation speci�ed by a query against the base relations or previously

de�ned views of the database. Views can be used in subsequent queries wherever a

relation may appear.

� A materialized view is a view which has been instantiated (computed according to its

de�nition). Such materialized views must be maintained (updated or recomputed)

when the underlying base relations are modi�ed.

� Finally, a select-project-join (SPJ) query is one which consists of selects, projects, and

joins.

1.4 Sampling Terminology

For those readers unfamiliar with sampling terminology I include a few de�nitions here.

� The population to be sampled is assumed to be a set of records (tuples).

� A �xed size random sample is one in which the sample size is a speci�ed constant.
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� A binomial random sample is one in which the sample size is a binomial random

variable. Such samples are generated by sequentially scanning a set of records and

including each record with a �xed probability, �.

� A simple random sample without replacement (SRSWOR) is a subset of the elements of

a population, for which each element of the population is equally likely to be included

in the sample. No duplicates are allowed. SRSWOR are naturally generated by

sampling algorithms which sequentially scan a �le. They are usually more informative

than a simple random sample with replacement (duplicates allowed) of the same size.

� A simple random sample with replacement (SRSWR) can be generated by repeatedly

taking a simple random sample of size 1 and concatenating the samples together. Each

element of the population is equally likely to be to be the �rst, second, .... element

of the sample. Duplicates are allowed. SRSWR are naturally generated by iterative,

and batch sampling algorithms.

SRSWR samples are used to implement sampling from joins, since tuples (records)

from the �rst of the joined relations may be joined with more than one tuple from the

second of the joined relations.

� A strati�ed random sample is obtained by partitioning the population, e.g., by sex,

then taking a SRS (usually WOR) of speci�ed size from each strata. Typically, the

sample sizes are allocated to the strata in proportion to the population size of the

strata.

� A weighted random sample is one in which the inclusion probabilities for each element

of the population are not uniform.

� A probability proportional to size (PPS or �PS) sample is a weighted random sample

without replacement in which the probability of inclusion of each element of the

population is proportional to the size (e.g., mass, or dollar value) of the element.

� A dollar unit sample (DUS) (a.k.a. monetary unit sample (MUS)) is a weighted

random sample generated by iteratively taking a sample of size 1 with inclusion prob-

abilities proportional to the sizes (typically monetary value) of the elements. It is

similar to a PPS sample except that duplicates are allowed. Such samples are simpler

to generate than true PPS samples, but less informative.

� Clustered samples are generated by �rst sampling a cluster unit (e.g., a household or

disk page) and then sampling several elements within the cluster unit (e.g., all the

records on a disk page). Such samples are typically cheaper to obtain than simple

random samples, but more complex to analyze.

� A systematic sample is one obtained by taking every k0th element of a �le. (The

starting point is chosen at random.)

Sampling procedures may be:

� Single stage - just choose a sample of speci�c size.
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� Two stage - �rst choose a small sample, use the information from the initial sample

to decide how large the second sample needs to be, e.g., to obtain a desired level of

accuracy of estimation.

� Sequential sampling - Sample from the �le iteratively, after each sample element is

obtained decide whether it is necessary to continue sample. Also known as adaptive

sampling.

� Group sequential sampling - similar to sequential sampling except that one decides

whether to continue after groups of sample elements are obtained.

Sampling algorithms may be classi�ed as:

� Iterative - Those algorithms which loop, generates one sample element at a time.

Typically this will generate a SRSWR.

� Batch - Those algorithms which generate a group of sample elements at a time. Such

algorithms (analogous to batch searching) avoid redundant rereading of disk pages

which may arise with iterative algorithms.

� Sequential (scan) - This is a class of sampling algorithms which sequentially scan (pos-

sibly skipping) a �le to generate a sample. Typically this will generate a SRSWOR.

Some of these algorithms require that the �le size is known, some do not.

� Reservoir - A subclass of sequential scan sampling algorithms which are used to sample

from �les of unknown size. Such algorithms might be used to sample on-the-y from

the results of a query as the results are generated (at which time one does not yet

know the size of the result �le).

1.5 Motivation

1.5.1 Why sample?

Random sampling is used on those occasions when processing the entire dataset is

unnecessary and too expensive in terms of response time or resource usage. The savings

generated by sampling may arise either from reductions in the cost of retrieving the data

from the database management system (DBMS) or from subsequent \post-processing" of

the sample.

Retrieval costs are signi�cant when dealing with large administrative or scienti�c databases.

Post-processing of the sample may involve expensive statistical computations or further

physical examination of the real world entities described by the sample. Examples of

the latter include physical inspection and/or testing of components for quality control

[Mon85, LWW84], physical audits of �nancial records [Ark84, LTA79], and medical ex-

aminations of sampled patients for epidemiological studies. Most major �nancial databases

are subject to annual audits, which typically entail random sampling of records from the

database for corroboration.

Sampling is useful for applications which are attempting to estimate some aggregate

property of a set of records, such as the total number of records which satisfy some predicate.
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Thus random sampling is typically used to support statistical analysis of a dataset, either

to estimate parameters of interest [HOT88, HOT89, HO91] or for hypothesis testing. See

[Coc77] for a classic treatment of the statistical methodology. Applications include scienti�c

investigations such as high energy particle physics experiments. Other applications include

quality control and public policy analyses. For example, one might sample a join of welfare

recipient records with tax returns or social security records in order to estimate welfare fraud

rates. Or one might use a sample of IRS records to estimate the net revenue generated by

proposed tax legislation.

1.5.2 Why put sampling into a DBMS?

Thus it is clear that sampling from databases is useful in a number of settings. This is

not su�cient to conclude that sampling should be included in the DBMS. Conceivably, one

could add this functionality by means of an add-on package, outside the DBMS. This is the

current practice for audit sampling software.

However, I believe that inclusion of sampling operators within the DBMS is worthwhile,

for the following reasons:

� to e�ciently process queries which seek random samples,

� to e�ciently (and quickly) provide approximate answers to aggregate queries,

� to estimate parameters for query optimizers,

� to provide privacy and security for individual data in statistical databases.

I believe that one should put sampling operators into the DBMS primarily for reasons

of e�ciency. By embedding the sampling within the query processing, one can reduce the

amount of data which must be retrieved in order to answer sampling queries and one can

e�ectively exploit indices created by the DBMS. Instead of �rst processing the relational

query and then sampling from the result, one can, in e�ect, interchange the sampling and

query operators. Thus, one pushes the sampling operator down in the query processing plan

tree, as with selection. For some relational operators (e.g., projection, join) one must take

additional measures to assure that the resulting sample is still a simple random sample.

The necessary techniques are discussed in Chapter 6.

Sampling can also be used in the DBMS to e�ciently estimate the answers to aggre-

gate queries, in applications where such estimates may be adequate (e.g. policy analysis),

and where the cost in time or money to fully evaluate the query may be excessive. In his

dissertation [Mor80], Morgenstein discussed this issue of estimation procedures for various

aggregate queries (e.g., COUNT). Sampling procedures were only briey discussed. More

recently, Hou, et al. [HOT88, HO91] have discussed the construction of statistical esti-

mators for arbitrary relational expressions for COUNT aggregates. They also envision the

application of their methods to real-time applications [HOT89].

Sampling may also be used to estimate the database parameters used by the query

optimizer in choosing query evaluation plans. This is discussed more fully later in Chapter

2.

Finally, sampling has been proposed [Den80] as a means of providing security for indi-

vidual data, while permitting access to statistical aggregates.
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1.5.3 Why don't DBMSs support sampling?

Given the variety of uses for sampling from databases, one might well wonder why facil-

ities for random sampling queries have not yet been included in DB management systems.

There are two reasons: lack of knowledge about sampling in the DB community and the

recent emergence of the technological trends which motivate the inclusion of sampling in

DBMSs. Below I consider the reasons in more detail:

� Lack of knowledge - Prior to 1986 there was little research in the database community

on how to implement sampling of a relational database. Since that time several

researchers have explicated many of the technical issues and advantages.

� E�ort - The algorithms described here require some modi�cations to access methods.

New code must be written to implement the sampling algorithms. In some cases, e.g.,

partial sum tree (a.k.a. ranked) tree sampling algorithms, the data structures and

update code must be modi�ed.

� Complexity - Optimizing queries involving sampling increases the complexity of the

query optimizer. If the query optimizer is rule based, the modi�cations should be

manageable. For hard coded query optimizers, the problem is more di�cult.

� Lack of appreciation - Until recently, the database community did not appreciate the

utility of sampling, both for use within the DBMS and for users. It has taken time

and work by a number investigators to explicate the utility of sampling for query

optimization, approximate answers to aggregate queries, load balancing in parallel

database machine joins, auditing, data analysis, etc.

� Growth of database size - The sample size required for estimation and hypothesis test-

ing is largely independent of the underlying database size. Hence, sampling becomes

more useful as databases grow in size. Sampling was less important in earlier years,

as databases were smaller.

� Main memory database systems - Sampling is especially attractive in a main memory

database system - which have an e�ective block size of one. Such main memory

resident database systems have only recently become practical as memory prices have

declined.

� Growth of data analysis - As computers, disks, and DBMSs have become cheaper,

faster, and more sophisticated (and users have become better accustomed to their

use) one sees many more attempts to do interactive data analyses of large databases,

and more e�orts to keep large historical databases online for data analysis purposes.

Sampling can facilitate this work.

� Growth of nonparametric data analysis - The past decade has seen considerable de-

velopment of nonparametric data analyses. Typically these analyses are extremely

computationally intensive and have thus have only recently become economically fea-

sible. Many of these techniques either directly employ sampling, or would be used on

sample datasets (to reduce the computational costs).
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� Auditors' ignorance - Auditors realize that they have di�culties sampling databases

for audit purposes, but they have not realized that they could demand that database

management systems support random sampling queries. Once such sampling facilities

begin to appear, internal auditors will likely demand their inclusion in the speci-

�cations for new DBMS procurements (much as crash recovery is now a standard

speci�cation).

� Auditors' conict of interest - Many large accounting �rms sell autonomous audit

sampling software packages to other accounting �rms and (especially) to internal

audit organizations. If sampling facilities were included in DBMSs, external audit

sampling packages could be much simpler (perhaps unnecessary), resulting in revenue

losses to those accounting �rms which market them.

� Lack of statistical training and interest - Most database researchers have had relatively

little training or interest in statistics, which has slowed the adoption of sampling

techniques in the database community.

I turn next to the rationale for including support for spatial sampling in DBMSs.

1.5.4 Why provide spatial sampling?

Spatial databases have become increasingly important over recent years. The largest

applications are geographic information systems (GIS), and computer aided design (CAD).

Statistical analyses are frequently made of large databases for scienti�c and decision

support purposes. Often approximate answers will su�ce. Random sampling o�ers an e�-

cient method of obtaining such approximate answers of aggregate queries [HOT88, HOT89,

Coc77]. I (and others) have discussed this previously for conventional databases (see Chap-

ter 2). Random sampling has three common justi�cations: reduced database retrieval costs

(or time), reduced \postprocessing" computational costs, or reduced cost of physical in-

spections. I consider each rationale in turn.

In spatial databases (e.g., GIS applications) one expects sampling to be even more

important than in conventional databases. There are two reasons: spatial databases (i.e.,

GIS) are typically very large, and they tend to be heavily used for analysis purposes. Indeed

analysis is often a key motivation for the creation of many GIS's, e.g., for urban planning,

crop forecasting, environmental monitoring. Such analyses often involve either aggregate

queries, statistical analyses or graphical displays. In spatial contexts, common aggregate

queries might involve the estimation of areas, volumes, total crop yields, forest inventories

[dV86], or total mineral or petroleum reservoir sizes.

For example, consider a geographic information system (GIS) which stores information

on land use for each parcel, one might wish to estimate the area devoted to agriculture within

Alameda county. This involves both estimation of an aggregate query and evaluation of a

spatial predicate (within Alameda county). One could do this by taking random samples

of points within Alameda county and checking for the land use. Total land devoted to

agriculture in Alameda county could then be estimated by the fraction of points falling on

agricultural parcels multiplied by the area of Alameda county (assumed to be known).

Sampling is also used to reduce dataset size prior to graphical display of the data, both

to reduce computational e�ort, and because of resolution limits of displays.
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Finally, even if computing were free, sampling would still be important for those ap-

plications which require physical inspection of the real world objects which correspond to

the sampled database records (or points in the case of a spatial DB). Spatial applications

include agronomy, forestry [dV86], pest management, geology, ecology, and environmental

monitoring, all of which entail physical inspection of the sites designated by the database

records.

The accuracy of parameter estimates from samples is typically primarily a function of

size of the sample [Coc77], with little dependence on the population size. Hence sampling is

most advantageous when sampling from large populations, as would be found in very large

GIS databases.

I turn next to the rationale for including support for random sample views in DBMSs.

1.5.5 Why provide sample views?

A sample view is a derived relation whose contents are de�ned by a random sampling

query. It can be used wherever a relation could occur in a retrieval query. There are several

reasons for providing sample views:

� Consistency: Relational DBMSs typically permit views of any other retrieval query.

Hence one would also like to be able to specify views of sampling queries.

� Repetitive analyses: Often analyses will be repeated periodically against the sam-

ples of current state of the DB. A sample view facilitates such studies.

� Multi-query optimization: Sample views provide a simple means of extracting

common subexpressions from several sampling queries, thereby facilitating multi-

query optimization.

� Complex query formulation: It has been widely observed that users often �nd it

easier to formulate (and diagnose) complex queries as a sequence of simpler queries.

The intermediate results may be speci�ed as a view. Again such facilities are desirable

also for sampling queries.

� Security: Sample queries have been shown to provide some security against compro-

mise of sensitive data in statistical databases [DS80] via aggregate queries. Sample

views provide a means of implementing Denning's proposal.

1.5.6 Why materialized sample views?

Materialized sample views are those sample views which have been instantiated, and

hence must be maintained (updated or recomputed) when the underlying relations are

updated.

Even if one has decided to provide sample views in his (her) DBMS, it is not self-evident

that one should support the maintenance of materialized sample views. The rationale is

the traditional one: materialized views may be more e�cient than virtual views (query

modi�cation) for supporting queries against the views [Han87b]. In general, materialized

views are to be preferred when queries against the views are common, and updates of the
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underlying relations relatively infrequent [Han87b]. For sample views, the case for material-

ized views is even stronger, since sampling fractions from very large databases are typically

quite small, a few percent or less. Thus most sample queries are e�ectively highly selective

queries. Since most updates will therefore not alter the sample view, materialized sample

views (MSVs) are superior to virtual sample views (VSVs) at larger update frequencies than

conventional views.

Another application of MSVs consists of correlated sample snapshots. It is well known

that correlated samples (with many common individuals) are useful for measuring changes

over time. Such so-called panel surveys, or longitudinal studies are done for unemployment

estimation, epidemiological studies, opinion studies, etc. Thus work on sample views can be

readily adapted to sample snapshots, cf. the work of Adiba & Lindsay [AL80] and Lindsay

et al. [LHMP86].

1.6 Applications

I now discuss a number of applications for which sampling from databases is necessary.

Readers who are already convinced of the utility of database sampling can skip to the second

chapter, which reviews basic techniques and related literature on sampling from �les and

databases.

1.6.1 Financial Audit Sampling

One very important and ubiquitous use of sampling from databases is �nancial au-

dit sampling. Auditors have used random sampling to verify accounting records for al-

most 60 years. Kinney [Kin86] recounts some of the history of sampling, citing Carman's

1933 paper [Car33] (which he reprints) as the earliest paper on the subject. The theory

and practice of audit sampling has been the subject of many papers and a number of

monographs [AL81], [Ark84], [Bai81], [IPA75], [Kin86],[GC86],[Guy81], [HRA62],[Rob78]

[SS86], [LTA79], [Van76],[Van50],[Van50],[VL88], [AIoCPA83],[GC86],[McR74],[NL75] from

the early 1950's onward. Most of these monographs concern such statistical issues as sample

design, determination of sample size, and estimation [NL75]. A discussion of open research

issues in audit sampling can be found in [ALS88]. Audit sampling is now so well estab-

lished that is treated in virtually all auditing texts and has been subject of AICPA auditing

standards (see [AIoCPA92]). For a recent survey and annotated bibliography of various

sampling designs and statistical methods for auditing see [Gea89].

Perhaps the most familiar use of �nancial audit sampling to most readers is the U.S.

Internal Revenue Service [Hin87], which uses (weighted) random sampling of income tax

returns to audit taxpayer compliance with income tax laws and thereby deter tax evasion.

The implications for database management systems (DBMSs) are clear. The commercial

market for DBMSs is largely concerned with recording various �nancial transactions (in-

ventory, sales, payroll, accounts payable, accounts receivable, securities markets, etc.). The

e�ective enforcement of �nancial controls is a major design consideration in constructing

�nancial transaction processing systems. Adequate records must be preserved to facilitate

auditing and prosecution of thieves, embezzlers, etc.
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For publicly held corporations and public institutions such �nancial databases are sub-

ject to annual audits on behalf of investors, taxpayers and the IRS. Often, institutions will

conduct more frequent, ongoing internal audits to attempt to identify and deter fraud, theft

and graft. In the course of such audits, the auditors will extract a random sample of the

records from the database and attempt to corroborate the recorded information (e.g., by

physically inspecting inventories, locating employees on the payroll, examining receipts and

purchase orders, etc.). At LBL, for example, the internal audit unit is currently comprised

of includes 3 full-time auditors (plus a secretary) (about 0.1% of the total sta�) at a cost

of $350K (about 0.15% of the total LBL budget or about 10% of the ADP budget) [Ped93].

Other UC campuses and DOE labs have 5 to 10 internal auditors. Note that, for LBL, the

audit expenses greatly exceed annual DBMS license costs.

When auditing banks, savings and loan institutions, and other lenders, regulators and

commercial auditors are not only concerned with fraud, but also with assessing the risk

of loan defaults. Here, they would sample loans from a database containing the bank's

loan portfolio, and then investigate whether the borrower was meeting the loan payments

and would be able to continue to do so. Bad loan losses from insolvent Savings and Loan

institutions have run into the hundreds of billions of dollars. One accounting �rm has been

�ned $400M for inadequate audits of savings and loan institutions [BB92].

This thesis is largely concerned with simple random sampling (SRS). However, current

audit practice typically uses:

� strati�ed sampling - where strata are de�ned by transaction size (in dollars), with

sample sizes allocated proportional to total dollar value of each strata,

� Probability Proportional to Size (PPS) - sampling without replacement based on the

monetary amount of the transaction, or

� Dollar Unit Sampling (DUS) (see [LTA79]) also known as Monetary Unit Sampling

(MUS) - essentially PPS sampling, but with replacement.

The object of all of these methods is to increase the probability of sampling large value

transactions. Two of the more popular audit sampling strategies are strati�ed sampling

and dollar unit sampling. Both methods favor large transaction and are straightforward to

implement.

Extending our results to strati�ed sampling is quite simple, inasmuch as strati�ed sam-

pling employs SRS within each strata. PPS sampling is more di�cult (because it is sampling

without replacement). Most of the algorithms described in this thesis can be readily adapted

to DUS sampling. See, for example, the discussion in Chapter 2 of Wong & Easton's algo-

rithm for weighted sampling and the algorithms for spatial sampling in Chapter 5. I have

focused on simple random sampling because it is simpler, and it facilitates the exposition

of the algorithms.

What then is the current practice for auditing �nancial databases? Often, the auditor

will extract an entire relation and then apply a sequential (scan) algorithm to the resulting

�le (see Chapter 2). Alternatively, if he(she) knows that the keys to the relation are rea-

sonably dense (e.g., purchase order numbers, check numbers, etc.) he(she) could generate a

random set of keys, load the set as a temporary relation and perform a (semi-)join with the
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target relation to obtain a simple random sample. These methods are cumbersome, ine�-

cient in computing resources, and time-consuming for the auditors. Bailey, et al. complain

in a 1988 auditing research review [BGH88] that:

... there still are unresolved problems when using GASs [General Audit Soft-

ware] in advanced computing environments. For instance, it may not be possible

to ... access complex data structures directly. In such cases, an intermediate

at �le is created, raising issues of completeness and correctness of original data

representation in the intermediate �le. Another limitation is the cumbersome

handling of audit queries. [emphasis added]

Auditors' jobs would be simpler and faster if the DBMS directly supported sampling.

1.6.2 Fissile Materials Auditing

Financial auditing is not the only type of auditing for which random sampling is useful.

Auditing nuclear materials stockpiles to detect theft or covert diversion to nuclear weapons

programs is another application of audit sampling of direct interest to the U.S. Department

of Energy (DOE). Speci�cally, DOE Order 5633.3A requires that the accountable nuclear

material holdings at all DOE contractors be inventoried at bi-monthly, semi-annual and

annual intervals. The order speci�cally sanctions the use of random sampling inspection

plans as part of the nuclear materials inventory veri�cation process.

Good [GGH79] advocates the use of monetary unit sampling for auditing nuclear materi-

als inventories, where the monetary unit is de�ned as grams of �ssionable material. Nuclear

materials handling facilities typically maintain detailed computerized records of the location

of all nuclear materials to track losses (for safety, pollution, arms control) and deter theft.

Hence, inspection would likely commence with a monetary unit or strati�ed sample from

the �ssile materials inventory database.

Parrish and Mensing [Par90] describe just such a sampling plan and its implementation

in conjunction with a nuclear materials inventory database system at Lawrence Livermore

National Laboratory. The system employs an INGRES DBMS and comprises approximately

100 MB. Since, INGRES does not support sampling, sampling is performed by:

1. Run COUNT queries grouped by strati�cation attributes (mass, form).

2. Extract the records for each strata.

3. Perform simple random sampling within each strata by a user written program.

The sampling is strati�ed according the mass of �ssionable materials in each container

and form of the material (some forms are more attractive targets of theft). The database

is actually a temporal database, recording the complete history of the nuclear materials

inventory at Livermore. It is an online database, updated (manually) as nuclear materials

are moved or processed. Further details of the system are classi�ed.

Los Alamos (LANL) has a similar system for nuclear materials inventory control and

auditing [Car92]. In addition to DOE national laboratories and contractors, the nuclear fuel

and nuclear power industry have similar requirements for nuclear materials inventory control
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and auditing, supervised by the U.S. Nuclear Regulatory Commission and the International

Atomic Energy Commission [BB88, Jae88, IAE80].

Random inspections of weapons storage sites and ships (to verify weapons counts),

missiles (to verify MIRV limits), etc. are important techniques for arms control treaty

veri�cation and to detect weapons thefts. Inspection targets will be selected from databases

of weapons storage locations, etc.

1.6.3 Epidemiological Applications

Another important application of sampling from databases is epidemiology, for disease

studies [CDH87, BAG87], clinical epidemiology [ZsSVB89, ZsvSS+91], and clinical trials.

Sampling is used to select patients for further detailed study (either therapeutic, or obser-

vational). The cost (and sometimes risk) of these studies often precludes the use of entire

populations.

Here the most common type of sampling is case control (a.k.a. matched) sampling. A

(typically strati�ed) random sample of patients, taken from a medical records (or personnel)

database [ZsvSS+91], is chosen as the \cases", strati�ed by race, sex, and age. For each case

a small (usually 1 to 5) random set of controls is found in the database, which closely match

the characteristics of the cases (e.g., race, sex, age, weight, blood pressure, childbearing

history). The design and analysis of such studies is described in two monographs [Sch82,

BD80].

If the database is fairly small, one will want to do the matching as closely as possible.

As Rosenbaum [Ros89]. describes, such truly matched samples can be quite expensive to

compute. However, for large medical records databases (e.g., HMO's, large employers), it

is often su�cient to obtain the matching (control) cases by simple random sampling within

the corresponding (narrowly de�ned) strata.

For disease studies, the cases are distinguished from the controls by suspect prognos-

tic variables (attributes), e.g., smoking, exposure to suspected carcinogens, etc. Matched

samples permit one to reduce the confounding impact of auxiliary variables (race, sex, age,

etc.) on the statistical analysis and thereby permit more sensitive analysis of the e�ect of

the prognostic variable(s).

For clinical trials, the cases are distinguished from the controls by therapeutic variables

- e.g., the use of a new drug or surgical technique. Matched pairs of patients are randomly

assigned to the two therapies.

Increasingly, large employers are deploying health surveillance systems to monitor the

health of employees, to provide early warnings of occupationally related health problems.

This is especially true of hazardous materials industries, such as the nuclear, chemical and

mining industries. The U.S. Dept. of Energy has begun to create such a health surveillance

system of all of its present and former contractor employees. Support for strati�ed random

sampling, and case control sampling would be very desirable for such health surveillance

databases.

1.6.4 Exploratory Data Analysis & Graphics

Exploratory data analysis (EDA) of statistical or scienti�c data is another area where

database sampling would be useful. Typical these analyses are done interactively on random
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samples of the dataset. Because of desired interactive usage, performance (e.g, of the

sampling method) is a major concern. Often during the course of the statistical analyses

one will want to analyze di�erent logical subsets of the data.

There are several reasons for using a sample data set:

� Smaller data sets permit faster statistical computations. This is particularly an issue

when doing nonparametric statistics, e.g., CART [BFOS84], which are frequently

computationally intensive. Thus interactive analyses may be impractical on larger

data sets.

� Smaller data sets facilitate graphical display of data. One common way of visualizing

data is via a point cloud. The human eye picks up depth cues from motion, so that

rotating the point cloud (in real time) permits the analyst to visualize the data in

3D space. Sampling of the data set reduces the computational requirements for the

real time rotation. If the dataset is too dense, the cloud would become opaque, and

the method would be useless. In the case of high dimensional data it is common to

display and rotate multiple 3D projections of the data simultaneously. This increases

the incentive to sample the data set.

� Resampling techniques [Efr82] are a class of sampling-based statistical techniques

which includes bootstrapping, jackni�ng, and cross validation. These methods involve

repeated sampling of datasets to to construct non-parametric con�dence intervals for

various estimators (e.g., of the mean).

1.6.5 Statistical Quality Control

Random sampling has long been used in quality control studies to assess the quality

of manufactured goods. A random sample of the manufactured items is obtained, tested

(often destructively). From the results of testing the sample, inferences are drawn about

the quality of the entire production lot.

Such random sample quality control inspections are performed both by producers of

(say) integrated circuits and by consumers (e.g., computer manufacturers) of ICs. The

topic has been the subject of numerous articles, monographs, standards, etc. The American

Society for Quality Control and its journal are largely concerned with the use of random

sampling for quality control.

The connection between quality control and database sampling arises from computer

integrated manufacturing, especially batch manufacturing such as ICs. Here, one tracks the

manufacturing of parts in a database system, recording the process conditions (temperature,

pressure, chemical doping concentrations), machines used, operators, etc. Assessing the

quality of the resulting ICs, and tuning the process to increase yields of successful ICs are

important activities for IC manufacturers (also disk drive manufacturers). In such computer

integrated manufacturing settings, selection of random samples of components for testing

will be done by taking a random sample of the database which records the component

manufacturing. For process improvement studies, one may well want to select samples from

speci�c machines, or conditions. Alternatively, case control samples may be used to study

proposed changes in the IC process to improve yields.
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Such quality control sampling is not limited to manufacturing. Large service organi-

zations (banks, airlines, hotels, hospitals, HMO's, government agencies (e.g., IRS), et al.)

increasingly sample their transaction databases and check with customers to evaluate ser-

vice quality. Hospitals and HMOs conduct random audits of patient cases to assess the level

of patient care. Researchers conducting large scale molecular biology experiments, such as

those the Human Genome Project, also use random sampling methods for quality control.

1.6.6 Polling, Marketing Research

The simplest types of telephone polling and market research simply dial phone numbers

at random.

However, polling or market research studies (either telephone or postal surveys) directed

at speci�c groups (e.g., Republicans, environmentalists, investors, homeowners, owners of

speci�c types of automobiles, etc.) increasingly generate their samples of voters/consumers

from databases recording political a�liation, organizational membership, contributions,

home ownership, automobile registrations, etc. [Lar92].

At least three �rms, Marketing Systems Group of Philadelphia, Pennsylvania, SDR

Inc. of Atlanta, Georgia and Survey Sampling Inc. of Fair�eld, Connecticut specialize

in generating random samples of phone numbers of selected demographic or geographic

classes of households. These �rms will generate samples where the probability of inclusion

of a phone number is a function of the demographic or geographic characteristics of the

telephone exchange [Sta93]. They can also generate random samples from various mailing

lists, etc. [Sta93].

The market research industry is estimated at $1 Billion [Sta93]. It is comprised of

database vendors, software vendors, sampling service bureaus (which provide individual

samples), research service bureaus (which conduct the polling) market research �rms (which

design and analyze the surveys). Only Marketing Systems Group sells sampling software

(with databases) for random digit dialing surveys [Sta93].

The increasing use of laser scanner-based cash registers for inventory control also permits

the construction of large databases of purchases, which can be sampled to study joint

product purchasing behavior, or the impact of promotional advertising. If checking account

or credit card numbers are recorded, it is possible to link together individual purchasing

activities over time [Lar92].

Similarly, credit and debit card usage histories, and checking account histories, can

also be used to generate enormous databases which can be sampled for marketing analyses

[Lar92]. Credit card payment history databases can be sampled for statistical analyses to

estimate parameters for credit scoring.

1.6.7 Censuses, O�cial Surveys

An important use of database sampling arises in conducting o�cial surveys of individ-

uals, businesses, households, etc. Typically, a frame (i.e., a database) of the candidate

population is constructed from various types of administrative records (building permits,

tax returns, licenses, social security records, etc.). Random samples of the frame are then

used to direct the survey interviewers (or phone or postal surveys).
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One important use of such surveys is to assess the coverage of enumerative censuses,

e.g., the decennial U.S. census. In the U.S. this is called the the post enumeration survey.

Surveyed individuals are matched against the census records to determine if they were

counted the �rst time round. The count of those who were not is used to estimate the

undercount.

Various cities, counties, states, etc. have attempted to use their own administrative

records to estimate local undercounts.

Another important use of database sampling is for o�cial surveys which are used to

directly estimate various social statistics. Once again frames (registries of sampling units -

persons, households, �rms) are constructed from various administrative records databases,

and then sampled. The selected units are then interviewed. Important examples in the U.S.

include the monthly Current Population Survey (about 60K households) and the Bureau

of Labor Statistics' Establishment Survey (of �rms) both of which are used to estimate

employment and unemployment statistics for the U.S. The CPS is also used for a wide

variety of social statistics. Other annual U.S. surveys include Crime Victimization Surveys,

American Housing Surveys, and National Center for Health Statistics Surveys [Mai91].

Aside from agency publications, many details about the construction of these surveys can

be found in the annual American Statistical Association Conference Proceedings, Section on

Survey Statistics and the Annual U.S. Census Bureau Research Conference Proceeedings.

Of particular interest to the U.S. Dept. of Energy is the triennial Commercial Buildings

Energy Consumption Survey (CBECS) [BG91]. This survey is concerned with estimating

total U.S. energy consumption in commercial buildings, broken down by end use (lighting,

heating, etc.) and fuel source.

The CBECS survey employs a four-stage cluster sample design, with both strati�ed

and PPS sampling of clusters and buildings. Sampling units, and large building samples

are taken from existing databases. Sampling of individual (small) buildings is done from

enumerated lists of buildings within the �nal sampling units. The building manager of each

sampled building was interviewed and asked to answer a detailed questionnaire concerning

the building and its energy consumption.

Note that the large building sample used by CBECS involves sampling from the union

of several lists of buildings, and employs algorithmic ideas similar to those developed in this

thesis for one-pass spatial reservoir sampling.

Another example of the use of survey sampling for energy consumption studies is the

study by Blumstein, et al. [BBM85] concerning commercial energy use in San Diego, CA.

This study was use PPS sampling from the projection (onto buildings) of utility account

data. (A single building might have multiple utility accounts).

Finally, it should be noted that the IRS conducts a variety of statistical analyses of

samples of tax records, both to estimate various economic statistics, and to study proposed

changes in tax laws.

1.6.8 Statistical Database Security and Privacy

Protecting the privacy of data about individuals contained in statistical databases has

been a key problem for the U.S. Census Bureau and other statistical database generators.

It is also an increasingly important issue with statistical databases of purchasing behavior
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which are used for marketing analyses [Lar92]. For a recent survey article on the topic see

Guthrie [Gea89]. The discussion below is based on [Den80, Gea89] which contain extensive

bibliographies.

A variety of methods of disclosure control have been attempted, but most have suc-

cumbed to various sophisticated attacks. Such attacks are often facilitated by the provision

of sophisticated query facilities in modern statistical databases. If users can supply enough

information to identify an individual, they can determine the value of con�dential attributes

by asking highly speci�c COUNT queries which will either return 0 or 1. In particular, meth-

ods which simply refuse to answer small cardinality COUNT queries can be defeated by

trackers [DDS79, DS80], queries which pad their response counts to su�cient size to cir-

cumvent the restrictions on small COUNT queries. The padding introduced by the trackers

can be removed, to reveal the desired counts and individual data. Such trackers could,

in principle, be defeated by refusing to process queries whose intersections (with previous

queries) were too small. However, no practical method is known to do this [Den80].

Attention has thus focused on methods which avoid providing precisely correct answers

to aggregate (COUNT, SUM, STD. DEV.) queries. Such methods include:

� Rounding the query results,

� Perturbing the query results with additive or multiplicative noise,

� Perturbing the data values with additive or multiplicative noise (preferably keeping

the noise values separately in the database to facilitate internal operational uses)

� Swapping data �elds between \similar" records

� Aggregating attribute categories

� Averaging data values across groups of records

� Random Sample Queries

Dorothy Denning [Den80] described how random sampling queries could be used to pro-

vide security and privacy for statistical databases. Instead of answering queries against the

database, the queries are run against a sample of the database. By introducing sampling er-

rors, random sampling queries e�ectively preclude the precise computations used by various

\trackers" to deduce information about individuals.

