
Query Processing in Tertiary Memory Databases

by

Sunita Sarawagi

Bachelor of Technology, Indian Institute of Technology, Kharagpur, 1991

Master of Science, University of California, Berkeley, 1993

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

GRADUATE DIVISION

of the

UNIVERSITY of CALIFORNIA at BERKELEY

Committee in charge:

Professor Michael R. Stonebraker, Chair
Professor Joseph M. Hellerstein
Professor Arie Segev

1996

The dissertation of Sunita Sarawagi is approved:

Chair Date

Date

Date

University of California at Berkeley

1996

Query Processing in Tertiary Memory Databases

Copyright 1996

by

Sunita Sarawagi

1

Abstract

Query Processing in Tertiary Memory Databases

by

Sunita Sarawagi

Doctor of Philosophy in Computer Science

University of California at Berkeley

Professor Michael R. Stonebraker, Chair

This thesis presents the design and implementation of a database query processing engine

that is optimized for access to tertiary memory devices. Tertiary memory devices provide

a cost-e�ective solution for handling the on-going information explosion. While cheap and

convenient, they pose new optimization challenges. Not only are tertiary devices three

orders of magnitude slower than disks, but they also have a highly non-uniform access

latency. Therefore, it is crucial to carefully reduce and reorder I/O on tertiary memory using

e�ective query scheduling, batching, caching, prefetching and data placement techniques.

We make two key modi�cations to an existing query processing architecture to

support such aggressive optimizations: The �rst is a scheduler that uses system-wide infor-

mation to make query scheduling, caching and device scheduling decisions in an integrated

manner. The second is a reorderable executor that can process each query plan in the order

in which data is made available by the scheduler rather than demand and process data in

a �xed order, as in most conventional query execution engines. The two together provide

unprecedented opportunities for optimizing accesses to tertiary memory. We have extended

the postgres database system with these optimizations. Measurements on the prototype

yielded almost an order of magnitude improvement on the sequoia-2000 benchmark and

on queries over synthetic datasets.

We explore data placement techniques on tertiary memory devices to enable better

clustering. This thesis concentrates on data placement issues for large multidimensional

arrays | one of the largest contributors of data volume in many database systems. We

discuss four techniques for doing this: (1) storing the array in multidimensional \chunks"

2

to minimize the number of blocks fetched, (2) reordering the chunked array to minimize

seek distance between accessed blocks, (3) maintaining redundant copies of the array, each

organized for a di�erent chunk size and ordering and (4) partitioning the array onto platters

of a tertiary memory device so as to minimize the number of platter switches. Measurements

on data obtained from global change scientists show that accesses on arrays organized using

these techniques are often an order of magnitude faster than on the unoptimized data.

Professor Michael R. Stonebraker
Dissertation Committee Chair

iii

To Sakhu Bai,

and my parents.

iv

Contents

List of Figures vi

List of Tables viii

1 Introduction 1

1.1 Background: Tertiary memory devices : 2
1.2 Research Issues : 4

1.2.1 Query Processing Issues : 5
1.2.2 Data placement Issues : 9

2 Query Processing Architecture 11

2.1 Background: Conventional architecture : 12
2.2 Proposed Architecture : 12

2.2.1 Unit of scheduling : 14
2.3 Query Execution : 17

2.3.1 Speci�cations : 17
2.3.2 Phases of Execution : 19
2.3.3 Handling Dependencies : 25
2.3.4 Preventing reordering failures : 29

2.4 Summary : 29

3 Subquery Scheduling 31

3.1 Working of the scheduler : 31
3.2 Scheduling policies : 32

3.2.1 Fragment fetch policies : 35
3.2.2 Fragment eviction policies : 38

3.3 Simulation : 42
3.3.1 Simulation setup : 43
3.3.2 Choosing threshold value : 46
3.3.3 Fragment fetch heuristics : 49
3.3.4 Evaluation of fetch heuristics : 50
3.3.5 Evaluating eviction policy : 60

3.4 Enhancements : 61
3.5 Summary : 65

v

4 Performance Evaluation 66

4.1 Implementation : 66
4.2 Experiments : 69

4.2.1 Options compared : 70
4.2.2 Simple scan tests : 71
4.2.3 Multiuser-mixed workload tests : 76
4.2.4 Scheduling overheads : 82

4.3 Summary : 84

5 Array Organization 85

5.1 Storage of Arrays : 85
5.1.1 Chunking : 87
5.1.2 Reordering : 90
5.1.3 Redundancy : 92
5.1.4 Partitioning : 93

5.2 Performance : 93
5.2.1 Measurements on Sony WORM : 97
5.2.2 Measurements on the tape jukebox : : : : : : : : : : : : : : : : : : : 97
5.2.3 E�ect of Access Pattern : 99

5.3 Summary : 100

6 Related Work 101

6.1 Mass storage systems : 101
6.2 Tertiary memory database systems : 102

6.2.1 Single query execution on tertiary memory : : : : : : : : : : : : : : 103
6.3 Related topics in secondary memory systems : : : : : : : : : : : : : : : : : 103

6.3.1 Query scheduling : 103
6.3.2 Query optimization : 104
6.3.3 Device scheduling : 105
6.3.4 Bu�er management : 106
6.3.5 Prefetching : 106

6.4 Array Organization : 107

7 Conclusion 109

7.1 Summary : 109
7.2 Contribution : 110
7.3 Future Work : 112

7.3.1 Query Optimization : 112
7.3.2 Caching directly to main memory : 114
7.3.3 Alternative storage con�gurations : : : : : : : : : : : : : : : : : : : 114
7.3.4 Handling update queries : 115
7.3.5 Data placement : 115

7.4 Closing : 115

Bibliography 116

vi

List of Figures

2.1 The Physical Con�guration. : 11
2.2 Process architecture of the tertiary memory database system. : : : : : : : : 13
2.3 Interaction between the scheduler and User-processes. : : : : : : : : : : : : 15
2.4 Example of a three-way join. : 20
2.5 Resolve nodes for index scans. : 26
2.6 Plan-tree with dependency. The right side shows the plan-tree after the

extraction phase. Sequential scan nodes are omitted for clarity. : : : : : : : 26
2.7 Adding resolving nodes for large object access. : : : : : : : : : : : : : : : : 28

3.1 An example query graph. : 33
3.2 A typical online setting. : 34
3.3 Illustration of least-overlap policy. : 40
3.4 Choosing value of threshold. The nine graphs correspond to nine <tertiary-

memory, dataset > pairs. The X-axis is threshold values and the Y-axis is
total I/O time normalized by the time taken for the fcfs policy. : : : : : : 47

3.5 Performance of fragment fetch heuristics under varying cache sizes for small-
dataset. : 51

3.6 Performance of fragment fetch heuristics under varying cache sizes formedium-
dataset. : 52

3.7 Performance of fragment fetch heuristics under varying cache sizes for large-
dataset. : 53

3.8 Performance of fragment fetch heuristics under varying number of users for
small-dataset. : 55

3.9 Performance of fragment fetch heuristics under varying number of users for
medium-dataset. : 56

3.10 Performance of fragment fetch heuristics under varying number of users for
large-dataset. : 57

3.11 Performance of fragment fetch heuristics under varying percentage of join
queries for small-dataset. : 58

3.12 Performance of fragment fetch heuristics under varying percentage of join
queries for medium-dataset. : 59

3.13 Performance of fragment fetch heuristics under varying percentage of join
queries for large-dataset. : 60

vii

3.14 Performance of fragment eviction heuristics under varying cache sizes for
small-dataset. : 62

3.15 Performance of fragment eviction heuristics under varying cache sizes for
medium-dataset. : 63

3.16 Performance of fragment eviction heuristics under varying cache sizes for
large-dataset. : 64

4.1 Design of the Scheduler. : 66
4.2 Di�erence in total execution time for three methods (NoPrefetch, Prefetch,

Reordered) with sequential scans. \Rest" refers to the part of the total
time not spent in tertiary memory I/O. The platter switch cost is negligible
since data is on a single platter. : 74

4.3 Di�erence in total execution time for three methods (NoPrefetch, Prefetch,
Reordered) using the mixed workload. The execution time is normalized
by the time taken by scheme NoPrefetch to allow drawing on the same
scale. : 78

4.4 Di�erence in total transfer time for the three methods (NoPrefetch, Prefetch,
Reordered) using the mixed workload on the tape jukebox. The time is
normalized by the time taken by scheme NoPrefetch to allow drawing on
the same scale. : 79

4.5 Results of running Sequoia benchmark with the three schemes for varying
number of users. : 81

4.6 Results of running the sequoia-2000 benchmark with the three schemes for
di�erent cache sizes. : 81

4.7 The per-session overhead as a function of the number of users and number of
fragments. The Y-axes are overhead in milliseconds per subquery (top) and
overhead as a percentage of the total execution time (bottom). : : : : : : : 83

5.1 An Example Array : 86
5.2 An example of array chunking : 87
5.3 Array organization schemes : 94
5.4 Performance measurements on the Sony WORM : : : : : : : : : : : : : : : 96
5.5 Performance measurements on Exabyte tape jukebox. : : : : : : : : : : : : 98
5.6 Performance of default chunking : 99

viii

List of Tables

1.1 Performance parameters of various classes of drives. The transfer rate and
capacity are for uncompressed data. The costs presented in this table are
only approximate costs. : 3

1.2 Performance characteristics of various robotic devices. The switch time is a
summation of the average time needed to rewind any existing platter, eject
it from the drive, move it from the drive to the shelf, move a new platter
from shelf to drive, load the drive and make it ready for reading. : : : : : : 5

1.3 Comparative study of the characteristics of di�erent storage devices. Worst
case access time is sum of exchange time, full seek time and transfer time for
a page and best case time is the transfer time for a page : : : : : : : : : : : 6

3.1 Tertiary Memory Parameters: The switch time is a sum of the average time
to rewind any existing platter, eject it from the drive, move it from the drive
to the shelf, move a new platter from shelf to drive, load the drive and make
it ready for reading. The seek startup cost is the average of the search and
rewind startup cost and the seek rate is the average of the search and rewind
rate. : 42

3.2 Datasets: sizes of the relations are uniformly distributed across the given range 43
3.3 Simulation Parameters and their default values. : : : : : : : : : : : : : : : : 45
3.4 Maximum fragment size (in MB) for each tertiary memory and dataset pair 46

4.1 Tertiary memory parameters. : 70
4.2 Di�erence in total execution time with index scans. : : : : : : : : : : : : : : 74
4.3 Experimental setup for experiments on the synthetic workload. : : : : : : : 77
4.4 Sequoia Benchmark relations (national). : 79
4.5 Experimental setup for experiments on the sequoia-2000 benchmark. : : : 80

5.1 Benchmarks : 95

ix

Acknowledgements

I would like to thank my advisor Mike Stonebraker for his guidance and help throughout my

stay at Berkeley. I am greatly indebted to my reader Joey Hellerstein for carefully reading

the thesis and providing useful feedback. I would like to thank Professor Arie Segev for

reading my thesis in spite of his very busy schedule. Professor Tom Anderson and Dave

Patterson served on my qualifying exam committee and I am grateful to them for that.

Life and work at Berkeley would have been incomplete without the company of my

wonderful friends and o�cemates notably Mark Sullivan, Margo Seltzer, Mike Olson, Wei

Hong, Je� Meredith and Carol Paxson in the early part of the PhD process and Paul Aoki,

Marcel Kornacker, Andrew Macbridge, Adam Sah, Je� Sidell and Allison Woodru� in the

latter half. Paul Aoki deserves special thanks for providing company and reassurance dur-

ing the mid-PhD crisis. Friends like Savitha Balakrishnan, Sudha Narayan, Chandramouli

Banerjee, Ann Chervenak, Bhaskar Ghosh, Brinda Govindan, Anoop Goyal, Janani Janaki-

raman, Kamala Tyagarajan and Anu Sundaresan have provided the much needed relaxation

and company outside work.

Finally, I cannot forget the constant support and encouragement provided by my

family far away. I am especially indebted to the advice and reassurance provided by my

parents, my sister Santosh and my father-in-law. I owe starting and �nishing my PhD to

my husband, Soumen Chakrabarti. His love and respect for knowledge has been the main

inspiration for entering the PhD program in the �rst place.

1

Chapter 1

Introduction

The ongoing information explosion calls for an overhaul of conventional database

systems to support the increasing storage demands of many applications. Applications

like EOSDIS [DR91a, Sto91b] are estimated to collect around a petabyte of data per year.

This amount of data cannot be stored cost-e�ectively on magnetic disks [SD91, SSU95]. In

view of applications like EOSDIS and other applications like data warehouses [Ome92],

image [RFJ+93, OS95] and video storage systems [FR94], there is increasing consensus

among database researchers [SSU95, Sto91a, CHL93, Sel93, Moh93] for supporting tertiary

memory devices [Ran91]. Not only are all these applications huge, they also require e�cient

querying and data management facilities, making it necessary to deploy database systems

instead of relying on conventional �le oriented mass storage systems [N+87, C+82].

A major limitation of traditional DBMSs is the assumption that all data resides

on magnetic disk or in main memory. Tertiary memory, if used at all, functions only as an

archival storage system to be written once and rarely read. Some database systems [Isa93]

allow data to be stored on tertiary memory, but they do so by using a �le system to get

transparent access to data and store only metadata information in the database system.

This means that the tertiary memory is not under the direct control of the database system.

One important exception is postgres [Ols92]. postgres includes a Sony optical jukebox

[Son89b] as an additional level of the storage hierarchy. The postgres storage manager can

move data transparently between a disk cache and the jukebox using a lru replacement

strategy. While this prototype provides the enabling technology for controlling tertiary

memory directly from a DBMS, it does not address many of the e�ciency related issues for

processing queries on tertiary memory.

2

This dissertation addresses the performance related issues that arise in building a

tertiary memory database system. In particular, it deals with two aspects of the problem:

processing queries over data residing on tertiary memory and organizing data on tertiary

memory for e�cient retrieval.

1.1 Background: Tertiary memory devices

A typical tertiary memory device [Ran91] consists of a large number of storage

units, a few read-write drives and even fewer robot arms to switch the storage units between

the shelves and the drives. Normally, a magnetic disk is used as a cache for staging data in

and out of the tertiary memory device. There are a wide variety of tertiary memory devices

that di�er in capacity, bandwidth, latency and physical con�guration (number of drives,

recording medium, number of robot arms and number and arrangement of the storage

units). We will present a brief taxonomical survey of the existing products.

For most tertiary memory devices, the storage unit, which we generically call a

platter, is either a tape or a disk. From a performance perspective, the main distinction

between the two is that tape-based devices have a predominant seek cost (often two to

three orders of magnitude higher than disks) and thus favor sequential access, whereas

disk-based devices provide random access much like conventional secondary storage devices.

An orthogonal dimension for classifying storage units is the recording medium: magnetic,

optical or magneto-optical. Most tapes are magnetic whereas disks are typically optical

or magneto-optical. Optical disks can be read-only (CD-ROMs), write-once (WORM, CD-

R) or re-writable (CD-E). More recently, optical tapes have also entered the commercial

arena chie
y because of their promise of higher reliability and capacity. Tapes are further

classi�ed on the recording format: helical-scan versus linear. Helical-scan tapes are known

to provide higher storage capacity than linear tapes but at the cost of lower reliability

(in terms of mean number of reads before tape failure, as opposed to drive failure). In

Table 1.1 we list the important performance characteristics of several existing tape and disk

drive products [Lor95, Che94, Son89b, Cora]. Note the wide variation in the transfer rate,

access times and capacity of various drives. For instance, the Exabyte 8505XL tape drives

has a transfer rate of only 0.5 MB/second whereas the Sony D-1 drives can transfer data at

32 MB/second. Typically, disk-based drives like the CD-ROMs and Magneto-optical drives

have lower transfer rates than tape drives. The access time for tapes depends not only on

3

Storage Transfer Average Capacity Drive Media
device rate access GB cost cost

(MB/sec) time (sec) $ $/GB

Magnetic tapes: helical-scan

Exabyte 8505XL (8mm) 0.5 20 7 1,675 2
Metrum 2150 2 20 18 40,000 1
Sony DIR-1000 32 20 8.7 284,000 1.46

Magnetic tapes: linear

IBM 3590 9 20.5 10 43,500 7
Quantum DLT 2000 1.25 45 10 3250 4.5
Quantum DLT 4000 1.5 60 20 5000 4.5

Optical tapes

CREO 3 28 1000 350,000 8.5
Laser Tape 1/2" 6 15 100 25,000 0.7

Optical disks

sony CDU-541 CD-ROM 1.2 0.400 0.680 700 50
HP rewritable WORM (C1716T) 1.6 0.035 1.4 1979 57.7

Magneto-optical disks

MaxOptix Tahiti IIm 5.25" 1.5 0.035 1 3,500 83.3
Fujitsu 3.5" (M2512A) 1.7 0.043 0.230 565 147.8

Magnetic disks (secondary)

IBM UltrastarXP 3192 5.2 0.008 2.3 1000 434

Table 1.1: Performance parameters of various classes of drives. The transfer rate and capacity are
for uncompressed data. The costs presented in this table are only approximate costs.