However, by rerunning the same sampling query many times and averaging the results,

trackers might eventually obtain su�cient precise statistics to deduce private information.

This can be defeated by performing the sampling in such a fashion that rerunning a query

will yield an identical sample. This can be done if the pseudorandom numbers which are

used to decide if a record is included in the sample are functions of the query and database

record, rather than a product of a pseudorandom number generator. For example one might

compute a hash function on all of the record attributes to generate a pseudorandom number

to determine inclusion of the record.

Denning provides an extensive discussion of various aspects and potential threats to the

system. Small cardinality queries are still a problem and would require suppression. This

was con�rmed in a later study by Duncan [Dun91]. Denning's method is quite attractive
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because it can readily be integrated with existing statistical analysis techniques, it is fast,

and it does not require signi�cant additional storage.

In a later paper, Palley [PS87] argues that regression techniques can be used to recover

approximate estimates of con�dential parameters. He tested his methods by estimating

income statistics from the U.S. Census sample microdata �le. His estimates had an r2 = 0:5

correlation with the true income statistics. While his method is not nearly as accurate as

the previous trackers (which could give exact answers), it is still disquieting. He found the

method could be used against Denning's random sample queries.

However, for regression attacks to work, it must be possible to construct a reason-

ably reliable regression model for the con�dential attribute. Clearly, income statistics are

among the most vulnerable, since they correlate with education, size of house, number of

bathrooms, etc. Other con�dential attributes, such as medical status, are presumably less

vulnerable to such attacks.

Ironically, the implementation of Palley's method relies heavily on randomly generated

SUM, COUNT, and STD. DEV. queries over the independent random variables. Large num-

bers of queries (e.g., 300) were required. Cheon, in a subsequent paper [Che91], improved

the performance of the method with small samples.

The U.S. Census Bureau routinely uses random samples (1 and 5 percent sample micro-

data �les) for disclosure suppression in distributing micro-data (individual level data) �les.

The low sampling fractions discourage e�orts to identify individuals.

1.7 Organization of Thesis

The remainder of the thesis is organized into 6 more chapters.

� Chapter 2 contains a review of basic sampling techniques, and a discussion of related

literature on sampling from databases. In this chapter I explain acceptance/rejection

sampling and reservoir sampling which I will use throughout the thesis. I also discuss

the use of partial sum trees for weighted sampling and their adaptation to B-trees.

The literature survey is largely concerned with the development of various sampling

techniques and estimators for estimating the size of query results.

� Chapter 3 is concerned with sampling from B+ tree �les, I describe a class of algo-

rithms based on acceptance/rejection sampling. Such methods are needed to overcome

the non-uniform fan-outs of B+ trees and to assure uniform inclusion probabilities for

each record.

� Chapter 4 covers sampling from hash �les. I discuss sampling fromOpen Address Hash

Files, Separately Overow Chained Hash Files, Linear Hash Files and Extendible hash

�les. I again use acceptance/rejection sampling to overcome the e�ects of non-uniform

bucket loading.

� Chapter 5 is concerned with spatial sampling. Speci�cally, I consider the problem of

obtaining a uniform spatial point sample from a region which is speci�ed as the union

of a set of polygons. The polygons need not be disjoint. Sampling from quadtrees

and R-trees is discussed.
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� Chapter 6 describes sampling from relational operators. Here I use acceptance/rejection

sampling to facilitate the interchange of sampling and relational operators. The A/R

sampling compensates for the non-uniformities of inclusion probabilities introduced by

the relational operators. Selection, intersection, set di�erence, projection and join op-

erators are considered. I also briey consider sampling from complex relational expres-

sions: select-project-join (SPJ) expressions, cascaded select/intersect/join/di�erence

operators, and complex unions.

� Chapter 7 is concerned with techniques for the maintenance of materialized sample

views. Sample view materialization would be used for samples which are repeatedly

analyzed and for longitudinal panel survey studies. The techniques described attempt

to maximize the reuse of previously obtained sample elements and still return a simple

random sample of the current view. The techniques combine classic view update

techniques with database sampling algorithms.



Chapter 2

Literature Survey

2.1 Introduction

In this chapter I survey the literature on related work on techniques for sampling from

�les and databases. I review previous work on basic techniques for sampling from single

�les which either already exist or are being generated in their entirety. I then turn to

to related work on sampling from databases: to answer aggregate queries and for query

optimization purposes. This literature survey sets the stage for the presentation of my

work on implementing sampling queries, which commences in the following chapter.

2.2 A Review of Sampling from Files

Over the last 20 years there has been considerable work done on developing basic tech-

niques for sampling from a single at �le (usually with �xed blocking). I employ some of

these techniques for query sampling. In Table 3 I list the major results, with citations to

the relevant algorithms.

Type of sampling Citation Expected Disk

Accesses

SRSWR [Yao77] O(s)

SRSWR, variable blocking [ORX90, OR90] O(s(bmax=bavg))

SRSWOR [EN82] O(s)

Weighted RS [WE80] O(s logn)

Sequential RS, known population size [FMR62] O(n=bavg)

[Vit84] O(s)

Sequential RS, unknown population size O(n=bavg)

[Vit85] O(s(1 + log(n=s))

Table 2.1: Basic Sampling Techniques from a single �le. Assume each sample taken from a

distinct disk page, i.e., s� (n=bavg) For Vitter's algorithms assume random disk I/O.

20
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2.3 Types of Sampling

There are a variety of types of sampling which may be performed. The various types of

sampling can be classi�ed according to the manner in which the sample size is determined,

whether the sample is drawn with or without replacement, whether access pattern is random

(e.g. from disk or RAM) or sequential (e.g., from tape or on-the-y from intermediate

results), whether or not the size of the population from which the sample is drawn is

known, and whether or not each record has a uniform inclusion probability (simple random

sampling vs. weighted random sampling).

2.4 Binomial sampling

Binomial sampling is often provided (e.g. in the SIR DBMS) because it can be imple-

mented very easily. One merely sequentially scans the �le, generating a random number

uniformly distributed between zero and one for each record. If the random number is less

than the sampling fraction, the corresponding record is included in the sample. The algo-

rithm runs in time linear with the �le size, i.e., O(n), where n is the number of records in

the base �le.

Alternatively, if the population size, n, is known one can generate the sample size from

a binomial distribution, and then apply the algorithms for generating �xed size sample

discussed below.

A third possibility is to generate the random intervals between successive samples, using

a geometric distribution. The records in the intervals are skipped, and the records at

the end of each interval are included in the sample. This does not require knowledge of

the population size. Analogous methods have been developed by Vitter [Vit84, Vit85] for

sequential sampling of �xed size samples.

2.5 SRSWR from disk

The simplest type of �xed size sampling consists of simple random samples (i.e., un-

weighted) with replacement (SRSWR) drawn from a �le of known size stored on disk as

�xed size records (i.e., �xed blocking).

The sample of size s can be obtained by generating uniformly distributed random num-

bers between 1 and N , the number of records in the relation, and reading (random access)

the corresponding records. This requires O(s) cpu and disk time. The algorithm can be

improved by sorting the random record numbers before retrieving the records. This will

reduce the seek time, assuming that the disk �le is allocated approximately monotonically

and that the user retains control of the disk arm.

2.6 SRSWOR from disk

Simple random sampling without replacement (SRSWOR) can be done by sampling

with replacement and checking a hash table comprised of the records already sampled for
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duplicates. If duplicates are found, additional samples are taken. This approach works well

if the sample size is a small fraction of the total population.

A better approach [EN82] consists of building a hash table of sampled record numbers,

together with substitute record numbers. Each time a record is sampled, its number is

inserted in the hash table along with the number of the last unsampled record in the

relation. Subsequent record numbers are drawn uniformly from a truncated range 1 to

N � k (after the kth record has been sampled). The advantage of this approach is that

fewer random record numbers need to be generated.

2.7 Weighted Random Sample

Weighted random samples, in which the inclusion probability is proportional to some

parameter of the item sampled (e.g. size), are often sought.

I discuss briey the three major methods of obtaining weighted random samples: ac-

ceptance/rejection [Rub81], partial sum trees, and the alias method. The three methods

vary in sampling e�ciency and update e�ciency, with acceptance/rejection providing the

worst sampling e�ciency and the easiest updating, while the alias method provides the

most e�cient sampling and most di�cult updates. Partial sum trees provide intermediate

performance on both updates and sampling.

2.7.1 Acceptance/Rejection Sampling

Suppose that one wishes to draw a weighted random sample of size 1 from a �le of N

records, denoted rj, with inclusion probability for record rj proportional to the weight wj.

The maximum of the wj is denoted wmax.

One can do this by generating a uniformly distributed random integer, j, between 1 and

N , and then accepting the sampled record rj with probability pj :

pj =
wj

wmax

(2.1)

The acceptance test is performed by generating another uniform random variate, uj , be-

tween 0 and 1 and accepting rj if uj < pj . If rj is rejected, one repeats the process until

some j is accepted.

The reason for dividing wj by wmax is to assure that one has a proper probability (i.e.,

pj � 1). If one does not know wmax one can use instead a bound 
 such that 8j;
 > wj ;.

One can view this acceptance/rejection procedure as a Bernoulli process with success

probability E[pj]. The Bernoulli process has been extensively studied. It is well known

that the number of trials (here iterations) until the �rst success (accepted record) has a

geometric distribution with a mean of (E[pj])
�1. (Note that I count the last (successful)

trial.) Hence, using 
 in lieu of wmax results in a less e�cient algorithm. For sampling with

replacement, it is also well known from the theory of Bernoulli processes that the number of

iterations required to accept s records with be a negative binomial distribution with mean

s(E[pj])
�1.

Acceptance/rejection sampling is well suited to sampling with ad hoc weights or when the

weights are being frequently updated. Other methods, such as the partial sum tree method
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discussed below, require preprocessing the entire table of weights. Acceptance/rejection

sampling has long been used for generation of non-uniform pseudorandom number genera-

tion [Rub81].

2.7.2 Partial Sum Trees

Wong and Easton [WE80] proposed to use binary partial sum trees to expedite weighted

sampling.

As above, consider the �le ofN records, in which each record rj has inclusion probability

wj in a sample of size 1. Binary partial sum trees are simply binary trees with N leaves,

each containing one record rj and its weight wj . Each internal node contains the sum of the

weights of all the data nodes (i.e., leaves) in its subtree. Each record, rj , can be thought to

span an interval [
Pj�1

1 wj ;
Pj

1wj), of length wj .

A sample of size 1 is obtained by generating a uniform random number, u, which ranges

between 0 to W , where W =
PN

1 wj . The partial sum tree is then traversed from root to

leaf to identify the record which spans the location u.

The height of the tree is O(logN), where N is the number of records. Hence the time

to obtain a sample of size s is O(s logN). The tree can also be updated in time O(logN)

should the record weights be modi�ed, or if sampling without replacement is desired.

Partial sum trees can be constructed in the form of B-trees, in order to minimize disk

accesses by increasing the tree fanout (and hence the radix of the log). Alternatively, a

partial sum tree may be embedded into a B-tree index on some domain.

Partial sum tree sampling may well outperform acceptance/rejection sampling. Essen-

tially, it is another index, specially suited to sampling. However, it is practical only when

the weights are known beforehand. Like any other index, it increases the cost of updates.

However, I believe that updates will greatly outnumber sampling queries in most appli-

cations. Hence acceptance/rejection methods will be preferred in most applications.

2.7.3 Alias Method

Another method of weighted sampling is the alias method proposed by Walker [Wal77].

This method is somewhat similar to acceptance/rejection methods. A record is randomly

chosen via a uniform distribution and then an acceptance/rejection test is performed, using

an adjusted weight. However, if a record is rejected, then a precomputed aliased record is

supplied in its place. Thus the time to obtain a sample of size s is is simply proportional to

the sample size, i.e., O(s). Before one can commence sampling one must compute a table

of adjusted sampling weights and aliases for each record. The table is of size O(n), the

population size. The algorithm given by Walker to construct the table requires time O(n2).

However, better data structures and search algorithms can reduce this to O(n logn).

Walker does not indicate any method of updating the alias and adjusted weight tables.

Hence this method would only be useful for static databases.
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2.8 Sequential sampling, known population size

Sequential sampling of a population of known size arises when sampling from a tape �le

of known size. Disk �les of known sizes may also be sampled sequentially, either to reduce

the disk seeks generated by random accessing, or because the �le is sorted and the user also

wants the sample to be sorted in the same fashion, e.g., for a report.

One algorithm for obtaining a sample of size s from n records includes the k0th record

(k = 1; 2; 3; ::::n) with probability

pk =
s� u

n � k + 1
(2.2)

where u is the number of records collected into the sample thus far, i.e., u = 0; 1; 2; 3; :::s.

This algorithm and its proof were published by Fan, et al., [FMR62] in 1962. It requires

time O(n), i.e., proportional to the size of the �le. Fan, et al.'s paper contains several other

sampling algorithms. The algorithm also appears in both the �rst and second edition's of

Knuth's Semi-Numerical Algorithms [Knu69, Knu81].

If the �le is on a random access device such as disk then the fastest algorithm is due

to Vitter [Vit84]. His algorithm generates the random intervals between successive records

which are to be included in the sample. Hence his algorithm requires that only O(s) random

numbers be generated, where s is the target sample size. If one can skip records in zero

time (e.g., �xed size records on disk) then the total running time will be O(s), otherwise

one may be forced to read every record in time O(n).

2.9 SRSWR from disk, variable blocking

Variable numbers of records per page (variable blocking) may arise due to variable record

size, hash �le organizations, or deletions. If an index exists one can use it as above. If no

index exists one can use acceptance/rejection sampling (discussed above in Section 2.7.1

and in [Rub81]) on the pages with

prob(accept this page) =
no. of records on this page

max. no. records per page
(2.3)

If the page is accepted one selects a record on the page at random. This assures uniform

selection probabilities for all records. This algorithm for sampling was described in [OR90]

and [ORX90] (where it was applied to hash �les). As above (in Section 2.7.1) the expected

number of iterations until one accepts a record will be:

max. no. of records per page

E[no. of records per page]
(2.4)

If the actual maximum number of records per page is unknown one can always use an upper

bound (with attendant loss of e�ciency).

DeWitt, et al., [DNSS92] adapted this sampling method for use percentile estimation

and called it extent map sampling. In DeWitt et al.'s paper the �le structure is represented

via an extent list (i.e., a list of contiguous regions on disk allocated to consecutive logical

disk blocks, as used in DEC/VMS operating system), so that the i'th block can be located

by an in-memory search of the extent list. DeWitt et al. used all the tuples on the retrieved

disk block, page level sampling. Otherwise the algorithms are identical.
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2.10 Sequential sampling, unknown population size

Sequential sampling of a population of unknown size arises when sampling a tape �le of

unknown size, sampling the output of a query as it is generated (to avoid writing the entire

output to disk), or online sampling of transaction streams.

The algorithms for sequential sampling of a population of unknown size are known as

reservoir algorithms, because they create a reservoir of size s (the desired sample size) of

candidate sample records. In all of these algorithms the reservoir is initially �lled with the

�rst s records read. The reservoir algorithms then proceed sequentially through the �le,

updating the reservoir, so that it always contains a simple random sample. Thus the k0th

record encountered (k > n) is included in the reservoir with probability s=k. If it is decided

to include the k0th, a record in the reservoir is chosen randomly to be replaced.

The algorithm described above appears in the second edition (1981) of of Semi-numerical

Algorithms [Knu81] by Donald Knuth, who attributes the algorithm (without citation) to

Alan Waterman. Mcleod and Bellhouse describe the same reservoir sampling algorithm

(and prove its correctness) again in [MB83] in 1983.

An earlier reservoir (less e�cient) algorithm appeared in the �rst edition of Knuth's

Semi-Numerical Algorithms [Knu69]. The earlier algorithm was �rst published by Fan, et

al. [FMR62] in 1962. This algorithm generate a uniform random variate for each record,

and always keeps the records with the s smallest random variates in the reservoir.

The fastest reservoir algorithm for random access �les is by Vitter [Vit85], who has

extended his work on known population size samples to the case of unknown population

sizes. As before, Vitter generates the random intervals of records to be skipped. Hence

he examines only those records which get put into the reservoir. The running time for his

algorithm is O(s(1 + log(n=s)), assuming that skipping can be done in zero time, i.e., that

one has random access to the �le.

2.11 Database Abstracts for Estimating Query Sizes

Before commencing a discussion of the use of sampling for selectivity and query size

estimation, I briey consider alternative approaches to estimating predicate selectivity and

query result sizes based on keeping various statistics about the database.

Predicate selectivity, the number of records satisfying a selection predicate, is a key

parameter used by the query optimizer to choose between scanning a relation to test a

selection predicate, or using a secondary index to evaluate the selection predicate.

2.11.1 Anti-Sampling

Neil Rowe [Row83, Row85, Row88] has perhaps been the most outspoken advocate of

anti-sampling. In his doctoral dissertation and subsequent papers he proposed keeping a

database statistical abstract, comprised of various count, sum, and other statistics de�ned

over various partitions of the database. He then developed a set of techniques for combining

the various statistics to construct bounds on other statistics or portions of the database.

The required statistical tables can be quite modest if only uni-dimensional histograms,

etc. (for simple predicate selectivity estimation) are required. If more complex predicates
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are anticipated, then one would want to construct multi-dimensional histograms, and other

statistics, which consume more space. Practically speaking, it appears unlikely that one

would keep more than histograms of dimensionality higher than two. If the requisite statis-

tics for a relation are stored together, they could be read in a single disk read. The required

computations are quite fast. Hence, Rowe argued that his approach was much faster than

sampling, although the statistics would have to be updated during database updates (rais-

ing issues of concurrency control hot spots). I am inclined to agree with Rowe that for

many simple (single predicate) queries, database abstracts will be more e�cient that sam-

pling. Current commercial databases (e.g., INGRES) largely rely on such histograms for

selectivity estimation.

The use of histograms for selectivity estimation was �rst adopted for the INGRES

project. Histograms of the distribution individual attributes in each relation were computed.

Initially, the bins used for the histograms were chosen to equi-width, i.e., the range of the

attribute was partitioned into equal intervals. Equi-depth histograms are determined by

choosing the attribute partitioning so that each histogram bin has the same count, i.e.,

the bin boundaries are uniformly spaced quantiles of the empirical attribute distribution.

Subsequently, Piatetsky-Shapiro in [PSC84] argued that equi-depth histograms (i.e., bins),

rather than the then common equi-width histogram bins gave better control over errors

in estimation selectivities. He used sampling of the relations to generate the histograms.

Muralikrishna & DeWitt [MD88] described how to construct equi-depth multi-dimensional

histograms using a variant of the R-tree, which they call an H-tree. They also used sampling

of relations to generate the histograms.

2.11.2 Partial Sum (Ranked) Trees

It has long been known [Knu73], that one could store the number of leaves of subtrees

in the internal nodes of a tree in order to determine the rank of a leaf in logarithmic time,

i.e., by summing counts of all the left branches passed on the way down the tree to the

target leaf. This can be used as a selectivity index to rapidly determine the selectivity of

range predicates (for which a B-tree index exists). The method can be readily extended to

computing any desired additive statistic (SUM, COUNT) over a range in an ordered tree.

This has been described earlier in this chapter for weighted sampling by Wong and Easton.

Variations of the technique have been rediscovered by several authors. Bennett and

Kruskal use to implement e�cient LRU stack processing algorithms in [BK75]. Stonebraker

[SSL+83] used the technique to implement ordered relations to support text editing of

documents with a relational DBMS. Srivastava [SL88] used the method with B+ trees to

compute a variety of aggregate statistics (SUM, COUNT), order statistics, and sampling

(strati�ed, random, systematic). Ghosh [Gho88] employed the use of partial sum tries. The

EXODUS project at Univ. of Wisconsin [CDRS86] uses the technique in an access method

to support insertion and deletion from sequences. Most recently, Antoshenkov [Ant92],

has described an approach which computes bounded approximations of rank statistics. By

allowing some slop in the counts stored in each node, Antoshenkov avoids the need to

propagate changes in the counts all the way up the tree on each modi�cation to the tree

(insert/delete).
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2.12 Sampling for Estimation

One common use of sampling is to estimate the size of relational query results. This may

be done to give a user an approximate answer (e.g., for a COUNT query), or it may be used

to estimate selectivities or intermediate result sizes for query optimization purposes. Note

that if one wants the information for query optimization, then one typically prefers to have

the block selectivity estimate (rather than record selectivity). The block selectivity estimate

is a better predictor of I/O time. This point is discussed further in the next section.

2.12.1 Cluster Sampling

Hou and Ozsoyoglu wrote several papers [HOT88, HOT89, HO91] on estimating the

results of COUNT queries. Their motivation was real time control systems [HOT89].

Their approach involved cluster sampling (where disk pages of relations constituted

the clusters). Having read the disk pages, they argued that one might as well use all

of the information on each disk page. Of course, the sample elements are not necessarily

independent. One can correct for this in the computation of the estimator, and its variance.

Cluster sampling is worthwhile when there is signi�cant variability of records on the page

in terms of the attributes sought (intra-cluster variability). If the relation is ordered on the

attributes being sampled, then there will be little intra-cluster variability and clustered

sampling may o�er very little improvement over simple random sampling. If however, the

relation is ordered on some attribute irrelevant to the desired attribute (e.g., name vs.

salary) then there will be great intra-cluster variability and clustered sampling will be quite

worthwhile.

Special estimators of the total tuple count were created by Hou & Ozsoyoglu [HOD91]

to account for the e�ects of relational operators. They discuss estimators for complex

aggregate (e.g., COUNT) relational queries.

Their methods are attractive if the relations are not ordered with respect to attributes

of interest, and either the relations are of moderate size (106 records or less) or no indices

are available for the relations.

2.12.2 Sequential Sampling

Lipton & Naughton in [LNS90, LN90] revived the sequential sampling (which they called

adaptive sampling) approach of Wald [Wal47] to selectivity estimation. Here sequentiality

is statistical, i.e., one decides after each element sampled whether to continue sampling (in

contrast to the usage in DBMS, where sequential algorithms usually refer to sequentially

scanning the relation). It is well known that sequential sampling algorithms outperform

conventional single-stage sampling algorithms in terms of the number of sample points

required, since they can adjust the sample size to the population parameters.

Note, however, that sequential sampling policies e�ectively require iterative sampling

algorithms - rather than the more e�cient batch or sequential scan algorithms. However,

Lipton & Naughton did not consider the e�ciencies to be garnered from \batch" (or se-

quential scan) sampling. Batch sampling algorithms are more e�cient because they avoid

rereading pages (esp. in the upper part of a tree index). Sequential scan sampling algo-

rithms may be more e�cient due to reduced seek time of sequential vs. random disk reads.
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While such e�ciencies may be insigni�cant for hashed �les, they are potentially signi�cant

(e.g., a factor of 3-4) for B+ tree �les.

In a subsequent paper, Haas & Swami [HS92a, HS92b] developed improved stopping

rules for sequential sampling of selectivity estimation. Haas & Swami �rst observed that

Lipton, et al. were using apriori bounds for the mean and variance of the population in their

stopping rule. Haas & Swami therefore suggested estimating the mean and variance for the

stopping rule from the sample taken thus far. They prove that the their sampling procedure

is asymptotically e�cient, i.e., it uses the minimum sample size for the required accuracy.

Note that they use a hybrid accuracy constraint: absolute accuracy for small values, and

relative accuracy for large values. Haas & Swami also suggest the use of \batch" sampling on

the grounds that traversing the access manager interface for each sample is ine�cient; they

ignore the savings in I/O costs attainable with batch sampling (akin to batch searching),

Their experimental results suggest that this sampling procedure is comparable to the two

stage sampling method [HOD91] discussed below and better than Lipton, et al.'s procedure.

Haas & Swami then analyze the use of strati�ed sampling, with uniform sample sizes

allocated to each strata. Such an allocation of sample sizes is appropriate if the strata

have equal variances. (They suggest checking this assumption at the conclusion of the

sampling and resort to additional sampling of large variance strata.) Their experimental

results suggest that this algorithm o�ers slightly to much better coverage (depending on

intra-strata homogeneity) than their earlier algorithm and consistently beats Lipton et al.'s

procedure.

Haas & Swami also incorporate some improvements in the sequential sampling procedure

to correct for undercoverage, the tendency of the sequential sampling algorithms to report

con�dence intervals which include a smaller proportion of the sample distribution than

nominally speci�ed.

2.12.3 Two Stage Sampling

In [HOD91] Hou, et al. describe the use of two stage sampling to estimate COUNT query

results. The �rst stage sample is used to estimate the required sample size for the second

stage sample. For a speci�c sampling design one would expect that two stage sampling is

intermediate between single stage and sequential sampling in terms of expected sample size

for a given level of accuracy. It is attractive in the database setting, as it permits the use

of batch sampling algorithms from the base relations (see the discussion in Chapters 3, 4.

Chapters 4,3.

Hou, et al., �nd it attractive because it is readily adapted to their earlier estimation

procedure, which e�ectively computes the relational query on the cross product of the

samples from the base (relational) �les. They found that the combination of two stage

sampling, with their estimator, outperformed the sequential sampling algorithm of Lipton

and Naughton [LNS90, LN90].

Hou, et al. also suggest the use of simple random sampling without replacement (SR-

SWOR) in place of simple random sampling with replacement (SRSWR). That SRSWOR

is more e�cient than SRSWR has long been known in the statistical literature. Hou, et

al. also suggest the use of systematic sampling (SS), presumably with a random starting

point. They observe that systematic sampling will outperform SRS when the relation is
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sorted (a common practice), but would be worse if there are periodic uctuations in the

value of the desired attribute as a function of the ordinal position the record. Hence, un-

less aperiodicity is known apriori (and recorded in the DB catalog) or one are prepared to

compute the spectra of his(her) databases, it is di�cult to see how this strategy could be

safely employed.

Hou, et al. note that their methods do not require the use of indices over the relations,

in contrast to the methods of Lipton, et al. and many of the methods described in this

thesis. This is true, but they pay a large penalty, e.g., for intersections, in sample size

when sampling large relations with small intersections, or small join selectivities. Their

experiments do not consider such large relations with small intersections or join selectivities.

They consider a join selectivity of about 10�3.

2.12.4 Transitive Closure

Lipton & Naughton [LN89] showed how to use sampling to estimate the size of a transi-

tive closure. Essentially, they sample from the base relation, and then compute the size of

reachability set for each element in the sample. The estimated size of the transitive closure

is then the sum of sizes of the reachability sets of the sample elements times the inverse of

the sampling proportion.

2.12.5 Parallel Sampling

Seshadri & Naughton [NS90, Ses92] discuss the use of strati�ed and clustered sampling

for parallel sampling on a multi-processor to estimate selectivities [SN91]. They show that

simple random sampling is asymptotically ine�cient in a parallel environment (as the the

number of processors grows) as it leads to heavily skewed workloads - everyone waits for the

processor with the largest number of samples. They cite a theorem of Gonnet that the limit

of maximum path length for hash overow (as n=k !1) is logn= log logn, where n is the

number of records and k is the number of buckets. They then propose the use of strati�ed

sampling (stratifying over the processors) to achieve perfect load balancing by allocating

uniform sample sizes to each strata (processor-disk) pair.

They go on to argue (along the lines of Hou and Ozsoyoglu) in favor of clustered sampling

for selectivity estimation, with the disk page being the cluster unit. (See discussion above.)

2.12.5.1 Percentile Estimation

Seshadri & Naughton [NS90, Ses92] discuss the use of random sampling to estimate

percentiles of the data distribution. Estimation of percentiles is important in many appli-

cations such as parallel sorting, and some types of join computations on parallel machines,

e.g., band (approximate) joins or inequality joins. The goal is to minimize skew (load imbal-

ance) across the parallel processors, so as to minimize the completion of the join (sorting)

operation. For example, sorting (on k processors) can be done by estimating the k� 1 per-
centiles of the �le, called \splitters", and then letting each processor sort independently all

keys which fall between two successive \splitters". Percentile estimation is done by taking

a random sample of a su�cient size, and then taking the sample percentiles as estimators.
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The goal is to provide a guaranteed bound over the skew among the processors while taking

a minimal sample size.

DeWitt, et al., [DNS91a], describe the use of percentile estimation via sampling for use

in partitioned band-join algorithms. Band-joins are an extension of equi-joins in which an

error tolerance is allowed in the equality test, i.e., the di�erence between the join attributes

of tuples from two join relations must be less than some error bound.

Similarly, the same authors [DNS91b] describe the successful implementation a par-

titioned external sorting algorithm where the partitioning is based on a splitting vector

(quantiles) estimated via sampling. They also provide an extensive discussion of the lit-

erature on the use of sample quantiles in various types of partitioned (e.g., distributive)

sorting algorithms (both main-memory and external). The asymptotic analysis of distribu-

tive sorting algorithms is also discussed in [Dev86].

2.12.6 Estimating the Size of Projections

Estimating the size of projections is a classical topic in database research and has a

long history in the statistical literature, where the problem is known as \estimating the

number of species (classes)". Bunge and Fitzpatrick provide a recent survey of results on

the problem and an extensive bibliography (over 100 citations) in [BF93]. Here I discuss

only one recent paper from the database literature.

Naughton and Seshadri [NS90] describe the estimation of the size of projections via

sampling. Approaches to the problem vary depending on whether there is an index available

on some or all of the projection attributes:

1. Do the projection, then count.

2. Scan the relation, doing probabilistic counting [WVZT90, FM85, Fla85, FM83, ASW87].

3. Sample the base relation; for each element of the sample �nd the number of the records

in the base relation which match the sampled record on the projection attributes, call

this jxij. Estimate the size of the projection as the estimated average contribution

of each element of the base relation to the projection size times the size of the base

relation, i.e.,

dj�R(j) = (
jRj

s
)

sX
i=1

jxij
�1 (2.5)

where s is the sample size, and jRj is the cardinality of relation R. This estimation

procedure would require that the relation is sorted/hashed/indexed on the projection

attributes.

4. Sample the base relation, count duplicates (over the projection attributes) of tuples in

the sample. Estimate the size of the projection using Goodman's estimator [Goo49],

etc. This method does not require that the base relation be indexed. However, this

method is very unreliable when the sample size is too small to encompass a signi�cant

number of duplicates. For example, suppose one has a base relation of 108 records,

whose projection (on some particular projection domain) is 107 records. Then a simple

random sample of 100 records will probably contain no duplicates. But such a sample
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would probably not contain any duplicates whether the projection size was 106, 107,

or 108 records. Hence, this method is not an accurate method of estimating projection

sizes for large projections when the sample size is small. Note that Hou and Ozsoyoglu

[HOD91] also use Goodman's estimator for the size of projections.

Naughton and Seshadri propose yet another estimator, a variant of the third algorithm

described above. They assume that the projection, �A;B(R) is on two attributes A and B.

The also assume that the base relation, R is sorted/hashed/indexed on A. They sample

a tuple x 2 A. They then determine the cardinalities �i of the tuples of R which match

on A, and li the number of tuples of R which match on A;B. Their estimator is thus

(1=s)
Ps

i=1 �i=li, where s is the sample size.

Note that this method implicitly assumes that relation R is at least indexed/sorted/hashed

on A, but not necessarily on A;B. If not, one must do a scan of the relation. Thus it is

intermediate in its indexing requirements.

Naughton and Seshadri show that their estimator of the size of a projection will out-

perform Goodman's estimator (esp. for small samples). This is hardly surprising. Note

that this method commences with a simple random sample of the base relation using the

methods described in this thesis.

2.12.7 Estimating the Size of Joins

Seshadri (in Chapter 2 of his thesis [Ses92]) considers the problem of estimating the size

of joins (or equivalently join selectivity) via sampling. He �rst considers several variations

of the cross product sampling approach discusses (above) by Hou and Ozsoyoglu.

He considers:

� tuple independent sampling, SRS sampling of pairs of tuples from the two relations

R; S.

� tuple cross product sampling, the cross product of SRS samples of tuples from each

relation R; S,

� page independent sampling, cluster (disk page) sampling of pairs of pages from the

two relations R; S,

� page cross product sampling, the cross product of cluster (disk page) samples from

each relation R; S.

Seshadri found that cluster (disk page) sampling was always at least as good as the

corresponding tuple level sampling. He also found that cross product sampling was always

at least as good as the corresponding independent sampling. He was unable to establish

an order among independent cluster (page) sampling and tuple cross product sampling.

Clearly, clustered (page level) cross product sampling is the preferred algorithm - when no

index is present.

Seshadri goes to describe and analyze an index based join selectivity estimation algo-

rithm. His algorithm is related to the simple random sampling join sampling algorithm

discussed here in Chapter 6. Basically, he samples from one relation, say R, and then looks
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up in the index the number, mi, of matching tuples in S. The estimator of the join size is

simply:

jRj(1=s)
sX
i=1

mi (2.6)

Seshadri shows that this estimation algorithm outperforms the previous algorithms.

2.13 Block Selectivity Estimation

In the previous section I discussed papers which were concerned with the use of sam-

pling to estimate record selectivity or intermediate result size (in records). However, for

query optimization purposes, it is not record selectivity which is needed, but rather block

selectivity, because the disk reads are done in units of disk blocks.

Random record placement models [Car75, Yao77] derive the block selectivity estimates

from the record selectivity estimates, under the assumption that the records are randomly

placed with respect to the blocks. This assumption is appropriate for estimating the block

selectivity of simple random sampling queries. Several authors have extended these results

to various types of tree structured (e.g., B+ tree) �les [SG76, Pal85, LDJ89, LM90] under

the rubric of \batch searching" of �les.

Christodoulakis [Chr84b, Chr84a] discusses block selectivity estimation where records

may be clustered together, e.g., if the �le is sorted on the attribute used in a selection

predicate. Note that block selectivity can also be estimated via sampling techniques used

to estimate the size of projections (onto the block ID attribute).

If blocks are referenced randomly, or if we lose control of the disk drive between successive

block reads then one could model expected I/O time as simply a constant times the number

of blocks accessed. However, if the blocks to be read are spatially clustered (within and

among disk cylinders), and one can hang onto to the disk long enough to read nearby blocks,

then I/O time models should at least account for cylinder selectivity, and perhaps cylinder

proximity. The advent of workstations with local disks makes this a plausible scenario. It is

also plausible for large IBM mainframes in which the number of disks exceeds the degree of

multiprogramming. Note that one should be able to use the same techniques for estimating

cylinder selectivity from block selectivity as have been used for estimating block selectivity

from record selectivity.

2.14 Sampling for Query Optimization

Query optimizers often must choose from among several possible query processing strate-

gies. The most e�cient query plan is typically a function of the sizes of various intermediate

query results, and the selectivities of various partial query predicates.

Sampling can be used estimate these selectivities and the sizes of the results. The alter-

native is typically to maintain histograms (i.e., summary statistics) to assist in estimating

query result sizes and predicate selectivities. As noted above, reality would require that we

estimate block and cylinder selectivities, but here I largely con�ne my remarks to record

selectivities.
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2.14.1 Frequentist Approach

Willard [Wil84, Wil91] considered the problem of determining the asymptotically opti-

mal sample size required to estimate predicate selectivities for query optimization of scan

operations. Speci�cally, he was trying to decide which of two predicates to evaluate �rst

when scanning a relation for a conjunctive query. He showed that the optimal (minimax)

sample size to minimize the maximum combined cost of sampling and evaluating the query

was O(n2=3). This result holds for any loss function linear in the estimated parameter and

the relation size, n.

Thus for a relation with 106 records, the optimal sample size would be approximately

104 records. However, if the blocking factor (records/disk page) was 50 (implying the �le

occupies 2:0� 104 disk pages) then one would still be reading almost half the pages of the

�le for a simple random sample. Clearly, cluster sampling is more attractive if feasible.

In a main memory database, the blocking factor is e�ectively one, so the simple random

sampling is much more practical.

Willard discounts Bayesian approaches to the problem, arguing that one frequently does

not have su�cient information to construct a prior distribution.

2.14.2 Decision Theoretic Approach

One can see the precursor of a decision theoretic approach in the work of Chu [Chu89]

in estimating block selectivities for access path selection. He �rst calculates bounds on the

block selectivities and considers the query optimization problem - index access vs. complete

�le scan. If the bounds are su�cient to settle the question of which query strategy to choose,

he does not attempt more accurate estimates.

Kevin Seppi [Sep90, SM92] considered the problem of selectivity estimation systemat-

ically from the perspective of a decision theoretic framework. Given a prior probability

distribution on the parameters of interest (e.g., predicate selectivity), Seppi uses sampling

and Bayes rule to compute a posterior probability distribution. The Bayesian posterior

probability distribution can be incorporated into a decision rule, along with expected query

processing costs (as a function of estimated parameters).

Thus Seppi can estimate the value of additional sampling in terms of improving the query

optimization decision. There is no point in additional sampling to re�ne parameter estimates

beyond the accuracy needed to decide between alternative query processing strategies.

Seppi's approach lends itself naturally to sequential sampling techniques and to adaptive

query optimization. It also facilitates the inclusion of other sources of information on

database parameters (e.g., previous queries, histograms, moments).

2.14.3 Applications

DeWitt, et al., [DNSS92] use sampling determine the amount of skewness of the data

distribution in two relation, and then to choose among several parallel join processing

strategies.

Wolfson, et al., [WZB+93] is concerned with choosing (at run time) among strategies

for computing the single source reachability queries. In such queries the relational database
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is being used to store a directed graph, and the query asks how many nodes can be reached

from a speci�ed node.

Wolfson, et al., use sampling both to estimate the number of nodes in the graph, and

the average out-degree of each node. These estimates, together with information on the

parallel machine architecture are used to estimate the query processing cost of the various

strategies and then choose among them.

2.14.4 Commercial Implementations

Antoshenkov [Ant93] describes the use of random sampling for selectivity estimation in

the Rdb/VMS query optimizer. This is the only report I know of concerning the use of

sampling for query optimization in a commercial DBMS. Antoshenkov apparently only uses

sampling to estimate the selectivity of range selection predicates. The selectivity estimation

is embedded in an adaptive (dynamic) query optimizer, which reconsiders query strategies

after completing the computation of intermediate results.

2.15 Related Work on View Materialization

Here I review related work on view materialization, which I will use later in the chapter

on maintenance of materialized sample views. Work on view materialization covers two

subjects: policy (when to update the materialized view) and mechanism (how to update the

materialized view).

2.15.1 Update Mechanisms

Buneman and Clemson [BC79] and Blakeley et al. [BLT86] are concerned with screening

tests for detecting irrelevant tuples. These are tuples (records) whose insertion or deletion

can be shown not to a�ect the contents of a view, regardless of the state of the database (as

determined by a satis�ability computation on the selection predicate after substitution of

the tuple attributes [BLT86]). Buneman and Clemson [BC79] also discuss partial evaluation

strategies which partially recompute view de�nitions in an attempt to exclude update tuples

whose irrelevance to the view depends on the database content. Blakeley et al. [BCL86]

continue their discussion of screening procedures by introducing the notion of autonomously

computable updates, i.e., updates whose relevance to a view can be determined solely from

the update and the contents of the view. Screening test are clearly worthwhile and can also

be applied to the maintenance of materialized sample views.

Blakeley et al. [BLT86] also discuss algebraic di�erential view update procedures. Here

each updated base relation is represented as:

R0 = R [ ftinsertedg � ftdeletedg (2.7)

and queries are relational algebra expressions. Note that this sort of di�erential represen-

tation of a relation was previously used for the implementation of hypothetical relations by

Wood�ll & Stonebraker [WS83], and by Agrawal & Dewitt [AD83]. Blakeley et al. expand

the relational expressions - exploiting distributivity of the query operators over set union

and di�erence (where possible) - grouping invariant terms and variable terms separately
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(both with respect to the updates ftinsertedg and ftdeletedg). I will use similar ideas to

address maintenance of materialized sample views.

In particular, Blakeley et al. [BLT86] discuss the problem of maintaining view with

duplicates. Thus if the view contains a projection one must record the count of duplicates

for each tuple in the projection, so that one can tell when a deletion from the base relation

causes a deletion from the projection view. Alternatively, all views can be required to

include keys of each of the base relations. Similar problems are encountered with with

sampled projection views.

Hanson [Han87b, Han87a] reviews the di�erential view update methods developed by

Blakeley (described above), the hypothetical relations implementation work of Wood�ll &

Stonebraker [WS83] and of Agrawal & Dewitt [AD83], and the di�erential �le techniques of

Severance [SL76]. Hanson also discusses the implementation of views containing aggregate

queries (SUM, COUNT, etc.). As has been remarked, this work employs similar di�erential

view update techniques for the update of materialized sample views. Hanson [Han87a] also

considers a RETE network approach to materialized view maintenance. RETE networks are

a data ow type computation, used in arti�cial intelligence to determine when to �re speci�c

rules in a rule-based expert systems. He then considers (at length) the relative e�ciency of

various view update policies (immediate or deferred) and mechanisms (algebraic di�erential

view update, query modi�cation, RETE network di�erential view update) under various

workload scenarios.

Ceri and Widom [CW91] discuss a system supporting maintenance of materialized views

via a rule system in STARBURST. They explain how to automatically derive the necessary

rules for incremental view maintenance employing di�erential update methods. Ceri and

Widom permit singly nested queries, but restrict their attention to views which do not

include duplicates or aggregate functions. However, they do permit projection operations

in the view de�nitions. In such cases they may require recomputation of the entire view

upon deletion of tuples (if the projection domains do not include keys of the base tables).

Srinivasan and Carey [SC92] develops a compensation-based approach to processing long-

running queries in the presence of update tra�c. Their method avoids the use of two phase

locking of the tables being queried. Hence, they avoid the delays and possible deadlocks

which may arise from the locking. Instead they run the queries without locks and com-

pensate for updates that occur while processing the query. The approach resembles the

di�erential view update techniques described by Blakeley and Hanson in that it exploits the

distributivity of relational operators. It di�ers from previous work in that di�erential view

updating is integrated inside the various relational operator algorithms, e.g., sort/merge

joins, hash joins, etc. This is akin to my results on the integration of sampling with rela-

tional operators.

Segev & Park [SP89] discuss mechanisms for updating of distributed materialized views.

Their work consists of two parts: duplicate tuple elimination and an improved tuple screen-

ing test. Segev & Park are concerned with batch processing of updates against materialized

views via the di�erential relation techniques developed by Blakeley, Hanson, et al. as de-

scribed above. Thus duplicate tuple elimination is concerned with eliminating all but the

�rst and last updates to a particular tuple, as the intervening updates are irrelevant - being

overwritten by later updates. Segev and Park also discuss the use multiple query optimiza-

tion techniques to e�ciently implement screening tests (to discriminate between relevant
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and irrelevant update tuples) for multiple views. Segev and Park's work can be applied to

the problem of materialized sample views.

2.15.2 Update Policies

Buneman and Clemons [BC79] address implementation of immediate update propaga-

tion policies. Adiba & Lindsay [AL80] and Lindsay et al. [LHMP86] are concerned with

periodic view update propagation, e.g., for accounting reporting . Hanson [Han87b, Han87a]

compares the e�ciency of immediate and on-demand view update policies under various

workload scenarios.

In [SF91] Segev & Fang discuss currency-based update policies for distributed material-

ized views. Such a currency constraint enforces a maximum time bound between the state

of the base relations of a database and the state of each view. Segev & Park �nd the optimal

update policy for a set of materialized views from the class of update policies which:

� are a hybrid of periodic updates and on-demand updates subject to a currency con-

straint, and

� which allow update propagation via other views (not just directly from the base re-

lation), where permissible view implications are pre-speci�ed (i.e., from the view def-

initions and �xed currency-constraints).

In [SF90] Segev & Fang extend their earlier results to allow update propagation via

other views, where permissible view implications are not pre-speci�ed, but determined (in

part) by the currency-constraints computed by view update policy optimizer. This work on

update policies could be extended to the maintenance of materialized sample views.



Chapter 3

Random Sampling from B
+ trees

3.1 Introduction

This chapter begins the heart of this thesis, the novel techniques which I have developed

to implement random sampling queries. I start by addressing the most basic question: how

does one sample from base relations stored in the most popular access method, a B+ tree

�le.

Recall that a B+ tree is a B-tree in which all of data records are kept at the leaf nodes,

and internal nodes contain only keys used to partition the records. The uniform height

of the B+ tree (all leaves are the same distance from the root) and the requirement that

all data records be stored at the leaves facilitates the design and analysis of the sampling

algorithms.

Virtually all database systems used to record �nancial transactions (accounting sys-

tems, inventory control systems, bank records, etc.) are subject to annual audit, usually

involving random sampling of the records for corroboration. Yet commercial database man-

agement systems do not support queries to retrieve a random sample of some portion of

the database. One reason is that previous proposals to support retrieval of random samples

from databases have required the modi�cation of standard access methods, and the mainte-

nance of additional information in the indices. In particular, earlier authors have described

sampling from modi�ed B+ trees, called ranked B+ trees, which incorporate information

which permits the computation of the rank of a record.

In this chapter I discuss methods of sampling from regular B+ trees, employing accep-

tance/rejection (A/R) methods. These new algorithms do not require any modi�cation of

the standard B+ tree structures, nor do they require maintenance of any additional �elds

in the B+ trees. Hence these new sampling methods can be more easily retro�t to existing

DBMSs. While not quite as e�cient as earlier proposals, it should be suitable for applica-

tions which only need sampling infrequently, e.g. for auditing. For B+ tree �les I discuss

both iterative and batch sampling methods.

Whereas B+ trees are uniform height trees, simplifying the sampling algorithm, Rosen-

baum [Ros91] has recently described a similar algorithm for uniform random sampling from

arbitrary trees, i.e., when not all leaves are the same distance from the root.

37
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3.1.1 Notation

The notation used in this chapter is summarized for easy reference in Table 3.1. Notation

is fully explained in text where is �rst used. Here I mention some general conventions. The

desired sample size is denoted as s, whereas s0 denotes the inated sample size (i.e., to

compensate for losses due to acceptance/rejection sampling). The number of records in

the �le is denoted n. I denote the fan-out of an B+ tree node as fi, the average fan-out

as favg, and maximum fan-out as fmax. The average number of records per page for a

variably blocked �les will be bavg, the maximum will be bmax. The height of the standard

B+ tree is denoted as h. For the ranked B+ tree I denote the height as h0. (As I shall show,

this is usually the same or possibly one more than h.) Acceptance probabilities of records

are denoted �k, and the expectation as �. Similarly, the acceptance probability of a node

is denoted �k, and the expectation as �. The cost (in disk page accesses) of retrieving a

sample of size s by a particular method is denoted as Cmethod(s). In computing this cost I

typically assume that there is a su�cient cache to hold one entire root-to-leaf path, so that

the root node (at least) is always in the cache. For batch sampling, I will need to know

the expected number of blocks referenced when retrieving k records (at random) from a �le

containing m blocks, this will be denoted Y (k;m) (Cardenas's function).

Abbreviations of algorithms used in this chapter are summarized in Table 3.2. I use

the su�x \I" to indicate iterative algorithms, which select sample one record at a time.

Such algorithms naturally return simple random samples with replacement (duplicates)

(SRSWR) but can be modi�ed to return simple random sample random samples without

replacement by removing duplicates. I use the su�x \B" to denote batch algorithms, which

are the sampling analog of batch search algorithms in trees. Such algorithms naturally

return simple random samples without replacement (no duplicates, denoted SRSWOR),

but can be modi�ed to return simple random samples without replacement by synthetically

generating duplicates.

3.2 Iterative Sampling from a B
+ tree

3.2.1 A/R Sampling from a B+ tree

In this section I explain the use of acceptance/rejection sampling to sample from a

B+ tree without requiring the storage of any additional information in the B+ tree nodes.

Although this new method has a higher retrieval cost than earlier methods based on ranked

B+ trees, it does not require any modi�cation of existing access methods, nor any additional

update costs. Hence this method will be preferred over earlier methods for applications

where updates dominate sampling retrievals.

For expository reasons I commence with a discussion of the naive method (a random

walk from root to leaf, followed by an acceptance/rejection test). Subsequently, I show

that a modi�cation of this method, known as early abort, dominates the naive method. In

Section 3.3 I consider batch versions of each algorithm, which in turn dominate the original

iterative algorithms discussed in this section.

Assume that the bu�er pool is su�ciently large to cache one entire path (from root to

leaf) of the B+ tree. For simplicity of analysis, I neglect the minor e�ect of caching beyond
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�k acceptance probability of record k

� = E(�k) = expected acceptance probability of record

� = (favg=fmax) = average acceptance prob. at of a node

bavg average blocking factor for variably blocked �le

bmax maximum blocking factor for variably blocked �le

Cmethod(s) cost of retrieving sample of size s, via speci�ed method

fi fan-out from internal node i of B+ tree, or

number of records in leaf node i of B+ tree

favg average fan-out from internal node of B+ tree, or

average number of records in leaf node of B+ tree

fmax maximum fan-out from internal node of B+ tree, or

maximum number of records in leaf node of B+ tree

h height of B+ tree(count root as height 1)

h0 height of ranked B+ tree(usually same as h )

i = 0 denotes root node of B+ tree

n number of records in �le

pk probability of inclusion of record k

pathk path (node identi�ers) from root to leaf containing record k

� expected length of path in early abort algorithm

s number of records desired in sample

s0 inated sample size (to compensate for acceptance/rejection)

thisnode pointer to a B+ tree node (internal or leaf)

Y (k;m) Cardenas's function for expected number of blocks

referenced when retrieving k records from m block �le

wk probability of sampling of record k on a simple random walk from

root to leaf of B+ tree

Table 3.1: Notation used in Chapter 3 on Sampling from B+ trees.

NI Naive Iterative algorithm for B+ tree �les

EAI Early Abort Iterative algorithm for B+ tree �les

RI Iterative algorithm for ranked B+ tree �les

NB Naive Batch algorithm for B+ tree �les

EAB Early Abort Batch algorithm for B+ tree �les

RB Batch algorithm for ranked B+ tree �les

Table 3.2: Algorithm abbreviations
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the root page (for these iterative algorithms). This will not alter the relative performance

of the various iterative algorithms.

3.2.2 The Problem

As with other �le structures the problem is to produce uniform inclusion probabilities

for the target data records. Simply choosing a random edge from each internal node will

not su�ce, because nodes reached from internal nodes with low fanout will be more likely

to be sampled than those reached from nodes with high fanout.

3.2.3 Naive Iterative method

Basically, the naive method consists of performing acceptance/rejection sampling on

complete random paths through the tree (from root to leaf). The acceptance/rejection

sampling is used to correct the inclusion probability of each sampled path, so that every

record (stored in the leaves of the B+ tree) has the same inclusion probability. I discuss this

method primarily for expository reasons, since it is dominated by the early abort method

(described in Sect. 3.2.4).

In this method one selects a random path from the root to a record in a leaf (i.e., at each

internal node one chooses a branch at random (equi-probably), (see Figure 3.1) at the leaf

one selects a record at random (equi-probably)). Upon reaching the leaf one performs an

acceptance/rejection test to decide whether to keep this path. The acceptance probability

is calculated as one traverses the path from root to leaf as the product of the ratios of actual

fan-out to maximum fan-out at each node (except the root). One is, in e�ect, sampling

from a full multi-way tree, discarding paths which do not actually exist.

Thus in Figure 3.1 I illustrate this algorithm. I show a B+ tree with the internal nodes

drawn as ovals. The dots in the internal nodes signify the keys. The solid arrows represent

pointers in the internal nodes to children. The root is at the top of the �gure. The leaves

are drawn as boxes at the bottom of the �gure. The annotated dotted lines describe a single

iteration of the naive sampling algorithm along a path through the B+ tree, as described

above. One chooses a pointer at random at each internal node. Upon reaching a leaf, one

performs acceptance/rejection sampling of the records with with acceptance probability

given by Equation 3.3.

Denote by B a B+ tree of order m with height h (there exist h nodes on any path from

root to leaf, including the root and leaf). Let fi denote the fan-out of node i, and fmax

denote the maximum fan-out of any node. (For simplicity, I shall assume that the max. no.

records/leaf is the same as the maximum fan-out of internal nodes.) This is the number of

branches from an internal node, and the number of records in a leaf node. Designate the

root node to be node zero.

Lemma 1 The naive algorithm generates a simple random sample. The inclusion proba-

bility pk for record rk contained in leaf j for a single (root-to-leaf) path traversal is:

pk = f0
�1fmax

�h+1 (3.1)

where fmax = 2m + 1 is the maximum fanout of an internal node (and for simplicity also

the maximum number of records on a leaf node).
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random edge

random edge

random edge

random edge

accept/reject sampling at leaves

A path in the tree generated by the naive iterative method.

Figure 3.1: Example of Naive Iterative Method of Sampling from B+ tree
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function ARBTREEP1();

comment This procedure will return a single sample from a a B+ tree.

begin

temp ;= nil ;

while temp = nil do

temp := ARBTREEPROBE();

endwhile

return(temp);

end

procedure ARBTREEPROBE();

comment This procedure will return at most a single sample from a

a B+ tree.

begin

p := 1:0; /* initialize acceptance probability */

thisnode := root;

while thisnode 6= leaf do

if thisnode 6= root then

/* update acceptance probability */

p := p � (fthisnode=fmax);

endif

/* Choose a subtree at random */

/* RAND() generates a random number between 0 and 1 */

thisnode := thisnode:nodeptr[RAND() � fthisnode ];
endwhile

/* update acceptance probability at leaf*/

p := p � (fthisnode=fmax);

/* do acceptance/rejection sampling */

if RAND() < p then

return (one random record from thisnode)

else return(nil);

end

Figure 3.2: Code for naive A/R sampling from B+ tree
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Proof: Let wk = p(sampling record k on a random walk). Then

wk =
Y

i2pathk

f�1i (3.2)

where pathk refers to the path from root to leaf node containing the record k. Let the

acceptance probability for record k be �k, de�ned:

�k =
Y

i2pathk;i6=0

(fi=fmax) (3.3)

Note that the product here excludes the root node, because it is common to all paths, hence

it does not introduce any non-uniformity into the inclusion probabilities. Recall that all

paths in the tree have the same height, h. Hence:

pk = �kwk = f�10

Y
i2pathk;i6=0

(1=fmax) (3.4)

pk = f0
�1fmax

�h+1 (3.5)

2

Theorem 1 The expected cost of the naive method for a simple random sample with re-

placement of size s from a B+ tree is approximately:

E[CNI(s)] � (��1)h�1s(h� 1) + 1 (3.6)

Proof: Caching is generally only e�ective for the root page, hence the (h � 1) factor,

rather than h. The last term simply accounts for initially reading the root page. Hence:

E[CNI(s)] � s
0(h� 1) + 1 (3.7)

where s0 is the gross sample size necessary to produce a net sample of size s after accep-

tance/rejection sampling. By assuming that all the fan-outs are equal to favg one obtains:

E[s] � s0�h�1 (3.8)

Inverting this equation I shall assume (ignoring stochastic variation) that the required gross

sample size, s0 is:

s0 = (��1)h�1s (3.9)

Substituting this value of s0 into Eqn. 3.7 yields the desired theorem, Eqn. 3.6. 2

3.2.4 Early abort iterative method

The early abort method of sampling from aB+ tree, derives from the naivemethod. Both

are based on acceptance/rejection sampling of random paths in the tree. The di�erence

is that the naive method traverses complete paths from root to leaf before deciding on

acceptance or rejection while the early abort method performs an acceptance/rejection test

at each node (except the root).
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If the node is rejected, then one can abort searching this path, permitting early abortions

of a path. One can in e�ect reject a leaf node while part way down the path to it, without

requiring that one retrieve the entire path. Hence, this method clearly dominates the naive

method in expectation.

One way of thinking about the algorithm is to imagine that we are sampling random

paths from the full multi-way tree. As soon as one goes down a branch which is not present

in the actual (partially full) tree, one aborts that path.

Thus in Figure 3.3 I show an example of the the early abort iterative B+ tree sampling

algorithm. The B+ tree with the root at the top. Internal nodes are shown as ovals, with

dots signifying the keys, solid arrows representing pointers to child nodes/leaves, and boxes

representing leaves. I assume that the maximum permitted fan-out is 5. The annotated

dotted arrows describe the course of the algorithm. The algorithm commences by selecting

a pointer from the root page at random. Here I show that the leftmost pointer was chosen.

This pointer is followed to the second level node. One then performs an acceptance/rejection

test with acceptance probability equal to the ratio of the fan-out to the max. fan-out, i.e.,

4/5. This is done by generating a Bernoulli random variable with success probability of

0.8. I assume that this succeeds. One then again choose a pointer at random, here the

rightmost pointer. One follows this pointer to a third level node. Again one performs an

acceptance/rejection test, now with acceptance probability of 3/5. Here I suppose that this

acceptance/rejection test has failed, and that the algorithm immediately stop pursuing this

path in the tree, resuming at the root of the tree. This process is repeated until enough

records are accepted to yield the desired sample size. Note that upon reaching a leaf one

would perform an acceptance/rejection test with acceptance probability equal to the the

ratio of the number of records in this leaf to max. no. of records in any leaf.

At each node (except the root) along a path from root to leaf one performs an accep-

tance/rejection test with acceptance probability for node i denoted as �i:

�i = fi=fmax (3.10)

Recall

� = favg=fmax (3.11)

The root node is accepted unconditionally, i.e., �0 = 1.

The code for this algorithm is shown in Figure 3.4.

Lemma 2 For a single (root-to-leaf) path traversal, the early abort algorithm generates a

simple random sample with inclusion probability pk for record rk, where:

pk = f0
�1fmax

�h+1 (3.12)

Proof: Observe that the probability, bk, of accepting a record k (in a leaf node) is

simply the product of the �i along the path:

bk =
Y

i2pathk;i6=0

�i = �k (3.13)

i.e., the same as for the naive algorithm. Hence, my result follows from the proof of the

naive algorithm. 2
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random edge

random edge

bernoulli (0.8) [accepted]

bernoulli (0.6) [rejected]
path aborteds

A path in the tree generated by the early abort iterative method.
Maximum fan−out is 5. (Note: not all nodes shown)

Figure 3.3: Example of Early Abort Iterative Method of Sampling from B+ tree
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function EARLY1();

comment This procedure will return a single sample from a a B+ tree;

begin

temp ;= nil ;

while temp = nil do

temp := EARLYPROBE();

endwhile

return(temp);

end

procedure EARLYPROBE();

comment This procedure will return at most a single sample from a

a B+ tree

begin

thisnode := root;

while thisnode 6= leaf do

if thisnode 6= root then

/* do acceptance/rejection sampling on internal node*/

/* RAND() generates a random number between 0 and 1 */

if RAND() � (fthisnode=fmax); then

return(nil)

endif

endif

/* pick a branch at random */

thisnode := thisnode:nodeptr[RAND() � fthisnode ];
endwhile

/* do acceptance/rejection sampling on leaf node*/

if RAND() < (fthisnode=fmax) then

return (one random record from thisnode)

else return(nil);

end

Figure 3.4: Code for early abort A/R sampling from B+ tree
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In e�ect, the early abort algorithm searches the same paths as the naive algorithm, but

it aborts the search at the �rst rejection. Thus for some paths, it accesses fewer pages.

Hence its expected cost will be strictly less than that of the naive algorithm, unless all of

the pages are full.

Theorem 2 The expected cost of the early abort iterative method for a simple random

sample with replacement of size s from a B+ tree is approximately:

E[CEAI(s)] � (��1)h�1s
(�h�1 � 1)

� � 1
+ 1 (3.14)

Proof: Here I have again assumed that all the fan-outs are equal to favg. As before, the

gross sample size must be increased by a factor of (��1)h�1 to account for the losses due to

A/R sampling.

Recall that for the naive algorithm the length of each path examined is h (with a one-

path cache it will be approx. h � 1). What is the expected length of a path searched in

the early abort algorithm? Let �j denote the path length for attempt j (assuming the root

is cached) and � denote its expectation E[�j]. I ignore the root (because it is cached).

Acceptance/rejection sampling at each node could cause an early abort - but this happens

after the node has been read in - so one subtracts one more from the exponent on the

expected acceptance probability � = (favg=fmax) of a node. This gives:

� = E[�j] =
i=h�1X
i=1

P (�j � i) =
i=h�1X
i=1

�i�1 (3.15)

Summing one obtains:

� =
(�h�1 � 1)

� � 1
(3.16)

The total cost is given by:

E[CEAI(s)] � s
0� + 1 (3.17)

where the last term consists of reading the root and where again one obtains:

s0 = s(��1)h�1 (3.18)

is the adjusted gross sample size to compensate for the attrition due to acceptance/rejection

sampling. Substituting the expressions for s0 from Eqn. 3.18 and � from Eqn. 3.16 and into

Eqn. 3.17 yields Eqn. 3.14 of the theorem. 2

Observe that from my de�nition of � that it must be less than h� 1, hence one obtains:

Theorem 3 The expected cost of the early abort iterative method is strictly less that the

expected cost of the naive iterative method.

Proof: Both methods must explore the same expected number of paths, as noted above

the expected path length for early abort is less than that for the naive algorithm. 2
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3.2.5 Sampling from a ranked B+ tree

In this section I discuss how to extract a �xed size simple random sample from a ranked

B+ tree �le. A ranked B+ tree �le is one whose nodes have have been augmented with

information which permits one to �nd the j0th record in the �le. I include this method as

a benchmark against which to compare the proposed new algorithms.

Suppose that one wishes to sample from a �le containing n records. One generates a

uniformly distributed random number, j, between 1 and n, and then sample the j0th record.

To do this one must be able to identify the j0th record. If the access method to the �le is a

B+ tree, then one must be able to �nd the j0th ranked record in the �le. Hence, one must

store information in the tree which allows one to calculate the rank of each record.

This idea is discussed in [Knu73]. Similar ideas are used in [BK75] and [WE80]. Essen-

tially one stores in each node of the tree a count (partial sum) of the number of leaves in

that subtree. In a binary tree [Knu73] the rank of each leaf can be calculated by suitable

sums and di�erences of the count �elds of all the nodes on the path from root to leaf. In

a B+ tree one promotes the count �elds one level in the tree so that each node stores not

only the total count of leaves in its subtree, but also the counts for each child (alongside its

key). Hence, while a rank access to the tree must still examine on average half the entries

in each B+ tree page, the number of disk pages which must be fetched is only equal to the

height of the tree. This matter is discussed in [SL88], and (for tries) in [Gho86].

The use of a ranked B+ tree for sampling is straightforward and can be attributed

to Wong and Easton [WE80]. Others have also published on the topic, e.g., Srivastava

[SL88] and Ghosh (for tries) [Gho86]. For this algorithm, which I call the ranked iterative

algorithm (denoted RI), one simply generates a random number, j, between 1 and n (the

total number of records in the �le) and then access the B+ tree via the rank �elds to retrieve

the j0th record. If there is no caching of disk pages, then each random probe retrieves a

complete path from root to leaf, consisting of h0 pages where h0 is the height of the ranked

B+ tree.

Theorem 4 The expected number of disk pages accessed for a simple random sample with

replacement of size s from a ranked B+ tree via the ranked iterative algorithm RI is:

E(CRI(s)) � s(h
0 � 1) + 1 (3.19)

where h0 is the height of the ranked B+ tree, i.e., h0 = h=(1 + logfavg(2=3)), assuming that

storing the rank �eld reduces the fan-out of internal nodes by 1=3.

Proof: If one assumes that each entry in a ranked B+ tree node is comprised of a key, a

pointer, and a rank �eld, each of equal size then the average fan-out of the ranked B+ tree

will be 2/3 the average fan-out of the standard B+ tree. (Also for the maximum fan-out.)

Thus one obtains:

h �
l
logfavg(n)

m
(3.20)

h0 �
l
log(2=3)favg(n)

m
(3.21)

Hence:

h0 � h=(1 + logfavg(2=3)) (3.22)
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In practice, B+ trees are not usually very deep, no more than 4 or 5 levels, hence the lower

fan-out of the ranked trees will usually add no more than one level to the height of the tree,

often the ranked tree will be the same height as the unranked tree, i.e., h0 = h.

The �rst path traversed from root to leaf required h0 page I/Os (the height of the ranked

B+ tree). The subsequent s�1 paths traversed may rereference the same pages (by chance).
If we assume that the cache holds one path, then the probability of rereferencing a page

at level l of the tree is approximately f�l, where f is the average fan-out, since there are

approximately f l nodes (leaves) at level l. Hence:

E(CRI(s) = h0 + (s� 1)
l=h0�1X
l=0

(f l � 1)=f l (3.23)

E(CRI(s) = h0 + (s� 1)(h0 �
l=h0�1X
l=0

1=f l) (3.24)

E(CRI(s) = h0 + (s� 1)(h0 � (f�l � 1)=(f�1 � 1)) (3.25)

E(CRI(s) � h
0 + (s� 1)(h0 � 1) (3.26)

E(CRI(s) � s(h
0 � 1) + 1 (3.27)

In e�ect, only the root page is rereferenced in the cache. 2

The performance of the various iterative algorithms (ranked, naive, early abort) is sum-

marized in Figure 3.5. Clearly, the ranked B+ tree sampling algorithm outperforms the

early abort algorithm, which in turn outperforms the naive algorithm. Note that I have

assumed that the ranked B+ tree is the same height as a regular B+ tree.

In practice, the ranked B+ tree will have a height no more than one greater, than the

corresponding B+ tree. For typical size B-trees (i.e., height 4) one would therefore expect

that the ranked B-tree sampling algorithm will always outperform the acceptance/rejection

B-tree algorithms.

However, the ranked B-tree algorithm requires that one makes serious modi�cations to

the B-tree access method code, and that one maintains the rank information in the B-tree

at all times.

As discussed earlier, duplicate removal can be performed in O(s) memory. By checking

online for duplicate random numbers, before fetching each record, one can obtain a SRS

without replacement in the same number of disk accesses.

3.3 Batch Sampling from B
+
� trees

In this section I consider batch methods of sampling from B+ trees. Such methods are

intended to reduce or eliminate the rereading of disk blocks incurred by iterative sampling

algorithms (assuming that the bu�er pool holds only one entire path through the B+ tree).

Batch sampling algorithms process the entire sample as one batch in a manner very similar

to batch searching. Batch sampling from ranked B+ trees completely eliminates rereading

disk blocks. Batch sampling of regular B+ trees via acceptance/rejection methods returns

a sample of random (i.e., binomial) size. Hence, it may occasionally be necessary to repeat
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the batch sampling process to obtain a su�ciently large sample. Generally, this can be

avoided by using an inated estimate of the gross sample size required and then randomly

discarding excess sample elements.

3.3.1 Standard B+ trees

3.3.1.1 Naive Batch

The naive batch sampling algorithm for standard B+ trees simply applies the naive

iterative algorithm in parallel. Instead of sampling paths through the tree one at a time,

one processes a batch of paths at once. Naive batch sampling from a B+ tree is very similar

to batch searching of a B+ tree. The advantage is that one can eliminate the rereading of

disk pages which can occur with the iterative algorithms.

This e�ect is most useful at higher levels of the B+ tree, at the leaves one would typically

not expect more that one sampled record per data page. In e�ect, batch sampling conducts

a depth �rst search of the B+ tree to �nd the sampled records, pursuing the same paths

through the tree as the naive B+ tree sampling algorithm, but reordering the manner of

examining the paths to avoid rereading pages.