4

the search or rewind rate but also the length of the tape. Therefore, the DLT 2000 drive

has a slower access time than the DLT 4000 although they support the same search and

rewind rate. The last two columns in Table 1.1 give the approximate drive and media cost

for various storage devices. Notice that the media cost for tapes is almost two orders of

magnitude less than for magnetic disks whereas optical and magneto-optical media are only

a factor of 4 to 8 cheaper. Although, the tape drives are much more expensive than the disk

drives, their higher cost has to be weighed against the fact that these drives are designed

to be used with removable media.

Tertiary memory devices also di�er widely in the physical con�guration and per-

formance characteristics of the automated library systems (jukeboxes) used for holding and

transferring the platters. On one end are small single-drive single-arm stackers capable of

holding around ten platters, and on the other end are large libraries with up to ten drives

and one or more robot arms capable of holding hundreds and thousands of platters. In Ta-

ble 1.2 we list the performance and physical characteristics for some representative robotic

libraries. The switch time in this table is a summation of the average time needed to rewind

any existing platter (if tape), eject it from the drive, move it from the drive to the shelf,

move a new platter from the shelf to drive, load the drive and make it ready for reading.

The switch time is an important performance parameter in evaluating a tertiary memory

device. As seen from the table, the switch time for various jukeboxes also di�ers widely. In

general, the switch time for disk-based jukeboxes is smaller than for tape-based jukeboxes

because most tapes need to be rewound to the beginning before unloading. The second

important parameter is the number of drives or, more importantly, the ratio of the number

of drives and arms to platters. Stackers typically have the highest ratio of drives and arms

to platters. The large tape libraries have the smallest ratio of drives to platter but they

are often signi�cantly cheaper since the cost of the expensive parts (drives, controllers and

robotic arms) is amortized over multiple cheap tape cartridges. A more detailed survey of

existing tertiary memory products can be found in [Che94, KAOP91, HSa, Corb].

1.2 Research Issues

Tertiary memory devices pose a challenge to database designers because their

performance characteristics are very di�erent from those of magnetic disks. In Figure 1.3

we present the ratio of the worst case access time (switch platter + search + seek whole

5

Library Number Number Switch Capacity Drive Cost
drives platters time (s) GB type $/GB

Stackers

DLT2500 1 5 45 100 linear tape 61
Exabyte EXB10i 1 10 120 50 8mm helical 180
Pioneer 1 6 5 4 optical disk 461

Medium Library

Exabyte EXB120 4 116 171 580 8mm helical 172.4
HP 120 4 88 8 114 MO disk 460

Large Library

Metrum RS-600 5 600 58 8500 1/2" helical 24
Sony DMS-300M 3 320 30 13,000 19mm helical 25

Table 1.2: Performance characteristics of various robotic devices. The switch time is a summation
of the average time needed to rewind any existing platter, eject it from the drive, move it from the
drive to the shelf, move a new platter from shelf to drive, load the drive and make it ready for
reading.

tape + transfer time) to the best case access time (transfer time only) for fetching an 8 KB

page and a 1 MB page for various tertiary and secondary storage devices. For magnetic disk

this ratio is small compared with tertiary devices for both 8 KB and 1 MB transfers. This

means that ordering I/O requests is much more important on tertiary memory devices than

on disks. A sub-optimal I/O order that requires an extra platter switch can cost almost a

billion CPU instruction in many cases. Therefore, one can a�ord to spend more processing

time for making better scheduling, caching and data placement decisions. Conventional

query optimization methods on secondary memory aim at reducing the number of I/Os

and amount of I/O but often ignore reordering optimizations. We next discuss a number of

di�erent ways in which it is possible to reorder and reduce I/O both during query processing

and data loading.

1.2.1 Query Processing Issues

Careful query scheduling must be employed to optimize the order of access to

tertiary memory. Query scheduling can be done at various di�erent levels.

First, it is necessary to avoid small random I/Os, by scheduling the I/O requests

within a single query carefully. Unclustered index scans and joins in limited bu�er space

can lead to disastrous performance if processed in traditional ways on tertiary memory.

6

Storage Exchange full seek Data transfer Worst/best access
device time (sec) time (sec) rate (KB/sec) 8KB page 1MB page

Sony optical jukebox 8 0.1 800 811 7.5
Metrum RSS-600 58 140 1200 29701 238
Exabyte EXB-120 171 154 470 19094 153
Magnetic disk - 0.05 4000 26 1.2

Table 1.3: Comparative study of the characteristics of di�erent storage devices. Worst case access
time is sum of exchange time, full seek time and transfer time for a page and best case time is the
transfer time for a page

Consider an unclustered index scan query on a relation R divided into three parts R1; R2

and R3 which are stored on three di�erent platters of a single drive tertiary memory as

shown below.

R2

Platter 1

Platter 3

Query:

Platter 2

R3

R1

Single drive

Unclustered index scan on R

Assume further that the index tree of R is stored on magnetic disk. For such a

con�guration, if we fetch R using the traditional block-at-a-time approach, a large number

of platter switches can result. We can reduce the number of platter switches to a minimum

by following the approach of [MHWC90] which reorders I/O requests by �rst scanning the

index tree, sorting the blocks required in storage order and fetching all blocks on one platter

before switching to another.

When a query plan accesses multiple relations (as in a join), it is necessary to

schedule I/O requests of multiple relations, taking into account both the size of the cache

used for staging data in and out of the tertiary memory and the layout of the relation.

Consider a two-way join query between relation R stored on platters 1 and 2 and relation S

divided between platters 2, 3 and 4 such that each relation is much larger than the cache.

A nest-loop join that is oblivious of such a layout cannot do e�cient batching of accesses to

one platter and may access data randomly across the four platters, leading to many platter

switches. For example, instead of scanning all tuples in S for every tuple in R in one pass,

if we divide S into parts that �t in the cache and do the nested loop join over each cached

part separately, we will incur fewer platter switches. The scheduling and bu�ering decisions

7

can get more complicated with multi-way joins accessing more than two relations each of

which is spread over multiple platters.

Platter 3

Platter 2

Single drive

R2 S1

S2

Query: Join R and S

S3

Platter 1
R1

Platter 4

Next, signi�cant gains can be expected by doing inter-query scheduling. When

queries from di�erent users are executing concurrently, it is important to schedule them so

as to avoid undesirable interference between I/O requests of multiple users, and to increase

sharing of data accesses. Consider the following con�guration.

Platter 1

Platter 2

Single drive

S

Query 3: Scan V

V

T

Query 1: Scan S

Query 2: Scan T

Three di�erent users concurrently submit queries 1,2 and 3 respectively. Queries

1 and 3 access data on platter 1 and query 2 on platter 2. Normally, the execution of

the three queries would be started simultaneously. This could result in frequent switches

between platters 1 and 2. On the other hand, if we withhold execution of query 2 until

queries 1 and 3 are over we can avoid these switches.

There are other cases where query interleaving is necessary to reduce I/O cost.

Scheduling at the level of whole query alone may not be su�cient. Consider the situation

where we have two select queries on relations R and S each of which is spread across platters

1,2 and 3. If we interleave the execution of these queries to �rst scan R1 and S1; then scan

R2 and S2 and �nally scan R3 and S3, then each platter will be loaded only once. In

contrast, if we do not synchronize the scans thus, the scan on S1 could complete before

R1. If we then start scanning S2, the I/O requests on R1 and S2 could interfere leading to

extra platter switches.

Platter 1

Platter 3

Platter 2

Single drive

R1

S3

R2

R3

Query 1: Scan R

Query 2: Scan S

S1

S2

8

Also, further gains can be obtained by reordering the normal processing order of

queries. For instance, suppose a user is processing a sequential scan query on a relation R

and a second sequential scan query on R arrives from a di�erent user when the �rst user

is one-�fth of the way through. It makes sense to let the second user synchronize with the

�rst one and process the query on the remaining four-�fths of R �rst instead of starting

from the beginning. This requires us to reorder the execution of the second query.

The above forms of query scheduling require unconventional caching and

prefetching strategies for managing the magnetic disk cache. A relation can be cached

when its platter is just about to be unloaded even if we do not intend to execute queries on

it immediately. For instance, if we have a join query between relation R on platter 1 and

S on platter 2 and another join query between T on platter 1 and U on platter 2, it might

help to cache both R and T when platter 1 is loaded even if we are scheduling the join

between R and S �rst. Also, when choosing data to replace, we need to take into account

the location of the data in addition to its time of last access. For instance, data blocks

residing on a loaded platter could be replaced in preference to data residing on unloaded

platters since the cost of fetching the former data blocks when needed could be smaller.

Platter 2 S

Platter 1

Single drive
U

Query1: Join R and S

Query2: Join T and U
R T

There is an additional challenge to solving the above problems on tertiary memory:

dealing with the diversity of existing tertiary memory products and the applications that

use them. Tertiary memory devices di�er widely not only from typical secondary memory

devices, but also among themselves. For some devices the platter switch cost is high, making

it important to reduce the number of I/O requests, for others the data transfer bandwidth

is low, making it important to reduce the amount of data transferred. Tape devices have

signi�cant seek overhead whereas disk devices allow random access. Also, one can expect a

lot of variation in the applications that use tertiary storage devices. Some involve a large

number of relatively small objects whereas others require a small number of very large

objects. It is essential, therefore, to identify the key performance metrics and parameterize

the query processing and data placements decisions on these metrics.

9

1.2.2 Data placement Issues

Careful clustering techniques have to be used for data layout to accommodate for

the non-uniform access times of tertiary memory. Since updates on tertiary memory rela-

tions are infrequent, data clusters are easier to maintain. A large body of work exists in

relational databases for organizing tables and clustering them for fast retrieval on secondary

storage devices [LY77, YSLM85]. Most of these techniques can be extended to tertiary mem-

ory databases. One problem that has not received adequate attention from the database

community, even for magnetic disks, is the storage organization of large multidimensional

arrays | one of the biggest contributors of data volume in many databases [DR91a]. There-

fore, in this thesis, we concentrate on the problem of organizing large multidimensional

arrays.

Scienti�c and engineering applications often utilize large multidimensional arrays.

Earth scientists routinely process satellite images in the form of large two or three di-

mensional arrays [DR91b]. Their simulations of atmosphere and ocean climatic conditions

generate large regular arrays of
oating point numbers as output [M+92]. For example,

typical runs of the UCLA General Circulation Model (GCM) generate �ve dimensional

arrays of size 5 to 50 Gigabytes each. Most existing databases store the arrays as large

objects that are treated simply as a homogeneous sequence of bytes. Hence, they do little

in terms of optimizing their storage. The traditional method of storing a multidimensional

array is linear allocation whereby the array is laid out linearly by a nested traversal of the

axes in some predetermined order. This strategy, which mimics the way Fortran stores

arrays in main memory, can lead to disastrous results on tertiary memory devices because

of their highly non-uniform access time. Since users typically access large arrays in several

di�erent ways, the Fortran order will optimize for one access pattern while making others

very ine�cient. Optimizing the allocation of the array becomes increasingly important and

challenging as array dimension and size increases, especially on sequential media like tapes.

Outline of Dissertation

This thesis is composed of seven chapters. Chapter 2 presents the architecture of a

modi�ed query processing engine that provides the enabling mechanisms for supporting all

the forms of query scheduling, caching and I/O scheduling introduced in Section 1.2.1.

10

Chapter 3 presents the policies used for scheduling and caching in the context of this

architecture. We have extended the postgres database system with the architectural

extensions suggested in Chapter 2. Chapter 4 presents the details of this implementation

and an experimental evaluation of the system on the sequoia-2000 benchmark and several

arti�cial datasets. Chapter 5 addresses the issues of storing large multidimensional arrays

on tertiary storage devices (introduced in Section 1.2.2). Chapter 6 discusses related work.

Finally, concluding remarks appear in Chapter 7.

11

Chapter 2

Query Processing Architecture

This chapter presents our proposed architecture for tertiary memory query pro-

cessing. We assume a relational architecture with a three level memory hierarchy: tertiary

memory attached to a disk cache attached to main memory as shown in Figure 2.1. Most

of the user data (relations and large objects) normally resides on tertiary memory whereas

system catalog information is stored permanently on magnetic disk. Indices on relations are

stored either on magnetic disk or tertiary memory. We assume that all data from tertiary

memory needs to be staged on the disk cache (as shown in Figure 2.1) before any query on it

can be processed. We discuss the implications of this assumption in Chapter 7 (Section 7.3).

Optical disk or tape

drivesm
em

or
y

Processor

Execution Unit

data movement

asynchronous

Disk

cache

tertiary memory

Figure 2.1: The Physical Con�guration.

12

Chapter outline

First, Section 2.1 brie
y reviews the architecture of a conventional database sys-

tem and identify reasons that make them inappropriate for processing queries on tertiary

memory devices. Then, Section 2.2 present the architecture of our system. Two distinguish-

ing features of the new architecture are (1) a reorderable executor and (2) a centralized

scheduler. Section 2.3 describes the design of the reorderable executor. The design of the

scheduler is deferred until Chapter 3.

2.1 Background: Conventional architecture

In the last chapter, we motivated the need for carefully reordering I/O for e�cient

access to tertiary memory devices. Most conventional database systems can achieve only

a limited form of I/O reordering. Typically multiple server processes concurrently execute

queries on behalf of di�erent users. These processes normally submit I/O requests a block at

a time during query execution. The device scheduler thus has only a few blocks available for

reordering at any one time. The maximum number of pending I/O requests for the device

scheduler can be at most the number of concurrent user processes. This limits the amount

of reordering that the device scheduler can do. Many systems attempt to get around this

ine�ciency by incorporating some form of bulk prefetch mechanism where an I/O process

is used to asynchronously prefetch multiple I/O blocks to hide the ine�ciency of block-at-

a-time I/O. However, the amount of data that can be prefetched at one time is limited by

the size of the disk cache. As we will show in this chapter, one can achieve greater
exibility

of reordering and asynchronous prefetching by co-ordinating the device scheduling, cache

management and query scheduling decisions.

2.2 Proposed Architecture

Figure 2.2 sketches the process architecture of our database system. The new ad-

dition over a conventional process architecture is the scheduler process. As in a conventional

system, each user's queries are executed in a di�erent process (marked \user processes" in

Figure 2.2). But, instead of directly and independently submitting the I/O requests to the

disk cache manager, each user process submits its request for data blocks to the scheduler

before starting to execute a query. The scheduler is a centralized entity that (1) schedules

13

IO Processes

data transfer requests

Tertiary memory state

cache
state

Scheduler

User Processes

A
rriving queries

schedule
subqueries

Submit subqueries

Disk cache

Tertiary
memory
device

Figure 2.2: Process architecture of the tertiary memory database system.

I/O requests on the tertiary memory, (2) schedules queries of each user process, and (3)

decides what data is staged in or evicted from the disk cache. The scheduler maintains a

collection of I/O processes for asynchronously moving data from the tertiary memory to the

disk cache. Each user-process submits its request for data that it needs to the scheduler,

and only after the scheduler has put the data on the disk cache is the query scheduled for

execution. Queries are divided into smaller units called subqueries1 and scheduled in units

of subqueries instead of as a whole unit.