Suppose that one has an estimate s0 of the required gross sample size needed to produce

a net sample of size s. One starts at the root with a gross sample size of s0 and proceed

with a depth �rst search of the tree.

At each internal node of the tree one allocates the incoming portion of the sample to the

various subtrees by generating a equiprobable multinomial random vector. A equiprobable

multinomial random vector from a population of size s in k cells is a vector V = (v1; v2; :::; vk)

of length k, which records the number of balls vi which fall in cell i, when s balls are thrown

in the the cells at random (equiprobably). (More generally the probability of balls falling

into each cell could vary, but one does not need this.) The uniform multinomial vector

can be generated in two ways: by generating a random branch for each of s balls and

incrementing the corresponding cell count, or alternatively by generating a Poisson random

variable for each cell, and then adjusting the resulting variable with the �rst method, so

that their sum is correct [BB84].

Only those branches with nonzero sample sizes allocated to them are pursued. Note that

I am not doing any acceptance/rejection sampling at the internal nodes, only distributing

the gross sample among the children.

Upon reaching a leaf node one performs acceptance/rejection sampling on the portion

of the gross sample allocated to this leaf to obtain the net sample size from this leaf. This

one does by generating a binomial random variable, xk � B(sk ; �k) with parameters, sk =

gross sample size allocated to this leaf, and �k =acceptance probability for this path k (as

in naive iterative algorithm).

Having determined the net sample size for a particular leaf, one extracts a simple random

sample with replacement of this size from the records on the leaf (this is trivial).

One then continues with the depth �rst search of the tree until complete. The resulting

sample may be the wrong size (because of acceptance/rejection). If the resulting sample is

too large, one discards the excess (chosen at random). If the resulting sample is too small,

one repeats the process (adding to the sample) until one has enough. For many purposes,

the exact sample size may not matter and these corrections would be unnecessary. However,
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throughout the thesis I have assumed here that the sample size is speci�ed exogenously in

the query, e.g., by a statistician, to meet requirements for reliability of hypothesis testing

or estimation accuracy. If the sample is to be used for physical inspection, e.g., in auditing,

quality control, or epidemiology, then excessive sample size can be expensive.

I show an example of the execution of the naive batch algorithm in Figure 3.6. Again

I show a B+ tree with the root at the top, internal nodes shown as ovals, keys as dots,

pointers as solid arrows, and leaves as boxes. In this example one begins at the root with

a gross sample size of 100. The gross sample is allocated among the 4 subtrees emanating

from the root by computing a uniform multinomial random vector (of length 4). Here I

show the vector as (18,33,20,29), i.e., the numbers next to the solid arrows (representing

pointers). One continues, as if performing a depth �rst search. Thus the leftmost node

at the second level has been allocated 18 elements of the gross sample size. These are

apportioned according to a uniform multinomial random vector of length 3 (because there

are only 3 pointers emanating from this node). The multinomial random vector here is

(7,9,2). At the third level I have shown a node with a gross sample size of 2, which is

allocated among the child nodes by a uniform multinomial random vector of length 3, viz.

(0,2,0). At the fourth level I have shown a node with a gross sample size of 2, which is

allocated among the 3 leaves by a uniform multinomial random vector of length 3, viz.

(0,1,1). At each leaf, one generates a binomial random variable, xi � B(ni; pi), where ni is
the gross sample size allocated to the leaf and pi is the acceptance probability, i.e., bi=bmax,

the ratio of the number of records in leaf i, to the max. number of records in any leaf.

Code for the naive batch sampling algorithm is shown in Figure 3.7.

Lemma 3 Cardenas's Lemma The expected number of disk blocks referenced, d, when

sampling k records (with replacement) from a �le of m equal size blocks is given by:

d = m(1� (1� (1=m)k)) (3.28)

Denote this function of m and k as Y (k;m).

Proof: See [Yao77]. 2

For the naive batch method, the e�ort to retrieve a gross sample of size s0, is the same

as the e�ort to perform batch searching on a B+ tree, with the same batch size.

Theorem 5 The expected cost in I/O to retrieve a sample of size s via the naive batch

sampling method is approximately:

E(CNB(s)) � 1 +

j=h�1X
j=1

Y (s0; f0f
j�1) (3.29)

where f = favg and and s0 = s(��1)h�1 (inated gross sample size) as before.

Proof: As before, one uses a gross sample size of s0 to compensate for the losses due

to acceptance rejection. This theorem is a derived by applying Cardenas's Lemma (Lemma

3) for each level of the tree. It is assumed that all nodes have fan-out f = favg, except the

root which has fan-out f0.
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A path in the B+ tree generated by the naive batch method.

multinomial (18,3)

multinomial (100,4)

multinomial (2,3)

multinomial (2,3)

initial sample size = 100

18 33 20 29

7 9 2

2
0 0

0 1 1

binomial sampling
at the leaves

Figure 3.6: Example of Naive Batch Method of Sampling from B+ tree
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function BATCHBTREE(s , p, thisnode);

/* This procedure will return a simple random sample */

/* with replacement of size at most s from a B+ tree*/

/* p is the acceptance probability (initially set to 1.0)*/

/* thisnode points to the (sub)tree */

declare integer x(fmax) ;

/* x is a vector to hold a multinomial sample */

/* fmax is the max. fan-out per node */

begin

k := s

if thisnode = root then

sample := nil /* initialize sample */

p := 1.0 /* initialize acceptance probability */

else /* this is not the root */

/* so adjust acceptance probability */

p := p � (fthisnode=fmax);

endif

if thisnode 6= leaf then

/* generate a multinomial sample of size k from fthisnode bins */

x := MULTINOMIAL (k, fthisnode)

/* Recursively sample from each branch, according to the */

/* multinomial sample */

for i = 1 to fthisnode do

if xi 6= 0 then

Append (sample, BATCHBTREE(xi, p, thisnode.nodeptr[i]));

endif

endfor

else /* this is a leaf */

k := BINOMIAL (k, p) ; /* do acceptance rejection sampling */

if k > 0 then

/* obtain a simple random sample with replacement of size k */

/* from this page, append it to the sample being created */

Append (sample, SRSWRONPAGE (k, thisnode));

endif

endif

return(sample);

end

Figure 3.7: Code for naive batch A/R sampling from B+ tree
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function BATCHBTREEX(s , p, thisnode);

/* This procedure will return a simple random sample */

/* with replacement of size at exactly s from a B+ tree*/

/* It simply calls BATCHBTREE until it gets a large enough sample */

/* h is the height of the B+ tree */

/* s is the sample size */

/* p is the acceptance probability (initially set to 1.0) */

/* thisnode points to the (sub)tree */

sample := nil ;

j := k ;

while j > 0 do

Append (sample, BATCHBTREE(inate(j, h), p, rootnode));

j := k - count(sample);

endwhile

if count(sample) > s then

/* delete excess elements from sample */

delete (sample, count(sample) - s );

endif

return(sample); end;

function inate (s, h);

/* This function returns an inated gross sample size */

/* to compensate for the e�ects of the acceptance/rejection */

inate := fudgefactor * (fmax=favg)
h�1 ; end;

Figure 3.8: Code for naive exact batch A/R sampling from B+ tree
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Let us number the levels 0, 1, 2, ..., h-1 from root to leaf, and let j denote the level

number.

For level 0, one has s0 records, 1 block (the root). For level 1, one still has s0 records,

and f0 blocks. For level 2, one has s0 records, and f0f blocks. Thus for level j, j > 1,

one has s0 records and f0f
j�1 blocks, hence by Cardenas's Lemma the number of blocks

accessed at level j will be Y (s0; f0f
j�1). Summing yields the theorem. 2

3.3.1.2 Early Abort Batch Method

The early abort batch method is simply the batch analog of the early abort itera-

tive method. It is similar to the naive batch method, di�ering only in that the accep-

tance/rejection sampling is performed (by computing binomial samples) at each node (ex-

cept the root) as one searches from root to leaf. Recall that the naive batch algorithm only

does an acceptance/rejection test at the leaf. As was the case with the iterative methods,

the early abort batch method dominates the naive batch method, because it avoids ever

having to reread any disk pages.

Thus one commences a depth �rst search at the root with a gross sample size of s0.

At the root, and each subsequent internal node, one allocates the incoming sample to the

various branches by means of a multinomial random vector. Only those branches with

nonzero sample sizes allocated to them are pursued.

At each level beyond the root, one performs acceptance/rejection sampling of the in-

coming sample by generating a binomial random variable, xi � B(si; �) with parameters

si, (the incoming sample size), and acceptance probability �i (as in the iterative early abort

algorithm). The resulting net sample size for the node is then allocated the branches via

a multinomial random vector. Only those branches with nonzero sample sizes allocated to

them are pursued.

I show an example of the execution of the naive batch algorithm in Figure 3.9. Again I

have shown a B+ tree with the root at the top, internal nodes shown as ovals, keys as dots,

pointers as solid arrows, and leaves as boxes. In this example one begins at the root with

a gross sample size of 100. The gross sample is allocated among the 4 subtrees emanating

from the root by computing a uniform multinomial random vector (of length 4). Here I

show the vector as (18,33,20,29), i.e., the numbers next to the solid arrows (representing

pointers). One continues, as if performing a depth �rst search. Thus the leftmost node at

the second level has been allocated 18 elements of the gross sample size. Because this node

has only 3 pointers emanating from it (vs. a maximum of 5), one computes the accepted

gross sample size for this node as binomial random variable distributed as B(5; 3=5), here

assumed to be zero. At this point the one abandons this search path, backtracks to the

most recent unexplored pointer with a nonzero gross sample size allocated and continues.

At each leaf, one generates a binomial random variable, xi � B(ni; pi), where ni is the

gross sample size allocated to the leaf and pi is the acceptance probability, i.e., bi=bmax, the

ratio of the number of records in leaf i, to the max. number of records in any leaf. One then

extracts a simple random sample with replacement of size xi of the records on the page.

Inadequate net sample sizes are dealt as described above for the naive batch sampling

algorithm. Code is shown in Figure 3.10.
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multinomial (100,4)

initial sample size = 100

18 33 20 29

12

5 2 5

binomial (18, 0.6)

multinomial (12, 3)

0
path aborted

A path in the B+ tree generated by the early abort batch method.
The maximum fan−out is 5. 

binomial (5, 0.6)

Figure 3.9: Example of Early Abort Batch Method of Sampling from B+ tree



CHAPTER 3. RANDOM SAMPLING FROM B+
TREES 58

function EBATCHBTREE(k , thisnode);

/* This procedure will return a simple random sample */

/* with replacement of size at most k from a B+ tree*/

/* k is the sample size */

/* thisnode points to the (sub)tree */

declare integer x(fmax) ;

/* x is a vector to hold a multinomial sample */

/* fmax is the max. fan-out per node */

begin

if thisnode = root then

sample := nil /* initialize sample */

else /* this is not the root */

/* so compute new sample size, in e�ect doing batch */

/* acceptance/rejection sampling */

p := (fthisnode=fmax);

k := BINOMIAL (k, p) ;

endif

if thisnode 6= leaf then

/* generate a multinomial sample of size k from fthisnode bins */

x := MULTINOMIAL (k, fthisnode)

/* Recursively sample from each branch, according to the */

/* multinomial sample */

for i = 1 to fthisnode do

if xi 6= 0 then

Append (sample, BATCHBTREE(xi,thisnode.nodeptr[i]));

endif

endfor

else /* this is a leaf */

if k > 0 then

/* obtain a simple random sample with replacement of size k */

/* from this page, append it to the sample being created */

Append (sample, SRSWRONPAGE (k, thisnode));

endif

endif

return(sample);

end

Figure 3.10: Code for early abort batch A/R sampling from B+ tree



CHAPTER 3. RANDOM SAMPLING FROM B+
TREES 59

function EBATCHBTREEX(s , p, thisnode);

/* This procedure will return a simple random sample */

/* with replacement of size at exactly s from a B+ tree*/

/* It simply calls EBATCHBTREE until it gets a large enough sample */

/* h is the height of the B+ tree */

/* s is the sample size */

/* p is the acceptance probability (initially set to 1.0) */

/* thisnode points to the (sub)tree */

sample := nil ;

j := k ;

while j > 0 do

Append (sample, EBATCHBTREE(inate(j, h), p, rootnode));

j := k - count(sample);

endwhile

if count(sample) > s then

/* delete excess elements from sample */

delete (sample, count(sample) - s );

endif

return(sample);

end;

function inate (s, h);

/* This function returns an inated gross sample size */

/* to compensate for the e�ects of the acceptance/rejection */

inate := fudgefactor * (fmax=favg)
h�1 ;

return(inate);

end;

Figure 3.11: Code for exact early abort batch A/R sampling from B+ tree



CHAPTER 3. RANDOM SAMPLING FROM B+
TREES 60

For the early abort batch method, the analysis is more complicated. The search paths

which are aborted early do not generate as many page accesses. If one numbers the levels

from 0 to h, denoting by level i the node at distance i from the root, then at level i, i > 0,

one will access ki records from f0favg
i�1 pages, where ki is approximately a binomial random

variable with expectation s0 ��i�1, where I have ignored the variation in fi, replacing it with
favg.

Theorem 6 The expected I/O cost to retrieve a simple random sample of size s0 via the

early abort batch sampling method is approximately:

E(CEAB(s)) � 1 +

j=h�1X
j=1

Y (s0�j�1; f0f
j�1) (3.30)

where f = favg and s0 = s(��1)h�1 (inated gross sample size) as before, and Y(k,m) is

Cardenas's function de�ned above.

Proof: As before, one uses a gross sample size of s0 to compensate for the losses due

to acceptance/rejection. This theorem is derived by applying Cardenas's Lemma (Lemma

3) for each level of the tree. It is assumed that all nodes have fan-out f = favg, except the

root which has fan-out f0.

Let us again number the levels 0, 1, 2, ..., h-1 from root to leaf, and let j denote the

level number.

For level 0, one has s0 records, 1 block (the root). For level 1, one still has s0 records,

and f0 blocks. For level 2, one has s
0� records (because one has done acceptance/rejection

at level 1), and f0f blocks. Thus for level j, j > 1, one has s0�j�1 records and f0f
j�1

blocks, hence by Cardenas's Lemma the number of blocks accessed at level j will be

Y (s0�j�1; f0f
j�1). Summing yields the theorem. 2

3.3.2 Ranked B+ trees

Finally, consider batch sampling of ranked B+ trees. One simply generates a simple

random sample of the ranks, sort it, and then perform a batch search of the ranked B+

tree �le. Alternatively one could use Vitter's algorithm [Vit84] to generate the sequential

skips required to determine the ranks of the sampled records. (Note that Vitter's algorithm

generates a simple random sample without replacement, rather than with replacement. This

is easily corrected.) I am only concerned here with I/O costs and I assume that the sample

of ranks can easily �t in memory.

Assume that one has a cache large enough to hold a complete path through the tree

from root to leaf, so that reexamining pages along this path required to retrieve the sample

is costless (in terms of disk I/O). Then batch sampling is equivalent to batch searching of

a B+ tree, a classic problem treated by [Pal85] (among others). Essentially, the number

of pages to be retrieved is simply the number of distinct pages in the union of all paths to

sampled pages.

The only di�culty is that storing the rank information reduces the fan-out of the in-

ternal nodes, thereby increasing the search path length. Assume that typical nodes in a

standard B+ tree contain pairs of (key, pointer), whereas ranked B+ trees contain triples
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(key, pointer, partial rank sum). If one assumes that each key, pointer and rank occupy

the same space, then the maximum fan-out of a ranked B+ tree will be approximately 2=3

that of a normal B+ tree with the same blocksize. As noted in the discussion of the ranked

iterative algorithm, this will typically make no di�erence in the height of the B+ tree.

Theorem 7 The expected I/O cost to retrieve a simple random sample of size s from a B+

tree via the ranked batch sampling method is approximately:

E(CNB(s)) � 1 +

j=h�1X
j=1

Y (s; f0f
j�1) (3.31)

where f = favg, f0 is the fan-out of the root, and Y (k;m) is Cardenas's function de�ned

above.

Proof: The proof is identical to that of Theorem 5, except that one does not need to

inate the sample size since one is not doing acceptance/rejection sampling. 2

3.3.3 Comparisons

It is clear that the batch algorithms will dominate the respective iterative algorithms,

because they avoid rereading disk blocks which are used in more than one sample path. The

extent of the saving will depend on the proportion of the B+ tree which is read. However,

even if there is no saving in terms of reading leaves, one would expect signi�cant savings at

upper levels of the B+ tree (close to the root).

I have the following result on early abort batch vs. naive batch algorithms:

Theorem 8 The early abort batch outperforms naive batch.

E[CEAB(s)] � E[CNB(s)] (3.32)

Proof: This result follows from the cost functions and the fact that Cardenas's functions

Y (k;m) is monotone increasing in k (the sample size). 2

The relationship between the performance of the ranked batch algorithm and the early

abort batch algorithm is more subtle. Because the ranked batch algorithm may increase

the height of the B+ tree it is possible that RB will perform worse than EAB. However,

more typically RB will not increase the height of the B+ tree and will out-perform EAB.

How big is the di�erence between E[CRB(s)] and E[CEAB(s)]? It is clearly less than

a factor of (��1)h�1, the factor by which one inates the gross sample size of EAB to

compensate for the attrition due to acceptance/rejection sampling. For random B+ trees �

is known to be 0:7. Hence for a random B+ tree of height 5, the methods di�er by a factor

of no more than 4.

3.4 Conclusions

The most important results of this chapter concern algorithms to retrieve simple random

samples of B+ trees, without any additional data structures or indices. The new methods

are based on acceptance/rejection sampling, and provide a simple, inexpensive way to add
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sampling to a relational database systems. They are appropriate for systems which only

infrequently need to support sampling, e.g., for auditing.

I began by considering iterative acceptance/rejection algorithms. It is clear that the

early abort iterative algorithm is always preferred to the naive algorithm. For realistic

B+ trees, the ranked tree iterative sampling algorithm will always outperform the early

abort iterative acceptance/rejection sampling algorithm. However, ranked B+ trees require

additional maintenance during insertions/deletions. Hence, they may be unacceptable in

heavy update tra�c environments.

I then considered batch sampling algorithms, the sampling analogs of batch search

algorithms.. The batch early abort algorithm again outperforms naive batch sampling. As

in the case of batch searching, batch sampling is more e�cient than iterative sampling. The

story for sampling ranked trees is much the same as before, i.e., ranked sampling is faster

but requires more update maintenance.

I published a preliminary version of this chapter in 1986 [OR86]. Subsequently, An-

toshenkov [Ant92], described an improved sampling algorithm for compressed B+ trees,

which is a hybrid of the acceptance/rejection and ranked B+ tree algorithms described in

this chapter. Compressed B+ trees use front-compression on the keys (and variable size

records in the leaves). The larger variability in fan-outs causes the the acceptance/rejection

algorithms described in this chapter to become much less e�cient.

Antoshenkovmaintains bounded approximations of rank statistics, which he calls pseudo-

ranks. By allowing some slop in the counts stored in each node, Antoshenkov avoids the

need to propagate changes in the counts all the way up the tree on each modi�cation to

the tree (insert/delete). He is thus able to dramatically reduce the cost of updating the

rank statistics. Note that although the root page (and perhaps the next level) of the tree

is cached, modi�cations would still require writing the page(s) to disk. He then uses ac-

ceptance/rejection sampling to correct for inaccuracies in the approximate rank statistics.

By carefully controlling the allowable errors in the rank statistics he can make the accep-

tance/rejection sampling quite e�cient. For compressed B+ trees Antoshenkov's algorithm

is clearly preferable.

Finally, it may be the case that one wishes to apply a selection predicate to the records

sampled from the B+ tree. Hence, it may be very di�cult to accurately estimate the

required gross sample size needed for the batch sampling algorithms. In such cases, a two

stage sampling algorithm may be desirable. The �rst stage of which is used to estimate the

predicate selectivity needed to compute the gross sample size for a second batch sampling

operation.



Chapter 4

Sampling from Hash Files

4.1 Introduction

In this chapter I continue my discussion of sampling from base relations, examining

techniques for simple random sampling from hash �les on secondary storage. If B+ trees

are the most popular access method used in DBMSs, then hash �les are surely the second

most popular. I consider both iterative and batch sampling algorithms from static and

dynamic hash �les.

The main contribution of this chapter is to show that one can introduce simple random

sampling of hash �les without substantial modi�cation to the data structures or substantial

increase in normal costs of accessing or updating the hash �les. I provide detailed cost

formulae, supporting simulations, and I show the relationship of sampling costs to the cost

of searching the same data structures.

I �rst consider static hash �les of two types: open addressing (any method which re-

hashes bucket overow into the primary area) and separate overow chaining (in which

each primary bucket has a separate chain of overow pages). See [Knu73] for a detailed

exposition and analysis of these hashing methods.

The many dynamic hashing methods can be classi�ed according to whether or not they

employ some sort of directory. I consider one method from each class: Linear Hashing by

Litwin [Lit80] (no directory) and Extendible Hashing by Fagin [FNPS79] (directory).

For each hash �le I consider iterative methods, which repeatedly extract a sample of size

one until they accumulate a sample of the requisite size. I then consider batch sampling

methods, which are modelled on batch retrieval methods, treating batch sampling of open

addressing hash �les in detail. Batch sampling avoids rereading of the same page twice,

which can occur in iterative sampling. I also discuss the use of sequential scan sampling

methods.

For both of the dynamic hashing methods I consider both naive sampling methods and

more sophisticated methods which exploit the structure of the dynamic hash �le, i.e., two-

�le method for Linear Hashing and double acceptance/rejection sampling for Extendible

Hashing. I show that the more sophisticated methods have better performance.

63



CHAPTER 4. SAMPLING FROM HASH FILES 64

4.1.1 Organization of Chapter

The remainder of the chapter is organized as follows. In Section 4.2 I discuss sampling

from open addressing hash �les, In Section 4.3 I treat sampling from separately chained

overow hash �les, In Section 4.4 I examine sampling from Linear Hash [Lit80] �les. In Sec-

tion 4.5 I present sampling from Extendible Hash [FNPS79] �les. Batch and sequential scan

sampling methods are discussed in Section 4.6. I present experimental results (simulations)

in Section 4.7. Finally, Section 4.8 contains conclusions.

The notation used in this chapter is explained in Table 4.1. Abbreviations for algorithms

are given in Table 4.2.

4.1.2 Notation

Throughout the chapter, for a variable x, I will use �x to denote the average of x and

xmax to denote the maximum of x, for any quantity x. Other notation used in this chapter

is summarized in Table 4.1. Individual notations are explained in the text where they are

�rst used. Here I mention some of the notational conventions. The desired sample size is

denoted as s, whereas s0 denotes the inated sample size (i.e., to compensate for losses due

to acceptance/rejection sampling). The number of records in the �le is denoted n. The

number of hash buckets in the �le is m. I denote the fan-out of an B+ tree node as fi,

the average fan-out as favg, and maximum fan-out as fmax. The occupancy (in records) of

hash bucket i is denoted bi, the average will be �b, and the (actual) maximum will be bmax.

The maximum possible bucket occupancy will be denoted as b
. Overow chain length for

hash bucket i is denoted as hi. Acceptance probabilities of records are denoted �k, and

the expectation as �. The expected cost (in disk page accesses) of retrieving a sample of

size s by a method M is denoted as CM(s). For extendible hash �les, ci will denote the

occupancy (in records) of i0th directory cell, while di will denote the occupancy (in records)

of the i0th data page. For batch sampling, one will need to know the expected number of

blocks referenced when retrieving k records (at random) from a �le containing m blocks,

this will be denoted Y (k;m) (Cardenas's function).

Abbreviations used to refer to the various types of hash �les in this chapter are summa-

rized in Table 4.2. Algorithms are then named by appending either an \I" or a \B" su�x. I

use the su�x \I" to indicate iterative algorithms, which select sample one record at a time.

Such algorithms naturally return simple random samples with replacement (duplicates)

(SRSWR) but can be modi�ed to return simple random sample random samples without

replacement by removing duplicates. I use the su�x \B" to denote batch algorithms, which

are the sampling analog of batch search algorithms in trees. Such algorithms naturally

return simple random samples without replacement (no duplicateds, denoted SRSWOR),

but can be modi�ed to return simple random samples without replacement by synthetically

generating duplicates.

4.2 Open Addressing Hash Files

In this section I discuss how to sample from open addressing hash �les [Knu73], i.e.,

those hash �les in which overow records are rehashed into the primary �le. Database
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�i acceptance probability of record i

� = E(�k) = expected acceptance probability of record

bi bucket occupancy for bucket i
�b = n=m = average hash bucket occupancy (records)

bmax max. hash bucket occupancy (records)

b
 max. hash bucket capacity

ci occupancy (records) of i0th directory cell (Extendible Hash

Files)

di occupancy (records) of i0th data page (Extendible Hash Files)

hi chain length for bucket i (pages)

h average chain length (pages)

hmax maximum chain length (pages)

CM(s) expected cost of retrieving sample of size s, via method M

m number of buckets in the �le

n number of records in �le

pk probability of inclusion of record k

s number of records desired in sample

s0 inated sample size (to compensate for acceptance/rejection)

Table 4.1: Notation used in Chapter 4 on Sampling from Hash Files.

OA Open addressing [Knu73]

SO Separate Overow Chaining [Knu73]

LH Linear Hash �les [Lit80]

EX Extendible Hash �les [FNPS79]

Table 4.2: Hash File abbreviations



CHAPTER 4. SAMPLING FROM HASH FILES 66

management systems do not typically use this method of hashing. I include this hash

method, because it permits me to explain the basic ideas of sampling from hash �les in a

simple setting. Subsequently, I discuss more complex (and realistic) hash access methods.

This algorithm for sampling from hash (or any variably blocked �le) was described in

[OR90] and [ORX90] (where it was applied to hash �les). DeWitt et al. [DNSS92] subse-

quently adapted this sampling method for use percentile estimation in variably blocked �les

and called it extent map sampling. In DeWitt et al.'s paper the �le structure is represented

via an extent list (i.e., a list of contiguous regions on disk allocated to consecutive logical

disk blocks, as used in DEC/VMS operating system), so that the i0th block can be located

by an in-memory search of the extent list. DeWitt et al. used a form of cluster sampling,

using all of the tuples contained on each disk page read. Otherwise, the algorithms are the

same.

I discuss iterative methods, which repeatedly extract a sample of size one until they have

accumulated su�cient size sample. Batch methods, which are based on batch retrieval, are

discussed later, in Section 4.6.

For this analysis I adopt the uniform hashingmodel [Knu73, pp. 527-528], which assumes

that the hashing functions randomize the placement of records in buckets. This is a crucial,

but conventional, assumption of the analyses throughout this chapter.

For the purpose of sampling, an open addressing hash �le may be viewed simply as a

variably blocked �le, irrespective of the particular hash function used to place the records

into pages. Thus these sampling methods are generally applicable to any type of �le for

which the number of records per page varies. This may arise either because the individual

record sizes vary (with a �xed block size), or because updates to the �le have resulted in

variable numbers of records/block, or because hashing has been used to place records in

blocks.

4.2.1 Iterative Algorithm

Given a hash (variably blocked) �le, which contains n records, stored in m contiguous

buckets on disk, where the i0th bucket contains bi records. denote by bmax the maximum of

the bi's. In Figure 4.1 I describe an acceptance/rejection algorithm, ARHASH, for obtaining

a single random sample from such a �le. This procedure must be repeated s times to obtain

a sample of size s. The algorithm uniformly chooses a block (bucket, or disk page), i, at

random, and then does acceptance/rejection test on the block with acceptance probability,

�i, proportional to the number of records in the bucket:

�i = bi=bmax (4.1)

The next lemma shows that algorithm ARHASH gives every record the same inclusion

probability.

Lemma 4 Each record has an equal probability of 1
n
of being chosen into the sample by

algorithm ARHASH.

Proof: A speci�c record will be accepted during a single iteration of the while loop if

its bucket has been chosen and it is selected within that bucket. This event occurs with
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procedure ARHASH ;

/* This procedure samples one record from a variably blocked �le, */

/* such as an open addressed hash �le. */

/* */

/* It uses acceptance/rejection sampling to compensate for */

/* variable bucket (page) loading, so as to assure uniform */

/* inclusion probabilities for each record. */

comment accepted is a boolean variable which indicates when a sample was accepted.

Set accepted to false;

while accepted=false do

/* generate a random bucket (page) no. between 1 and m */

r := RAND(1; m);

/* generate a random record no. (in the bucket) between 1 and bmax */

j := RAND(1; bmax);

Read bucket r;

if j � br then
accept the j0th record of bucket r into the sample

and set accepted to true ;

endwhile.

Figure 4.1: Algorithm for sampling from a hash �le (variably blocked)
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probability p where:

p =
1

m

1

bmax
(4.2)

Since this probability is the same for all records in the �le one can conclude that the

probability P of accepting some record in the �rst execution of the loop is:

P =
n

m� bmax

(4.3)

Denote by Q the probability of rejecting a bucket in this iteration, i.e., Q = 1 � P . A

speci�c record, will be accepted during the i0th execution of the loop if no record is accepted

for the �rst i � 1 executions of the loop followed by an acceptance on the i0th execution.

The probability of this event is Qi�1p . Summing for i between 1 and in�nity one gets

p
1

1� Q
=
p

P
=

1

n
(4.4)

as required. 2

Lemma 5 The expected number of disk accesses to obtain one random sample is

E[CARHASH(1)] =
m� bmax

n
= bmax=�b (4.5)

Proof: As was shown in the previous lemma, the probability of accepting some record in

each execution of the loop is P . Therefore the number of reads until a record is accepted is

a random variable with geometric distribution with parameter P . The expected value for

this random variable is
1

P
=
m� bmax

n
as required. 2

For heavily loaded hash tables bmax is e�ectively bounded by the page capacity, b
.

Hence, the e�ciency of the sampling method will be inversely proportional to the storage

utilization (occupancy ratio), �b=b
.

4.3 Separate Overow Chain Hash Files

In this section I consider sampling from hash �les which have separate overow chains

for each bucket in the primary �le area [Knu73, pp. 535]. I use bucket to refer to the hash

partition function, and primary (overow) page(s) to refer to the primary (overow chain)

page(s) of a bucket.

4.3.1 Iterative Algorithm

The iterative algorithm selects a bucket at random, then does acceptance/rejection test

with acceptance probability, �i = bi=bmax as in the open addressing hash �le. If the bucket

is accepted one must then sample one record from the bucket, this may require reading

some of the overow pages. One repeats this until one obtains the desired sample size.

Let dmax = the maximum number of records per page and bmax = the maximum number

of records per hash bucket.
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Theorem 9 Consider a hash �le with chained overow (separate or common), which stores

a count of the records in a bucket in the primary page for the bucket, Let S(H; 1) = the

expected cost of a successful search of hash �le H for a single record. The expected cost of a

simple random sample of size one from hash table H is C(H; 1):

C(H; 1) = (
bmax

b
� 1) + S(H; 1) (4.6)

Proof: The �rst term, ( bmax

b
� 1) is the cost of the rejected buckets. It is the expecta-

tion of a geometric distribution with success probability equal to the average acceptance

probability, b=bmax minus the cost of the �rst page read in a successful search.

Once one has accepted the bucket, S(H; 1) gives us the expected search cost within the

bucket. It is equal to the expected cost of a successful search because accepted records have

been chosen at random (uniformly) from the entire �le. 2

Corollary 1 The expected cost of iterative sampling of size 1 from separate overow hash

�les is:

CSOI(H; 1) = (
bmax

b
� 1) + SSOI(H; 1) (4.7)

where SSOI(H; 1) is the expected cost a successful search of a hash �le with separate overow

chaining:

SSOI(H; 1) = 1 + (1=b)
1X
k=1

k

dmaxX
j=1

(k � 1)dmax

2
+ jP (kdmax + j; b) (4.8)

where P (i; �) is the Poisson distribution:

P (i; �) =
e���i

i!
(4.9)

Proof: Result follows from Theorem 9 and from the derivation of S(H; 1) given by [Lar82].

Note that this notation di�ers from Larson's. 2

4.4 Linear Hashing

In this section I consider sampling from Linear Hash �les [Lit80]. I �rst give a brief

overview of the method. Linear hash �les are based on static separately chained overow

hash �les. Initially the �le has m buckets in the primary area numbered from 0 to m � 1.

For simplicity, assume that a key k is hashed into a bucket using the hashing function

h1(k) = k mod m. As the loading of the �le increases one gradually splits buckets in order

from bucket 0 tom�1. The decision whether to perform a split is based on a split criterion

set by the designer which is evaluated after each key insertion. Splitting of buckets continues

as long as the split criterion is true. An example of such a split criterion is \maximum

length of an overow chain exceeds 3 pages".

Now I describe a single split operation. The split pointer P initially points to bucket

0 and is incremented by 1 after every split so that it always points at the next bucket to
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0 1 2 3 4 m−1 m m+1 m+2 m+3

P
H

s
H
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u

A linear hash file, in which the first 4 buckets have been split.
The dashed lines indicate the bucket region of each subfile.

Figure 4.2: Drawing of Linear Hash File

be split. The split operation of bucket i consists of creating a new bucket numbered i+m

(appending it to the end of the �le) and rehashing all the records in the original bucket i

into either bucket i or i+m using a new hash function h2(k) = k mod (2m). When all the

original buckets have been split, the �le has doubled in size. After each doubling of the �le,

the pointer P is reset to point at bucket 0 and the two hashing functions used are set to:

h1(k) = k mod (2jm) and h2(k) = k mod (2j+1m), where j is the number of �le doublings

which have occurred.

This naturally leads us to model a Linear Hash �le as two distinct separate overow

chain hash �les, Hs and Hu where Hs is comprised of the split buckets, and Hu comprised

of the unsplit buckets. These two hash �les di�er in the number of buckets, and the average

bucket loading. Let ms and mu denote the number of buckets in Hs and Hu respectively

and let ns and nu denote the number of records in these two �les. See Figure 4.2.

One has two ways of sampling from the linear hash �le. In the 1-�le method one treats
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the entire hash �le as a single variably blocked �le. In the 2-�le method one samples from

the two sub�les, Hs and Hu separately, taking advantage of their di�erent structure.

4.4.1 One-�le Method

The 1-�le method is essentially ARHASH algorithm for variably blocked �les applied to

hash buckets. Upon accepting a bucket, one must select a single record from the bucket at

random. This may entail additional accesses to overow pages. As for ARHASH, the 1-�le

method requires that one maintains bmax, the maximum bucket occupancy.

Theorem 10 The expected cost of iterative sampling a sample of size 1 from a Linear Hash

�le using the one-�le method is:

CLHI1(H; 1) = (
bmax

b
� 1) + (

nu

n
)SSOI(Hu; 1)

+(
ns

n
)SSOI(Hs; 1) (4.10)

where SSOI(H; 1) is the expected cost of a successful search of a hash �le with separate

overow chains, given in Equation 4.8.

Proof: The �rst term ( bmax

b
� 1) is simply the expected number of rejected buckets. The

second and third terms are the weighted average of the cost of searching in the split and

unsplit hash �les for accepted records. 2

4.4.2 Two-�le Method

The 2-�le method requires that one maintains the counters ns and nu, m the number

of buckets, bsmax, the maximum bucket occupancy of split buckets, bumax, the maximum

bucket occupancy of unsplit buckets, and �nally the pointer P whose value partitions the

split and unsplit buckets and hence determines ms and mu.

To obtain a sample of size 1 with the iterative 2-�le method one randomly chooses one

of the �les Hs or Hu with probability ns
n
and nu

n
respectively, and then proceed to sample

from that �le.

Theorem 11 The expected cost of iterative sampling a sample of size 1, from a Linear

Hash �le using the two-�le method is:

CLHI2(H; 1) = (
nu

n
)CSOI(Hu; 1) + (

ns

n
)CSOI(Hs; 1) (4.11)

Proof: The cost is a weighted average of the cost of sampling from the split and unsplit

sub-�les, where the weights are the probability of choosing the corresponding sub�le. Thus,

the �rst term is the probability of selecting the sub-�le of unsplit buckets times the cost of

iteratively sampling from a separate overow chained hash �le with corresponding number

of blocks equal to the number of unsplit buckets, and population equal to the number of

records in the unsplit portion of the �le. The second term accounts for the sub-�le of unsplit

buckets. 2
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Substituting for CSOI from Corollary 1 yields:

CLHI2(H; 1) = (
nu

n
)

�
(
bumax

bu
� 1) + SSOI(Hu; 1)

�

+(
ns

n
)

�
(
bsmax

bs
� 1) + SSOI(Hs; 1)

�
(4.12)

Theorem 12 The expected cost of iterative sampling a linear hash �le with the 2-�le method

is always less than or equal to the expected cost of sampling with the 1-�le method.

CLHI1(H; 1) � CLHI2(H; 1) (4.13)

Proof: Subtracting the two cost formulae gives:

CLHI1 � CLHI2 = (
bmax

b
)�

�
nu

n

bumax

bu
+
ns

n

bsmax

bs

�
(4.14)

Substituting bu = nu=mu, bs = ns=ms, b = n=m,

CLHI1 � CLHI2 =

�
m

n
�

�
mu

n

bumax

bmax

+
ms

n

bsmax

bmax

��
bmax (4.15)

Since bumax=bmax � 1 and bsmax=bmax � 1 one obtains the following bound:

CLHI1 � CLHI2 �

�
m

n
�
(mu +ms)

n

�
bmax (4.16)

� (m=n�m=n)bmax (4.17)

� 0 (4.18)

CLHI1 � CLHI2 (4.19)

Q.E.D. 2

Thus the di�erence in performance of the 1-�le and 2-�le methods arises from excessive

rejections by the 1-�le method due to large di�erences in the bucket occupancies between

the two �les.

4.5 Extendible Hashing

In this section I consider Extendible Hash (EX) tables as described by Fagin, et al. in

[FNPS79]. In order to make this presentation self-contained I provide a brief review of

extendible hashing while introducing my notation for the parameters which are relevant for

sampling.

An Extendible Hash �le consists of data pages in which the records are stored, and a

directory D which is an array of pointers such that each entry D[j] contains a pointer to

a data page, which is denoted as pj . Since more than one directory entry may point to

a data page, the data page may have multiple names in my notation. Depending on its

size, the directory may be either memory or disk resident. The size of D is controlled by
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a parameter called directory depth denoted by dd which is set initially by the designer to

some value and is incremented (or decremented) dynamically as the �le grows or shrinks.

The number of entries in the directory D is set to 2dd. A record is inserted (and searched)

by applying a hash function h to its key k such that h(k) is a number between 0 and 2dd�1
and then following the pointer in D[h(k)] to the required page.

Each data page pi (i.e., page pointed at by directory entry D[i]) contains in addition to

its records two counters, di and pdi. The �rst counts how many records reside on the page

and the second is called page depth and its signi�cance will be explained below. Initially

when the �le is empty, all directory entries point to a single empty page in which both these

counters are set to 0.

When page pi becomes full it is split by moving some of its keys to a newly created

page called its twin page. The idea is to always keep on the same page all the records

with keys k which agree on their �rst (most signi�cant) pdi binary digits in h(k). For this

reason, each time a page pi is split, the value of pdi is incremented by 1 and this new value

is also assigned as the page depth of the twin page. The records moved to the twin page

are exactly those whose key k has a 1 in the pdi
0th most signi�cant binary digit of h(k).

This movement of records must also be reected in the directory D so that exactly half

of the directory entries containing pointers to page pi are set to point to the twin page.

These are all D[x] pointing to page pi (D[x] = D[i]) such that the pdi
0th binary digit of x

is equal to 1.

As the �le become more heavily loaded the data pages are repeatedly split so that

eventually data pages are pointed at by a single directory entry. When such a page overows,

one is forced to double the size of the directory. This is done by incrementing dd (directory

depth) and splitting each previous entry into two entries by copying the pointer in it to

both copies.

For the purpose of sampling one is interested in one additional quantity, namely, the

number of directory entries which point at page pi. Denote this quantity by gi. The value

of gi can be easily computed from the previously de�ned counters as follows:

gi = 2dd�pdi (4.20)

The reason for this is that initially gi = 2dd, and each time a page is split its page depth is

increased by 1 and the number of entries pointing at it is reduced by a half.

When one samples from Extendible Hash �les one needs to access data pages via the

directory D and therefore always start by picking a random directory entry D[j]. For

simplicity I will assume here that the directory is in memory, otherwise the costs have to

be adjusted for disk accesses to the directory.

I now examine two ways of proceeding with acceptance/rejection sampling: double A/R

page sampling, and A/R cell sampling.

4.5.1 Double A/R page sampling

As mentioned above, one starts by picking a random directory entry D[j]. As usual, one

wants to sample from a page pj with probability proportional to the number of records on

it, dj . However, as I noted earlier, a single page may be pointed at by many directory entries

so that we would oversample from pages which are pointed at by many entries. For that
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reason one accepts a page pj with probability proportional to dj but inversely proportional

to gj (the number of directory cells which point at it). Recall (from Eqn. 4.20) that gi can

be computed as gi = 2dd�pdi . Therefore accept page pj with probability �j :

�j =
(dj=gj)

(dj=gj)max

(4.21)

The denominator is the maximum of the ratio in the numerator taken over all pages, it

appears in this expression to assure that �j is a probability, i.e., �j � 1. If the page pj is

accepted, then sample any record on that page at random.

Lemma 6 Let CEXTIDP (H; 1) = expected cost of sampling one record from an extensible

hash �le with double A/R page sampling.

CEXTIDP (H; 1) = (E[�j])
�1 (4.22)

Proof: This result follows from Lemma 5. Note that to determine dj one must retrieve

the data page, since one assumes no modi�cation to directory. 2

Note that one takes the expectation with respect to j, the directory entry index, i.e., this

expectation is the sum of the quantities �j each weighted by the fraction of the directory

entries pointing at page pj .

4.5.2 A/R cell sampling

Here one views the directory D as an open addressing hash table with 2dd buckets. Each

bucket corresponds to a directory entry. Let us denote by cj the number of records which

hash into directory entry D[j]. As before, one randomly picks a directory entry D[j] and

accept the page it is pointing at with probability �j :

�j = (cj=cmax) (4.23)

If the page is accepted, then sample at random one record on the data page from those

records which hashed into directory cell D[j]. This is easily determined from the binary

representation of the keys on the page.

Lemma 7 Let CEXTICS(H; 1) = expected cost of sampling one record from an extensible

hash �le with A/R cell sampling.

CEXTICS(H; 1) = (E[�j])
�1 (4.24)

Proof: This result follows from Lemma 5. Note again that to determine cj one must

retrieve the data page, since one assumes no modi�cation to directory is permitted. 2

As an example, consider Figure 4.3. The numbers in the directory entries indicate the

number of records hashed into them. The number of records stored on each page, the d0is,

can be readily maintained on the data pages or determined by simpling counting the records
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on the candidate sample page. In this case cmax = 21 and (di=gi)max is 13. If entry 1 is

randomly selected, its page will be accepted with probability 11/13 according to double

A/R page sampling but only with probability 5/21 according to the cell A/R method.

Theorem 13 The cost of double A/R page sampling is always less than or equal to the cost

of A/R sampling.

CEXTIDP (H; 1) � CEXTICS(H; 1) (4.25)

Proof: From Eqn. 4.21 we obtain:

E[�j] = E

"
(dj=gj)

(dj=gj)max

#
(4.26)

E[�j] =
E[(dj=gj)]

(dj=gj)max

(4.27)

Note that: 8j; (dj=gj) � cmax, hence Thus:

E[�j] �
E[(dj=gj)]

cmax
(4.28)

Observe that:

dj =
X

8i;D[i]=D[j]

ci (4.29)

Substituting for dj=gj yields:

E[(dj=gj)] = E[E8i;D[i]=pj[cj]] (4.30)

Hence:

E[�j] �
E[E8i;D[i]=pj[cj ]]

cmax
=
E[cj]

cmax
(4.31)

Recall that:

E[�j] =
E[cj]

cmax
(4.32)

Hence:

E[�j] � E[�j] (4.33)

From the two lemmas one obtains:

CEXTIDP (H; 1) � CEXTICS(H; 1) (4.34)

Q.E.D. 2

It follows from the above analysis that Double A/R sampling of Extendible Hash �les

will be most advantageous when the �le is lightly loaded and many directory entries point

to the same page. This will occur every time the directory size doubles. As the �le becomes

heavily loaded, so that each directory entry points to a distinct page both methods will

yield identical performance.
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4.6 Batch and Sequential Algorithms

4.6.1 Batch Algorithms

In this subsection I consider batch sampling from hash �les. This work is based on batch

retrieval algorithms. The basic premise is to batch accesses to secondary storage so as to

avoid rereading disk pages, as might occur with the iterative algorithms. Batch sampling

can be applied to any of the hash �les discussed above. For expository purposes I will

present batch sampling for open addressing hash �les.

Observe that because of rejections in A/R sampling, one will need an inated gross

sample size, s0, so that after acceptance/rejection one is left with a desired net sample size

s. From the earlier discussion of acceptance/rejection sampling, and sampling from open

addressing hash �les, one �nds that the expected size of the gross sample required for a

sample of size s is:

s0 �
bmax

b
s (4.35)

For one-pass batch sampling, the net sample size will be a binomial random variable,

t � B(s0; �) where � = E[acceptance probability]. Since the resulting net sample size may

be less than the target sample size, additional passes may be needed to increase the sample

size to the target level. For open addressing hash �les, one obtains: � = �b=bmax. Hence

simple batch sampling is binomial sampling, returning a variable size sample, rather than a

�xed size sample. For a simple random sample, the sample size can be readily adjusted by

either randomly discarding records, or by augmenting the sample via additional iterative or

batch sampling (called multi-pass batch sampling). Since one assumes that the sample �ts

in memory, discarding excess records requires no additional I/O. However, it is often more

e�cient to simply further inate the gross sample size to reduce the chance that the net

sample size is inadequate.

Batch methods are typically useful when the gross sample size s0 is a signi�cant fraction

of the number of blocks of the �le m. If s0 � m, then there is little likelihood of rereading a

page while sampling, so there is no point in employing a batch algorithm (it could actually

be inferior, if one overestimates the gross sample size required).

Recall that A/R sampling of open addressing hash �les has 3 phases: selection of a

random bucket to be sampled from, followed by an acceptance/rejection test, and �nally

retrieval of a sample record from the accepted bucket. The batch algorithm has 3 similar

phases:

1. Instead of selecting the buckets one-at-a-time one selects them all at once. Note that if

one randomly tosses balls into urns repeatedly, the resulting occupancy distribution for

the urns is equiprobable multinomial. Thus one generates a equiprobable multinomial

random vector x0 � M(s0; m) which determines how the gross sample is allocated

among the buckets. The gross sample allocated to bucket i is denoted as x0i.

2. Now, instead of performing acceptance/rejection tests one at at a time, one does all

of the A/R tests for a single bucket at once. Since each A/R test produces a Bernoulli

random variable, with parameter bi=bmax, the sum of x0i tests will be a binomial
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random variable, the number of records accepted from bucket i. Thus for each bucket

i, one generates a binomial random variable yi � B(x
0
i; bi=bmax).

3. If yi > 0 then one samples yi records from the bucket, otherwise one proceeds to the

next bucket.

The expected cost of this batch sampling method is simply the expected number of

elements of the equiprobable multinomial vector x0 which are nonzero.

E(COAB(s
0; m)) = m(1� (1�

1

m
)
s0

)) (4.36)

Proof: This is a classical result on occupancy statistics, see [JK77, pg. 144]. This result

is also well known in the database literature [Car75] as the expected number of blocks

retrieved from a �le to retrieve s0 records. Note that one is sampling with replacement here.

2

Alternatively, one can use a Poisson approximation to estimate the number of blocks

read.

prob(reading blocki) � 1� e�s
0=m (4.37)

Hence, the expected number of blocks read:

E[blocks read]� m(1� e�s
0=m) (4.38)

For comparison, recall that the iterative algorithm reads s0 blocks.

I conclude this discussion of batch sampling by noting that its regime of utility for hash

�le sampling is smaller that it was for B+ tree sampling [OR89], because in B+ trees one

often needs to reread pages near the root, even if data pages are being read only once for

iterative sampling.

4.6.2 Sequential Scan Sampling

Basically, batch sampling saves us from rereading pages while extracting the sample.

In order for it to be useful, there must be a signi�cant probability of rereading pages, i.e.,

allocating more than one element of the gross sample to the same page (bucket). However,

if this probability is substantial, then one expects to read most of the pages of the �le.

Hence, an alternative to the batch sampling described above is to sequentially scan the

�le and use a sequential scan (i.e., reservoir) sampling methods such as that described in

[Knu81] or [MB83]. These methods were introduced in Section 2.10. In this application,

sequential scan sampling requires that one read every page (bucket) of the �le, in order to

determine the number of records on it (and perhaps sample from them).

Given an accurate estimate of the required gross sample size, batch sampling of a hash

�le will outperform sequential scan sampling, because the sequential scan algorithm must

read every page of the hash �le, while the batch sampling algorithm need only read (once)

pages which possibly contain sample records - some pages are read, but not sampled because

they fail the acceptance/rejection test. At worst, batch sampling might have to read all of

the pages of the hash �le.
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However, if one's purpose is to obtain a sample of records from a hash �le which satisfy

some selection predicate of unknown selectivity, then one may be unable to reliably estimate

the gross sample size required for batch sampling. Failure to estimate a su�ciently large

gross sample size will result in too small a net sample. Then the batch sampling process

will have to be repeated to obtain the additional sample elements required. Hence, one

may �nd oneself reading some disk pages a second time. At this point sequential scan (i.e.,

reservoir) sampling becomes attractive, because it will read each disk page in the �le only

once.

Reservoir sequential sampling methods are used for sampling from �les of unknown size

(here because of the unknown predicate selectivity). They construct a reservoir of candidate

elements of the sample (initially the �rst elements of the �le), which they randomly replace

as they sequentially read the �le. At all times the reservoir contains a simple random sample

without replacement. If necessary, this can easily be converted to a simple random sample

with replacement.

4.7 Experimental Results

In this section I present experimental results from simulations concerning the perfor-

mance of the several of the hash �le sampling methods discussed above.

The simulations were based on my algorithms, as described above. These experiments

were conducted by Ping Xu, who was then a master's student of Dr. Doron Rotem, and

are reproduced here with her permission. Dr. Rotem was also supervising my dissertation

at the time. Much more extensive experimental results can be found in Ping Xu's master's

thesis [Xu89].

I present here simulation results concerning the both iterative and batch sampling meth-

ods for Linear Hashing. I also report results for iterative sampling from Extendible Hash

�les. These simulation results con�rm the analytical results of this chapter and illustrate the

behavior the of algorithms. Throughout this section I report sampling cost as the number

of disk accesses per element of the sample.

These results were obtained by constructing memory resident versions of the hash �les,

loading them with keys having a uniform random distribution, and then randomly sampling

from the data structures. The uniform random key distribution has been classically used

in studies of the performance of hash algorithms. For good hash functions, any smooth key

distribution should produce similar results. Key distributions with hot spots (i.e., many

persons named John Smith) would produce worse results.

Memory resident versions of the data structures were employing to reduce the running

of time the simulations. In order to further reduce the running times for the experiments

and to reduce variance of the measurements, successively larger load factor experiments

were generated by adding records to the previously generated (lower load factor) hash �les

and resuming sampling, rather than starting each load factor experiment from an empty

hash �le. Hence the results for various load factors were not fully independent experiments.

As expected the load factor for the hash �les is a key performance parameter.
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4.7.1 Linear Hashing

Figure 4.4 shows the performance of iterative sampling methods from Linear Hash �les.

In this experiment pages were split whenever the bucket chain length exceeded 3 pages

(counting the primary page of the bucket as 1). Page capacity, 50, and number of pages

initially in the hash �le, 97, were chosen, in part, to facilitate running the experiments in a

timely fashion, in main memory of the workstation then in use. I expect larger �les would

exhibit similar behavior.

The reader can clearly see that the 2-�le method provides consistent performance, and

for some �le loadings substantially outperforms the 1-�le sampling method. Note the cyclical

nature of the 1-�le method performance, which reects the cyclic variation in the fraction of

the disk pages which have been split. As buckets begin to be split, the cost of the sampling

increases sharply, because the split buckets now have only 50 percent loading of the unsplit

buckets. Recall that buckets split from left to right, so that if bucket 50 is forced to split

(because it has exceeded the maximum permitted chain length) so will all lower numbered

buckets. Since the bucket loading is from a uniform distribution, the �rst bucket to split

will (on average) be the middle bucket. Hence, the sharp increase in sampling costs, which

persists until the last bucket splits. Once all of the buckets pages are split, they all have

similar occupancy ratios, hence the acceptance/rejection sampling becomes more e�cient.

Notice in Figure 4.4 that the width and spacing of the regions where 1-File sampling is

expensive are doubling in size, corresponding to the doubling in the size of the linear hash

�le, with each successive round of page splitting.

Figure 4.5 shows a similar experiment in which the page splitting criterion was to split

pages whenever the load factor of the primary storage area exceeded 3. This criterion pro-

duces higher sampling costs and more variance, because it does not constrain the maximum

chain length as tightly as the �rst criterion. The 2-�le method continues to outperform the

1-�le method. The sampling costs grow more gradually, because of the total load factor

bucket splitting criterion. (Splitting buckets increases the size of the primary region, bring-

ing the �le back below the splitting threshold.) When the last bucket in a round splits, there

is a sharp improvement in the sampling e�ciency, because the maximum bucket capacity

has just dropped almost in half.

4.7.2 Batch Sampling from Linear Hash Files

Figures 4.6 and 4.7 compare iterative and batch sampling from Linear Hash �les via

the 1-�le method for the same two splitting criteria shown in Figure 4.4 and Figure 4.5.

The batch sample size is either 3,000 or 5,000. The reader can see that batch sampling

outperforms iterative sampling consistently, and that the unit sampling cost decreases with

larger batch sizes.

In Figure 4.6 note the step function behavior of the batch sampling costs, reecting

the cyclic splitting of the buckets in the linear hash �le. With less than 300K keys, the

batch sizes are su�cient to force the algorithm to read almost every disk page. Hence, the

cost of sampling in this region primarily reects the size of the hash �le, rather than the

ine�ciencies of acceptance/rejection sampling. However, once the hash �le exceeds 350K

keys, one is no longer sampling almost every disk page, and the cost of batch sampling

for 3K batch samples is nearly the same as for iterative sampling. The cost of 5K batch
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Figure 4.4: The comparison of the costs of the iterative A/R sampling from 1-�le and 2-�le

methods for sampling from Linear Hash Files. (Page splitting criterion is: chain length � 3,

initial number of buckets = 97, page capacity = 50)
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Figure 4.5: The comparison of the costs of the iterative A/R sampling from 1-�le and 2-�le

methods for sampling from Linear Linear Hash Files. (Page splitting criterion is: (total no.

of records/capacity of primary area) � 3, m= 97, page capacity = 50)
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Figure 4.6: Comparison of costs of iterative and batch sampling of Linear Hash Files. (Page

splitting criterion is: chain length � 3, initial number of buckets = 97, page capacity = 50)

sampling is still somewhat less than iterative sampling, but is coming closer, and showing

a more pronounced cyclic behavior due to acceptance/rejection sampling.

In contrast consider Figure 4.7. Here the growth in sampling costs is much smoother,

especially for batch sampling algorithms, reecting the smoother growth of the linear hash

�le due to total load factor splitting criterion. The cyclic cost behavior of the batch sampling

does not become evident until the hash �le exceeds 400K keys. The more conservative

splitting criterion has apparently slightly postponed a major split cycle.

4.7.3 Iterative Sampling from Extendible Hash Files

Figure 4.8 compares the two methods of iteratively sampling from Extendible Hash Files:

double acceptance/rejection sampling of data pages vs. cell A/R sampling, The reader can

see that double A/R sampling outperforms cell A/R sampling for lightly loaded �les. For

lightly loaded �les, there is variation in the number of directory cells which point to a given

disk page. In such circumstances, double A/R sampling is more e�cient.

For heavily loaded �les, the two methods present essentially identical performance.

When the Extended Hash Files are heavily loaded, each disk page is pointed at by one
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Figure 4.8: Cost of Iterative Sampling from Extendible Hash Files (node capacity = 20,

directory size = 1024)

directory cell. Because there is essentially no variation in the number of directory cells

which point to a disk page, double A/R sampling and cell A/R sampling are essentially the

same algorithm, hence identical performance.

4.8 Conclusions

I have shown how to to retrieve simple random samples from various types of hash tables

without substantially altering the underlying hash table access methods or their normal

performance. These methods are based on acceptance/rejection sampling, and provide a

simple, inexpensive way to add sampling to relational database management systems. These

methods are especially suited to systems which are only infrequently sampled, e.g., for

auditing. For systems subject to heavy sampling query loads, adding auxiliary information

to existing data structures or additional indices could improve sampling performance.

For expository reasons, I began the chapter with a discussion of sampling from open

addressing hash (OAH) �les, although such �les are not commonly used in DBMSs. The

acceptance/rejection sampling algorithm, ARHASH, required for OAH �les is the basis for
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the more complex hash �le sampling algorithms. It can also be used for sampling from

any variably blocked �le. DeWitt, et al. [DNSS92] have (subsequent to my publication

[ORX90]) described a variant of this algorithm called extent based sampling for sampling

variably blocked �les which are comprised of a small number of contiguous disk extents.

I have shown that sampling methods which exploit the structure of dynamic hash �les

have better performance than naive sampling algorithms. Thus the 2-�le sampling method

dominates 1-�le sampling method for Linear Hashing, and double A/R sampling of data

pages dominates cell A/R sampling for Extendible Hashing. These more sophisticated

sampling methods are especially useful for lightly loaded hash �les.

As the gross sample size required approaches the number of hash buckets, iterative sam-

pling algorithms will reread some hash buckets. Batch sampling methods do not reread any

pages, hence will outperform the iterative methods. However, to perform batch sampling,

one must estimate the required gross sample size. This is straightforward, unless one has

a selection predicate of unknown selectivity. Poor estimates of the required gross sample

size will either result in unnecessary bucket reads, or require a second iteration of the batch

sampling algorithm to complete the sample.

Hence, if one is uncertain of the predicate selectivity, but expect to read nearly all of

the hash �le then sequential scan sampling (reservoir methods) will be preferred to batch

sampling, since reservoir sampling algorithms always read the entire hash �le exactly once.



Chapter 5

Spatial Sampling

5.1 Introduction

5.1.1 The Problem

In this chapter I am concerned with sampling from spatial databases. Speci�cally: given

a spatial predicate (target region) speci�ed as the union of a set of polygons, one seeks to

generate a random sample of points uniformly distributed over the target region. I shall

also assume one knows the speci�cations of a rectangular bounding box which encloses the

target region.

Such problems arise commonly in geographic information systems (GIS), demographic

databases, etc., as discussed earlier in Section 1.5.4.

This raises two unique problems:

� One is typically sampling points in a continuous n-dimensional real space, rather than

from explicitly stored �nite sets,

� One must sample from specialized spatial data structures, such as quadtrees or R-

trees.

Assume that the spatial predicate has already been realized as the union of a set of

polygons organized into some data structure. Hence, sampling from a spatial predicate can

be reduced to sampling from the speci�c spatial data structure. In doing so, I pass over

the problem of sampling from a subset of a spatial data structure which would needlessly

complicate this exposition.

A given realization of a spatial predicate (set of polygons organized via some data

structure) may be characterized in terms of two parameters:

� coverage= the percentage of the area of the bounding box which satis�es the predicate.

� expected stabbing number = the average number of polygons which overlap a point in

the target region.

I will characterize the choice of preferred spatial sampling algorithms in terms of these

parameters.

There are two basic strategies to spatial sampling:

87
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� Sample First: First generate a sample point uniformly from the bounding box, then

check the spatial predicate. I will show that such methods are e�cient when the

coverage is high (close to one).

� Predicate First: Choose a polygon at random with probability proportional to area,

then choose a point within the polygon, calculate the stabbing number, and accept

the point with probability inversely proportional to its stabbing number. I will show

that these methods are e�cient when the stabbing number is low (close to one), and

the coverage is low (much less than one).

I discuss sampling from quadtrees and R-trees, two of the most popular data structures

which illustrate the major issues involved.

5.2 The Model

For convenience I will consider a 2-dimensional database. These results can be extended

to higher dimensional databases.

5.2.1 Coverage and Stabbing Numbers

In Figure 5.1 I illustrate the de�nition of the coverage and stabbing number parameters.

Estimating the coverage and average stabbing number is important for the query optimizer

in choosing the best sampling strategy. I will explain these parameters and show how to

compute them for a simple probabilistic model of a database of randomly placed squares of

�xed size. Later, I will discuss how these parameters impact the sampling algorithms and

their performance.

Consider a set of polygons, IP, contained in a spatial database (SDB). De�ne a bounding

box, IB, for the SDB as a rectangle which encloses all of the objects contained in the SDB.

IB may either be speci�ed by the database administrator, or automatically maintained by

the DBMS. As I shall show, the e�ciency of several of the sampling methods is inversely

proportional to the area of IB, so it is desirable to choose IB as small as possible.

De�ne the coverage with respect to a predicate p, Cp, as the fraction of the area of IB

which satis�es the spatial predicate. In this chapter I shall assume (for expository purposes)

that the spatial predicate is speci�ed by inclusion in IP. Thus the coverage would be the

area of the union of all polygons in IP divided by the total area of the bounding box, IB, of

the database.

The stabbing number, �(x) of a point x is the number of polygons in IP which cover it.

If the polygons are pairwise disjoint the stabbing number of any point in IP is simply one.

5.2.2 Poisson model

To illustrate the relationship between polygon area, polygon density, coverage, and

average stabbing number, I will now consider a simple probabilistic model of the polygons

in the data base. This model has been extensively studied in the stochastic geometry

literature [Hal88, Ser82, Ald89], where is it is known variously as the mosaic process or

boolean model. This simple model has been chosen to facilitate the exposition.
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Figure 5.1: Examples of coverage and stabbing numbers. The lefthand �gure shows the

polygons whose union determines the spatial predicate. The coverage is the ratio of the

shaded area (union of smaller polygons) shown in the righthand �gure to the area of the

bounding box. The stabbing numbers of points A,B,C,D,E,F are respectively 1,2,3,0,2,0.

Assume that the polygons are generated by �rst generating the the \centers" of the

polygons according to a Poisson spatial point process with point density �. Each such

\center" point is the center of a polygon, whose shape (and size) are drawn from a second

independent probability distribution. It will su�ce for our purposes that the polygon shape

distribution be such that and that the radii of minimal enclosing circles be bounded, and

hence the areas of the polygons have �nite �rst and second moments. No other assumptions

about the polygon shapes are needed.

Under these assumptions (and ignoring edge e�ects) one can show [Hal88, Ser82, Ald89]

that the stabbing number of any point x in IB will simply be a Poisson random variable

with parameter � = �A, where A is the expected area of a polygon.

Hence, C, the coverage is:

C = 1� e��A (5.1)

and the expected stabbing number for a point x in IB is:

E[� ] = p(covered)E[� jcovered] (5.2)

But E[� ] = �A and p(covered) = C = 1� e��A, hence the expected stabbing number for a

covered point, xc in IP is:

E[�c] = E[� jcovered] = �A=(1� e��A) (5.3)

The reader will note that in this Poisson model I have not constrained the polygons to

lie entirely within the bounding box IB, so that these results are only appropriate if the

polygons are small compared to IB (a reasonable assumption for typical GIS applications).
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Figure 5.2: Example of a region quadtree. Quadtree is shown on left. Implied spatial

partitioning is shown to the right. For each internal node, ~(a)i is shown above, ~(b)i below.

Having seen the origin and relationship (for a simple spatial probabilistic model) of

the coverage and average stabbing number parameters, I now turn to an examination of

sampling algorithms for two data structures: quadtrees and R-trees.

5.3 Quadtrees

I now begin the discussion of spatial sampling algorithms in terms of a region quadtree, in

which the spatial predicate is represented as the regions covered with black pixels. A region

quadtree is illustrated in shown in Figure 5.2. Quadtrees [Sam84, Sam89b] are actually

actually a type of trie, i.e., they recursively partition the unit square into quadrants (e.g.,

until the quadrant has homogeneously colored pixels).

Quadtrees are both a popular data structure in GIS applications, and facilitate the

exposition, as all of the regions are disjoint.

Consider a region quadtree [Sam84, Sam89b] de�ned over a n�n array of pixels (where

n = 2m (for some integer m)), with the regions being labeled black and white if all of the

pixels in a region are 1 or 0 respectively, as shown in Figure 5.2. Suppose that one wishes

to obtain a uniform spatial sample of s pixels from the black regions stored in the quadtree.

Recently, Rosenbaum [Ros91] has described a similar algorithm for uniform random

sampling of leaves of arbitrary trees. As the reader will see, my algorithm samples leaves in

proportion to their area - in order to sample pixels uniformly. For quadtrees, this is actually

simpler.
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5.3.1 Sample First

As noted above, one has one's choice of a Sample First algorithm or a Query First

algorithm. The Sample First algorithm consists of loop in which one generates a random

pixel location (x; y), and then perform a point location query on the quadtree. If the pixel

is black, it is accepted into the sample. Otherwise one loops until a black pixel is accepted.

This process is repeated until the desired sample size is obtained.

5.3.2 Query First Quadtree Algorithm

The Query First Quadtree (QFQT) algorithm begins at the root. At each node one

chooses a branch at random. If the branch is a white leaf, one returns to the root and

repeat the sampling procedure. If the branch is a black leaf, one chooses a pixel at random

from the region and return. If the branch points to another internal node, one applies this

procedure recursively.

Equivalently, this can be seen as choosing a random pixel from the n2 pixels of the

quadtree, and then conducting a point location search, repeating the procedure if one

discovers the chosen pixel is white. Thus, for the region quadtree, sample �rst and query

�rst sampling strategies are equivalent (e.g., in terms of number of nodes visited). The

reason for the equivalence is that each quadtree node uniformly decomposes its spatial region

into four equal-size disjoint quadrants. Also, we have assumed here that the \polygons" are

speci�ed as quadtree regions. Other data structures (e.g., R-trees) either do not uniformly

partition their spatial regions, or do not partition the space into disjoint regions, or allow

variable shape polygons to be stored in the leafs.

De�ne:

� E[d] = the expected distance to a leaf, assuming that the leaves are sampled with

probability proportional to area, i.e.,

E[d] =
X

l2leaves

4�d(l)d(l) (5.4)

where d(l) is the distance from the root to the leaf l.

� pb = the probability of choosing a black pixel when sampling uniformly from space.

Note that this is the coverage, C.

� pw for white pixels similarly, note pw = 1� pb.

In the example shown in Figure 5.2 E[d] = 21=16 and pb = 11=32.