In Figure 2.3 we show further details of the interaction between the user-processes

and the scheduler. Each user-process breaks its query into a list of subqueries and submits

them to the scheduler. The scheduler collects such lists of subqueries from multiple di�erent

user-processes and is responsible for deciding the order of executing the subqueries. After

submitting the list of subqueries, the user-process waits for the scheduler to make one or

more subqueries \ready" for execution. When a user-process has �nished executing the

ready subqueries, it informs the scheduler of their completion and waits for the next set of

subqueries to be \ready". On the scheduler side, the �rst task is to select the data (required

by one or more subqueries) to be fetched next and make space in cache for the selected data

items. The scheduler then instructs an I/O process to fetch the selected data items. As

data required by a subquery is brought into the disk cache, the data is \pinned" in the

cache; when all the required data has been brought in, the subquery is marked \ready" for

execution. When a subquery completes, the scheduler \unpins" the data accessed by the

1The term subqueries is not to be confused with the SQL notion of subqueries. We use the term \sub-

queries" to refer to parts of query as explained in greater detail in Section 2.3.

14

subquery so that some other data items may be put in its place.

This architecture can do better I/O optimizations than conventional systems since

a single scheduler process co-ordinates all caching and I/O activities of multiple user-

processes and since, each user-process pre-determines all data blocks that will be used

before starting to execute a query. This enables the scheduler not only to do better plan-

ning of I/O requests within a single query but to also batch one query's I/O requests with

those of other queries. However, implementation of this query processing architecture raises

a number of new issues, including:

� The unit of scheduling: What is the size of the subqueries that are used for

scheduling? In particular, scheduling at the level of whole queries may not be feasible

since the disk cache may not be large enough to hold all the data required by a

query. Also, too large a subquery can adversely a�ect caching performance since the

scheduler might \pin" data required by a subquery for too long. These issues are

discussed in Section 2.2.1.

� The design of the user processes: How does the user-process extract the list of

subqueries needed before execution? It may not be possible to �nd out in advance all

data that are required by a query. How do the user-processes handle such cases |

how is the execution unit of a user-process modi�ed to handle the subquery at a time

execution paradigm? How does it interact with the scheduler to exchange subquery

information? These topics are discussed in Section 2.3.

� The design of the scheduler: How does the scheduler decide on the order of execut-

ing the subqueries? How does it make the device scheduling and cache management

decisions? These topics are discussed in Chapter 3.

2.2.1 Unit of scheduling

Each query on a base relation is divided into a number of smaller subqueries de�ned

on the fragments of the base relation. A fragment is a set of tuples in a relation laid out

contiguously on a single platter. In general, a relation can be larger than the disk cache,

spanning multiple platters and spread arbitrarily across each platter. Such a storage layout

can arise when a relation is created by successive appends at di�erent periods of time. In

historical and archival systems data is loaded periodically, and it is often too expensive

15

Query arrives

Execute subqueries

Submit list to scheduler

Wiat for subqueries

Send subquery done message

Extract subquery list

User process

User process

Select data to fetch next

Select data to replace from cache

Instruct I/O process to fetch data

pinning data needed by the subqueries
Make subqueries "ready" by

Select subqueries on cached fragments

Unpin cached data

Scheduler

Query arrives

Execute subqueries

Submit list to scheduler

Wiat for subqueries

Send subquery done message

Extract subquery list

Figure 2.3: Interaction between the scheduler and User-processes.

to reorganize so as to store an entire relation contiguously. Hence the query processing

engine should be able to handle bad storage layout. A relation can thus be composed of

multiple fragments. A fragment can be fetched as a whole without incurring platter switches

and seeks during its transfer. For disk-based (as opposed to tape-based) tertiary memory

devices, we treat all the data blocks lying on a single platter as part of the same fragment

since the seek cost is not a signi�cant part of the total I/O cost. In contrast, for tape-based

tertiary memory only the parts of a relation stored contiguously can belong to the same

fragment.

Fragment size: The proper choice of the fragment size is crucial to performance. Too

large a fragment can limit the degree of concurrency whereas too small a fragment can

increase the overhead of scheduling. The physical layout of the relation determines some

boundaries for creating fragments as described above. But, we can divide a contiguously

stored fragment of a relation into even smaller fragments. The limits (both maximum and

minimum) on the size of fragment can be determined in a number of di�erent ways:

1. One limit on the maximum size of a fragment is imposed by the size of the disk cache,

C | we limit the size of each fragment to be no more than 1=nth of the cache size

where n is the maximum number of fragments that are needed together for processing

a subquery. For instance, a 2-way nested-loop join subquery requires at least two

fragments to be in the disk cache before we can process the subquery. Thus, if we

16

have a n-way nest-loop join, we should be able to hold at least n fragments in the

cache together. In an ad-hoc query processing system, theoretically there is no limit

on the maximum number of relations n that can participate in a nested loop join.

However, in practice a nested loop join involving too many relations is likely to be

too slow to be gainfully used. Therefore, it is possible to determine a value of n in

practice.

2. A second limit is imposed by the number of drives | for high utilization it is desirable

to be able to transfer concurrently as many fragments as the number of drives, d. This

limits the size of each fragment to atmost the ratio of the cache size and the number

of drives.

3. Another limit is obtained by the desired degree of concurrency. To exploit the bene�ts

of multiprogramming at the query execution level, if it is necessary to support some

x number of users and if each user needs an average of m fragments simultaneously

on disk, we would like to be able to cache together at least mx fragments. This limits

the size of each fragment to not more than C=mx.

4. Too small a fragment size can increase the overhead of scheduling and hence we

must choose a fragment size such that the overhead is a small fraction of total query

execution time. If Fmin is the smallest fragment size for which the scheduling overhead

\signi�cantly" exceeds the total query execution time, then we want all fragments to

be � Fmin. The value of Fmin depends on the overhead which in turn depends on

implementation-speci�c details that are hard to characterize in a closed-form formula.

Thus Fmin is a parameter to be determined by a DBA based on installation speci�c

details.

5. Each fragment is composed of an integral number of �xed sized storage blocks (in

the same way a disk �le is composed of �xed sized pages). The size of each fragment

has to be larger than the tertiary block size B. For tertiary memory devices the size

of the storage block is typically much larger than a normal disk page because of the

high access latency. The optimal value of the storage block B depends on the platter

switch cost, the transfer cost, the �xed search/rewind time on tape, the seek rate and

the distribution of the amount of data needed per access. Too large a block size can

increase the amount of redundant data transfered and too small a block size can cause

17

the seek and search overhead to be incurred too often. This tradeo� is similar to the

one encountered when choosing a page size for the disk to main-memory hierarchy.

Hence, we rely on similar device and application speci�c calculations in choosing the

block size.

Summarizing the above set of constraints, we limit the size, F of each fragment of a relation

as:

F � min(
C

n
;
C

d
;
C

mx
) and F � max(Fmin; B)

where
C cache size
n maximum number of relations in a nested-loop join
d number of drives
x maximum degree of multiprogramming
m average number of fragments per query
B block size
Fmin minimum fragment size

Section 3.3.1 of Chapter 3. illustrates, how we use these constraints in determining fragment

sizes for our experiments.

2.3 Query Execution

This section presents the design of the execution engine of each user process. It

covers details of (1) how each query is analyzed before execution to extract the list of

subqueries and the data items it needs and (2) how the execution engine cooperates with

the scheduler to process a plan-tree in an arbitrarily reorderable fashion. First, Section 2.3.1

lists the speci�cations that the execution unit of each user-process in our architecture should

meet. Then, Section 2.3.2 presents the design of the di�erent phases of query execution that

meets these speci�cations.

2.3.1 Speci�cations

1. Submit to the scheduler a list of subqueries to be executed

The scheduler does not need to know all the details of the subquery, only which

fragments are needed together in executing the subquery. Each subquery is thus

represented as a list of fragments that are needed for executing the subquery. Consider

18

a nest-loop join between relations R and S where R consists of three fragments R1, R2

and R3, and S consists of two fragments S1 and S2. The list of subqueries submitted

to the scheduler, called the SQ-list, is:

f(R1; S1); (R1; S2); (R2; S1); (R2; S2); (R3; S1); (R3; S2)g

Consider another example of a 3-way nested-loop join query between relations R, S

and T where T consists of only one fragment T1. For this query the SQ-list is:

f(R1; S1; T1); (R1; S2; T1); (R2; S1; T1); (R2; S2; T1); (R3; S1; T1); (R3; S2; T1)g

In general, a subquery extracted from an n-way nested-loop join query will require

n fragments to be present together. The executor attempts to expose the maximum

parallelism to the scheduler by submitting as large a subquery list as possible.

2. Execute subqueries out-of-order

The scheduler can mark subqueries ready for execution in an arbitrary order. There-

fore, the subqueries in an SQ-list should not have any ordering constraints between

them. For the two way join example above, the subquery (R2; S1), for instance, might

be scheduled before the subqueries (R1; S1) and (R1; S2). This implies that when the

operators of a plan tree have precedence constraints on them, the subqueries must be

submitted in multiple stages. For example, if for the above two-way join query, we

did a hash-join between R and S (with S as the hash-build relation), then we need

fragments of S before fragments of R. Thus, the scheduler will be �rst submitted the

SQ-list f(S1); (S2)g and only after all fragments of S are processed and the hash

table for S built, do we submit the SQ-list f(R1); (R2); (R3)g on fragment R.

3. Execute multiple subqueries together

When an executor contacts the scheduler for \ready" subqueries, the scheduler could

have more than one subquery ready. We require that the executor be able to process

multiple subqueries together and not just one at a time. Executing one subquery at a

time can lead to redundant computation for joins, since the scans on the outer relation

cannot be shared across multiple fragments of the inner relation. For instance in the

two-way join example, if S1, S2 and R3 are cached, the scheduler will \ready" both

the subqueries (R3; S1) and (R3; S2). The executor must be able to join R3 with both

S1 and S2 in one scan of R3. Hence, although executing each subquery separately

19

would allow for easy implementation, we must provide a means of executing multiple

subqueries together.

2.3.2 Phases of Execution

This section describes the design of an execution engine that meets the above set

of requirements. This discussion is based on the postgres execution engine, in which each

query plan is a tree of operators and all operators provide a uniform iterator interface.

In accordance with this interface, each operator of the plan tree provides start, next and

close calls. Most other relational database systems, including System R [ABC+76], EX-

ODUS [RC87], Starburst [HCF+88] and Volcano [Gra90] have analogous operator-based

execution engines and can be extended similarly.

A query is �rst optimized as usual except for a few minor changes related to sorting

via index scans that are discussed in Section 2.3.4. The optimized plan tree then passes

through the fragmentation, subquery extraction and execution phases that are described

next.

Fragmentation

In the fragmentation phase, each scan node on each base relation is replaced by

a combine node that contains a list of scan nodes on the fragments of the base relation.

The type of scan (sequential scan or index scan) on the fragments is the same as on the

base relation. We assume that all the fragments of a relation have the same set of indices.

For example, in Figure 2.4(a) we show the plan-tree of a 3-way join with three sequential

scan nodes on base relations S, U and T . In Figure 2.4(b) we show the plan-tree after

fragmentation. Relation S has two fragments S1 and S2, thus we replace a scan node on

relation S by two scan nodes on each of the two fragments of S and add a combine node

above these two scan nodes. Relation T also has two fragments and we follow the same

procedure for T . Relation U has only one fragment, therefore we leave the scan node on U

unchanged. During the fragmentation phase we leave the rest of the plan-tree unchanged.

Only the scan-nodes on relations residing on tertiary memory are changed.

20

Seq-ScanSeq-Scan

S1 S2

Seq-Scan

U1

Seq-Scan Seq-Scan

T1 T2

Combine

Schedule

Hash-build

Combine

Hash-probe

{(S1),(S2)}

(c) Plan-tree after extraction

Nest-loop

Schedule
{(U1,T1), (U1,T2)}

S

Seq-Scan

Seq-Scan

U

(a) Plan-tree after optimization

T

Seq-Scan

Seq-Scan

Seq-Scan

S1

Seq-Scan

S2

U1

Seq-Scan Seq-Scan

T1 T2

Combine

Hash-build

Hash-probe

Nest-loop

(b) Plan-tree after fragmentation

Nest-loop

Hash-probe

Hash-build

Combine

Figure 2.4: Example of a three-way join.

21

Subquery Extraction

In this phase we analyze the fragmented plan tree to extract the SQ-lists and

insert special nodes called schedule nodes that are responsible for communicating with the

scheduler and maintaining necessary synchronization information during execution. Each

schedule node has an associated SQ-list. Because of precedence constraints between op-

erators (Section 2.3.1(item 2)), we could have multiple SQ-lists in a plan-tree. For

example, the plan-tree in Figure 2.4(b) has ordering constraints between the hash-build

and hash-probe nodes. Hence, we added a schedule node before the hash-build node since

the hash-build stage has to complete before starting processing on any nodes above it. We

add a second schedule node at the top for the rest of plan-tree.

For inserting such schedule nodes in a plan-tree and for constructing the SQ-lists

we de�ne a \Find-Sub-Query" call for all nodes in the plan-tree. This routine returns the

list of subqueries necessary to process the node. We give below the \Find-Sub-Query"

routine for a few common nodes.

Find-Sub-Query for various nodes

Combine node:

return list of fragments under the combine node

Hash-build, Aggregate or Sort node:

query-list = Find-Sub-Query (subtree underneath node)

if query-list non-empty

add a schedule node containing query-list below this node

return empty-list

Join node:

listL = Find-Sub-Query (left subtree)

listR = Find-Sub-Query (right subtree)

query-list = cross product of listR and listL

If listR is empty, query-list = listL

If listL is empty, query-list = listR

return query-list2

For our example in Figure 2.4, the \Find-Sub-Query" call on the Hash-build node adds a

schedule node containing the list f(S1); (S2)g and returns the empty-list. The \Find-Sub-

Query" call on the Hash-probe node returns the list f(U1)g and on the right branch of the

22

Nest-loop node returns the list f(T1); (T2)g. The \Find-Sub-Query" call on the Nest-loop

node returns the cross product f(U1; T1); (U1; T2)g that is stored in a schedule node at the

top of the tree.

Execution

Our goal during the design of the execution engine was to follow the normal mode

of processing as far as possible except for occasional communication between the execution

engine and the scheduler for passing subquery information, collecting ready subqueries and

notifying the schedule of subquery completion. We show here how minor modi�cations in

the scan nodes and the newly introduced schedule and combine nodes enable us to achieve

this goal.

For e�ciency reasons (discussed in Section 2.3.1, item 3) we want to execute all

subqueries of a plan-tree from a single plan-tree data structure instead of building a separate

plan-tree for each subquery. This requires us to keep track of what subquery of the plan-tree

is currently being executed. We do so by marking the scan nodes of the subqueries currently

being executed as available and all other scan-nodes suspended. The plan-tree is then

processed as usual: starting from the root of the plan tree, successive \next" calls are made

to each node of the tree. When a \next" call is made on a combine node it submits the

\next" call to a scan node underneath it that is marked available. A \next" call on a

suspended scan node does not return a tuple. Thus, only scan-nodes of currently scheduled

subqueries participate in execution.

We next discuss how and when the schedule nodes are used for exchanging sub-

query information. Note that there could be multiple schedule nodes in the plan tree. It

is critical to ensure proper interaction between these nodes to prevent deadlocks during

execution by (1) submitting the SQ-list of a schedule node before the SQ-list of any

schedule node above it and (2) processing subqueries of one schedule node and notifying

the scheduler of their completion before submitting a SQ-list of some other schedule node.

In addition, we want all these operations to be seamlessly integrated with the normal pro-

cessing of the plan-tree. We achieve this goal by localizing all communication control into

a \next" call of a schedule node. The schedule node is just another node of the plan-tree

and during normal processing when a \next" call is made on the schedule node, we take

the following steps:

23

1. Make a \next" call on the node underneath the schedule node to get the next tuple, t

2. If t is valid, return t

3. Else, if �rst time empty tuple returned

� Submit the stored SQ-list to the scheduler

� Make a blocking call to the scheduler to get the next collection of subqueries.

Let Q be the collection of \ready" subqueries returned by the scheduler.

� Enable Q for execution by marking all the scan nodes appearing in Q as available.