Theorem 14 The expected cost, E[T ], of obtaining a single sample from a quadtree, Q, is

given by:

E[T ] = E[d]=pb (5.5)

Proof: Let E[db] = the expected distance to a black leaf, when doing uniform spatial

sampling, and E[dw] for white leaves. Then observe that one can compute E[T ] in terms
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of sampling either a white pixel or black pixel. If one samples a white pixel, one must

resample. This gives the following recurrence equation:

E[T ] = pb �E[db] + pw � (E[dw] +E[T ]) (5.6)

Rearranging gives:

(1� pw) �E[T ] = pb �E[db] + pw � (E[dw]) (5.7)

Since the left hand side here is simply E[d], and (1� pw) = pb one has:

pb �E[T ] = E[d] (5.8)

from which the theorem follows directly. 2

For a quadtree de�ned on an n�n array of pixels, one can show that E[T ] may be O(n2),

i.e., as bad as a sequential scan of the pixels (to obtain a single sample pixel). Below, I

describe a partial area quadtree, which is always more e�cient, but requires additional

maintenance (during updates). I also describe a spatial reservoir algorithm, which is more

e�cient when pb � 1 and the sample size s is comparable to the number of pages in the

�le.

5.3.3 Partial Area Quadtree Algorithms

Sampling can be performed more e�ciently by constructing (and maintaining) a partial

area quadtree index (PAQT). This is based on the work of Wong and Easton [WE80] on

weighted random sampling.

In each internal node i one stores a vector ~ai = (ai;1; ai;2; ai;3; ai;4) where ai;j = the total

black area in the leaves of the j0th subtree of the i0th node. In the PAQT algorithm one

performs a random walk on the tree from root to leaf. At each internal node i one chooses a

branch j with probability �i;j = ai;j=
P4

k=1 ai;k. Thus one de�nes
~�i = (�i;1; �i;2; �i;3; �i;4).

Note that �i;j is zero for white quadrants. Both ~ai and ~� are shown in the example shown

in Figure 5.2.

The advantage of the PAQT method is that (unlike QFQT) each random walk on the

tree returns a sample pixel. The expected cost of retrieving a sample of size s is thus sE[db],

the sample size times the expected distance to a black leaf.

5.3.4 Spatial Reservoir Quadtree Algorithm

In this section I adapt the classic reservoir sampling algorithm [MB83, Knu81, Vit85]

described in Chapter 2 to support spatial sampling from disjoint polygons. Reservoir sam-

pling algorithms permits us to sequentially sample a �le of records of unknown size, e.g.,

intermediate query results. For �nite population sampling, the reservoir is initially �lled

with the s records, where s is the desired sample size. Successive records are added to the

sample reservoir with probability s=k for the the k0th record, replacing randomly selected

records in the reservoir. Vitter's improvement permits us to skip over records which would

not be included in the reservoir, e.g., for the case of random access �les.

Adapting the reservoir sampling algorithm to spatial sampling from the quadtree in-

volves two changes:
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� sequential traversal of the quadtree leaves,

� \batch" updating of the sample reservoir, upon encountering each new leaf.

One �rst must contrive to search all of the leaves sequentially. If the leaves are linked

together this is trivial, otherwise any method of systematically walking through the tree

will su�ce (e.g., preorder, postorder, inorder).

One begins the algorithm by walking through the tree until one encounters the �rst

black leaf. Then one �lls the sample reservoir with a random sample of s pixels distributed

uniformly over the �rst black leaf. Here s is the target sample size.

One then proceeds to walk through tree looking for black leaves. Whenever one encoun-

ters a new black leaf, one randomly replaces some of the sample pixels from the reservoir

with new sample pixels chosen uniformly from the newly encountered leaf. The number

of sample pixels to be replaced is determined by generating a Binomial random variable,

x � B(s; (wk=Wk)), where wk is the area of the k
0th black leaf, Wk =

Pk
i=1 wk, and x is the

number of pixels to be replaced. The sample pixels to be replaced are chosen (uniformly)

randomly from those in the reservoir. The replacement sample pixels are chosen uniformly

from the region enclosed by the new black leaf.

A detailed description of the algorithm is given in Figure 5.3.

Example: Let us assume that quadtree shown in Figure 5.2 represents an array of

16 � 16 pixels. Suppose that one wants to sample 10 random black pixels. One traverses

the leaves from left to right, encountering the black leaves D, F, G, and J with respective

areas of 16, 4, 4, 64 pixels. One initially samples 10 random pixels from D and form the

putative sample S1. Upon visiting F one forms S2 comprised of 10 pixels by sampling 10

pixels from F and S1 with probabilities 4=20 = 1=5 and 4=5 respectively. Upon visiting G

one forms S3 comprised of 10 pixels by sampling 10 pixels from G and S2 with probabilities

4=24 = 1=6 and 5=6 respectively. Finally, Upon visiting J one forms S4 comprised of 10

pixels by sampling 10 pixels from G and S3 with probabilities 64=88 = 8=11 and 3=11

respectively.

Theorem 15 The quadtree spatial reservoir algorithm will generate a uniformly distributed

random sample of pixels over the union of the regions covered by the leaves.

Proof: The proof is by induction on, k, the number of black leaves encountered. I

will show that for each k, Sk (the sample at stage k) is a random sample of size s from

the �rst k leaves encountered. Let us denote by wk the number of pixels (area) in the k0th

black leaf encountered.

For k = 1, S1 is by de�nition a random sample of size s. Assume that the theorem is

correct for k = m, i.e., that Sm is a random sample of size s from the Wm =
Pm

i=1wi black

pixels of the �rst m leaves encountered.

For k = m+1, one samples from the m+10st leaf with probability wm+1=Wm+1, hence

a random pixel is drawn from it with probability:

pentering = s �wm+1=Wm+1 � 1=wm+1 = s=Wm+1 (5.9)

A pixel from the �rstm leaves appears in the sample Sm+1 if it is in Sm and it is not replaced

by any of the new pixels entering the sample from the m+10st leaf. The probability of this
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procedure SPRQT(root):

/* This procedure samples points uniformly form the (black) leaves of a quadtree. */

/* We assume that the black quadtree leaves have been chained together, and that */

/* successive leaves can be obtained with a procedure nextleaf(leaf ptr); */

begin

/* Initialize the reservoir to contain points in the �rst leaf. */

for i := 1 to s do

q := �rst(quadtree leaf);

Generate sample point[i] � Uniform(q);

endfor

/* Initialize the area seen. */

totalarea := area of quadtree leaf[i];

/* Process each leaf */

for i := 2 to n quadtree leaves do

begin

/* Get the next black quadtree leaf */

q := nextleaf(q);

/* Determine its area. */

a := area(quadtree leaf[q]);

totalarea = totalarea + a;

/* Determine number of sample points in reservoir to replace. */

Generate m � Binomial(s; a=totalarea);
/* Generate new sample points. */

R := SRSWOR of size m from the integers 1 to s;

/* Replace m sample points in reservoir. */

for each j 2 R do

Generate sample point[j] � Uniform(q);

endfor

end

endfor

end

Figure 5.3: Algorithm for Spatial Reservoir Sampling from a Quadtree
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is:

premaining = s=Wm � (1� wm+1=Wm+1) = s=Wm+1 (5.10)

The �rst term follows by induction, and the second from the de�nition of the selection

process. The theorem is proved since at stagem+1 I have shown that pentering = premaining ,

hence every pixel seen thus far has the same inclusion probability. 2

This algorithm obviously requires that one visits every node in the quadtree (unless the

leaves are linked). Assuming a depth �rst search and a cache which can hold the deepest

path from root to leaf, the number of pages read will simply be the number of pages in the

quadtree.

One could also ask what is the total number of random sample pixels, sg, which must

be generated in order to generate a net sample size of s. This is given by the following

formula:

E[sg] = s �
nX
i=1

wi

Wi
(5.11)

(5.12)

whereWk =
Pk

i=1 wk. Replacing wj by wmax in the numerator and wmin in the denominator

give an upper bound.

E[sg] � s �
nX
i=1

wmax

i �wmin
(5.13)

� s �
wmax

wmin

nX
i=1

i�1 (5.14)

� s �
wmax

wmin

Hn (5.15)

where Hn is the n0th Harmonic number (approximately lnn). Similarly,

E[sg] � s �
wmin

wmax
Hn (5.16)

Thus one �nds that:

Theorem 16 The expected gross sample size, sg is bounded by:

s �
wmin

wmax

Hn � sg � s �
wmax

wmin

Hn (5.17)

Table 5.1 summarizes the costs of various sampling algorithms from quadtrees.

5.4 R-trees

An R-tree [Gut84, Sam89a] is a spatial data structure analogous to a B+ tree used for

storing polygons, i.e., it is a uniform height tree. The polygons are represented in the tree by

their minimal bounding rectangles. The bounding rectangles must be iso-oriented, i.e., not

rotated, but rather aligned with the coordinate axes. The root of the R-tree is the minimal
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Algorithm Expected Cost

Nodes visited

Sample First sC�1E[d]

Query First Quadtree sC�1E[d]

Partial Area Quadtree sE[db]

Reservoir O(nb)

Table 5.1: Summary of Costs of Sampling from Quadtree. C = coverage, d = distance to

leaf, db = distance to black leaf, nb = number of black leaves.
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Figure 5.4: Example of R-tree. The point P is included in three polygons, Y, U, and V,

hence has a stabbing number of 3.

bounding rectangle, IB, which encloses all objects in the database. Each node in the tree

corresponds to the minimal bounding rectangle for all of the objects in its subtree. Thus

the R-tree is another recursive spatial decomposition. However, the partitioning (nodes)

are NOT required to be disjoint. See the example in Figure 5.4

5.4.1 Acceptance/Rejection R-tree Algorithms

Such a non-disjoint decomposition has important implications for the sampling algo-

rithms. In order to uniformly sample a point x in IP one can not simply choose a random
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path through the R-tree. One must compensate for the fact that some points are con-

tained in more than one leaf, and therefore would be included in the sample with a higher

probability.

To do this one must be able to determine the stabbing number for a point. This is a

classic problem in computational geometry and a variety of data structures and algorithms

have been proposed for its solution in various settings (See [Sam89a].) In the case of an

R-tree, determining the stabbing number of a point x is a normal part of the point location

query processing. Starting at the root, one must follow every branch from a node which

might cover the sample point x. This can account for a signi�cant portion of the cost of

naive acceptance/rejection sampling from R-trees. Hence, I will also describe early abort

algorithms, which avoid much of this cost.

The Acceptance/Rejection R-tree (ARRT) algorithm then consists of picking a path

through the tree at random, and then employing acceptance/rejection sampling to compen-

sate for:

1. variable fan-out, fj , at each node j (except the root) on the path from the root to leaf

containing polygon i (note that for the leaves \fan-out" is the number of polygons in

the leaf),

2. variable polygon area, Ai,

3. stabbing number, �(x), of the sample point, x. �(x) can be computed as part of of

the sampling procedure.

Thus, the acceptance probability for a point x in polygon i would be:

px;i = (Ai=Amax)(�(x))
�1

Y
j on path to i

(fj=fmax) (5.18)

where fmax is the maximum fan-out, fj , over all nodes (leaves) in the tree. Note that for

simplicity we assume that the number of polygons/leaf has the same distribution as the fan-

out. As in the case of the B+ tree (Chapter 3) one can construct an early abort algorithm

by performing an acceptance/rejection test at each internal node (or leaf) along a search

path (except for the root) with acceptance probability = fj=fmax, where fj is the fan-out

(number of polygons for the leaf node). Then perform one last acceptance/rejection test at

the leaf with acceptance probability: px;i = (Ai=Amax)(�(x))
�1.

Recall from Chapter 2 that for A/R algorithms, that the expected number of sample

points needed per sample accepted is equal to the inverse of the expected acceptance prob-

ability. Hence, here it would be proportional to the expected stabbing number for covered

points.

It is also worth observing that one can perform an early abort version of the accep-

tance test due to the stabbing number, i.e., performing an acceptance/rejection test as one

encounters each additional polygon (beyond the �rst) covering x, with acceptance proba-

bilities = 1=2, 2=3, 3=4, : : :, (�(x)�1)=�(x), where �(x) is the stabbing number for point x.

It is trivial to see that the compound acceptance probability is
Q�(x)
k=2((k� 1)=k)) = 1=�(x).

Unfortunately, one can only perform such an acceptance/rejection test when one encoun-

ters a polygon which actually covers the candidate sample points. One must still examine
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branches of the tree whose bounding boxes indicate that they might cover the candidate

sample, even though searching these subtrees subsequently proves fruitless. The next the-

orem shows that the early abort algorithm always dominates the naive algorithm in its

cost.

The Early Abort A/R R-tree Algorithm is illustrated in Figure 5.4. Here, one randomly

selects a polygon, e.g., Y, generate a random point in the polygon, e.g. P. One then searches

the R-tree for other covering polygons, i.e., U and V. Upon discovering that U covers P,

one attempts to reject P with probability 1/2, if not rejected, one continues the search for

covering polygons. Upon encountering polygon V, one attempts to reject P with probability

1/3. Thus the combined acceptance proability for P is 1/3, i.e., the inverse of the stabbing

number, as required.

Theorem 17 The early abort R-tree acceptance/rejection sampling algorithm will never

visit more nodes than the naive R-tree acceptance/rejection sampling.

Proof: The early abort algorithm performs the same stabbing number computation as

the naive algorithm unless it decides to reject a point after discovering a covering polygon.

Thus the early abort algorithm will never do more work than the naive algorithm, and

whenever the stabbing number is greater than one, it will do better (on average).

Speci�cally, I show below that the expected number of covering polygons visited, E[P ],

will be H�(x) the �(x)
0th Harmonic number, which is approximately log �(x) [Vit85].

E[P ] =

�(x)X
k=1

p(x � k) (5.19)

but p(x � k) = 1=k, hence:

E[P ] =

�(x)X
k=1

k�1 = H�(x) (5.20)

Note that this does not include the unsuccessful search e�ort for covering polygons. 2

5.4.2 Partial Area R-tree (PART) Algorithms

One can construct an algorithm, Partial Area R-tree Algorithm (PART), which employs

a Partial Area R-tree, analogous to the Partial Area Quadtree, in which the area of a node

is simply the sum of areas of polygons stored in the subtree rooted at that node.

The reader will recall that the Partial Area Quadtree Algorithm is the spatial analog of

the Partial Sum Tree (or Ranked Tree) algorithms for sampling uniformly from the leaves

of a tree.

The Partial Sum Tree (Ranked Tree) algorithms stored in each internal node the partial

sums of the number of leaves contained in the subtree rooted at that internal node. This

permitted the sampling algorithm to locate the k0th ranked leaf in time proportional to the

average tree height. Hence the ranked tree sampling algorithms simply generate a random

record number, and then retrieves the corresponding leaf.

The Partial Area Quadtree Algorithms was the spatial analog, storing at each internal

node the sum of the areas of the black leaves of the subtree rooted at that internal node.
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Wong and Easton's algorithm [WE80] for weighted random sampling was then used to

determine the black leaf from which to sample.

To adapt this algorithm to R-trees it is necessary to:

� Modify the R-tree to store at each internal node the partial sum of the areas of all of

the polygons stored in the leaves of the subtree.

� Correct (via acceptance/rejection sampling) for the possible overlap of polygons stored

in the R-tree.

The �rst phase of PART is similar to the Partial Area Quadtree Algorithm, i.e., an

adaptation of Wong and Easton's algorithm. However, to correct for overlapping polygons,

the �rst phase of PART would be followed by acceptance/rejection tests for each candidate

sample point x where the acceptance probability would simply be:

px;i = �(x)�1 (5.21)

The e�ciency will be correspondingly improved over naive acceptance/rejection. As above,

one can construct an early abort version of the acceptance/rejection testing due to the

stabbing number.

The expected cost (disk pages read) of the early abort partial area R-tree algorithm is:

E[CPART(s)] � O( s��c log ��c logN) (5.22)

where s is the target sample size, ��c is the expected stabbing number of a covered point,

and N is the number of polygons. Here logN reects the height of tree, ��c reects work

done to A/R rejections due to stabbing number, log ��c reects the work done to compute

the stabbing number for a point (given early abort).

This algorithm (although developed independently) is somewhat similar to Antoshenkov's

pseudo-ranked B+ tree sampling algorithm [Ant92]. Both algorithms combine partial sum

trees and acceptance/rejection sampling. Note that we could also use Antoshenkov's idea

of keeping approximate partial sums to reduce the e�ort required to maintain the partial

area tree, while still obtaining most of the e�ciency gains.

5.4.3 Spatial Reservoir R-tree Algorithm

If one were to use a naive spatial reservoir algorithm (as I did for quadtrees) for R-trees

one would oversample points in the intersection of multiple polygons (in proportion to their

stabbing numbers). One will correct for this oversampling by only including a sample point

if it was sampled from the \topmost" polygon which covers the point. The ordering of the

polygons is immaterial, so one simply orders them as one encounters them in a sequential

scan of the leaves of the R-tree. This assures us of a uniform sample from the union of the

polygons.

To check whether a point was sampled from the \topmost" (i.e., last covering) polygon,

one could check each (current) point in the sample reservoir against each polygon as it is

encountered. However, it will typically be more e�cient to maintain a k-d tree (or quadtree)

of the points in the reservoir, which can be queried with a range query from the bounding

box of each polygon subsequently encountered, before conducting the point inclusion tests
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procedure OPSPRRT(s ):

/* This procedure computes a simple random sample of s pts from an R-tree. */

begin

total sample := empty set

sample size req := s;

while sample size req > 0 do

begin

reservoir size := sample size req * est avg stabbing number;

SPRRT1P(sample, reservoir size, sample size gen);

total sample := total sample [ sample;

sample size req := sample size req - sample size gen ;

end

endwhile

end

Figure 5.5: Algorithm for One Pass Spatial Reservoir Sampling from an R-tree

against subsequent polygons. (A k-d tree is a tree which recursively partitions a region

into quadrants (for the 2-dimensional case) in contrast to a quadtree which is actually a

trie. See [Sam89b].) I expect that savings in point-inclusion-in-polygon tests will more

than compensate for maintaining the k-d tree. I assume that the sample reservoir and

accompanying k-d tree can be kept in main memory, since the size of these data structures

is proportional gross sample size required, approximately s ���c, i.e., the product of the target
sample size and the expected stabbing number for covered points. Note that this is larger

than the reservoir required for conventional reservoir sampling, or for reservoir sampling

from quadtrees where the expected stabbing number for covered points is one. The spatial

sample reservoir need not employ a k-d tree, any point spatial data structure could be used.

The algorithm is described in Figure 5.5 and Figure 5.6.

I illustrate the algorithm with an example shown in Figure 5.7. Here the target sample

size is 3, and I have set the reservoir size to 4. The respective areas of the polygons are 100,

150, 75 for polygons A, B, C. One starts by sampling points 1, 2, 3, and 4 from polygon A.

One inserts them into the k-d tree used to store the sample reservoir (not shown). The area

of B is 150, the total area of A and B is thus 250. Hence, one generates a binomial random

variate with parameters 4 (the reservoir size) and 0.6 (= 150/250 = the ratio of the new

polygon area to the total polygon area seen). Let us suppose this binomial random variate

was 2. Then one chooses 2 points from the reservoir at random to replace. Suppose these

are points 2 and 3. One deletes them from the k-d tree. Now one checks the remaining

points in the reservoir to see if they are covered by B. Since point 4 is covered by B, it

is marked \not in sample". One now generates replacements for points 2 and 3 in the

reservoir. These are points 5 and 6. The reservoir now contains points 1,4, 5, 6 with point 4

marked not in sample. One now considers polygon C, generating a binomial random variate
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procedure SPRRT1P(sample, reservoirsize,

generatedsamplesize);

declare array of pts: sample[reservoirsize];

declare array of integers frompolygon[reservoirsize];

declare array of boolean insample[reservoirsize];

begin

/* Initialize the reservoir to contain pts in the �rst polygon. */

/* Note: \U" is a routine which generates a uniform random sample from a polygon. */

for i := 1 to s do

Generate sample[i] � U(polygon[1]);

Insert sample[i] into KDTREE;

insample[j] = true;

endfor

totalarea := area of polygon[1];

/* Process each polygon. */

for i := 2 to n rtree leaves do

begin

a := area of polygon[i];

totalarea = totalarea + a;

Generate m � Binomial(s; a=total area);
R := SRSWOR of size m from the integers 1 to s;

/* Delete the sample pts being replaced in reservoir. */

for each j 2 R do

Delete sample[j] from KDTREE;

endfor

/* Mark sample pts covered by this this polygon as deleted. */

P := pts in polygon(polygon[i], KDTREE);

for each j 2 P do

insample[j] = false;

endfor

/* Generate new sample pts uniformly within this polygon. */

for each j 2 R do

Generate sample[j] � U(polygon[i]);

Insert sample[j] into KDTREE;

insample[t] = true;

endfor

end

endfor

end

Figure 5.6: Cont. of Algorithm for One Pass Spatial Reservoir Sampling from an R-tree
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Figure 5.7: Example of One Pass Spatial Reservoir Algorithm.

with parameters 4 and 75/325. Suppose that it is 1. One then randomly selects one of the

4 points in the reservoir to replace. Suppose that point is 4. One deletes 4 from the k-d

tree, leaving 1, 5, 6. One checks the remaining points to see if they are covered by polygon

C. Point 6 is covered, hence it is marked \not in sample". One now replaces the point, 4,

which one just deleted from the k-d tree by generating a random point in polygon C, i.e.,

point 7, which one inserts into the k-d tree. The reservoir now contains points 1, 5, 6, 7,

with point 6 marked \not in sample". Hence the �nal sample is 1, 5, 7 as desired.

5.4.4 Performance Summary

Table 5.2 summarizes the costs of various sampling algorithms from R-trees. Note that

the Reservoir algorithm has cost linear in the size of the database, but independent of the

target sample size. All of the other algorithms have costs linear in the target sample size.

The expected cost of obtaining a sample of size s via the Sample First algorithm, CSF (S),

is proportional to the expected search cost for single point (which one reckons as O(logN)

under the assumption that polygons are small and the N is the number of polygons), and

inversely proportional to the coverage (to account for sample points not in the target region).

Thus:

CSF (s) = O( s
logN

C
) (5.23)

The expected cost of a sample of size s obtained via the A/R Tree algorithm will be:

CART (s) = O( s
Amax

E[A]

 
fmax

favg

!logN�1

��2c logN) (5.24)
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Algorithm Expected I/O Cost

Nodes visited

Sample First O( s
logN
C

)

A/R Tree O( sAmax

E[A]

�
fmax
favg

�logN�1

��2c logN)

Early abort A/R tree O( sAmax

E[A]

�
fmax

favg

�logN�1

��c log ��c logN)

Partial area R-tree (early abort) O( s��c log ��c logN)

One pass Reservoir O(N)

Table 5.2: Summary of Costs of Sampling from R-trees. A = area of polygon, Amax =

max. area of any polygon, ��c = expected stabbing number of covered points, N = number

of polygons, C = coverage, favg = average fan-out, fmax = maximum fan-out.

where Amax

E[A]
= the ratio of the maximum polygon area to average polygon area, due to

acceptance/rejection of varying polygon areas,

�
fmax
favg

�logN�1

= the ratio of the maximum

fan-out to average fan-out of the R-tree raised to the power equal the height of the R-tree

minus 1, due to acceptance/rejection of varying fan-out, no A/R at the root node, logN =

the expected search cost for a single point (logN), ��2c = the square of the expected stabbing

number (once to account for the ine�ciences of acceptance/rejection and once to account

for computing the stabbing number of a point by searching for all enclosing polygons). This

is likely to be pessimistic.

The bound on the expected cost, CEAART (s), of a sample of size s, obtained via the

Early Abort A/R Tree algorithm is the same as for the naive A/R Tree algorithm, except

that one replaces one expected stabbing number factor by its log, to account for the early

abort e�ciencies. (We have interchanged the expectation and log operators here, so we

actually have an upper bound, since log is concave.) Hence:

CART (s) � O( s
Amax

E[A]

 
fmax

favg

!logN�1

��c log ��c logN) (5.25)

See the graphs in Figure 5.8 and Figure 5.9 for a comparison of the sampling costs. Early

Abort Algorithm always outperforms the naive Acceptance/Rejection R-Tree Algorithm.

Partial Area R-Tree Algorithm is still better (but requires increased update maintenance

costs). The Sample First Algorithm improves with increasing coverage, and is the best

algorithm for high expected stabbing number scenarios. As the sample size increases, the

reservoir algorithm becomes increasingly competitive.

5.5 Query Optimization

My recommendations for choosing a spatial sampling algorithm are given below and

summarized in Table 5.3.
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Figure 5.8: Graph of expected costs of R-tree sampling, assuming Poisson model. X-axis is

E[� ], the expected stabbing number of any point in the bounding box, which is varied by

adjusting the area of the polygons. Y-axis is the cost in nodes (pages) visited. Assume s =

100 = target sample size, N = 160,000 = (expected) number of polygons, average fan-out

= average block size = 20,

�
fmax
favg

�
� 1:4. In this graph we assume all polygons are equal

size, determined by E[� ] and N .
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Figure 5.9: Graph of expected costs of R-tree sampling, assuming Poisson model. X-axis is

E[� ], the expected stabbing number of any point in the bounding box, which is varied by

adjusting the area of the polygons. Y-axis is the cost in nodes (pages) visited. Assume s =

1,000 = target sample size, N = 160,000 = (expected) number of polygons, average fan-out

= average block size = 20,

�
fmax
favg

�
� 1:4. In this graph we assume all polygons are equal

size, determined by E[� ] and N .
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Coverage Sample Avg. Polygon Update Algorithm

0 � c � 1 Density Stabbing Area Frequency

s=npages Number Variability

- � 1 - - - Reservoir

� 1 � 1 - - - Sample �rst

� 1 � 1 � 1 low - A/R Tree

� 1 � 1 � 1 - low Hybrid Partial Area Tree

Table 5.3: Table of Preferred Spatial Sampling Algorithms. (Note: \-" denotes \don't

care")

.

� If the sample size approaches (or exceeds) the number of leaves then employ a reservoir

algorithm (esp. if the leaves are chained).

� If the coverage is high (close to 1), use a Sample First Algorithm, as this avoids the

need to calculate stabbing numbers.

� If the database is relatively static, and sampling queries are frequent, then build a

partial area tree, and use a Partial Area R-tree algorithm.

� If the coverage is low, use a Acceptance/Rejection Tree algorithm, as this will not

sample points which are not covered.

� For large samples which necessitate reading much of the �le, use a batch algorithm,

which avoids rereading pages.

� Among algorithms which involve acceptance/rejection, early abort algorithms are al-

ways preferable, and most useful for large expected stabbing numbers.

5.6 Extensions

Several useful extensions of the algorithms described in this chapter are possible. These

include:

� Batch algorithms as described in earlier in the chapter on sampling from B+ trees.

These algorithms would do a breadth �rst search of the quadtree or R-tree, allocating

the gross sample via multinomial distributions at each node. For the R-tree one would

still need acceptance/rejection sampling to compensate for variable polygon size and

overlapping polygons. If one can accurately estimate the required gross sample size,

i.e., there are not additional selection predicates, then batch sampling will outperform

the iterative algorithms.

� Hybrid algorithms, e.g., a mixture of sample �rst and query �rst over various regions

of varying coverage. Sample �rst would be used over regions of dense coverage, query

�rst over regions of low coverage. Although more complex, hybrid algorithms should

outperform the corresponding component algorithm, in cases of non-uniform polygon

distribution.
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� Adaptive (switching) algorithms, which switch sampling algorithms, after accumu-

lating su�cient information to conclude, for example, that a reservoir algorithm will

complete faster than an iterative algorithm. Thus one would attempt to estimate

the coverage parameter will sampling iteratively. If the estimated coverage was too

high one could switch to a sequential scan (i.e., reservoir) algorithm. Similarly, one

could imagine algorithms which switched between query �rst, and sample �rst. Seppi

[SM92] describes a general approach to adaptive query optimization based on a de-

cision theoretic approach. Adaptive algorithms should outperform the corresponding

non-adaptive algorithms.

5.6.1 Probability Proportional to Density (PPD)

Throughout this chapter I have been concerned with obtaining uniform spatial samples

from a region speci�ed as the union of a set of polygons. Before concluding, I turn briey

to a simple case of non-uniform spatial sampling which frequently arises when generating

samples of non-uniform spatial processes, where we have aggregate statistics over polygons

(census tracts, police precincts, �re districts) for the rates of occurrences.

Probability proportional to density (PPD) sampling is the spatial analog of probability

proportional to size (PPS) sampling over �nite sets. One is given a collection of disjoint

polygons (census tracts, etc.) each of which contains a known population (persons, number of

�res, crimes, etc.). Assume that the speci�ed population (�res, crimes, etc.) of each polygon

is uniformly distributed within the polygon. One wishes to generate a spatial sample where

the inclusion probability of a point is proportional to the population density (of persons,

crimes, �res) in the enclosing polygon. Such samples are useful for studying models of

dispatching of various emergency vehicles, transportation systems, retail marketing, etc.

The algorithms (e.g., for R-trees) which I have previously described for uniform sampling

can be easily modi�ed to accommodate the PPD sampling. Simply substitute the population

size of each polygon for the area in our calculations for how to allocate the sample across

the various polygons. Typically, the polygons (census tracts) are disjoint so that problems

of overlapping polygons are avoided.

5.7 Conclusions

In this chapter I formulated and classi�ed a variety of problems in random sampling from

spatial databases. I have also reviewed several important applications of these techniques

in agronomy, forestry, environmental monitoring, planning, etc.

Two major parameters of the database, coverage and expected stabbing number, shape

the performance of the sampling algorithms. I have shown how these parameters may be

estimated from a simple probabilistic model of a spatial database.

The substantive results of the paper have concerned techniques for uniform spatial point

sampling of regions which are de�ned as the union of polygons stored in various spatial data

structures (quadtrees and R-trees).

I have shown how to sample random points from quadtrees how to extend reservoir

sampling from �nite sets to spatial sampling from quadtrees. I have also shown how to

compensate for the non-disjoint partitioning of data space by R-trees by incorporating
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stabbing number information into the acceptance probability. An early abort algorithm

has been constructed which avoids the need to perform the full stabbing number computa-

tion. I have described a one-pass reservoir spatial sampling algorithm which accounts for

overlapping polygons.

I have characterized the expected performance of the various spatial sampling algo-

rithms and discussed the circumstances under which various algorithms are likely to prove

appropriate.

Much work remains to be done in improving the analyses and implementing and testing

the proposed algorithms.

Finally, one observes that data structures which generate non-disjoint spatial partitions

(e.g., R-trees) require sampling algorithms which are both more complex and less e�cient.



Chapter 6

Sampling from Relational

Operators

6.1 Introduction

In this chapter I will show how to sample the output of individual relational operators

such as selection, projection, intersection, union, di�erence, and join. These sampling tech-

niques form the basic building blocks for sampling from more complex composite queries.

The techniques entail a synthesis of the basic �le sampling techniques and algorithms for

implementing relational operators. I discuss only simple random sampling. I also briey

discuss sampling from more complex relational expressions.

In order to facilitate the exposition, I treat the simpler relational operators �rst, leaving

the more di�cult results concerning joins for the later sections of the chapter. The �nal

sections concern sampling from complex relational expressions.

My cost measure is the number of disk pages read, denoted as D. Usually one will be

interested in the expected number of disk pages read, E(D).

Most of this chapter is written in terms of iterative sampling algorithms, which are

analogous to classic tuple-substitution techniques for the evaluation of relational queries.

These iterative algorithms have the advantage that they generate the exact sample size

required. Iterative algorithms are also readily amenable to incorporation within sequential

(adaptive) sampling procedures, in which the sample size is determined after looking at some

of the sample. For convenience of exposition, most of the algorithms, e.g., for sampling from

joins, are described as iterative algorithms.

However, for every iterative algorithm, there exist corresponding bottom-up (batch)

algorithms for sampling. These are analogous to the traditional bottom-up query evaluation

strategies widely used in relational DBMSs today because they are typically more e�cient

than the iterative tuple-substitution query processing strategies.

The problem with bottom-up algorithms applied to sampling queries is that they may

not generate the desired sample size. In such cases one may have to repeat the sampling

process to obtain the additional sample records needed. Commonly, one would attempt

to avoid such problems in bottom-up sampling query evaluation by hedging on the target

sample size (using a larger sample), and randomly discarding any excess records. The closing

109
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sections of the chapter, concerning complex relational expressions, are written in terms of

the conventional bottom-up query processing strategies. Bottom-up (batch) sampling query

evaluation strategies are not as readily incorporated into sequential (adaptive) sampling

procedures. However, they could be used in group sequential sampling procedures.

6.2 Notation

The sampling operator will be denoted as  . Sampling method and size will be denoted

by subscripts. Hence,  SRS;100(R) denotes a simple random sample from relation R of size

100. Similarly,  SRS;100(R) denotes a simple random sample without replacement of size

100 from relation R. If the sampling method is not indicated, then one should assume that

simple random sampling without replacement (SRSWOR) is intended.

More complex sampling schemes will be described via the iteration operators:

� With Replacement Iterator, denoted WR(s,< expr >), which indicates that< expr >

(a sampling expression) is to be repeatedly evaluated until a sample with replacement

of size s obtained, i.e., no duplicate checking is performing

� Without Replacement Iterator, denoted WOR(s,< expr >), which indicates that

< expr > (a sampling expression) is to be repeatedly evaluated until a sample without

replacement of size s obtained, i.e., duplicates are removed.

De�nition 1 Two sampling schemes, A(R) and B(R) of relation R are said to be equiva-

lent, denoted by A, B, if, for every possible instance r of relation R they generate exactly

the same size samples, and the inclusion probability for each element of the population is

the same in both schemes. Note that the samples are not necessarily identical.

When discussing batch (bottom-up) sampling algorithms we will relax the requirement that

sample sizes are exactly the same.

De�nition 2 MIX(�;< expr1 >;< expr2 >) denotes a random mixture of two sampling

schemes. It indicates that one samples according to sampling expression < expr1 > with

probability �, and with probability 1 � � one samples according to sampling expression

< expr2 >.

MIX is used to implement sampling from unions.

De�nition 3 ACCEPT (�;< expr >) indicates that one accepts the sample element gen-

erated according to sampling expression < expr > with probability �.

ACCEPT is used to implement sampling from projections and joins.

6.3 Selection

Denote the selection of records satisfying predicate pred from relation R by �pred(R)

The number of records in relation R is n. The fraction of records of relation A which
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satis�es predicate pred is �pred. Hence n�pred is the number of records in relation R which

satisfy the selection predicate.

Selection is unique in that it correctly commutes with the sampling operator, i.e., se-

lecting from a simple random sample generates a simple random sample of a selection.

Theorem 18 Sampling and selection operators commute (up to sample size), i.e., we can

obtain a sample of a selection by repeatedly sampling individual records and evaluating the

selection predicate on each sampled record until we obtain target sample size.

 s(�pred(R)), WOR(s; �pred( 1(R)))

Proof: For records which do not satisfy the predicate, the inclusion probability is obviously

zero on both sides.

In the sampling scheme on the lefthand side the inclusion probability, p, for any record

r which satis�es the selection predicate is:

p = s=(n�pred) (6.1)

i.e., all such records have equal inclusion probabilities.

On the righthand side, one repeatedly sample one record from R, evaluate the selection

predicate, and then retain it if it satis�es the selection predicate and is not a duplicate.

This continues until one has a sample size s.

Since the selection operator does not alter the inclusion probabilities of those records

which satisfy the selection predicate, they remain equi-probable. From the de�nition of the

WOR iterator, one is assured that the sample size is s distinct records. 2

Techniques for sampling from selections may be classi�ed according as to whether they

use an index, or scan the entire relation. The �rst class can be further classi�ed according

to whether the index contains rank information, which permits random access to the j0th

ranked record. Assume that the index is a single attribute record-level index constructed as

a B+ tree. Except as noted, assume that the predicate can be fully resolved by the index.

Based on this classi�cation schema, one has the following algorithms:

� KSKIPI: sample sequentially via random accesses in the index pages, i.e., skipping

over records not included in the sample reservoir [Vit85],

� RAI: random access sample via the index, iterating until desired sample size is ob-

tained,

� SCANI: sequentially sample via the index, i.e., scan every relevant index page,

� RA: random access sample, iterating until the desired sample size is obtained,

� SCAN: sample sequentially scanning every page of the relation,

In order to generate random accesses via the index, one must assume that the index

includes rank information as discussed in Section 5.3.

The �rst method, sequential sampling via random access skips (KSKIPI) can be expe-

dited [Vit84] if the population size (number of tuples which qualify on the predicate) is



CHAPTER 6. SAMPLING FROM RELATIONAL OPERATORS 112

known, i.e., computable from the rank information in the index. In this case the expected

number of disk accesses is given by:

E(DKSKIPI) � (s(1 + logf (
n�pred

sf
))) (6.2)

Here f is the average fan-out of each node in the B+ tree index. The log term is due to

average height in the tree one must backtrack for each skip. Assume one additional access

for each element of the sample to actually retrieve the sampled record.

Again assuming rank information in the index, the second method, random probes of

the subtree of the index selected by the predicate (RAI), has an expected cost of:

E(DRAI) � (s(1 + logf (
n�pred

f
))): (6.3)

Clearly, KSKIPI is always more e�cient than RAI for simple predicates. However, there

may be occasions in which multi-attribute predicates are speci�ed for which only a single

index is available. This precludes the use of KSKIPI, because one doesn't know the size or

the identity of the population satisfying the multi-attribute predicate. However, one can

continue to use RAI on one index, and evaluate the multi-attribute predicate on each record

sampled.

The third method, sequentially sampling via the index consists of �nding the pages of

the index which point to records which satisfy the predicate, and then sequentially scanning

and sampling each such index page, assuming that successive index pages are chained. The

sequential sampling would be done with a reservoir method such as [Vit85], which does

not require a known population size. This method would be used when the index does not

contain the rank information needed for RAI or KSKIPI. It has an expected cost of:

E(DSCANI) � logf(
n

f
) +

n�pred

f
+ s (6.4)

The fourth method, direct random access sampling (RA), does not require any index.

For a relation with a �xed blocking factor the number disk accesses required to obtain s

distinct records is a negative binomial distribution whose mean is given by:

E(DRA) =
s

�pred
(6.5)

assuming that s� n�pred. (See Section 2.7.1. The advantage of this method is that it does

not require an index. If �pred is close to 1 this method avoids superuous accesses to the

index. If �pred is very small the SCAN method is to be preferred.

The �fth method, SCAN, consists of simply scanning the entire relation to perform the

selection, with a pipelined sequential sampling of the result. The number of page accesses

is simply the size of the relation:

E(DSCAN) =
n

bR
(6.6)

Here bR is the blocking factor for relation R.
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6.4 Projection

For simplicity I only consider projection on a single domain. Similar results hold for

projection on multiple domains. Similarly, for expository purpose I treat only sampling with

replacement. As shown earlier extensions to sampling without replacement are straightfor-

ward. Denote the projection of relation R onto domain A as �A(R).

Let A be an attribute de�ned on the domain a1; a2; :::; am. The set R:ai includes all the

tuples in R with value ai on the attribute A.

De�nition 4 The minimum frequency of the attribute A in relation R, denoted as jR:ajmin,

is the minimum cardinality in relation R of any projection domain value ai.

Theorem 19 If A is not a (candidate) key of R then, then projection and sampling oper-

ators do not commute. The projection of a simple random sample will not yield a simple

random sample of the projection (unless the projection domains include a key of the base

relation).

 s(�A(R)) 6, �A( s(R))

Proof: Consider the following counterexample: Relation R is comprised of two domains

< A;B >. Instance r of relation R is:

r = f(1; 2); (1; 3); (2; 4)g (6.7)

Then the projection �A(r) = f(1); (2)g Now

prob[(1) 2  1(�A(R))] = 1=2 (6.8)

prob[(1) 2 �A( 1(R))] = 1=3 (6.9)

Hence

prob[(1) 2  1(�A(R))] 6= prob[(1) 2 �A( 1(R))] (6.10)

Projection does not generally commute with sampling because the projection operator

removes duplicates. Hence, interchanging projection and sampling will produce uneven

inclusion probabilities. 2

However, if the attribute A is a key of the relation R, then there will be no duplicate

values of A in R, hence projection and sampling can be exchanged with impunity.

Theorem 20 One can obtain a simple random sample of a projection, by performing ac-

ceptance/rejection sampling from the base relation, where the acceptance probability of a

record is inversely proportional to the number of records in the base relation with the same

projection attributes.

 SRSWR;s(�A(R)),

�A(WR(s; ACCEPT (
j(R:a)jmin

j(R:ai)j
;  SRSWR;1(R))))

where j(R:ai)j is the multiplicity of projection domain value R:ai in relation R, i.e., the

number of tuples in R which match value ai on the projection domain.
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Proof: On the righthand side one samples with replacement from relation R �rst. Hence,

each value ai in the projection domain A would have an inclusion probability of j(R:ai)j=jRj.
Since one wants uniform inclusion probabilities on the projected domain values, one em-

ploys acceptance/rejection sampling to correct the inclusion probabilities. The acceptance

probability for a tuple with value ai in the projection domain A is given as:

pi =
j(R:a)jmin

j(R:ai)j
(6.11)

Hence, for each sample element accepted the probability of including a particular value ai
of the projection domain A is:

p =
j(R:a)jmin

jRj
(6.12)

i.e., one now has an equi-probable sample of the projection. One repeats the accep-

tance/rejection sample until one has accumulated s records in one's sample. 2

Hence the expected cost is:

E(D) � s
j(R:a)javg
j(R:a)jmin

(6.13)

assuming s � j�A(R)j, where j(R:a)javg = jRj=m is the average cardinality of attribute A

over all attribute values ai present in the relation. Here I have assumed that relation R is

hashed on the projection domain so that records may be retrieved in a single access.

In order for the above algorithm to work one must be able to readily determine the

cardinality (number of duplicates) of each projected tuple. This requires that the relation

to be projected must be either sorted, indexed or hashed on the projection domain. Also

one must either know j(R:a)jmin or replace it with a lower bound of 1, at the expense of

reduced e�ciency.

Suppose, however, the relation to be projected is not \indexed" on the projection do-

mains. Then one has 3 choices:

� Project �rst: Do the projection �rst, then sample. This requires scanning the entire

base relation. Main memory versions of projection require space proportional to the

size of the projection.

� Semi-join: Estimate the required gross sample size, sg, required. Construct a sample

with replacement of this size from the base relation R, call this sample T . Note that

this is a multi-set (bag). Compute the semijoin of the base relation R with the sample

T over the projection attributes, i.e., �nd all records in R which match records in T

on the projection attributes. Now perform a count query, grouping on the projection

attributes, to obtain the cardinalities of matching records in R for each record in T .

Use these cardinalities to acceptance/rejection sampling of the elements of T . Adjust

the resulting sample (e.g., by randomly discarding excess elements) to obtain the

exact sample size desired. Note that while this algorithm also requires scanning the

entire base relation, the main memory space requirements are only proportional to sg,

the gross sample size required. This algorithm is also amenable to parallelization, by

partitioning the �le on some hash function of the projection attributes.
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� Reservoir projection sampling: Scan the base relation using a reservoir sampling algo-

rithm. Also check each tuple in the base relation to see if it's projection is already in

the reservoir. If so, mark the tuple in the reservoir. Only unmarked tuples will be ac-

cepted at the end of the relation scan. Thus one only accepts projected tuples if they

were the last tuple in the base relation with the speci�ed projection. This circum-

vents the problem of oversampling duplicate tuples. The advantage of this method

is reduction in main memory space requirements, which are only proportional to the

required reservoir size, i.e., the gross sample size. This algorithm should outperform

the semi-join algorithm discussed above, since it does not require the �rst sampling

phase of the semi-join algorithm. However, it is not clear how to e�ciently parallelize

this algorithm. The reservoir projection algorithm is analogous to the spatial reservoir

R-tree algorithm discussed in Chapter 5.

6.5 Intersection

Denote the intersection of two distinct relations R and T as R \ T .
While it is possible to distribute sampling over intersection and still preserve uniform

inclusion probabilities, the resulting computation is so ine�cient that it is rarely worthwhile.

Theorem 21 A simple random sample of the intersection of two relations, R, and S can be

obtained by sampling from one of the relations checking for inclusion in the other relation.

 s(R \ T ) , WOR(s;  1(R)\ T ) (6.14)

, WOR(s; R\  1(T )) (6.15)

Proof: Consider the �rst case. From the lefthand side one �nds that the inclusion

proability for tuples in R \ T is s=jR \ T j, zero otherwise. For the righthand side the

inclusion probability for all tuples in the intersection of R and T is s=jR\T j, zero otherwise.
In either case one has a simple random sample. 2

One thus has one's choice of which relation to sample from and which relation to do the

intersection with. Typically, if only relation R has an index, then one would sample from

T and then intersect with R using its index, since the alternative would require scanning

all of T in order to perform the intersection.

If both R and T have indices one must consider the relative costs of the two options

based on the size of the relations, the type of index (hash, B+ tree, primary or secondary),

and the blocking factors for each relation.

If neither R nor T have indices, then one would sample from the larger relation, so that

the intersection scan can be performed on the smaller relation.

De�nition 5 De�ne the intersection selectivities �R; �T as:

�R =
jR \ T j

jRj
; �T =

jR \ T j

jT j
(6.16)

i.e., �R is the probability that an element of R is in the intersection of R and T , and �T is

the probability that an element of T is in the intersection of R and T ,
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Then the cost in disk accesses of sampling from R and then checking for inclusion in T ,

assuming T has a B+ tree index is:

E(DR) �
s

�R
(1 + logfTI (

jT j

fTI
)) (6.17)

where fTI is the the average fan-out of the B
+ tree index to relation T . We have assumed

here that R is stored with �xed blocking, so that each record sampled requires one disk

access. The factor 1=�R is due to the attrition of candidate sample elements which are not

in the intersection of R and T . The factor (logfTI (
jT j
fTI

)) accounts for the e�ort required to

check each element of R by looking up in relation T . Again assume that s � jR \ T j, i.e.,
neglect the extra cost of sampling without replacement.

An analogous formula for E(DT) can be written if one samples from relation T and

check the intersection in relation R. The choice of which �le to sample from can be made

by comparing the values of the two cost formulas.

Subsequent to the original publication of a preliminary version of this chapter [OR86]

Hou and Ozsoyoglu proposed an alternative procedure [HOT88] for estimating the size of

a set intersection which entailed sampling from each operand and then constructing the

intersection of the two random samples. Their approach may be ine�cient for very large

databases. Suppose each sample is a small fraction of the base relations, R and S (say 0.1

percent or 104 records out of 107 records in each base relation) and that actually R = S so

that R \ S = R = S, i.e., jR \ Sj = 107 Then the expected size of the intersection of the

two samples (i.e., 10 records or less) would be 10�6 times the size of the full intersection.

This may well prove too small to provide reliable estimates of size of the intersection. In

such cases, my method of simple random sampling from intersections (Chapter 6), which

entails sampling from one operand and checking for inclusion in the intersection against the

second operand, will likely prove preferable (assuming that the necessary index is at hand).

Similar problems arise with their estimation of the size of joins (especially, if they are on

keys). Again, in these cases my methods (as discussed in this chapter) will be preferable if

the requisite index is at hand. Hou and Ozsoyoglu incorporated my methods into the later

version [HO91] of their paper.

6.6 Di�erence

Denote the di�erence of two relations R and T as R� T .

Theorem 22 Sampling operators do not distribute over set di�erence, i.e., the simple ran-

dom sample of the di�erence R� T of two relation R and T can not be obtained by taking

the di�erence of simple random samples of R and T .

 k(R� T ) 6,  k(R)�  k(T ) (6.18)

Proof: Distributing sampling over di�erence operators fails because elements in R \ T
but not in  k(T ) may be erroneously included in  k(R)�  k(T ). 2
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Theorem 23 A simple random sample of the intersection R � T of two relations, R and

T , can be obtained by taking a simple random sample of R and then checking that it is not

contained in T .

 s(R� T ), WOR(s;  1(R)� T ) (6.19)

i.e., sampling from the di�erence of two relations is equivalent to sampling from the �rst

relation and then taking the di�erence.

Proof: Clearly the sampling scheme on the righthand size will produce a sample without

replacement of the desired size. It remains to be shown that the sample is from R � T
and that each element in R � T has an equal inclusion probability. Since  1(R) 2 R it

follows that  1(R) � T 2 (R � T ). Since  1(R) has uniform inclusion probabilities over

all elements of R and set di�erencing with T does not alter the inclusion probabilities of

records in R� T , it follows that the righthand side sampling scheme has uniform inclusion

probabilities for records in R� T . 2
Thus sampling from relation di�erences is very similar to sampling from relation inter-

sections. One samples from R and then check that the tuple is not in T . Hence the expected

cost assuming T has a B+ tree index is approximately:

E(D) �
s

(1� �R)
(1 + logfTI (

jT j

fTI
)) (6.20)

where s is the target sample size, �R is the intersection selectivity de�ned previously as:

�R = jR\T j
jRj

. Here 1 � �R is the probability that an element of R is not contained in T .

Hence, (if sampling with replacement) the number of iterations required to retrieve each

element of the sample will be geometric with mean 1=(1� �R). The logfTI (
jT j
fTI

)) factor is

simply the expected cost of searching the B-tree in which relation T is stored.

Again assume that s � jR � T j, i.e., neglecting the extra cost of sampling without

replacement.

6.7 Union

Denote the union of two distinct relations R and T as R [ T .

Theorem 24 The union of simple random samples from two relations R and T does not

yield a simple random sample of the union of the two relations.

For any S1; S2 :  s(R [ T ) 6,  S1(R) [  S2(T ) (6.21)

Proof: Interchanging sampling and union fails because all elements on lefthand side

have identical inclusion probabilities of s=jR [ T j, whereas the righthand side inclusion

probabilities for elements in the intersection R \ T are
S1

jRj
+
S2

jT j
�

S1S2

jRjjT j
whereas the

inclusion probability for elements in R � T is S1=jRj and the inclusion probability for

elements in T�R is S2=jT j. Hence elements in R\T do not have same inclusion probability

as elements in (R[ T )� (R\ T ). 2
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begin

i := RAND(1; jRj+ jT j);
If i � jRj
then get record i from R.

else

begin

j := i� jRj;
Get record j from T .

Check if record j is in R.

If so, discard record j, otherwise retain it.

end

endif

end

Figure 6.1: Code for Union Operator

The correct treatment of sampling from unions requires that one sample elements of

intersection only once. Observe that:

R [ T = R [ (T � R) (6.22)

Theorem 25 A simple random sample of the union of two relations R and T can be ob-

tained by iteratively attempting to either: sample from one relation R, or sampling from

the second relation T and testing that the element is not in R. The attempts are allocated

in proportion to the sizes of the relations R and T . Since union is a commutative operator,

either relation may be used as the primary relation. (Here I show the result for sampling

without replacement, it also holds for sampling with replacement).

 SRSWOR(R [ T ),WOR(s;MIX(
jRj

jRj+ jT j
;  1(R); ( 1(T )�R)) (6.23)

Recall that MIX(�;< expr1 >;< expr2 >) indicates that one samples according to <

expr1 > with probability �, and with probability 1� � one samples according to < expr2 >.

Also recall that WOR(s; < expr >) indicates that one evaluates the sampling expression

< expr > repeatedly (removing duplicates) until one has a sample of size s.

Proof: Recall that the problem with naively interchanging sampling and union is that

elements of the intersection were sampled twice as often. This algorithm uniformly samples

from the concatenation of R and T and then discards those samples from T which lie in

the intersection. The result is that elements in the intersection are sampled with the same

probability as elements which are not in the intersection, yielding a uniform random sample.

2

Then to generate the a single sample of R [ T we repeat the algorithm in Figure 6.7

until a sample is accepted:
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Assuming B+ tree indices, and s� jR[T j, one �nds the expected number of iterations

of the above algorithm to obtain a single sample is:

E(lR) =
(jRj+ jT j)

(jR[ T j)
(6.24)

For each iteration, one samples T (at a cost of one disk access), and the check the B+ tree

index to R. Thus each iteration has a cost of:

(1 +
jT j

jRj+ jT j
logfRI (

jRj

fRI
)) (6.25)

Hence the total cost is:

E[Dunion] =
(jRj+ jT j)

(jR[ T j)
(1 +

jT j

jRj+ jT j
logfRI (

jRj

fRI
)) (6.26)

CAVEAT: The alert reader will notice that this algorithm requires the availability

of the cardinalities of the operand relations R and T . If R and T are base relations, this is

trivial. However, if R and T are the results of relational expressions, then their cardinalities

may prove awkward to obtain without actually computing the the results.

A bottom-up batch version of the algorithm can be written simply as:

 SRSWR(R [ T )()  SRSWR(R) [ T (6.27)

or

 SRSWR(R [ T )()  SRSWR(T ) [R (6.28)

Note that one may not get exactly the sample size one needs.

6.8 Join

Given two relations R and T , let the relation W be the result of their equijoin, i.e.,

W = R ><
R:x=T:x

T . In this section I describe algorithms for sampling from W . For reasons

of e�ciency one wishes to avoid computing the full join. For simplicity of exposition I

discuss only sampling with replacement in this section. Conversion to sampling without

replacement is straightforward.

Sampling from W can be done in di�erent ways depending on the initial structure of

the relations R and S. Some important factors in determining the sampling method are:

1. Is the join attribute a key in one or more of the joined relations?

2. Are the relations R or T indexed or hashed on the join attribute ?

3. Is the join selectivity factor large?

In this section I will cover several of the basic join sampling methods and evaluate them

with respect to their e�ciency. I commence by describing the notation and providing some

needed de�nitions.
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Denote the semi-join of relation R with relation S over domains A of R and domain B

of S as R ><
A=B

S. Let X be an attribute de�ned on the domain x1; x2; :::; xm. The set R:xi

includes all the tuples in R with value xi on the attribute X . The join selectivity factor

�(R ><
R:x=T:x

T ) of relations R and T over the attribute X is de�ned as

�(R ><
R:x=T:x

T ) =

Pm
i=1 jR:xijjT:xij

jRjjT j
(6.29)

where m is the number of distinct values of the join domain. When the context is clear I

will simply denote this by �.

6.8.1 Join without keys

First, I will deal with the case that the join attribute X is not a key in any of the

relations R or T . Assume that relation T is \indexed" on the join attribute X , and that

the modal frequency of the attribute X in relation T , as de�ned below, is also known.

De�nition 6 The modal frequency of the attribute X in relation T , denoted as jT:xjmax,

is the maximum cardinality in relation T of any join domain value xi, i.e.,

jT:xjmax = max
all i
jT:xij (6.30)

Theorem 26 A simple random sample of size s of the equi-join of two relations R and T

can be obtained by iteratively:

1. sampling a single element from R

2. joining this element to T , yielding V

3. sampling a single element from the join result

4. accepting the record with acceptance probability proportional to the cardinality of V

This repeated until a sample of size s is obtained (including duplicates).

In algebraic notation the algorithm is written:

 SRSWR;s(R ><
R:x=T:x

T )() WR(s; ACCEPT (
jT:xij

jT:xjmax

;  1( 1(R) ><
R:x=T:x

T ))) (6.31)

where  SRSWR;s(U) denotes a simple random sample of size s from relational expression U ,

and jT:xij denotes the cardinality in relation T of join domain value xi resulting from the

sample  1(R). Recall that WR(s; < expr >) indicates that one should iteratively evaluate

the sampling expression < expr > until one has accumulated a sample of size s (including

possible duplicates).

Proof: Clearly the righthand side sampling scheme will produce a sample of the

requisite size from R ><
R:x=T:x

T . What must be shown is that it will have uniform inclusion

probabilities.
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comment This version of the algorithm

samples R �rst;

For j := 1 to s do

set accept to false

While accept = false

begin

Choose a random record r from R.

Assume r[X ] = xi.

Find the cardinality of T:xi.

Accept r into the sample with probability

�i =
jT:xji
jT:xjmax

In case record r is accepted, choose randomly a tuple t

of T:xi and join r with it.

Store the result r ><
R:x=T:x

t in the sample �le.

set accept to true.

end

Endwhile

Endfor

Figure 6.2: Algorithm - RAJOINR

Each iteration of the above algorithm begins by sampling a tuple from R. Each tuple

in R has inclusion probability jRj�1. The sampled tuple,  1(R), is then joined with T and

a random sample of the result taken, denoted  1( 1(R ><
R:x=T:x

T )). Clearly each member

of ( 1(R) ><
R:x=T:x

T ) has the inclusion probability (jT:xi)j)�1 as de�ned above. This single

sample is then accepted with probability
jT:xij

jT:xjmax
. Hence inclusion probability of any member

of R ><
R:x=T:x

T is given for a single iteration by the product:

p = jRj�1(jT:xij)
�1 jT:xij

jT:xjmax
(6.32)

=
1

jRjjT:xjmax
(6.33)

i.e., one has uniform inclusion probabilities for each iteration. By induction, this is true for

the full algorithm. 2

In practice one uses an equivalent, but somewhat faster algorithm which is shown in

Figure 6.2. Here, the instead of performing the join �rst and then sampling and doing

the acceptance/rejection test, one determines the number of records from T which would

join with the sample element of R, performs the acceptance/rejection test, and then (if one

passes the A/R test) samples an element from the matching records of T to join with our

sample element of R.
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Note that one does not actually construct the full  1(R) ><
R:x=T:x

T , since one only needs

a sample of size 1 from it.

The e�ciency of this method is established in the following lemma.

Lemma 8 The expected number of times that the while loop in RAJOINR will be performed

until a sample element is accepted, E(lR), is:

E(lR) =
jT:xjmax

�jT j
(6.34)

Proof: As explained earlier in Chapter 2, the number of times one must evaluate an

acceptance/rejection sampling step in order to obtain a single element is a geometric random

variable with expectation equal to the inverse of the expected acceptance probability, E[�i].

For the join algorithm, the acceptance probability, �i is:

�i =
jT:xji
jT:xjmax

(6.35)

Hence the expectation of the acceptance probability, E[�i] is:

E[�i] =
X

all i inR

jR:xji
jRj

jT:xji
jT:xjmax

(6.36)

Recall that the de�nition of � is:

�(R ><
R:x=T:x

T ) =

Pm
i=1 jR:xijjT:xij

jRjjT j
(6.37)

where m is the number of distinct values of the join domain. Hence rearranging the formula

for the expectation of the acceptance probability and substituting for the join selectivity,

�, yields:

E[�i] =
�jT j

jT:xjmax
(6.38)

since lR is a geometric random variable with mean proportional to the inverse of the accep-

tance probability:

E(lR) = E[�i]
�1 (6.39)

substituting the equation for E[�i] yields the theorem:

E(lR) =
jT:xjmax

�jT j
(6.40)

2

Hence the total e�ciency (disk accesses) of the algorithm is:

E(DRAJOINR
) � sE(lR)(1 + logfTI (

jT j

fTI
)) + s (6.41)

� s
jT:xjmax

�jT j
(1 + logfTI (

jT j

fTI
)) + s (6.42)
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where fTI is the average fan-out for the B+ tree index for T . Here the log factor is the

time to search the B+ tree index of T for each sample. The last s term in each equation

represents the cost of �nally retrieving the sampled records from T .

If there is an index on R then an analogous algorithm RAJOINT can be constructed

by simply exchanging the roles of R and T in the above algorithm and cost analysis. If

both R and T are indexed, either algorithm could be used. If the join selectivity, �, is very

small, neither algorithm is recommended. Instead, it may be preferable to compute the full

join and then sample sequentially the output of the join using [Vit85] as it is generated.

6.8.2 Join with key

Suppose that the join domain X is a key of relation T and that relation T is indexed on

X . In this case, the acceptance/rejection sampling is unnecessary, if one �rst samples from

relation R.

Theorem 27 If the join domain X is a key (or candidate key) of relation T , then we can

obtain a simple random sample from a join of R and T by iteratively sampling from R and

joining the sample tuple with T until we have obtained the desired sample size.

 SRSWR;s(R ><
R:x=T:x

T )() WR(s; ( 1(R)) ><
R:x=T:x

T ) (6.43)

Proof: Because the join domain X is a key (or candidate key) of T we can be certain that

T contains at most one matching tuple for each tuple in R, hence the join acts e�ectively as

a selection on R. The result then follows from earlier results on sampling from selections.

2

6.9 Multiple Joins

I now turn briey to the question of how to sample from queries which contain multiple

joins, intersections, set di�erence and selection operations. Since selection operations safely

interchange with sampling operators the selection operator can be evaluated whenever it is

most convenient.

I now de�ne a modi�ed equi-join operator, called the A/R join operator and denoted
AR
>< . The A/R join operator takes two arguments, a bag (multi-set), and a relation and

performs the combined join and acceptance/rejection sampling, as described above in the

section on join sampling. Hence one can describe (a bottom-up batch version) of the previous

iterative join algorithm as:

Theorem 28 A simple random sample with replacement of a join of R and T can be

computed by performing an A/R join of a simple random sample with replacement of R

with relation T .

 SRSWR(R>< T )()  SRSWR(R)
AR
>< T (6.44)

Note that if one employs a batch version of the algorithm, then additional iterations may be

necessary to generate a full-size sample.
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Using this description of the join sampling algorithm it is easy to see that for multiple

joins one can simply push the sample operator down one path in a join-tree (to the base

relation), replacing the join operators with A/R join operators as one goes.

Thus one can transform a join expression as follows:

 SRSWR(R>< (S >< T ))()  SRSWR(R)
AR
>< (S >< T ) (6.45)

or as:

 SRSWR(R>< (S >< T ))() R
AR
>< ( SRSWR(S)

AR
>< T ) (6.46)

or as:

 SRSWR(R>< (S >< T ))() R
AR
>< (S

AR
><  SRSWR(T )) (6.47)

Thus cascaded joins do not pose a major problem for sampling, except that we must

somehow obtain a bound for the modal frequency of the join attribute. Similar results hold

for set intersection and set di�erence and for combinations of selections, joins, intersections,

and di�erence operators. Combinations including projection and union are more complex.

Consider the following example.

Z =  ((P >< (Q>< (R \ T )))�W ) (6.48)

where the sampling operator is a simple random sample with replacement. One �rst inter-

changes the sampling and set di�erence operators, to get:

Z =  (P >< (Q>< (R \ T )))�W (6.49)

One then push the sampling operator through �rst join operator, to get either:

Z = ( (P )
AR
>< (Q>< (R \ T ))�W (6.50)

or

Z = (P
AR
><  (Q>< (R \ T )))�W (6.51)

Continuing from the latter version, one generates two more alternatives by pushing the

sampling operator down one level further:

Z = (P
AR
>< ( (Q)

AR
>< (R \ T ))�W (6.52)

or

Z = (P
AR
>< (Q

AR
><  (R \ T )))�W (6.53)

From the second version one pushes the sampling through the intersection operator to obtain

two more equivalent expressions:

Z = (P
AR
>< (Q

AR
>< ( (R)\ T )))�W (6.54)

or

Z = (P
AR
>< (Q

AR
>< (R\  (T ))))�W (6.55)

All of the above expressions are equivalent, i.e., they will generate simple random sam-

ples of the original relational expression - although for the bottom-up algorithms the sample

size may vary. For each expression, one may implement either a bottom-up algorithm, or

an iterative (tuple-substitution style) version.
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6.10 Sampling Select-Project-Join Queries

In this section I consider briey how to extend our results to support sampling from

the more complex select-project-join queries which have been widely studied. Such queries

are traditionally written as a equi-join query, followed by projection, followed by selection.

Such queries are very common in practice.

First recall that selection and sampling operators commute, so that one can perform the

selection operator whenever it is convenient. Often query optimizers will attempt to push

selection down in the query processing plan (toward the leaves, where the base relations are

being read) to reduce the cardinality of the operands as quickly as possible. However, sam-

pling operators will often provide even greater reductions in the cardinality of the operands.

Hence, it may be best to perform sampling before selection. I will henceforth ignore the

selection operator and simply address sample-project-join queries.

The problem with sampling from project-join queries is that one can not simply sample

from the join and then take the projection. Recall that projection removes duplicates as

well as restricting the columns retrieved. As I described earlier in the discussion of sampling

from projection operators, one must account for the impact of the duplication elimination

on inclusion probabilities.

Theorem 29 One can compute a sample of the project-join query (onto to attributes fzg),
 SRSWR(�z(R>< T )), by:

1. Compute a sample of the join: S =  SRSWR(R>< T )

2. Compute the projections of the join sample: U = �attrz(R)(S), V = �attrz(T )(T ), where

attrz(R) are simply the subset of the �nal projection attributes which appear in relation

R, (similarly for T ).

3. Compute the reduced join operands via semi-joins of the sample projections with the

base relations: R0 = R>< U , T 0 = T >< V .

4. Compute the join of the reduced operands, to obtain all the elements of the join of the

base relations whose projections are equivalent to the projections of the join sample:

W = R0 >< T 0

5. Perform a COUNT GROUPED BY the projection attributes query to obtain the sizes

of the projection equivalence classes: W 0 = �cz(W )

6. Augment the join sample elements with the counts (of the corresponding projection

equivalence classes): S0 = S >< W 0.

7. Perform an acceptance/rejection test for each element of the augmented join sample

with acceptance probability for the i0th tuple equal to (S0:counti)
�1
, the inverse of the

size of the i0th projection equivalence class, to yield the accepted relation S 00.

8. Finally, discard unnecessary columns from the result (retaining any duplicates): Y =

columnsz(S
00)
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Proof: This is basically the acceptance/rejection algorithm discussed earlier for sampling

from a projection. The steps 2-6 simply compute the cardinalities of elements of the join

which have the same projection domain values as the join sample elements. Step 7 does the

acceptance/rejection required for the projection. Finally, step 8 discards unneeded columns.

2

The practicality of this algorithm hinges on the availability of the requisite indices on

the base relations, small values for the counts (projection equivalence class cardinalities),

and reasonable expected values for the average acceptance probability.

6.11 Domain Sampling from Complex Unions

Now I consider the problem of complex unions, i.e., sampling from the union of two

relational expressions. The reader will recall that our algorithm for sampling from unions

(discussed above) required the cardinalities of the both operands. If the operands are

arbitrary relational expressions this would require that one compute the expressions to

determine their sizes. If one is willing to accept approximately correct samples, then could

estimate the cardinalities of the operands.

There is another approach which is sometimes practical. I call it domain sampling. It

was originally conceived as a way to support sampling operations on DBMSs which did not

provide any sampling support.

The idea is to sample from the underlying common domain of the keys of the operands,

and then join the putative sample with the union of the operands, using the union as a

selection predicate.

Hence:

 SRSWR(R [ T )()  SRSWR(key domain(R))>< (R [ T ) (6.56)

where I have assumed thatR and T have the same key domain. In e�ect one is treatingR[T
as a selection applied (via the join) to the sample from key domain. Since I take a simple

random sample from the key domain and I have earlier shown that one can interchange

selection with sampling operators (up to sample size), the result will be a simple random

sample from the union. I also need the observation that joining with the complete key

domain is a no-op, i.e.,

key domain(R)>< (R [ T ) = R [ T (6.57)

Here the join also restores the non-key attributes.

Distributing the join over the union one obtains:

 SRSWR((R [ T ))() (S >< R) [ (S >< T ) (6.58)

where S =  SRSWR(key domain(R)). This is algorithm one would use.

The gross sample size required is (approximately) proportional to the inverse of density

of the keys in the union, i.e.,

sg � s
jkey domain(R)j

jR[ T j
(6.59)

where sg is the gross sample size, s is the target sample size, and jX j is the cardinality of

the relation X .