� Finally, make a \next" call on the node underneath and return the tuple obtained.

4. Else, /* stored list of subqueries already submitted */

� Inform the scheduler of the completion of the last batch of scheduled subqueries,

if any, and mark the scan nodes of those subqueries as suspended.

� Make a blocking call to the scheduler to get the next collection of subqueries.

Let Q be the collection of \ready" subqueries returned by the scheduler.

� If Q is empty, then all subqueries have been executed, therefore return EOF.

� Else, enable Q for execution by marking all the scan nodes appearing in Q as

available.

� Finally, make a \next" call on the node underneath and return the tuple obtained.

We will illustrate the above steps with the execution of the plan-tree in Figure 2.4.

Initially, all the fragments are marked suspended. The �rst \next" call results in the

submission of the list f(S1); (S2)g. Assume the scheduler makes (S2) available �rst. As a

result, the hash-build operation is partially completed. The scheduler is informed of the

completion of subquery (S2) (so it can uncache S2 if needed) and a blocking request is made

to get the next subquery. When the scheduler makes (S1) \ready", the rest of the hash-build

operation is completed and the scheduler is informed of its completion. Next, the SQ-list

f(U1; T1); (U1; T2)g on the topmost schedule node is submitted and a blocking request is

made for the next subqueries. Assume both the subqueries are scheduled together. All

data required by the plan-tree is now available. Hence, execution of the query is completed

by pipelining the hash-probe and nest-loop operations and the scheduler is noti�ed of the

completion.

24

The above scheme requires certain caution when scheduling multiple join sub-

queries together to avoid repetition of the following form: Consider the R ./ S example

of Section 2.3.1. Using the above scheme we �rst submit the following SQ-list to the

scheduler.

f(R1; S1); (R1; S2); (R2; S1); (R2; S2); (R3; S1); (R3; S2)g

Suppose the scheduler next makes (R1; S1) ready, the executor �nishes processing (R1; S1)

and asks for the next set of ready subqueries. Suppose the next set of scheduled subqueries

is f(R1; S2); (R2; S1); (R2; S2)g. To execute these three subqueries, scan-nodes of fragments

R1, R2, S1 and S2 will be marked available, and the plan-tree will be processed as usual.

But, by doing so, we have repeated the execution of subquery (R1; S1). Note that this

form of repetitions can occur only for join subqueries that require more than one fragment

together.

To avoid such repetition, the scheduler maintains for each SQ-list, the list of

subqueries already completed in a special done-list. Whenever two or more new join

subqueries from a SQ-list are marked ready, the scheduler checks for repetitions as follows:

1. Let ready-list = list of ready queries.

2. Let I = list of inner fragments of all the ready subqueries

3. O = list of outer fragments of all the ready subqueries.

4. If the length of either I or O 1, stop since there can be no repetition, otherwise,

5. If the done-list contains a subquery s such that its inner fragment

i is in I and outer fragment o in O, s will be executed

again if all subqueries in the ready-list are scheduled together,

therefore remove o from O. All subqueries in the ready-list whose

outer relation is o will not be executed in this batch and hence

they are removed from the ready-list. The subqueries removed in this

step are postponed for execution later.

6. Redo steps 1 through 5 until, no repetition is detected.

We will illustrate this procedure with the example of the two-way join above.

Suppose, the done-list contains subquery (R1; S1) and the ready-list contains subqueries

f(R1; S2); (R2; S1); (R2; S2)g. Thus, I = fS2; S1g and O = fR1; R2g. Condition 5 is satis�ed

since the done-list contains subquery (R1; S1) whose outer fragment, R1 belongs to O and

25

inner fragment S1 belongs to I . By step 6, we remove from the ready-list all subqueries

that contain the R1 as the outer relation since R1 is the outer relation of s. Therefore,

we remove subquery (R1; S2) from the ready-list. In the next iteration, O is fR2g and I

is fS2; S1g and there can be no repetition since length of O is 1. Thus, in the �rst batch

subqueries (R2; S1) and (R2; S2) will be executed and in the next batch subquery (R1; S2)

is executed.

2.3.3 Handling Dependencies

Sometimes it is not possible to know before execution what subqueries are needed

because there is dependency (or pointers) between fragments. To determine what fragments

are need, some other fragments have to be processed. For example, with index scans, the

set of data blocks required can be determined only after partial processing on the index

trees. Similarly, with tuples pointing to large objects, the large objects to be fetched can be

determined only after selecting the required tuples. To handle dependencies, two changes

are needed:

1. First, we augment the plan-tree structure further with a special schedule node called

the resolve node. The resolve node is added during the extraction phase immediately

above the plan-tree node that introduces dependency between fragments. The resolve

node, like the schedule node, contains a list of subqueries (SQ-list) that need to be

executed �rst to resolve the dependencies. For instance, for an index scan, the resolve

node is added immediately above the corresponding combine node and the SQ-list is

the list of index trees on the indexed fragments as shown in Figure 2.5. The SQ-list

of the �rst schedule node above this resolve node cannot be established and hence is

marked unresolved.

2. Next, we process nodes that introduce dependency in two stages: in the �rst stage a

\ResolveDependency" call is made to compute the dependent list of subqueries and in

the second stage after the subqueries are scheduled the rest of the node is processed.

For instance, for the index scan node in the \ResolveDependency" stage the index

tree is scanned and the list of matching TIDs sorted to get the list of blocks of S2 and

S1 (BL(S2) and BL(S1)) that needs to be fetched. In the second stage, after these

blocks are fetched we complete the rest of index scan.

26

Combine

IndScan IndScan

"unresolved"

S1 S2

Resolve
{(Index of S1, Index of S2)}

Schedule

Figure 2.5: Resolve nodes for index scans.

S T

T1

U1

Combine

S1 S2

V1

IndScan

V

U Resolve

Schedule

Nest-loop

"unresolved"

{((V1,S1),IT1), ((V1,S2),IT1)}

IndScan

Nest-loop

Hybrid-join

Nest-loop
Nest-loop

Hybrid-join

Figure 2.6: Plan-tree with dependency. The right side shows the plan-tree after the extraction phase.
Sequential scan nodes are omitted for clarity.

With these modi�cations we can handle dependencies during execution as follows:

when it is time to process a schedule node s marked \unresolved", we make a \resolve-sub-

query" call on the node below. The resolve-sub-query call behaves like the \�nd-sub-query"

call for each node of the plan-tree until a resolve node is reached. The resolve node submits

its stored SQ-list to the scheduler, and as subqueries from this list get scheduled, we make

ResolveDependency calls on the node below to get the new SQ-list. The �nal SQ-list is

then returned and stored in the schedule node and execution proceeds as usual. We now

illustrate details of this method with the three normal cases of dependencies in relational

engines: index scans, joins with index scans on inner relation and large object access.

27

Index scans: Consider the example in Figure 2.5. When we reach the schedule node at

the top of the plan-tree with \unresolved" SQ-list, we make a \resolve-sub-query" call

to the resolve node underneath. During this call, we �rst submit the stored list of index

trees (IS1 and IS2) to the scheduler. Then, suppose index tree IS2 is marked \ready". A

ResolveDependency call is made on the index scan node where the index tree is scanned and

the list of matching TIDs (tuple identi�ers) sorted to get the list of blocks of S2 (BL(S2))

that need to be fetched. The scheduler is sent a \done" message for IS2 and a request is

made for the next subquery. When IS1 is marked \ready", the list of blocks of S1 (BL(S)1))

is collected similarly. The new SQ-list, f(BL(S1); BL(S2)g is returned to the schedule node

above and execution proceeds as usual. Suppose at some later time BL(S2) is \ready", the

TID list is used to retrieve the matching tuples.

Nested loop join with runtime index on the inner relation: We demonstrate how

to execute the hybrid join algorithm [CHH+91], which is an improvement over the standard

nest-loop join.

We �rst describe the hybrid join algorithm. It works in two stages: In the �rst

stage, for each tuple of the outer relation the index of the inner relation is probed and

entries are made in an in-memory join table for each matched <outer tuple, inner TID>

pair (inner TID refers to the identi�er of a tuple of the inner relation that is obtained from

the index tree). The join table is then sorted in storage order of the inner relation TIDs. In

the second stage, the relevant inner relation tuples are fetched in storage order and merged

with the join table to form the result tuples.

We adapt this algorithm to our framework. In the extraction phase, we add a

resolve node above the hybrid join node as shown in the example of a four-way join in

Figure 2.6. The SQ-list of the resolve node is a cross product of two subquery lists: one

from the outer branch of the join node (f(V1; S1); (V1; S2)g) and the other from the inner

branch (f(IT1)g, the index tree of T1). Note that the list from the inner branch is the index

trees of the inner relation fragments. The schedule node above this resolve node is marked

unresolved.

During execution, when \resolve-subquery" call is made to the resolve node, we

submit the stored SQ-list (f((V1; S1); IT1); ((V1; S2); IT1)g) to the scheduler and wait for

\ready" subqueries. When some set Q of subqueries are \ready", we use the hybrid join

algorithm to get the list of blocks of the inner fragments. In our example, if ((V1; S1); IT1)

28

R S

Join

Restrict LO

{(R,S)}

Schedule
"unresolved"

Resolve

Figure 2.7: Adding resolving nodes for large object access.

is \ready", we construct the hybrid join table using index tree, IT1 and notify the scheduler

of the completion of this subquery. Later, when ((V1; S2); IT1) is \ready", we complete the

join table. When all subqueries in the SQ-list are executed, we extract the list of blocks

of the inner fragments that need to be fetched. This completes the ResolveDependency call

and we return the list to the schedule node above. The schedule node above the resolve

node can then constructs its SQ-list and execution proceeds as usual. In our example, the

SQ-list of the schedule node is f(BL(T1); U1)g where BL(T1) denotes the list of qualifying

blocks of T1. When this subquery is scheduled, the join is completed using the in-memory

join table. The result tuples are pipelined to the Nest-loop join on U1.

Large objects: To support reordering between large object accesses of di�erent tuples,

we add a resolve node after the node that accesses the large objects. The SQ-list is derived

from the plan tree underneath this node. For example in Figure 2.7, a \selection" clause on

a large object is above the join node between R and S. Therefore, the SQ-list f(R; S)g is

stored in the resolve node.

During the resolution phase, we submit the SQ-list to the scheduler and when

the subquery is \ready" a ResolveDependency call is made to the node accessing the large

object. During this call, the join is completed and the resultant tuples along with the IDs

of large objects required by them are collected in an in-memory table (as in the case of

nest-loop join subquery above). The list of large objects is then returned. The schedule

node submits this collected list to the scheduler. The scheduler fetches the large objects

in an e�cient order. When a large object is \ready" the corresponding tuple is processed

further and the scheduler is noti�ed of its completion. Cases where all of the large object

29

is not needed will require modi�cation of the function that selects the part to be fetched.

The execution of the function has to be split into two phases, where in the �rst phase the

function selects the blocks of the large object to be fetched (like in index scans) and in the

second phase the function actually processes the data.

Dealing with limited memory: If the in-memory table is larger than the available main

memory, then the resolve node cannot complete the construction of the entire table in one

pass. Thus, the whole resolve step cannot be completed in one \resolve-sub-query" call and

multiple passes are required. Each \resolve-sub-query" call returns only the partial list of

data along with an \incomplete
ag". The schedule node above the resolve node executes

the partial subquery list and submits successive \resolve-sub-query" call until the entire

query is completed.

2.3.4 Preventing reordering failures

Free reordering of scans does not yield the correct answer when an index scan

is used for getting tuples in sorted order e.g., in a merge join. When sorting order is

important, the optimizer adds a modi�ed combine node (called merge-combine) above the

index-scanned relation. This modi�ed combine node uses the individual index scans on

fragments to get sorted runs that are merged together to sort the entire relation. The \Find-

sub-query" call on the merge-combine node is slightly di�erent than on a normal combine

node. For the merge-combine node, the \Find-sub-query" call results in the addition of

a schedule node containing a single subquery of all the fragments and their index trees.

Similarly, when accessing large objects, when the sort-order of tuples is important we cannot

reorder the processing of tuples. In such cases, we limit the size of the in-memory table

to tuples whose results we can bu�er. Instead of submitting the entire list of large objects

to the scheduler, we submit the list in smaller batches. When a large object is marked

ready by the scheduler, the corresponding tuple is processed and the result bu�ered in the

in-memory table until all tuples preceeding it are processed.

2.4 Summary

We presented the design of a query processing strategy that is optimized for ac-

cesses to a tertiary memory database. The main features of the new architecture can be

30

summarized as follows:

� We take a more uni�ed and aggressive approach to reducing and reordering I/O on

tertiary memory. Our system consists of a centralized scheduler that keeps system-

wide information about the state of the tertiary memory, the disk cache and the queries

present in the system. It uses this knowledge to make query scheduling decisions with

the goal of maximizing overall throughput. Using a set of dedicated I/O processes,

the scheduler directs asynchronous data transfers from the tertiary memory to disk in

a highly optimized manner. Each user process executes queries on data cached on disk

instead of independently doing I/O on tertiary memory. This enables the scheduler

to batch I/O from multiple user processes on tertiary memory and do e�ective re-use

of cached data.

� We employ the notion of a fragment to reveal the layout of the relation on tertiary

memory to the scheduler and query executors. Query scheduling decisions are made

in units of subqueries on fragments and data movement decisions are made in units

of fragments. This avoids small random I/Os, common in many conventional query

execution methods.

� We use a modi�ed query execution engine that can (1) extract information about

the data items needed by a query before execution begins, and, (2) can work in

cooperation with the scheduler to execute queries in a reorderable fashion. By allowing

execution to be reordered, we provide more
exibility to the scheduler for optimizing

access order. Designing such an executor was challenging because of three factors: (1)

there could be ordering constraints between operators (2) there could be dependency

between operators and (3) the number and order of subqueries executed together is

not known in advance. We propose a design for modifying the execution engine such

that the necessary changes are well modularized into three meta-operators and two

extra phases before execution. We provide a method for handling dependencies by

adding another meta-operator that can extract subquery information after partial

execution. This enables us to e�ciently handle index scans, nested loop joins (with

index scans on the inner), selections on relations pointing to large objects and other

operators that have data dependency.

31

Chapter 3

Subquery Scheduling

This chapter presents the design of the scheduler | an important component of our

proposed architecture. First, we brie
y review the working of the scheduler in Section 3.1.

Then, in Section 3.2, we discuss the scheduling policies. Section 3.3 presents an evaluation

of our fragment fetch and eviction policies using simulation experiments.

3.1 Working of the scheduler

The scheduler is a centralized unit that collects subqueries from each user-process

and decides on the order of scheduling them. To make query scheduling decisions for

overall global bene�t, the scheduler maintains system-wide information about the state of

the tertiary memory, the contents of the cache, and the data requirements of each subquery

in the system. It uses this global knowledge for making decisions with the goal of maximizing

overall system throughput. The various steps involved in the query scheduling process are:

1. From the pool of pending subqueries (each associated with the fragments it needs),

the scheduler selects the fragment to be fetched next when an I/O process becomes

free. Section 3.2.1 discusses how the scheduler makes this decision.

2. Then it selects data to be replaced from the disk cache to make space for transferring

the selected fragment. Sometimes, there might be no data eligible for eviction from the

cache. In such a case, the scheduler waits until some subquery completes, releasing

space occupied by the data the subquery used. The fragment eviction policies are

discussed in Section 3.2.2.

32

3. The scheduler then instructs the I/O process to transfer the selected fragment.

4. Then it scans the list of pending subqueries and marks \ready" the subqueries that

access only cached data. In addition, any subquery for which the I/O process has

been instructed to transfer data are also marked \ready", even if the transfer is not

completed. This helps to reduce the wait time since the data transfer can be pipelined

with the execution of the subquery.

5. After selecting the \ready" subqueries, the scheduler pins all data that are touched

by these subqueries. Pinning data involves incrementing the reference count on the

data. Pinned data cannot be removed from the disk cache. This ensures that the data

needed by a subquery is cached during the entire duration of its processing.

6. When the scheduler is noti�ed of the completion of a subquery, it decrements reference

count of all data the subquery touched. When the reference count of a fragment is 0

it is \un-pinned".