CHAPTER 6. SAMPLING FROM RELATIONAL OPERATORS 127

The advantage of this algorithm is that it does not require any knowledge of the operand

cardinalities, jRj and jT j. Hence it can be applied to complex unions where R and T

are relational expressions (with a common key domain). It obviously requires that key

domain of the operands be a �nite set, e.g., a bounded set of integers. While typical

key domains are unbounded sets of positive integers one can always substitute the range

(mininum,maximum) of keys actually used. The range limits are usually easily maintained

or determined.

Note that this approach is not limited to unions, it can be applied to any relational

expression. In particular, it could also be an attractive approach to sampling from projec-

tions.

6.12 Conclusions

In this chapter I have shown how to compute simple random samples from simple rela-

tional queries speci�ed by single relational algebra operators: selection, intersection, union,

di�erence, projection, and join. I have used acceptance/rejection techniques to compensate

for the e�ects of the relational algebra operators on inclusion probabilities.

Speci�cally, I have shown that sampling and selection operators trivially commute. A

sample of a projection can be obtained by performing acceptance/rejection sampling of the

base relation, with acceptance probability proportional to number of matching records, i.e.,

matching on the projection domain.

For binary operators, one pushes the sampling operator down one side of the subtree.

Thus a sample of the intersection of two relations is computed by intersecting a sample of

the �rst relation and the entire second relation. A sample of set di�erence is obtained by

computing the di�erence of a sample of the subtrahend and the entire minuend relation. A

sample of the union of two relations is obtained by sampling uniformly from the concate-

nation of the two relations and discarding those elements sampled from the second relation

which are in the intersection.

Sampling from the join of two relations is done by sampling from one relation and then

doing an acceptance/rejection sampling from the join of the sample tuple with the second

relation with acceptance probability proportional to the number of matching records in the

second relation.

For all of the commutative operators (intersection, union, and join) one can exchange

the roles of the two relations, which side one decides to push the sampling operator down.

The query optimizer must choose, based on the availability of indices, conditional inclusion

probabilities and join selectivities.

Sampling from cascaded joins is straightforward. One merely pushes the sampling oper-

ator down some path in the query plan tree, replacing the join operators encountered with

A/R join operators (which perform the needed acceptance/rejection tests). Intermixed

cascades of intersections, set di�erences, joins, and selections can be treated similarly.

Complex union queries are more di�cult because the standard algorithm requires that

the cardinalities both of the operands be known. However, if the keys are taken from a

�nite set,e.g., part serial numbers, then one can use domain sampling to sample from the

union without knowing the cardinality of the operand relations. Domain sampling here

entails sampling from the underlying key domain and then joining with union (actually
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one distributes the join over the union). Hence, the domain sampling algorithm can be

used when the \operands" are complex relational expressions, which one does not wish to

instantiate. The e�ciency is dependent on the proportion of the key domain set which are

keys in the result. Domain sampling can be applied to any relational expression.

I have also shown how to sample from a select-project-join (SPJ) query (selections are

not an issue). The complex algorithm is appropriate when both operands are indexed and

the size of projection equivalence classes is small.

There exist both iterative (tuple-substitution) and bottom-up (batch) versions of each

of the sampling query evaluation strategies described. The iterative versions o�er exact

sample sizes are easy adaptation to sequential (adaptive) sampling procedures, while the

bottom-up algorithms often o�er better performance when the target sample size is speci�ed

externally.

Finally, I note that, because of projection and union operators, it will not always be

practical to push sampling operators all the way down the query execution plan tree to the

base relations. There will be occasions when it will be most e�cient to partially (or even

fully) compute the relational expression, and then sample the result. On such occasions one

would likely employ one of the reservoir sampling algorithms to permit sampling on-the-y

as the relational result is generated.



Chapter 7

Maintaining Materialized Sample

Views

7.1 Introduction

A view is a derived relation whose contents are speci�ed by a relational query against

base relations (or previously de�ned views) of the database. Subsequent to de�nition views

can be used in queries wherever a relation may appear. They are widely used in relational

database systems for access control, and to present customized schemas for various users.

Views may be either:

� virtual - implemented by query modi�cation (i.e., macro-expansion of the queries

containing references to views) [Sto75], or

� materialized - implemented by instantiation, storage, and update of the view relation.

Materialized views must be maintained as updates are made to the base relations. (I am

not concerned here with the issue of updates directly to views.)

Database snapshots [AL80, LHMP86] consist of a record of the state of a portion of a

database at a particular instant in time. Recording periodic snapshots presents problems

very similar to updating materialized views. Periodic snapshots are used to support various

analysis and reporting applications.

De�ne a sample view to be a view speci�ed as a sampling query in a manner analogous to

conventional view de�nitions for relational queries. In this chapter I discuss the maintenance

of materialized sample views (MSVs) in the presence of insertions, deletions, and updates

to the underlying base relations. For expository purposes I con�ne myself to simple (single

relational operator) relational queries.

Maintenance of materialized views presents two kinds of problems:

� policy - when to update the materialized view [SF91]?

{ incrementally, as each update occurs, (a.k.a. immediate [Han87b] or ASAP)

{ periodically [AL80, LHMP86, SF91],

{ on demand, i.e., when queries are posed against the view (a.k.a. deferred [BC79,

Han87b, SF91]);

129
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{ at random times [SF91],

{ hybrid policies [SF91],

{ currency-based [SF90] - enforce a maximum time lag between the state of the

base relations and the view.

� mechanism - how to update the materialized view?

{ screening tests - which update tuples are relevant to each materialized view

[BC79, BLT86, BCL86, Han87b, SP89],

{ view rematerialization - completely recompute the materialized view [BC79],

{ di�erential update - only compute the changes to the materialized view [BLT86,

Han87b].

In this chapter I shall be concerned with only with mechanism questions concerning mate-

rialized sample views.

The basic idea of this chapter is to reuse the maximal portion of the original sample when

constructing the updated sample. These results are thus a synthesis of classical techniques

for updating materialized views [SI84, BLT86, TB88, Han87b, CW91] with the algorithms I

have described for sampling from relations and queries. Devroye [Dev91] discusses a similar

idea of sample reuse (coupled samples) in a simulation setting. Sample reuse is the basis of

panel surveys which are widely used for longitudinal studies.

Throughout this chapter I shall assume that we are computing simple random sam-

ples (SRS), i.e., each member of the population has the same inclusion probability. For

expository reasons, unless otherwise noted, I will compute samples with replacement (SR-

SWR). These results can be easily extended to simple random sampling without replacement

(SRSWOR), by removing duplicates and increasing the sample size.

7.1.1 Organization of Chapter

The remainder of the chapter is organized as follows. In Section 7.2 I discuss maintenance

of SRS views against selection queries against single relations stored as variable blocked

�les. I then discuss sampling from relational operators, treating in turn the maintenance of

samples of projection (Section 7.3) and join (Section 7.4). Finally, Section 7.5 contains my

conclusions and directions for future work.

7.1.2 Notation

Table 7.1 summarizes the notation and abbreviations used in this chapter. The notation

is explained further when it is �rst used. Throughout the chapter, for a variable x, I will

use �x to denote the average of x, xmax to denote the maximum of x, and x0 to denote the

value of the variable x after updating. Individual notations are explained in the text when

they are �rst used.

Here I mention some general conventions. The desired sample size is denoted as s,

whereas sg denotes the inated sample size (i.e., to compensate for losses due to accep-

tance/rejection sampling). The number of records in the �le is denoted n. The number

of blocks in the �le is m. Block i is denoted as Bi. The block occupancy (in records)
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�i acceptance probability of record i

bi block occupancy for block i

Bi i0th block of the �le
�b = n=m = average block occupancy (records)

bmax max. block occupancy (records)

CM(s) expected cost of retrieving sample of size s, via method M

m number of blocks in the �le

n number of records in �le

s number of records desired in sample

sg gross sample size (to compensate for acceptance/rejection)

Q previous contents of the relational query being sampled

hline jQj no. of tuples prev. contained in the relational query being sampled

hline �I tuples added to relational query being sampled

hline j�I j number of tuples added to relational query being sampled

hline CAR correlated acceptance/rejection algorithm

NCAR naive correlated acceptance/rejection algorithm

2FS two-�le sampling method

RES reservoir sampling method

SRSWR simple random sample with replacement

SRSWOR simple random sample without replacement

A/R acceptance/rejection sampling

 k(F ) sample of size k from �le F

�i(A) multiplicity of value i in relation A

Table 7.1: Notation used in Chapter 7 on Maintaining Sample Views

of block Bi is denoted bi, the average will be �b, and the (actual) maximum will be bmax.

The maximum possible bucket occupancy will be denoted as b
. Overow chain length for

hash bucket i is denoted as hi. Acceptance probabilities of records are denoted �k, and

the expectation as �. The expected cost (in disk page accesses) of retrieving a sample of

size s by a method M is denoted as CM(s). For batch sampling, one will need to know

the expected number of blocks referenced when retrieving k records (at random) from a �le

containing m blocks, this will be denoted Y (k;m) (Cardenas's function).

I will need to refer the previous value of the query result being sampled for the view,

call this Q, and let jQj be its size (number of tuples). Similarly, �I are the tuples being

added to query result being sampled, and j�I j is their number.
As usual, SRSWR denotes simple random sampling with replacement (duplicates al-

lowed), and SRSWOR denotes simple random sampling without replacement (duplicates

removed). The reservoir sampling algorithm is denoted as RES, and the two �le sampling

method is denoted as 2FS. NCAR denotes the naive correlated acceptance/rejections al-

gorithm for maintaining a materialized view, while CAR denotes the more sophisticated

version of the algorithm.  k(F ) indicates a simple random sample of size k from �le F . I

will also need the multiplicity of a particular value i in a relation A which I will denote as

�i(A).
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Figure 7.1: Decision tree for sampling strategies.

7.2 Updating a Sample Selection View

Figure 7.1 summarizes the strategy for updating sample views of a single relation selec-

tion query.

As can be seen in the �gure, there are three operations which can be performed to the

base relation which could a�ect a sample view: insert, delete, update.

I treat tuple insertion �rst. There are two cases:

1. The inserted tuple quali�es for the query predicate. In this case one needs to adjust

the sample in a manner described below.

2. The inserted tuple does not qualify for the query predicate. In this case one need do

nothing.

I then treat tuple deletion. There are two cases:

1. The deleted tuple was in the sample. In this case one needs to replace the deleted

tuple in the sample by simply taking an additional SRSWR of size 1.

2. The deleted tuple was not in the sample. In this case one need do nothing.

I now treat tuple updates. There are three possible cases:
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1. The updated tuple now quali�es for the query predicate, where it did not before. This

is equivalent to an insertion into the base relation.

2. The updated tuple no longer quali�es for the query predicate. This is equivalent to a

deletion.

3. The the status of the query predicate for this tuple is unchanged. No action is neces-

sary, except to update the tuple if it is included in the sample.

7.2.1 View Insertion Algorithms

I now describe in detail three algorithms to update a sample view of a of a single relation

selection query, where the inserted tuples are known to qualify for the selection predicate

(as noted above, nonqualifying tuples require no action).

If the inserted record becomes part of query result being sampled, then one needs to

reevaluate one's sample, since it is conceivable, that some record(s) would be replaced in

the sample by the newly inserted records.

Three algorithms are available to do this. I describe them briey here.

1. Reservoir Sampling: a method usually used for SRSWOR as described earlier.

One begins reservoir sampling from jQj+1, where jQj is the size of the original query
result, from which one constructed the original sample with which one initializes

the reservoir. Obviously, this method requires knowledge of the size of the original

query result being sampled. While this is usually available when sampling from base

relations, it may not be available when sampling from selection (or other types of)

queries. When feasible, this algorithm requires I/O time O(j�I j), where �I is the set

of qualifying inserted tuples and j�I j is their number. (Assuming that the original

sample is in memory.).

2. Two-�le Method. Here one also assumes that one knows jQj and j�I j. One allocates
the sample to the two partitions Q and �I according to a binomial distribution as

described earlier. One then obtains a SRSWR of speci�ed size from each partition;

for samples from partition Q one can reuse one's earlier sample. This method assumes

random access to �I . The cost for �xed blocked random access �le the expected I/O

time is O(s � j�I j=(jQj+ j�I)). I have implicitly assumed that Q and �I are disjoint.

3. Correlated Acceptance-Rejection (CAR) The two methods above, both require

knowledge of jQj and j�I j. If there is no index on the selection predicate, and one

did not employ reservoir sampling for the original sample, then jQj will be unknown.

This method assumes only that one knows the number of blocks m in the original �le,

the original net sample size s, and the number of sample probes which were rejected.

It employs acceptance/rejection techniques, e�ectively rerunning the original A/R

sampling over the augmented �le. It requires knowledge of bmax, the maximum number

of records/block (or similar cardinality information for more elaborate queries). Both

the naive and standard version of CAR are described below. CAR is shown in Figure

7.2.
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Figure 7.2: Correlated Acceptance-Rejection Sampling
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7.2.2 Correlated Acceptance/Rejection

Here I discuss a method of reusing our earlier A/R sampling to construct a new A/R

sample from a �le to which insertions have been appended.

Assume that the original �le contained m blocks, each with bi records and that bmax

was the maximum number of records per block. In constructing the initial sample one used

a gross sample size of sg, and produced a net sample of size s.

Now assume that k records have been appended to the �le, forming one new block, so

that one now has m+ 1 blocks, with

bmax
0 = max(bmax; k) (7.1)

i.e., bmax
0 is the new max. number of records/block. See Figure 7.2.

Now one can construct a SRSWR from the augmented �le via acceptance/rejection by

�rst selecting a block at random from the m+1 blocks, and then performing A/R sampling

with acceptance probability equal to bi=bmax
0.

Equivalently:

1. one can choose the block of the next sample element to be considered for A/R by �rst

choosing a partition (either the �rst m blocks, or the last block with prob. m=m +

1; 1=m+ 1 respectively);

2. if one winds up in the �rst partition, then one selects a block at random as before;

3. lastly, one performs the A/R test, with prob. bi=bmax
0;

However, for those sample attempts allocated to the original partition, steps 2 and 3

are identical to the A/R sampling one conducted for the original sample, except that the

bmax
0 may be larger than bmax was. Hence, for those sample attempts allocated to the

original partition one can e�ectively rerun the original A/R sampling, reusing the original

sample. However, each accepted element of the reused sample must be subjected to an

additional acceptance/rejection test to account for the larger bmax
0. The detailed algorithm

is described in Figure 7.3.

Theorem 30 The naive CAR (NCAR) algorithm will produce a SRSWR from the aug-

mented �le F 0 = F [Bm+1.

Proof: One must show that each record in F 0 has equal probability of inclusion into

the sample. The probability of selecting a particular record from block Bi of F in a single

draw, i is:

i =
m

(m+ 1)
m�1�i

bmax

bmax
0 (bi)

�1 (7.2)

where �i = bi=bmax was the acceptance probability of a block from block bi into the original

sample.

Hence:

i =
1

(m+ 1)
bmax

0 (7.3)
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Let F 0 = F [Bm+1 = updated �le; E = fekg = original gross sample; S = original sample;

S0 will be the updated sample;  k(F ) = SRSWR of size k from �le F ; bmax = maximum

block occupancy for �le F ; bmax
0 = maximum block occupancy for the augmented �le F 0.

The procedure NCAR (naive CAR):

procedure NCAR;

begin

S0  � ;;
J  � fj : ejwas accepted into Sg
i � 0;

while jS0j < s and i < jEj do
Select from F with prob. m=m+ 1,

from augmenting block Bm+1 otherwise;

if (selection from F)

then

i � i+ 1;

if i 2 J then

accept ei with p = bmax=bmax
0;

if (accepted) then S0  � S0 [ ei endif
endif

else if (selection from augmenting block Bm+1)

then

accept a �  1(Bm+1) with p = bm+1=bmax
0.

if (accepted) then S0  � S0 [ a endif
endif;

endif;

endwhile

/* If the resulting sample size is too small, �nish */

/* with a SRS from the augmented �le. */

if jS0j < s then S0 � S0 [  s�jS0j(F
0);

return;

end;

Figure 7.3: Naive CAR algorithm.
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Hence:

E[i] =
1

(m+ 1)
bmax

0 (7.4)

which is what one wants.

One now must show that the records from the augmenting block, Bm+1 have the same

inclusion probabilities as records from F .

For the last block, Bm+1, one has the probability of selecting a particular record from

block Bm+1 of F in a single draw,  is:

 =
1

(m+ 1)

bm+1

bmax
0

1

bm+1
= E[i] (7.5)

2

Note: A more sophisticated version, Correlated Acceptance/Rejection (CAR), of the

Naive Correlated Acceptance/Rejection (NCAR) algorithm does not require that one keep

the indices of the original accepted sample elements in the original gross sample. In NCAR

one reuses elements of the original gross sample in the same order they were originally

generated. Hence, one must either keep a vector of length sg = jEj, the original gross

sample size, or at least a list of the indices of the accepted elements of the original gross

sample.

However, all of the elements of E are exchangeable, so that one can reuse any permu-

tation of the original gross sample. Thus in CAR, whenever an element of E, the original

gross sample, is to be reused one takes a SRSWOR from E. For each such element, one

needs two pieces of information: whether it was accepted, and if so what record was sam-

pled. This can done by acceptance/rejection sampling with acceptance probability for the

j0th attempted sample from E = (sr)=(jEj � j � 1), where sr = the number of remaining

elements of the original (accepted) sample. If accepted, a record is chosen (at random) from

the remaining members of the original (accepted) sample and sr is reduced by one.

The advantage of CAR is the reduced storage requirement, since one only needs jEj,
bmax and the accepted elements of the original sample. As in the case of NCAR, a second

acceptance/rejection test with acceptance probability of bmax=b
0
max is still needed for reused

sample elements.

7.2.3 Analysis of Naive CAR (NCAR)

The computational cost of the naive CAR algorithm, cost (NCAR), is proportional to

the number of times one has to perform the while loop until a sample of the required size s is

constructed. In order to compute this, one will �rst compute the probability p of accepting

a sample each time one goes through the loop. The cost of the algorithm is clearly O(s=p).

It is easy to see that:

p = (
m

m+ 1
)(
bmax

b0max

) + (
1

m+ 1
)(
bm+1

b0max

) (7.6)

The �rst term arises from acceptance rejection in F and the second from acceptance rejection

in Bm+1. In Figure 7.4 is a plot the value of p with increasing bm+1. In this �gure one

assumes m = 100, and bmax = 20; 25; 30. One can see that p grows with bm+1 and achieves

its maximum value, 1, when
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Figure 7.4: Graph of acceptance probability of naive CAR algorithm.

bm+1 = bmax = b0max (7.7)

and then decreases when bm+1 > bmax. This can be generalized to the case that l new

blocks are inserted. In this case

p = (
m

m+ l
)(
bmax

b0max

) + (
l

m+ l
)(

�bl

b0max

) (7.8)

where b0max is the overall maximum blocksize in the augmented �le and �bl is the average

blocksize computed over the l new blocks.

In the Figure 7.5 one has a plot of the cost/sample element with increasing bm+1.

7.3 Updating a Sample Projection View

Maintaining sample views for projection queries is similar to that of maintaining sample

views of selection queries. However, typically, one does not know the cardinality of the

projection query result. Hence, one generally cannot employ reservoir techniques.
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One can divide this problem into two cases, those modi�cations of the base relation

which alter the result of the projection query, and those which do not. To do this e�ciently

typically requires the existence of an index to the base relation on the projection attributes.

For those deletions, insertions, and updates to the base relation which would leave the

projection unchanged, one need do nothing. One's sample remains a simple random sample

of the projection query on the base relations.

For deletions from the base relation which do not a�ect elements of the sample projection

view, one need do nothing - one will still have a simple random sample. If the deletion were

to remove an element of the sample projection view from the projection, then one must

remove that element from the sample and obtain a replacement element by resampling the

projection (with the methods described in Chapter 6).

In the case where one inserts records to the base relation which alter the result of

projection query, then one will need to update the sample view. Observe that this is similar

to the update of a sample selection view and the CAR algorithm (described above) can be

applied with minor modi�cations (to account for the projection operator - see Chapter 6).

7.4 Updating a Sample Join View

Updating a sample join view is by far the most complicated case for MSV. To facilitate

this discussion I review some of the results from Chapter 6 on techniques of sampling from

join queries.

Assume that one joins two relations A and B over some join attribute which takes its

values from the domain 1; 2; :::;M . Also assume that the value i for the join attribute

appears in A with multiplicity �i(A) and in B with multiplicity �i(B). Let �max(A) and

�max(B) denote the maximum of these multiplicities in the relations A and B respectively.

As I showed in Chapter 6, there are at least two di�erent ways in which a single sample

from the results of a join query can be obtained. One can use either of two methods:

Method 1: Draw a random tuple, Aj , from A. If the value of the join attribute for

this sample is i, one accepts it with probability �i(B)=�max(B). If one accepts it, one then

joins Aj with some random element of B >< Aj .

Equivalently, one can reverse the roles of A and B, i.e.:

Method 2: Draw a random tuple, Bj , from B. Assuming a join attribute value i,

one accepts Bj with probability �i(A)=�max(A). If one accepts it, one joins Bj with some

random element of A>< Bj .

In both cases one repeats the sampling procedure until a sample of size s is obtained.

The method of choice depends on join selectivities as well as availability of indices on A

and B in order to check the required multiplicities.

Assume that a random sample of size s was obtained using Method 1, (initial sample

from A) and k new tuples are inserted into a new block of A, �A. This is a relatively

simple case since one can use the CAR method described earlier with minor modi�cations.

Basically an element which was rejected from the original sample will still be rejected after

this insertion. On the other hand, it is possible that elements in the original sample may

be replaced by new ones coming from the new block.

One proceeds to sample as follows. One �rst decides whether to sample from the old

relation, A, or the new block, �A, exactly in the manner described in the CAR algorithm.
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If one decides to sample from the old �le, we accept a member of the old sample as described

previously. In case one decides to draw a sample from the new block with join attribute

value i, one accepts it with probability �i(B)=�max(B).

Now examine the case where the sample was obtained using Method 1 and k new tuples

are inserted into B yielding B0. Here it is possible that a sample which was previously

rejected should be accepted after the insertions because multiplicities in B may be increased

due to the inserted tuples. Since in the CAR method one does not keep track of rejected

elements but only the cardinality of the gross sample size (or the index set of accepted

records) one cannot update the sample properly.

As one can see from the discussion above, one will need to store the rejected elements of

the gross sample from A in addition to the original net sample in order to e�ciently update

sample views of A>< B. The expected amount of storage needed will thus be inversely

proportional to the acceptance rate for the sampling method chosen.

Essentially, I propose to rerun the original sampling from A, with the same random

numbers, but with adjusted acceptance/rejection probabilities. This would nominally re-

quire that one store the entire original gross sample, together with the random number

used to accept/reject each element. One then reruns the sampling, testing the original

random numbers against the new acceptance probabilities: �i(B
0)=�max(B

0). Observe that

if the acceptance probability for a sample element has increased, then previously accepted

elements will again be accepted. Previously accepted elements whose acceptance probabil-

ity has decreased will be retained with probability equal to the ratio of the new and old

acceptance probabilities.

Of course a sample from A is not su�cient, one must also complete the join. For newly

accepted elements of the sample, one proceeds as before in Method 1. For retained elements,

Aj , from the original sample, one must decide whether one can keep the same matching

element from B (now B0). For each retained Aj , this amounts to maintaining a materialized

sample view of size one from the relation B0 >< Aj . This is essentially the same as a sample

from a selection query on B0 where the predicate is B0:x = Aj :x, and x is the join attribute.

Hence, one can use my previous results on maintenance of materialized views of sample

selection queries for each semi-join query.

One can halt when one obtains a su�ciently large sample. If one exhausts the original

gross sample without obtaining the desired net sample size, one resumes sampling from the

table A.

It is easy to see that this will generate the desired SRS from A>< B0.

A small improvement is possible. One need not store the entire tuples from A for

originally rejected elements of the gross sample. It will su�ce to store the keys from which

one can retrieve the tuples if needed.

7.5 Conclusions

Because sample views are typically quite small compared to the underlying base re-

lations, materialized base relations will be an attractive strategy for supporting sample

views under heavy retrieval tra�c. Hence it is important to develop e�cient methods of

maintaining materialized sample views when the base relations are updated.
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Type of Update Type of Sample View

FB File VB File Select Project Intersect Union Join
 (F )  (F )  (�f (A))  (�a(A))  (A \B)  (A [B)  (A >< B)

Delete (r 62 	) no-op no-op no-op no-op no-op no-op no-op

Delete (r 2 	) SRS SRS SRS SRS SRS SRS SRS

Insert (r 62 Q) NA NA no-op no-op no-op no-op no-op

Insert (r 2 Q) RES,2FS 2FS,RES 2FS,RES 2FS,RES 2FS,RES 2FS,RES 2FS,RES
jQj known

Insert (r 2 Q) CAR CAR CAR CAR CAR CAR CAR
jQj unknown

Update
(r 62 Q�!r 62 Q) NA NA no-op

Update
(r 62 Q�!r 2 Q) NA NA same as insert r 2 Q

Update
(r 2 	�!r 2 	) update sample

Update
(r 2 Q�!r 62 Q) same as delete r 2 Q

Table 7.2: Various results in this chapter. 	 (used as a noun) denotes the sample, Q

denotes the query result which was sampled, f denotes the selection predicate, a denotes

the projection attributes, NA denotes not applicable, no-op denotes do nothing, FB denotes

�xed blocking, VB denotes variable blocking, 2FS denotes 2 Files Sampling strategy, RES

denotes Reservoir Sampling strategy (note RES requires knowledge of the cardinality of Q).

In this chapter I have shown how to e�ciently maintain materialized sample views.

These methods are based on classic methods of materialized view maintenance combined

with either reservoir sampling, two-�le sampling, or correlated acceptance-rejection sam-

pling. These methods are especially suited to systems for which queries against the sample

views are common.

Correlated Acceptance/Rejection is particularly attractive when one does not know the

cardinality of the original relational query which was sampled, but one does know the

number of blocks used to store the base relation. An example would be if the original

sample view involved sampling from a selection query from a single relation with a non-

indexed selection predicate and the view was created by interchanging the sampling and

selection operators, i.e., sampling �rst.

I have discussed maintaining materialized sample views from base relations, projections

and joins. Table 7.2 summarizes the results of this chapter, and some related results.

For certain purposes - e.g., auditing - one may not want to maintain a sample view,

unless one could be certain of its security. If the purpose of obtaining a sample is merely

to compute some simple aggregate statistics, then one may be better o� maintaining a

statistical database abstract consisting of statistics over various database partitions, as

described by Rowe [Row85]. Statistical summaries of the database tend to be more concise

and accurate than samples. Samples, however, are more versatile.
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Conclusions

8.1 Summary

In thesis I have described novel algorithms for implementing random sampling queries

of relational databases and analyzed their performance.

Like selection, sampling produces an output which is much smaller than its input. Hence,

there is considerable interest in pushing sampling operations down in the query processing

plan tree toward the leaves (reading of base relations). This has generated much of the

agenda of this thesis:

� basic sampling techniques from �les

� sampling from various access methods used to store base relations: B+ trees, hash

�les, spatial data structures (quadtrees and R-trees)

� sampling from relational operators,

� maintenance of materialized sample views.

I began by discussing the motivation for including sampling operators in database man-

agement systems. Applications of sampling in databases include: �nancial auditing, statis-

tical database security, query optimization, quality control, epidemiology, nuclear materials

inventory audits, etc.

Present practice with regard to sampling queries is to implement the sampling function

outside the database, e.g., using reservoir sampling techniques. I have shown that there are

substantial gains to be had in e�ciency by embedding the sampling operators within the

DBMS. Gains from supporting sampling within the DBMS include:

� improved e�ciency in answering sampling queries,

� improved e�ciency in providing approximate answers to aggregate queries,

� use of sampling to estimate parameters used by query optimizers, and to permit

dynamic (adaptive) query optimization.

I have reviewed basic sampling methods used to construct the database sampling algo-

rithms in this thesis: The most important were:
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� Acceptance/Rejection (A/R) sampling - which I have used throughout this thesis to

sample from variably blocked �les, hash �les, B+ tree �les, etc.

� Sequential (reservoir) sampling - for sampling from �les of unknown size via sequential

scans (e.g. sampling as a relation or intermediate result is created).

� Wong & Easton's weighted sampling from ranked trees - which forms the basis of

algorithms for sampling from ranked B+ trees.

I have discussed the related literature on sampling from databases, especially the exten-

sive e�orts to use sampling to estimate intermediate result sizes, and predicate/join/projection

selectivities for use by query optimizers in choosing query processing strategies. A number

of authors (e.g., Hou, Ozsoyoglu, Naughton, Seshadri) have argued that various types of

clustered sampling techniques can be used advantageously for result size (or selectivity)

estimation, by clever estimator design. The work of Dorothy Denning on the use of random

sampling to provide statistical database security was reviewed.

For B+ trees I have shown how to use acceptance/rejection sampling sampling to sample

from B+ trees without requiring the additional maintenance tree maintenance required by

techniques which sample from ranked B+ trees. I considered both naive and (the preferred)

early abort algorithms. I also showed how to construct batch sampling algorithms for B+

trees, analogous to batch searching algorithms. Recently, Antoshenkov used a hybrid of my

algorithm and the classic sampling from ranked B+ trees to construct an algorithm with

modest update costs and much more e�cient sampling behavior.

I began the discussion of sampling from hash �les by considering an acceptance/rejection

algorithm for open address hashing (not widely used in DBMSs). This algorithm can be

used for any variably blocked �le, and has been subsequently adapted by Dewitt, et al. for

extent-based �les.

For linear hashed �les both one-�le and two-�le sampling methods, based on accep-

tance/rejection were considered. Two-�le sampling methods proved more e�cient. For

extended hash �les I showed that double A/R sampling was more e�cient than cell A/R

sampling. Batch sampling methods were yet more e�cient.

Turning to sampling from spatial access methods, I have shown how two parameters,

coverage (the proportion of the region covered by polygons) and expected stabbing number

(the number of polygons covering a point) shape the choice of spatial sampling methods.

High coverage dictates the generation of random points in space, followed by point inclusion

queries of the spatial data structure, whereas low coverage favors directly sampling from the

spatial data structure. I have shown how my acceptance/rejection B+ tree sampling tech-

niques can be extended to quadtrees (which are not uniform height) and R-trees (which are

not disjoint). Similarly, ranked B+ tree sampling techniques can be extended to quadtrees

and R-trees to yield e�cient sampling algorithms (at the price of increased maintenance).

I found that R-trees impose serious performance penalties for sampling operations. More

e�cient batch sampling algorithms and reservoir sampling algorithms were briey discussed

for cases in which a major fraction of the �le must be read.

Because the result of a sampling operator are typically so much smaller than its input(s),

one wants to push the sampling operator down the query processing plan tree toward

the base relations. However, sampling and relational operators do not (generally) simply
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commute (distribute). I have shown how to obtain simple random samples from simple

relational queries consisting of individual relational operators: such as select, project, join,

intersect, union.

Selection commutes with sampling operators (up to sample size), whereas the other

relational operators require modi�cation (e.g., acceptance/rejection sampling) to assure

uniform inclusion probabilities. For the binary relational operators, the sampling operator

is generally pushed down one branch of the operator tree (e.g., intersect, join, di�erence),

and an acceptance/rejection test may be added to the relational operator (project,join).

I have shown how to sample from intermixed cascades of select, join, intersect, and set

di�erence operators.

Complex unions, i.e., unions of arbitrary relational expressions, are di�cult to sample

from, because the standard algorithms requires the cardinality of each operand. I have

described a domain sampling method which permits the sampling from complex unions

without knowledge of the operand cardinalities. It requires that the underlying key domain

be a �nite set, preferably densely populated with actual keys.

I have also described an algorithm for sampling from select-project-join (SPJ) queries.

The algorithm augments elements of a sample of the join with the sizes of the corresponding

projection equivalence classes of the underlying join. These projection equivalence class

sizes are then used in an acceptance/rejection algorithm to correct for the impact of the

projection operator on the inclusion probabilities.

The various algorithms described for sampling from relational expressions come in both

iterative (tuple-substitution) and bottom-up (batch) versions. The iterative algorithms of-

fering exact sample sizes and easy adaptability to sequential (adaptive) sampling procedures,

while the bottom-up algorithms o�er better performance in many cases. Even so, it may

still be the case that sampling from complex relational expression will require partial (or

occasionally even full) evaluation of the underlying relational expression prior to sampling.

Finally, I have shown how to maintain materialized sample views while the base relations

are updated. This was done by combining sampling algorithms (reservoir sampling, two-�le

sampling) with classical methods for updating materialized views to maintain materialized

sample views with minimal e�ort. Such methods are well suited to support heavily used

sample views.

To conclude, I have described the basic algorithms needed to e�ciently support simple

random sampling queries of relational databases and analyzed their performance.

8.2 Future Work

Most of my work has been on simple random sampling, however extensions to strati�ed

random sampling are straightforward. While I have touched on weighted random sampling,

there is much more work to be done in this area.

It now appears that one of the major applications of sampling in DBMSs will be to

estimate various parameters needed for query optimization: predicate and join selectivities,

and the cardinalities of intermediate results. This area has begun to be explored in the work

of Ozsoyoglu, Naughton, Seshadri, Antoshenkov and Seppi. I expect that Seppi's work on

decision theoretic approaches to the use of sampling in query optimization appears will be

prove to be the most suitable basis for further developments in this area.
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The most important work to be done at this point would be to construct a prototype

implementation of a system for answering sampling queries. This will require signi�cant ef-

fort, at modifying access routines, writing sampling codes, and modifying a query optimizer.

Incorporating sampling operators increases the complexity of the query optimization prob-

lem, suggesting that rule-based query optimizers may prove an attractive implementation

strategy.
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