3.2 Scheduling policies

The scheduler has a collection of subqueries obtained from multiple user-processes.

As far as the scheduler is concerned each subquery is simply a collection of fragments that

are needed together. We �rst concentrate on scheduling subqueries that require at most two

fragments in the cache together and require whole fragments instead of particular subsets

of blocks in the fragment. Later, Section 3.4 discusses extensions to handle these other

cases. The pending collection of subqueries can be represented as a query graph where the

nodes denote the fragments and the edges denote the joins between two fragments. In such

a graph, an edge between two nodes implies that both the fragments represented by these

nodes must reside in the cache together for the subquery to be processed. Fragments which

do not join with any other fragment are represented as isolated nodes. Figure 3.1 shows

the query graph corresponding to the following collection of four queries:

� Query 1 is a nest-loop join query between relations R and S. R consists of three

fragments, R1; R2; R3 and S has two fragments, S1 and S2. Thus the SQ-list for

query 1 is:

f(R1; S1); (R1; S2); (R2; S1); (R2; S2); (R3; S1); (R3; S2)g

33

R1 T

V1S1 Q4. select VPU

R2R3

V2S2

Q1 Q1 Q1

Q1Q1Q1Q1

Q3

Q2

Queries:
Q1. R join S
Q2. T join U
Q3. P join U

Figure 3.1: An example query graph.

This yields six edges between fragments of R and S as shown in Figure 3.1.

� Query 2 is a join query between relations T and U consisting of one fragment each

and thus yields an edge between T and U .

� Query 3 is another join between relations P and U consisting of one fragment each

and thus yields an edge between P and U .

� Query 4 is a select query on fragment V . V consists of two fragments V1, V2. Thus,

the graph has two nodes without any edges from them.

Given such a query graph, the task of the scheduler is to decide on the order of

fetching and evicting fragments given the constraints of the limited cache. Typically, the

size of the disk cache is less than the sum of the sizes of the fragments queried. Further,

the query graph is not static; it changes as new subqueries arrive and pending subqueries

get scheduled. Thus, decisions on the order of fetching fragments should be on-line or

incremental instead of being o�-line or batch. In this on-line setting, at any point in time

some of the fragments of the query graph might already be in the disk cache whereas others

might need to be fetched from tertiary memory. Of the fragments to be fetched from tertiary

memory, some might reside on platters that are currently loaded and others might reside on

unloaded platters. Figure 3.2 shows an example setting that can arise for the query graph

in Figure 3.1. The fragments R1 and T are already in the disk cache, fragment S1 joins with

the cached fragment R1 and resides on platter 1 that is currently loaded whereas fragment

U that joins with T will require a platter switch for transferring. Given this setting, our

objective is to transfer queried fragments from tertiary memory with the goal of minimizing

the total time spent doing I/O on tertiary memory.

This problem is NP-complete. The proof of this follows from the proof of NP-

completeness of a much simpler, o�-line version of our problem discussed in [MKY81, PI85]

34

T

Disk cache

R1 T1

R2V1S1P
Platter 2

Platter 3

Platter 1

Loaded platter

Platters on shelf.

R3 V2

1. R join S
2. T join U
3. P join U
4. select V

Queries:

S2 U

Figure 3.2: A typical online setting.

in the context of two-way join query graphs. [MKY81] formulates the two-way join query

as a bipartite graph where the nodes are the pages of the individual relations and an edge

between two nodes denotes the presence of a matching tuple between the two pages. Their

goal is to �nd a schedule for transferring pages from disk to a limited main memory bu�er

so as to minimize the number of pages transfered. By reducing the Hamiltonian path

problem to this problem, [MKY81] proves the two-way join problem to be NP-complete.

Our problem has various additional challenges:

� fragments can be of varying length whereas pages are �xed length;

� the I/O cost has three components; transfer cost, switch cost and seek cost and

sometimes optimizing for one cost component could make another cost component

higher; and,

� the query graph changes dynamically.

Hence, an algorithm that �nds the optimal solution is likely to be too expensive to be useful.

Consequently, we use a number of heuristics for reducing the search space.

We used extensive simulation to aid us in the search for good heuristics and evalu-

ated a large number of variations. For clarity, in this section, we will only present our �nal

resulting set of heuristics. Later, in Section 3.3, we will present experimental justi�cation

of our choice.

35

3.2.1 Fragment fetch policies

When each subquery requires exactly one fragment, it is easy to solve this problem

optimally (for the batch case) using the following simple policy. \Fetch fragments from

loaded platters in their storage order. Schedule all subqueries on the cached fragment

before replacing it". The reason it is optimal (in terms of I/O cost) is because each queried

fragment is fetched only once, each platter is loaded only once and from the loaded platters

fragments are fetched in their storage order to minimize total seek cost. For the on-line

version of this problem, it is not possible to �nd the optimal solution since we cannot know

the future fragment requests. However, we can use the batch solution, to construct an

on-line policy as follows:

Min-Latency: Fetch the fragment from the loaded platters with the smallest
latency of access. If there is no queried fragment on a loaded platter, choose the
fragment with the largest number of queries. Schedule all queries on the cached
fragment before replacing it.

Complications arise because of the presence of joins and limited cache space. Joins

require more than one fragment to be present in cache. If the cache space were unlimited,

we could still use the Min-Latency policy. The only di�erence is that we would have to

cache a fragment until all fragments that it joins with had been fetched. Since the cache

space is limited, the decision to fetch a fragment can be in
uenced by what is already

cached. We cannot fetch a fragment based simply on its location on tertiary memory as

in the Min-Latency policy. For instance, the cache could be �lled with fragments, all

of which require some other fragment to be fetched from cache before any subquery on

them can be scheduled. In such a case, we must choose a fragment that joins with cached

fragments and thus relieves the load on the cache even if this choice requires forsaking the

Min-Latency policy. A natural choice in such cases would be a fragment that relieves the

cache of maximum load by joining with maximum sized cached fragments. This alternative

criteria for fetching fragments is expressed by the Free-Cache policy below.

Free-Cache: Fetch fragment that joins with the largest sum of sizes of cached
fragments.

The main issue next is to identify cases where we should choose one policy versus

the other. Ideally, we want a fragment that satis�es both the policies. But if that is

not possible we need to choose between the two. Clearly, this choice will depend on the

36

contents of the cache. When the cache gets �lled with fragments that need some other

fragment from tertiary memory before any subquery on cached fragments can be scheduled

then we should use the Free-Cache policy. Otherwise, either the cache has lots of unused

space or there are no pending joins. Hence, we can reduce I/O cost by fetching fragments

using the Min-Latency policy. The �nal policy, with further details on how we resolve

ties between fragments, is given below.

Final-Policy

1. Fetch next fragment that joins with cached fragments and satis�es policy Min-Latency.

2. If no such fragment exists, choose between the two policies

/* choice technique is explained later in the section */

3. If (policy chosen is Free-Cache)

3a. Fetch next fragment from the loaded platters using Free-Cache policy.

If no such fragment,

3b. Switch to the unloaded platter that has fragments

that join with largest sum of sizes cached fragments

3c. Fetch fragment from the chosen platter using the Free-Cache policy

4. Else /* policy chosen is Min-Latency*/

4a. Fetch fragment from loaded platter using policy Min-Latency.

If no fragment on the loaded platters is of use,

4b. Load the platter which satis�es maximum pending queries

4c. Fetch fragment using policy Min-Latency from the newly loaded platter.

Explanation of the algorithm:

� In step 1, we �rst attempt to fetch a fragment that satis�es both policies. Note that,

if there is no fragment that joins with any cached fragment, policy Free-Cache is

trivially satis�ed. Also, when a fragment does not have any join query on it (for

example, fragment V1 in Figure 3.2), we assume that it satis�es policy Free-Cache.

For the example in Figure 3.2, fragment P is nearest to the tape head and hence

would be chosen by policy Min-Latency, but it does not join with any of the cached

fragments. Hence, step 1 fails to return a fragment.

� In step 2, we choose between one of the two policies. Qualitatively speaking, we

choose the Free-Cache policy if the load on the cache is high enough that the cache

37

is a limited resource. The load is high when the cache is �lled with fragments that

have many pending join queries on them. Quantitatively, we de�ne a notion of cache

pressure to characterize the load on cache as follows:

Cache pressure =
join-cached+ join-uncached

C
;

where C is the size of the cache, join-cached is the total size of cached fragments

with pending joins and join-uncached is the total size of uncached fragments that

join with cached fragments. Hence (join-cached+ join-uncached) is an estimate

of the amount of cache space that will be needed in the future. The cache pressure

expresses potential demand for the cache as a fraction of the cache size. In Figure 3.2,

suppose the size of each fragment is 1 GB and the size of the cache is 4 GB, then the

cache pressure is:

(jR1j+ jT j) + (jS1j+ jS2j+ jU j)

jCj
= (2 + 3)=4 = 1:25

We can use cache pressure to determine if there is any room for fragments that do not

join with any of the already cached fragments. We next de�ne a constant threshold

(�) such that if \cache pressure > threshold", we choose the Free-Cache policy, oth-

erwise we choose the Min-Latency policy. We determined the value of the threshold

empirically. Section 3.3.2 discusses how this value was chosen.

� If the test in step 2 results in the choice of policy Free-Cache, we need to fetch a

fragment that joins with one of the cached fragments. In step 3(a), we �rst attempt

to choose such a fragment from one of the loaded platters, if possible. Note that a

fragment so found will not be the optimal choice in terms of seek cost since step 1

has failed. If we cannot �nd such a fragment, we need to load a new platter to get

a fragment that joins with one of the cached fragments. In step 3(b), we choose a

platter that contains the fragments that join with the largest sum of sizes of cached

fragments. The reason for such a choice is to be able to free as much cache space as

possible in one platter load. Next, in step 3(c) we choose a fragment from the newly

loaded platter using the Free-Cache policy. We resolve ties by choosing a fragment

that has lowest seek cost. In Figure 3.2, suppose that the value of the threshold

� is 1. Then, since the cache pressure is 1.25, we need to choose a fragment using

policy Free-Cache. We choose fragment S1 since it joins with a cached fragment

38

and resides on a loaded platter(step 3(a)). After S1 is cached, the subquery (R1; S1)

is scheduled.

� If the test in step 2 chooses policy Min-Latency, then we simply fetch a fragment

from the loaded platter with the goal of reducing the seek cost. We resolve ties by

choosing a fragment that has more queries on it. When the currently loaded platter

has no queries on it, we need to choose a new platter. In step 4(b) we choose the

platter with the maximum number of queries on it for loading next. Finally, we select

a fragment from this newly loaded platter using policy Min-Latency.

3.2.2 Fragment eviction policies

Once a fragment is selected for fetching, we choose fragments to be replaced on

the cache to make space for the selected fragment. Like the fetch policy, our eviction policy

is also based on the careful combination of a number of simple heuristic policies.

The classical cache replacement policy is lru when all objects are of the same size,

and weighted-lru when the objects are of varying size. These policies are not appropriate

in our case for two reasons: First, we might have to evict fragments which have pending

queries on them. This makes policies like lru and weighted-lru inappropriate since we

already know that the fragment will be used in the future. Second, the cost of fetching data

varies widely depending on its location. When choosing to replace a fragment, it helps to

take this cost di�erence into account, instead of simply relying on the time of last access.

We now discuss how we choose a fragment to evict. Our choice is restricted to

fragments that are not pinned. Also, as soon as all data required by a subquery is present

in the cache, we schedule the subquery and pin the data it requires. This implies that the

candidates for replacement are either fragments that only join with uncached fragments or

fragments with no pending query on them.

We �rst discuss how we choose amongst fragments that have pending queries on

them. Our choice of a victim fragment is based on the probability that the fragments it joins

with will be fetched in the near future. This probability depends on the scheduling policy.

When the cache pressure is low, we use the Min-Latency policy for fetching fragments

and when it is high we use the Free-Cache policy. Correspondingly, we de�ne two policies

for evicting fragments.

The least-latency policy is used for evicting fragments when the cache pressure

39

is low. This policy chooses a cached fragment F based on the latency of accessing the

fragments that F joins with. For instance, when the cache pressure is low we fetch fragments

from the loaded platter �rst. Thus, any cached fragment that joins with many fragments

on the loaded platter has a higher probability of access in the near future than the one that

joins with fragments on unloaded platters. The least-latency policy is de�ned as:

least-latency: Fetch fragment with the smallest rank F where rank of a
fragment, F is the sum of the inverse latency of accessing each fragment that
joins with F .

For example in Figure 3.2, the rank of fragment R1 is

1

seek cost to S1
+

1

platter switch + seek cost to S2

Similarly, the rank of T is

1

platter switch + seek cost to U

Thus, policy least-latency would choose T to be replaced in preference to R1.

When the cache pressure is high, fragments will be fetched based on the Free-

Cache policy that chooses fragments based on the joins it forms with cached fragments.

In such a case, it is necessary to base eviction decisions on the contents of the cache and

the relationship of the fragment with other cached fragments. For example, in Figure 3.3

fragments F1, F2, F3 are cached, fragment F1 and F2 both join with fragment F4 whereas

F3 joins with a di�erent fragment F5. If we need to evict a fragment, it is better to choose

F3 instead of F1 or F2 since the latter two join with the same fragment. If F1 and F2 are

in the cache together, then we could complete both joins when F4 is fetched next. This

motivates policy least-overlap de�ned as:

least-overlap: Choose the fragment with the least overlap between frag-
ments that join both with the given fragment and other cached fragments. The
overlap for a fragment, F is the sum of the size of the cached fragment, G
whenever both F and G join with a common fragment.

The next issue is how we select between fragments without any queries on them.

The classical method is to use weighted-lru. But for tertiary memory devices an im-

portant consideration is the cost (in terms of seek and switch cost) involved in fetching a

fragment. For example, everything else remaining the same, it is better to replace a frag-

ment that lies on the currently loaded platter because the cost of re-fetching it is smaller

40

Platter 1
F4 F5

F2

Disk cache

F1 F3

Figure 3.3: Illustration of least-overlap policy.

than for fragments on unloaded platters. This cost must also include the probability of

accessing the replaced fragment in the future. For fragments with pending queries, this

probability is 1 whereas for others we approximate it with one over the time since last

access. This yields the min-cost policy that chooses the fragment with the smallest value

of the product of the cost of replacement and the probability of future access. This policy

is similar to the one discussed in [Yu95] for replacing blocks on the disk cache.

The �nal policy after combining these three policies is:

If (cache pressure is low)
Choose fragment using least-latency
Resolve ties using least-overlap
Resolve further ties using min-cost

Else
Choose fragment using least-overlap
Resolve ties using least-latency
Resolve further ties using min-cost

Note that the decision to evict a fragment G is made only after another fragment,

F , is chosen for transfer. This enables us to avoid evicting fragments that join with F .

Also, after choosing a fragment G for eviction we use the above merit criteria to compare it

with F | only if F joins with one of the cached fragments or F has higher merit than G to

be in cache (based on the above criteria), do we choose to replace G for F . Otherwise, the

scheduler waits until some pinned fragments gets unpinned as a result of the completion of

scheduled subqueries on them.

Example: We will continue with our example in Figure 3.2 to illustrate the working of

the �nal fragment fetch and eviction algorithm. Assume the tape head is at the beginning

of platter 1 and the order of labeling fragments from left to right in the �gure corresponds

to the access order with the lowest seek cost. Step 1 of the fragment fetch policy fails since

41

fragment P satis�es policy Min-Latency but not Free-Cache. The cache pressure at

this point is 1.25 (shown earlier) which is greater than the threshold of 1. Hence we choose

fragment S1 (using step 3a). Since, both R1 and S1 are cached we schedule subquery

(R1; S1). Next, we choose fragment V1 (via step 1) since it satis�es both the policies. We

schedule the only subquery on it. Next we choose fragment R2 (via step 1) since it satis�es

both the policies. The cache has space for only four fragments, hence we need to choose a

fragment to replace with R2. We replace V1 based on policy least-latency. Subquery

(S1; R2) is now ready for execution. In choosing the next fragment, step 1 again fails since

fragment P joins with a fragment that is not cached. Note that at this point, the fragments

in cache are R1; T; S1 and R2. In step 2, we evaluate the cache pressure to be

(jR1j+ jT j+ jS1j+ jR2j) + (jS2j+ jU j+ jR3j+ jS3j)

jCj
=

4 + 4

4
= 2

The cache pressure is > 1, so we resort to the Free-Cache policy. Step 3(a) fails, hence

we choose platter 2 to load next according to step 3(b). We then choose S2 via the Free-

Cache policy (step 3(b)). To make room for S2 we have to replace a fragment. R1 and

R2 join with S2, thus the choice is between S1 and T . We choose to evict T since the

cache pressure is high and S1 has greater overlap than T (S1 and S2 join with the same

fragment R3). After caching S2, we schedule subqueries (R1; S2) and (R2; S2). We next

choose fragment U using step 1. The only un-pinned fragment is S1 but U scores lower

than S1 in terms of merit for being cached. Hence, we wait for some fragment from R1,

S2 and R2 to be unpinned. Suppose both subqueries are completed. We evict R1 and R2

and replace them with U and T and schedule subquery (U; T) on them. The cache now has

fragments S1; S2; U and T . When choosing the next fragment, step 1 again fails since the

loaded platter 2 does not contain any fragment that joins with cached fragment. We re-

evaluate cache pressure to be 2+1

4
= 0:75 which is less than the threshold 1. Hence, we go to

step 4 and choose a new platter to load. Between platters 1 and 3, we choose platter 3 since

it has more queries on it (step 4(b)). After loading platter 3, we fetch fragments R3 (step

1), evict T to make space for R3, schedule subqueries (R3; S1) and (R3; S2), choose V2 (step

1), replace R3 to make space for V2 after subqueries (R3; S1) and (R3; S2) complete (via

min-cost), load new platter 1 (step 4b), choose fragment P (via step 1), replace fragment

S2 (via policy min-cost) and �nally schedule subquery (P; U).

42

Sony Exabyte Metrum DMS

classi�cation small optical small tape large tape large tape
jukebox library library library

switch time (sec) 8 171 58.1 39
transfer rate (MB/sec) 0.8 0.47 1.2 32
seek rate (MB/sec) - 36.2 115 530
seek start (sec) 0.5 16 20 5.0
number of drives 2 4 5 2
platter size (GB) 3.27 5 14.5 41
number of platters 100 116 600 320
total capacity (GB) 327 580 8700 13120

Table 3.1: Tertiary Memory Parameters: The switch time is a sum of the average time to rewind any
existing platter, eject it from the drive, move it from the drive to the shelf, move a new platter from
shelf to drive, load the drive and make it ready for reading. The seek startup cost is the average of
the search and rewind startup cost and the seek rate is the average of the search and rewind rate.

3.3 Simulation

This section presents empirical evaluation of our fragment fetch and eviction poli-

cies. The �nal policy presented in Sections 3.2.1 and 3.2.2 is the result of an extensive

simulation study. In designing these policies, we �rst started with a number of di�erent

heuristics that made intuitive sense and evaluated these heuristics under a variety of dif-

ferent parameters. No single policy that we originally started with performed well under

all di�erent parameter settings. But this evaluation isolated cases where certain heuristics

performed better than the others. This guided the design of the �nal fetch and eviction

policy presented earlier.

First, Section 3.3.1 presents details of the simulator used for comparing the poli-

cies. Section 3.3.2 contains an empirical method for �nding the best threshold value for the

fragment fetch policy in Section 3.2.1. Section 3.3.3 contains de�nition of various other frag-

ment fetch heuristics that we considered and discusses our motivation for choosing them.

Section 3.3.4 presents a comparison of these heuristics and the �nal policy (described in

Section 3.2.1) against di�erent parameter settings including, tertiary memory characteris-

tics, size and number of relations, number of concurrent users, cache size and the percentage

of join queries. Finally, Section 3.3.5 contains an evaluation of di�erent fragment eviction

policies.

43

Dataset # relations range of sizes total size

small-dataset 2000 5 MB to 50 MB 50 GB
medium-dataset 400 250 MB to 2.5 GB 500 GB
large-dataset 80 12.5 GB to 125 GB 5 TB

Table 3.2: Datasets: sizes of the relations are uniformly distributed across the given range

3.3.1 Simulation setup

Our simulator consists of a centralized database system serving requests from

di�erent query streams. We model a closed queuing system consisting of multiple users

who submit a query, wait for the result, and then think for an exponentially distributed

time before submitting the next query. Table 3.1 lists the performance speci�cations of the

four tertiary memory types we used in our study: (1) the Sony WORM optical jukebox, (2)

the Exabyte 8500 tape library, (3) the Metrum RSS6000 tape jukebox and (4) Sony's DMS

tape library. These devices were chosen so as to cover adequate representatives from the

diverse tertiary memory hardware in existence today. Table 3.2 lists the three datasets that

we used as the underlying database. Each dataset is characterized by the range of sizes of

the relations and the number of relations. The size of a relation is assumed to be uniformly

distributed within the range speci�ed by the dataset. Note that the total size of some of

the datasets (e.g., large-dataset) is larger than the capacity of some tertiary memory

devices (e.g., the Sony WORM and the Exabyte). Thus, some of the <tertiary-memory,

dataset> combinations are missing in our experiments. The default size of the cache and

the number of users is given in Table 3.3. Further details about the simulator are given

below:

Relation layout For laying out the relations on tertiary memory we use the following

approach: We divide any relation larger than the platter capacity into partitions of size

equal to the platter capacity. These partitions are laid out contiguously on the platters.

A partition is stored with equal probability in one of the partially �lled platters that has

space for it or a new platter if one is available. The space between two adjacent partitions

is uniformly distributed between 0 and the total free space left on the platter divided by

the number of partitions assigned to the platter.

44

Workload Table 3.3 summarizes the relevant workload parameters and their default val-

ues. We simulate a stream of single relation queries and two-way joins. Base relations for

queries are chosen using the 80-20 rule i.e, 80% of the accesses refer to 20% of the relations.

The scan on the base relation can be either a sequential scan, a clustered index scan or

an unclustered index scan as summarized in Table 3.3. We assume in these experiments

that all indices reside on magnetic disks and the index tree is pre-scanned to get a list

of fragments that contain qualifying tuples. Various workload parameters for constructing

queries are given in Table 3.3.

Execution model The processing time of a query after the component fragments are

fetched from tertiary memory is computed as the sum of the time needed to read/write

data between disk and the main memory and the CPU processing time. In Table 3.3, we

list the number of instructions required for various query types. The time to process a join

is derived assuming a nest-loop join method. The time to read a page from disk is modeled

as a sum of the average seek time and the time to transfer a page of data.

Fragment Size For a given database and tertiary memory, we determine a maximum

fragment size, F . Any partition larger than size F is divided into fragments of size at most

F . As shown in Section 2.2.1 of Chapter 2, the maximum size of a fragment is limited

by a number of factors, including, cache size, number of fragments per subquery, number

of concurrent users, number of drives, scheduling overhead, block size for tertiary memory

etc. Based on these factors we derived a number of constraints for guiding the choice of

the fragment size. We used these constraints for determining F for each tertiary memory,

dataset pair as follows:

1. The smallest value of the cache size C in our experiments is 1% of the database size.

Thus, C = 500 MB for small-dataset, 5 GB for medium-dataset and 50 GB for

large-dataset. The maximum number of fragments per subquery, n, is 2 since we

allow only 2-way and single relation queries. Thus, fragment size has to be � 250 MB

for small-dataset, 2.5 GB for medium-dataset and 25 GB for large-dataset.

2. The number of drives, d is 2 for the Sony WORM, 4 for Exabyte, 5 for the Metrum

and 2 for the DMS. For each tertiary memory, dataset pair this limits fragment size

to � C=d where C is de�ned for each dataset in constraint 1 above.

45

Description Default

Workload
Mean think time 100 sec
Number of queries per run 800
Number of users 80
% of join queries 50
% sequential scans 20
% clustered index scans 40
% unclustered index scans 40
Selectivity 0.1-0.2

Execution Model
MIPS 50
Instructions for seq scan 100 per tuple
Instructions for index scan 200 per tuple
Instructions for join 300 per tuple
Instructions for starting a scan 20,000
Tuple size 400 bytes

Disk Characteristics
Average seek time 20ms
Data transfer rate 5 MB/sec
Cache size 3% of database size

Table 3.3: Simulation Parameters and their default values.

46

Tertiary small medium large

Memory dataset dataset dataset

Sony 4 - -
Exabyte 16 128 -
Metrum 16 128 6272
DMS 32 128 6272

Table 3.4: Maximum fragment size (in MB) for each tertiary memory and dataset pair

3. The number of concurrent users is 80 (from Table 3.3), hence x = 80 and m is 1.5

(from Table 3.3). Thus, fragment size is desired to be � 4.1 MB for small-dataset,

41 MB for medium-dataset, and 416 MB for large-dataset.

4. To keep the scheduling overhead low, we allow no more than 20 fragments per relation.

This limits the value of Fmin to (50 MB/20) = 2.5 MB for small-dataset, (2500

MB/20) = 125 MB for medium-dataset and (125 GB/20) = 6250 MB for large-

dataset(refer Table 3.2).

5. The value of B depends on the ratio between the transfer rate and the latency of

accessing a block from the device. This limits the value of B to 256 KB for the Sony

WORM, 16 MB for the Exabyte and Metrum and 32 MB for the DMS.

Table 3.4 shows the �nal limit on the fragment size obtained based on the above constraints.

Note that the choice of the fragment size for small-dataset had to override constraint 3

in order to satisfy constraint 5 which was more important for performance in our case.

3.3.2 Choosing threshold value

The remaining issue in the design of our fetch policy is the value of the threshold

�. In Figure 3.4 we show the total I/O time for di�erent values of � for nine di�erent

<tertiary-memory, dataset> pairs for the workload de�ned earlier. The X-axis represents

di�erent values of the threshold and the Y axis is the total I/O time divided by the total

I/O time for the fcfs policy. For all our graphs, we use this normalized I/O time as the

Y-axis since it enables us to represent widely varying I/O times (for instance, arising from

di�erent cache sizes) in the same uniform scale.

47

0 2 4 6
72

74

76

78

80

82
Graph 4: <Sony,Small>, 1.6

0 2 4 6
40

45

50

55

60
Graph 3: <Exabyte,Small>, 4

0 2 4 6
35

40

45

50

55

60
Graph 2: <Metrum,Small>, 2.6

0 2 4 6
20

25

30

35

40

45

50

55

N
or

m
al

iz
ed

 to
ta

l I
/O

 ti
m

e

Graph 1: <DMS,Small>, 46

0 2 4 6
60

70

80

90

100

110

120

Values of threshold

Graph 7: <Exabyte,Medium>, 0.3

0 2 4 6
60

70

80

90

100

110

120
Graph 6: <Metrum,Medium>, 0.2

0 2 4 6
45

50

55

60

65

70
Graph 5: <DMS,Medium>, 1.3

0 2 4 6
40

50

60

70

80

90

100
Graph 9: <Metrum,Large>, 0.01

0 2 4 6
60

70

80

90

100

110

120

130

140
Graph 8: <DMS,Large>, 0.06

Figure 3.4: Choosing value of threshold. The nine graphs correspond to nine <tertiary-memory,
dataset > pairs. The X-axis is threshold values and the Y-axis is total I/O time normalized by the
time taken for the fcfs policy.

48

These graph in Figure 3.4 show that relationship between the threshold value and

the I/O time varies widely as we change the <tertiary memory, dataset> pairs. For instance,

the graphs for small-dataset(graphs 1 to 4), favor larger value of thresholds than those for

large-dataset(graphs 8 and 9). Even for the same dataset, the relationship between the

threshold value and I/O time varies, depending on the device characteristics. For instance,

for medium-dataset, the DMS tape library (graph 5) favors larger values of threshold

than the Metrum (graph 6). An interesting trend to be observed from these graphs is the

relationship between the best threshold values for each <tertiary-memory, dataset> pair

and the ratio of the platter switch time to the average transfer time incurred in fetching

a fragment (called the s-t ratio here). The s-t ratio for each <tertiary-memory, dataset>

pair is shown above the title corresponding to the graph in Figure 3.4.1. Note that the

graphs with the same value of the s-t ratio have the same relationship between threshold

and I/O time. For instance, the graphs for <Metrum,medium-dataset> (graph 6) and

<Exabyte,medium-dataset> (graph 7) have very close s-t ratios and hence have similar

shapes of the graph. Similarly, <DMS,large-dataset>(graph 8) and <Metrum, large-

dataset> (graph 9) show the same trend. Thus, <tertiary memory, dataset> pairs with

the same value of this s-t ratio favor the same choice of �. This motivated us to choose the

value of � as a function of this ratio. Ideally, we would like to get a closed form function

that has been analytically derived. However, the complexity of the problem space prevents

us from getting one. But, these experiments indicate that a good choice of � is

� = min(2; s-t ratio)

In Figure 3.4, the vertical dotted line corresponds to this choice of �. Note that in all cases

the vertical line is very close to the minimum I/O time.

The above result for the optimal threshold value also makes intuitive sense. The s-

t ratio is essentially the average access latency to fetch a fragment from an unloaded platter

in units of the average fragment transfer cost. When I/O latency (switch + seek) is small

compared to the fragment transfer time, we select a low value of �. This biases our �nal

policy more towards the Free-Cache policy. Whereas when the I/O latency is high, the

s-t ratio is high, leading to a higher value of � and greater bias towards the Min-Latency

policy. Thus, by choosing � as a function of the s-t ratio we can select the Min-Latency

1Note that the platter switch time in Table 3.1 includes the average seek cost whereas when computing

the ratio � we subtracted the seek cost from the platter switch cost.

49

policy to reduce platter switch and seek cost when these costs are high and we can select

the Free-Cache policy to do better caching when the transfer cost is high.

3.3.3 Fragment fetch heuristics

In this section we de�ne the various fragment fetch policies against which we

compared our �nal policy.

1. Min-Latency: Choose the fragment on loaded platter with the smallest latency of

access. If no such fragment exists, choose the platter with the maximum number

of queries. The motivation for this policy is to reduce seek and platter switch cost

by selecting fragments that incur the smallest access latency. Typically, a device

scheduler would choose a policy like this to reduce I/O cost. For the example in

Figure 3.2, this policy would choose fragment P next.

2. max-work: Choose the fragment with the largest number of queries. The motivation

for this policy is to increase the number of queries that can be concurrently executed.

For Figure 3.2, this policy will result in choice of fragment S1 or S2. We resolve ties

in favor of fragment on loaded platter.

The above two policies do not take into account the contents or size of the cache. The

following two policies do that.

3. Free-Cache: Choose the fragment that joins with the largest sum of sizes of cached

fragments. Resolve ties using Min-Latency policy. The motivation for this policy

is to make best use of cached data by fetching fragments that they join with. For

Figure 3.2, this policy will result in choice of fragment S1 or U .

4. min-cover: Choose the fragment with the smallest value of cover. The cover of a

fragment f is de�ned as the total size of uncached fragments that join with f minus the

total size of the cached fragments that join with f . The motivation behind this policy

is to restrict the amount of data that needs to be cached for joining with fragments

already cached. In Figure 3.2, this would result �rst in the choice of fragments V1, V2

and then fragment U in preference to S1 since U has a cover value of zero (since U

joins with one cached and one uncached fragment of 1 GB each) whereas S1 joins has

a cover value of 1 (since S1 joins with one cached and two uncached fragments of 1

GB each.)

50

The above four policies make decisions on a per-fragment basis. An alternative is to

make fragment fetch requests based on subqueries to be scheduled next. For these

classes of policies, we �rst choose a query and then schedule fetch requests on the

fragments required by this query one after another. We tried the following two vari-

ations:

5. latency-query: Select query requiring fragments with the smallest access latency.

In Figure 3.2, this would result �rst in the choice of subquery (R1; S1), since R1 has

zero tertiary memory access latency and S1 requires only additional seek cost but no

platter switch. Since, R1 is already cached, we schedule transfer of S1 next. Next we

will choose subquery (V1) and then subquery (S1; R2) and so on.

6. cache-query: Select query requiring minimum amount of extra data to be cached.

In Figure 3.2, if fragment V1 were smaller than S1 we would select subquery (V1) �rst

using this policy.

3.3.4 Evaluation of fetch heuristics

In this section we compare the fragment fetch heuristics under di�erent settings

of important parameters like the device characteristics, size and number of relations, cache

size, number of users and fraction of join queries.

E�ect of cache size

In Figures 3.5, 3.6, 3.7 we show the performance of various heuristics for cache

size varying from 1 to 30% of the database size for di�erent <tertiary memory, dataset>

pairs. These sets of graphs show the e�ect of the device characteristics, the database

characteristics and the cache size on the di�erent heuristics. From these sets of graphs we

can make a number of interesting observations.

� The Final-Policy is the best (or very close to the best) compared with all other

policies in all cases. Most of the other policies perform close to the Final-Policy in

some situations but their performance can be very bad in other cases. For instance,

the Free-Cache policy is almost identical to the Final-Policy for large-dataset

(the two graphs in Figure 3.7) but for the small-dataset (graphs in Figure 3.5)

the Free-Cache policy is bad. For small-dataset, each relation is small enough

51

0 5 10 15 20 25 30
70

75

80

85

90

95

100

105
<Sony,Small>

0 5 10 15 20 25 30
30

40

50

60

70

80

90

100
<Exabyte,Small>

0 5 10 15 20 25 30
30

40

50

60

70

80

90

100
<Metrum,Small>

0 5 10 15 20 25 30
0

20

40

60

80

100

120
<DMS,Small>

X−axis: cache as % of data size
Y−axis: Normalized total I/O time

MIN−LATENCY
MAX−WORK
FREE−CACHE
MIN−COVER
LATENCY−QUER
CACHE−QUERY
FINAL−POLICY

Figure 3.5: Performance of fragment fetch heuristics under varying cache sizes for small-dataset.

52

0 5 10 15 20 25 30
60

70

80

90

100

110

120

130

140
<Exabyte,Medium>

0 5 10 15 20 25 30
60

70

80

90

100

110

120

130

140
<Metrum,Medium>

0 5 10 15 20 25 30
20

40

60

80

100

120
<DMS,Medium>

X−axis: cache as % of data size
Y−axis: Normalized total I/O time

MIN−LATENCY
MAX−WORK
FREE−CACHE
MIN−COVER
LATENCY−QUER
CACHE−QUERY
FINAL−POLICY

Figure 3.6: Performance of fragment fetch heuristics under varying cache sizes for medium-dataset.

53

0 5 10 15 20 25 30
40

60

80

100

120

140

160

180
<Metrum,Large>

0 5 10 15 20 25 30
40

50

60

70

80

90

100

110

120
<DMS,Large>

X−axis: cache as % of data size
Y−axis: Normalized total I/O time

MIN−LATENCY
MAX−WORK
FREE−CACHE
MIN−COVER
LATENCY−QUER
CACHE−QUERY
FINAL−POLICY

Figure 3.7: Performance of fragment fetch heuristics under varying cache sizes for large-dataset.

that the transfer time is only a negligible fraction of the total cost. The dominant

cost component is platter and switch cost and since the Free-Cache policy does

not pay any attention to minimizing that cost, its performance su�ers for small-

dataset. However, for large-dataset the transfer cost is the dominant cost. Thus,

it is important to minimize the amount of data transfered by doing better cache

management than reducing platter switch and seek cost. The Min-Latency policy,

therefore, is bad for large-dataset. On the other hand, for small-dataset it is

almost identical to the Final-Policy.

� The size of the cache is another important parameter. TheMin-Latency policy is al-

most a factor of 2 to 3 worse than the Final-Policy formedium-dataset(Figure 3.6)

when the cache size is only 1% of the dataset size. However, as we increase the cache

size to 10% the Min-Latency policy is almost identical to the Final-Policy.

� latency-query is the only other policy that is close (within 20%) to the Final-

Policy in most cases. Hence, this policy can act as a reasonable easy-to-implement

substitute. The latency-query policy chooses a subquery �rst and then fetches all

the fragments of the subquery in the minimum latency order. This policy is therefore

54

better than the Min-Latency since it ensures that the cache does not get �lled with

fragments each of which require some other uncached fragments. It is worse than the

Final-Policy policy because it cannot interleave the fetching of fragments belonging

to two di�erent subqueries. For instance, in Figure 3.2 we have two join subqueries

(R2; S2) and (P; U) where R2; P reside on platter 1 and S2; U reside on the platter

2. The Final-Policy policy could �rst fetch R2; P on platter 1 and then fetch

S2; U from platter 2 whereas the latency-query policy would fetch both fragments

belonging to one of the two subqueries �rst and thus would require one more platter

switch.

E�ect of number of users

In Figure 3.8, 3.9, 3.10 we show the e�ect of varying the number of users from

1 to 120 for the di�erent <tertiary memory, dataset> pairs. Again we observe that even

for wide changes in the number of concurrent users the Final-Policy performs better

than all the others. When the number of users is one, all the policies perform almost

identically since there is limited
exibility for optimizing. As we increase the number of

users, the number of possibilities for scheduling increases, thus increasing the distinction

between the various policies. Also, for higher number of users, the cache starts to become

a bottleneck. This causes policies like Min-Latency to perform badly (see the graph for

<Exabyte,medium-dataset> in Figure 3.9 as an example).

Varying percentage of join queries

From the graphs in Figures 3.11, 3.12, 3.13 showing the total I/O time versus the

percentage of join queries for di�erent <tertiary memory, dataset> pairs we can make the

following observations:

� The Final-Policy is again better than all the other policies in all cases.

� In all the graphs, when the percentage of join queries is zero, theMin-Latency policy

performs identically to the Final-Policy. The Final-Policy in this case reduces

to the Min-Latency policy since the cache pressure is always zero.

� As we increase the fraction of join queries, the gap between the two policies grows. For

instance for the <Metrum,large-dataset> pair (in Figure 3.13) the Min-Latency

55

0 50 100 150
65

70

75

80

85

90

95

100

105
<Sony,Small>

0 50 100 150
30

40

50

60

70

80

90

100
<Exabyte,Small>

0 50 100 150
30

40

50

60

70

80

90

100
<Metrum,Small>

0 50 100 150
0

20

40

60

80

100
<DMS,Small>

X−axis: Number of users
Y−axis: Normalized total I/O time

MIN−LATENCY
MAX−WORK
FREE−CACHE
MIN−COVER
LATENCY−QUER
CACHE−QUERY
FINAL−POLICY

Figure 3.8: Performance of fragment fetch heuristics under varying number of users for small-
dataset.

56

0 50 100 150
50

60

70

80

90

100

110

120
<Exabyte,Medium>

0 50 100 150
50

60

70

80

90

100

110
<Metrum,Medium>

0 50 100 150
30

40

50

60

70

80

90

100

110
<DMS,Medium>

X−axis: Number of users
Y−axis: Normalized total I/O time

MIN−LATENCY
MAX−WORK
FREE−CACHE
MIN−COVER
LATENCY−QUER
CACHE−QUERY
FINAL−POLICY

Figure 3.9: Performance of fragment fetch heuristics under varying number of users for medium-
dataset.

57

0 50 100 150
50

100

150

200

250
<Metrum,Large>

0 50 100 150
40

60

80

100

120

140

160

180
<DMS,Large>

X−axis: Number of users
Y−axis: Normalized total I/O time

MIN−LATENCY
MAX−WORK
FREE−CACHE
MIN−COVER
LATENCY−QUER
CACHE−QUERY
FINAL−POLICY

Figure 3.10: Performance of fragment fetch heuristics under varying number of users for large-
dataset.

is almost factor of two worse than the Final-Policy when the percentage of join

queries is 90%. For a given join fraction, the di�erence between the Min-Latency

and Final-Policy is higher for the <tertiary-memory, dataset> pairs with larger

value of the s-t-ratio.

� When the percentage of join queries is very large the Free-Cache policy performs

very close to Final-Policy in many cases, e.g., <Metrum,Medium> in Figure 3.12.

But the Free-Cache is bad when there are fewer join queries. However, the exact

value of join fraction for which the Free-Cache performs well depends heavily on the

dataset and tertiary memory device. For instance, for small-dataset (Figure 3.11),

the Free-Cache is almost factor of two worse than the Min-Latency and Final-

Policy even when 90% of the queries are joins. The merit of the Final-Policy is

that it performs the best irrespective of the join fraction, the tertiary memory device

or the dataset.

58

0 20 40 60 80 100
70

75

80

85

90

95

100

105
<Sony,Small>

0 20 40 60 80 100
30

40

50

60

70

80

90

100
<Exabyte,Small>

0 20 40 60 80 100
30

40

50

60

70

80

90

100
<Metrum,Small>

0 20 40 60 80 100
10

20

30

40

50

60

70

80

90
<DMS,Small>

X−axis: percentange of joins
Y−axis: Normalized total I/O time

MIN−LATENCY
MAX−WORK
FREE−CACHE
MIN−COVER
LATENCY−QUER
CACHE−QUERY
FINAL−POLICY

Figure 3.11: Performance of fragment fetch heuristics under varying percentage of join queries for
small-dataset.

59

0 20 40 60 80 100
60

70

80

90

100

110
<Exabyte,Medium>

0 20 40 60 80 100
60

65

70

75

80

85

90

95

100
<Metrum,Medium>

0 20 40 60 80 100
30

40

50

60

70

80

90

100

110
<DMS,Medium>

X−axis: percentange of joins
Y−axis: Normalized total I/O time

MIN−LATENCY
MAX−WORK
FREE−CACHE
MIN−COVER
LATENCY−QUER
CACHE−QUERY
FINAL−POLICY

Figure 3.12: Performance of fragment fetch heuristics under varying percentage of join queries for
medium-dataset.

60

0 20 40 60 80 100
40

60

80

100

120

140

160

180
<Metrum,Large>

0 20 40 60 80 100
40

60

80

100

120

140

160
<DMS,Large>

X−axis: percentange of joins
Y−axis: Normalized total I/O time

MIN−LATENCY
MAX−WORK
FREE−CACHE
MIN−COVER
LATENCY−QUER
CACHE−QUERY
FINAL−POLICY

Figure 3.13: Performance of fragment fetch heuristics under varying percentage of join queries for
large-dataset.

3.3.5 Evaluating eviction policy

Like the fetch policy, the eviction policy was also designed by combining the best

features of a number of di�erent eviction policies. The di�erent policies that we chose from

are:

1. lru: Replace fragment with largest value for the time of last reference.

2. weighted-lru: Replace fragment with largest value of the product of its size and

the time of large reference.

3. least-overlap: Replace fragment with the least overlap between fragments that

join both with the given fragment and other cached fragments. Resolve ties using

lru.

4. least-queries: Replace fragment with smallest number of pending queries. Resolve

ties using lru.

5. min-cost: Replace fragment with the smallest value of the product of the cost of

replacement and the probability of future access. For fragments with pending queries

61

on them, this probability is 1 whereas for others it is one over the time since last

access.

Figure 3.14, 3.15, 3.16 shows the performance of the various eviction policies for

di�erent cache sizes. The Y-axis is the total I/O time divided by the time taken by the lru

policy for that cache size.

The di�erence between all the other eviction policies and our �nal eviction policy

is not as signi�cant as in the case of fragment fetch policies. The main reason is that the

fetch policy makes good use of cached fragments. Thus we need to rarely evict fragments

with pending queries on them. Note that the weighted-lru and the lru policies are bad

since they do not take into account the pending queries on fragments. All the other policies

evict a fragment with pending queries only when there are no more fragments without any

queries on them.

An interesting trend in these graphs is that when the cache pressure is low (for

instance, for small-datasetin Figure 3.14), the least-queries policy is better than the

least-overlap policy whereas when the cache pressure is high (for instance, for small

cache values in large-datasetin Figure 3.16) the performance of least-queries is worse.

Also, the min-cost policy performs badly for large-dataset (Figure 3.16) because the

latency of accessing a fragment is not an signi�cant part of the total I/O cost. Overall, the

Final-Policy, in this case too, is better than all the other policies and adopts to changes

in the cache size and device and database characteristics.

3.4 Enhancements

In this section we discuss some more features that were added to the scheduler after

the initial design. These are extensions made to either further improve the performance of

the system or make the scheduler more practical to use.

Maximize drive parallelism When scheduling fragment transfers, it is important to

keep as many drives busy as possible to maximize utilization. Hence when choosing a

fragment for transfer, the scheduler keeps track of the drives from which data is already

being transferred and attempts to schedule the next I/O on a platter from which data is

not already being transferred at the time. To enable parallel data transfer from multiple

drives, the scheduler maintains as many I/O processes as the the number of drives in the

62

0 5 10 15
70

75

80

85

90

95

100

105
<Sony,Small>

0 5 10 15
60

70

80

90

100

110
<Exabyte,Small>

0 5 10 15
60

70

80

90

100

110
<Metrum,Small>

0 5 10 15
60

65

70

75

80

85

90

95

100
<DMS,Small>

X−axis: cache as % of data size
Y−axis: Normalized total I/O time

WEIGHTED−LRU
LEAST−OVERLA
LEAST−QUERIE
MIN−COST
FINAL−POLICY

Figure 3.14: Performance of fragment eviction heuristics under varying cache sizes for small-
dataset.

63

0 5 10 15
40

50

60

70

80

90

100

<Exabyte,Medium>

0 5 10 15
40

50

60

70

80

90

100

<Metrum,Medium>

0 5 10 15
70

75

80

85

90

95

100
<DMS,Medium>

X−axis: cache as % of data size
Y−axis: Normalized total I/O time

WEIGHTED−LRU
LEAST−OVERLA
LEAST−QUERIE
MIN−COST
FINAL−POLICY

Figure 3.15: Performance of fragment eviction heuristics under varying cache sizes for medium-
dataset.

64

0 5 10 15
90

95

100

105

110

115

120
<Metrum,Large>

0 5 10 15
85

90

95

100

105

110

115

120

125
<DMS,Large>

X−axis: cache as % of data size
Y−axis: Normalized total I/O time

WEIGHTED−LRU
LEAST−OVERLA
LEAST−QUERIE
MIN−COST
FINAL−POLICY

Figure 3.16: Performance of fragment eviction heuristics under varying cache sizes for large-

dataset.

tertiary memory device. This form of parallel I/O scheduling also helps hide some of the

latency of platter switch operation | when one drive is transferring data, the robot arm is

free and can be employed for switching platters on some other drive.

Handling multi-way joins: Adding multi-way joins to the query workload means that

now subqueries can require more than two fragments. The main idea in our fetch policy

was balancing the two con
icting objectives of \fetching the fragment that has the lowest

I/O latency of access (Min-Latency policy)" and \fetching the fragment that joins with

cached fragments and thus relieves the load on the cache (Free-Cache policy)". The

Min-Latency does not depend on the join relationship between fragments and thus can

be applied \as-is" for multi-way joins. However, the Free-Cache policy has to be modi�ed

to account for queries that need more than two fragments to complete. In particular, we

cannot fetch fragments simply based on the what fragments it joins with | some form of

subquery-level decisions are required.

The modi�ed Free-Cache policy is: First choose a subquery which will make best

use of the cached fragments. That is, the remaining uncached fragments of the subquery

will join with the largest sum of sizes of the cached fragments. Then, fetch each fragment

of the subquery in the Min-Latency order. Note that when there are only two way join

65

queries, this policy reduces to our original Free-Cache policy.

Fetching partial fragments: So far, we have assumed that data transfer always occurs

in units of fragments. This could lead to redundant data transfers for high-selectivity index

scans especially when the scan is unclustered. Hence, we modify the scheduler to also handle

data transfer requests in the form of list of blocks of the fragment instead of whole fragment.

Alternative seek algorithms: For the fragment fetch policy, we assumed a linear model

for computing seek costs. That is, the best order of fetching fragments on a tape is by

sorting the fragments in their storage order. We can easily extend our algorithm to work

for other cases where this assumption does not hold. For example, for DLT tapes the linear

cost assumption does not hold and [HS96b] presents an alternative, better algorithm for

reducing seek cost on such tapes. We can adapt such alternative algorithms for scheduling

fragment fetch cost in our framework. We simply invoke the alternative algorithm to �nd

the best order for fetching the fragments. Then, the the Min-Latency policy would fetch

the fragment in that order instead of the storage order.

Fairness: Our goal in the design of the scheduler was to maximize throughput. We

believe that throughput is a more desirable metric for optimization than response time

because the limitations of tertiary memory devices prevent interactive querying. Most of the

queries are expected to be submitted in a batch mode rather than in an interactive manner.

However, to prevent inde�nite starvation, we have a mechanism whereby a query waiting

long enough will be scheduled for execution irrespective of other throughput optimizations.

3.5 Summary

In this chapter we described the working of the scheduler and presented the policies

it uses for fetching and evicting fragments from the disk cache. Our policies perform well

under a wide range of tertiary memory characteristics, workload types, cache sizes and

system load and adapts dynamically to changes in these parameters.

66

Chapter 4

Performance Evaluation

This chapter presents the implementation details of the proposed query processing

engine. Then it presents a performance evaluation of the prototype using the Sequoia 2000

benchmark and several synthetic workloads.

4.1 Implementation

The query processing architecture described in the previous two chapters is imple-

mented and operational on a DEC Alpha AXP workstation running Digital UNIX (OSF/1

V3.2). The current system was built from the original postgres [SK91] database system

that was extended by the Mariposa project [S+96] to provide a multi-threaded network

communication package using Digital's ONC RPC and Posix threads. In addition, the

following new modules were added:

Making

SCHEDULER

Completed queries

Pending queries

Ready queries

I/O Process

I/O ProcessI/O request

Completed I/O
requests

I/O request

User process

User process

User process

Decision

Figure 4.1: Design of the Scheduler.

67

The Scheduler: The scheduler communicates with the user and I/O processes using RPC

calls. It maintains queues of events for query arrival, query completion and I/O transfer

completion. The main scheduler waits on these queues until an event triggers some action.

A query arrival causes the scheduler to queue the new subqueries and schedule new I/O

transfers if possible or mark a subquery \ready" if the data it needs is cached. An I/O

transfer is possible if one of the I/O processes is free, the cache has un-pinned space for

the selected fragment and the drive on which the I/O is intended is free. In the event of a

query completion, the reference count on the cached fragments is decreased. If the reference

count becomes zero, the fragment is un-pinned and the pending queries are examined to

select new fragments to transfer and schedule queries on fragments that are either being

transfered or are already cached. In the event of the completion of an I/O request, the I/O

process is marked free and a new fragment is selected for transfer, if available. All ready

queries are collected in separate queues (one queue per user). The user-processes wait on

this queue to collect the list of subqueries to be executed next. The scheduler maintains

information about the state of the tertiary memory device and the cached fragments in local

data structures. The scheduler is a total of 5800 lines of C code. It can currently schedule

only subqueries containing a maximum of two fragments each.

I/O process: The I/O-processes act as slaves of the scheduler. They communicate with

the scheduler process to support the following two RPC calls: (1) CacheFragment() and

(2) UnCacheFragment(). The number of I/O processes that can concurrently execute the

\CacheFragment" call is limited to the number of drives in the tertiary memory device.

Execution Engine: The user processes are the original postgres backend processes

whose execution engine have been modi�ed to support the three new meta-operators: \com-

bine", \schedule" and \resolve" and the additional plan-tree fragmentation and subquery

extraction procedures. The total number of additional lines of code for these extensions

was around 2000.

Catalogs: To support the concept of fragments and to maintain their layout information

the system catalogs were extended with the following new tables:

CREATE TABLE pg_fragment -- provides the fragments to relation mapping

(

FragmentId INTEGER

BaseRelId INTEGER

);

68

CREATE TABLE pg_layout -- layout information for each fragment

(

FragmentId INTEGER

PlatterId INTEGER -- platter on which fragment is stored

BlockId INTEGER -- block number of fragment

Offset INTEGER -- offset on the platter

);

CREATE TABLE pg_device

(

Type INTEGER -- Tape or disk?

SwitchTime DECIMAL -- average time to switch a storage medium

TransferRate DECIMAL -- data transfer rate

SeekRate DECIMAL -- search/rewind rate for tapes

SeekStart DECIMAL -- time to start a search or rewind on tapes

NumDrives INTEGER -- number of drives in the storage device

PlatCapacity INTEGER -- capacity of a platter

NumPlatters INTEGER -- number of platters

);

Storage Hierarchy: The original version of postgres provided a storage manager switch

[Ols92] for adding new levels of storage hierarchy. This enabled easy incorporation of many

di�erent tertiary storage devices and magnetic disk caches. Each relation is simply tagged

with the storage manager on which it resides during the creation stage. All I/O requests

pass through a switch which in turn passes the request to the appropriate storage manager

based on the catalog information. The tertiary memory storage manager stages data to a

magnetic disk cache before moving to main memory. The size of the disk cache is �xed in

advance during query compilation. For e�ciency, data movement from the disk cache to

the tertiary memory occurs in units of 256 KB which is 32 normal disk pages.

Many of our experiments were run on real tertiary memory devices. However,

to facilitate measurements on robots for which the actual device was unavailable, we im-

plemented a tertiary memory device simulator. The simulated storage manager used a

magnetic disk for data storage but serviced I/O requests with the same delay as would an

actual tertiary device which received the same request sequence.

69

4.2 Experiments

In this section we present an experimental evaluation of our prototype. There are

two main challenges to doing performance evaluation for tertiary memory databases.

1. Dealing with largeness: Tertiary memory devices will be deployed for handling

multi-terabyte sized datasets. Running experiments on such massive datasets results

in unmanageable blow-ups both in terms of time and space. Loading data can take

days and running queries on them can take even longer. Running sub-optimal al-

gorithms for comparison purposes is especially time-consuming. Furthermore, multi-

user query processing on such datasets really tests the limits of both the software and

hardware, exposing bugs that were undetected so far. Important among these are

those related to memory leaks and integer limits. Bugs that corrupt the database are

especially heinous.

To partly get around the problem of largeness, we constructed experiments on scaled-

down version of databases, cache sizes, number of users etc. We supplemented these

experiments with simulations as described in Chapter 3 during the early design stages

when it was necessary to run several experiments in quick succession.

2. Finding representative workloads: The use of tertiary memory devices for on-line

(or \near-line") database query processing is a relatively recent proposition. Thus,

it is not possible to get any real-life workload or widely accepted benchmark. In

particular, benchmarks like TPC-A, TPC-B, TPC-C and Wisconsin are not suitable

since they were designed primarily for secondary memory databases [Gra93b]. The

TPC-A and TPC-B benchmark are meant for testing performance of small update

intensive transactions. It is extremely unlikely that tertiary memory devices will

be used for frequently updated databases due to the very limitation of the device.

Although the TPC-C benchmark includes a few complex queries, it shares the update-

intensive nature of the TPC-A and TPC-B benchmarks. The Wisconsin benchmark

is more query-intensive than the TPC-A,B and C benchmark but it has a very small

number of relations (only 3) and is designed for measuring single user performance

whereas most of our scheduling, caching and batching optimizations apply during

multi-user processing. Of the existing benchmarks, the two that came closest to our

requirements were the sequoia-2000 benchmark and the TPC-D benchmarks. We

70

tape-stacker Magneto-optical (MO)jukebox

switch time (sec) 30 14
transfer rate (MB/sec) 2 0.5
seek rate (MB/sec) 140 -
seek startup (sec) 1.3 0.3
number of drives(varied) 1 2
platter size (GB) 10 1.3 (both sides)
number of platters 10 32

Table 4.1: Tertiary memory parameters.

could not run the tpc-d benchmark because most of the queries in the benchmark

involve multi-way joins and the current scheduler can only handle 2-way joins. We

provide results of running our experiment against the national version of the sequoia-

2000 benchmark. Further, to be able to better tune various workload parameters, we

also constructed a synthetic workload and took a series of measurements for various

di�erent characteristics of the synthetic dataset.

Both of the above workloads provide us only average case performance. More useful

insights can often be obtained by running particular query instances where it is easy

to analyze where and why one approach performs better than the other. Therefore,

we start with a few anecdotal cases of simple scan queries (Section 4.2.2) and then

run measurements on the mixed multi-user workloads (Section 4.2.3).

4.2.1 Options compared

Another important issue is what we compare our approach with. Research on query

processing for tertiary memory devices is in its initial stages. Hence, at the time we ran our

experiments, there were no competing approaches against which we could compare. The

version of postgres with which we started supported query processing on tertiary memory

using the conventional block-at-a-time paradigm of most secondary memory databases.

Therefore, one of our metrics of performance was how much better the new architecture

performed compared to the original postgres architecture. However, comparing simply

with postgres is not satisfactory since it does not prefetch I/O blocks | a technique

that is employed in some secondary memory database systems. Without prefetching, I/O

71

operations are done in a block-at-a-time manner. In contrast, with prefetching a �xed

number n of blocks is fetched asynchronously whenever request is made for a single I/O

block. For sequential scans the n blocks are the next n blocks stored contiguously after the

requested block. For index scans, prefetching is done by �rst scanning the entire index tree,

collecting the list of blocks required, sorting the blocks in the storage order and fetching

n blocks at a time from this list. This corresponds to the list-prefetch technique used in

DB2 [O'N94]. We extended postgres to do prefetching. To this end, we added a set of

prefetch processes whose sole responsibility was to asynchronously transfer a given collection

of n blocks from tertiary memory to the disk cache. The number of such prefetch processes

is equal to number of drives on the tertiary memory device. When a request is made for

a block, the prefetch process is noti�ed to fetch the next n block asynchronously. The

user-process continues with normal execution as soon as the �rst block is cached. When a

prefetch process associated with a drive is busy, all user-processes requesting I/O on that

drive wait until the prefetch process is available again.

Summarizing, these are the three variations of query processing we measured:

� NoPrefetch: With this scheme data is fetched in units of a storage block (256

KB) on demand and no prefetching whatsoever is used. This corresponds to the

original postgres architecture. Note that data movement from the disk cache to

main memory occurs in units of 8 KB but when a miss occurs for an 8 KB page, an

entire 256 KB block is fetched from tertiary memory.

� Prefetch: In this scheme, both sequential prefetch (for sequential scans) and list

prefetch (for index scans) is used. The size of the prefetch unit was set to 32 storage

blocks (8 MB), which is used in some database systems that use prefetching [O'N94].

� Reordered: which is our scheme of query processing as described in this thesis.

4.2.2 Simple scan tests

In this section we demonstrate some of the basic cases where query scheduling is

e�ective. Our objective is to show how conventional query processing techniques, although

acceptable for single user queries, perform badly when multiple users interact. In particular,

as few as two concurrent users are su�cient to highlight the di�erence between the above

three approaches.

72

For the experiments in this section we used synthetically generated relations. Each

tuple of a relation consisted of ten integer �elds that enable selection based on di�erent

selectivities (as in the Set Query Benchmark [Nei89]) and a text �eld that was used to pad

each tuple to a total (internal) size of 300 bytes. We used a 512 MB local magnetic disk

drive as a cache. We �rst did a set of experiments on a simulated tape stacker (performance

characteristics in Table 4.1).

Sequential scans

We measured the performance of sequential scan queries on a 5 GB relation with

one, two and �ve users. The relation was stored contiguously on a single tape. The fragment

size was 100 MB, which is one-�fth of the disk cache size to enable �ve users to concurrently

execute.

The �rst set of experiments were with a single user. In Figure 4.2(a) we show

the total time taken to process the sequential scan with the three schemes: NoPrefetch,

Prefetch and Reordered. We also show the part of the total time spent in data transfer,

platter switch and seeks on tertiary memory. We note that the Prefetch and Reordered

schemes are 20% better than NoPrefetch. This is mainly due to I/O-CPU overlap. The

total I/O done is the same in all three schemes but NoPrefetch does not enable e�ective

overlap between I/O and CPU.

We then let two users run the same scan query, the second user submitted the

query after the �rst one had scanned just more than 512 MB of the relation. The total

time in all our multi-user experiments is de�ned as the time between the submission of

the �rst query and the time when the answer to the last query is returned. As shown

in Figure 4.2(b), the total time with Reordered is one-�fteen of NoPrefetch and less

then one-half of Prefetch. With Reordered, the second user started the scan from the

remaining part of the relation instead of the beginning as in the other two schemes. Thus,

both users synchronized their processing perfectly, so that they processed the same data

blocks at the same time. In contrast, with Prefetch the second user had to re-fetch every

data block since the cache can only hold 512 MB. After the �rst user had scanned 512 MB of

the relation, the blocks were evicted from the cache in LRU order for making space for the

new blocks fetched by the �rst user. Thus, the second user had to fetch the evicted blocks

again. With Prefetch, we not only have to fetch more data than Reordered but the

73

time for each block transfer also increases since the I/O requests of the two users interfere

on tape resulting in increased seek cost. For Prefetch, almost 15% of the time is spent is

spent in seeks whereas for Reordered, the seek overhead is negligible. For NoPrefetch

the data blocks are fetched one-at-a-time. Therefore, the access requests of the two users

interfere for almost all blocks fetched and the tape has to seek back and forth between the

scan positions of the two queries much more frequently than for Prefetch.

We next repeated the query with �ve users to measure how these results scale.

Each user submitted its query after the �rst one had scanned somewhere between one-tenth

to one-half of the entire relation (selected randomly). In this case, Reordered takes almost

one-�fth the time taken by Prefetch. By synchronizing the scans of the di�erent users,

Reordered not only makes better use of cached data, it also incurs smaller seek cost. For

Prefetch almost 80% of the total time is spent in seeks whereas for Reordered the seek

cost is negligible. We expect this trend to continue as we increase the number of users and

stagger their scans such that simple LRU based cache replacement policies cannot ensure

proper reuse of cached data. The separation between the scans of di�erent users is critical

in determining the di�erence between the various schemes. In particular, when all users

submit the scans at the same time all three schemes have the same performance. When

each user query is perfectly serialized, then Reordered again performs better since the

second user's scan will be reordered to scan the last part of the relation cached on the disk

�rst instead of scanning from the beginning.

This experiment illustrates how our method of reordering execution can enable

better caching performance than conventional prefetching schemes. The next experiment

illustrates how we can use execution reordering to reduce I/O cost even when two queries

are accessing disjoint data.

Index scans

In this experiment, we report the performance of unclustered index scans �rst with

a single user and then with two users.

We used two 25 GB relations spread across 5 di�erent tapes in units of 5 GB each.

The �rst relation was stored on tapes 1 through 5 and the second on tapes 2 through 6.

The fragment size was 256 MB. The indices reside on magnetic disk. The selectivity of the

index scan was 0.01%. In Table 4.2 we show the performance of a single-user index scan.

74

 Transfer Switch Seek Rest

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 T
ot

al
 ti

m
e

in
 m

in
ut

es

 N
oP

re

 P
re

fe

 R
eo

rd

 single-user

 N
oP

re

 P
re

fe

 R
eo

rd
 2-users

 N
oP

re

 P
re

fe

 R
eo

rd

 5-users

Figure 4.2: Di�erence in total execution time for three methods (NoPrefetch, Prefetch, Re-
ordered) with sequential scans. \Rest" refers to the part of the total time not spent in tertiary
memory I/O. The platter switch cost is negligible since data is on a single platter.

Total Transfer Switch Seek
(minutes) (minutes) (minutes) (minutes)

Single-user

NoPre 5619 19.4 4010 1527
Pref 297.3 17.5 2.5 276
Reord 297.3 17.5 2.5 276

Two-users

NoPre 12351 38.9 8035 4215
Pref 1339 35 302.5 1000
Reord 586 35 3 548

5-users

NoPre 30171 100 20090 9919
Pref 3144.5 87.5 600 2450
Reord 1467 87.5 6.5 1372

Table 4.2: Di�erence in total execution time with index scans.

75

NoPrefetch is almost two orders of magnitude worse than the other two schemes because

it does too many random I/Os. Since the index scan is unclustered, each block access could

result in an I/O request to any of the �ve tapes of the tertiary memory. This leads to

high platter switch and seek overhead. Schemes Prefetch and Reordered convert the

unclustered I/O to clustered I/O by pre-scanning the index tree, sorting the qualifying RIDs

and fetching the data blocks in their storage order. This results in signi�cant reduction in

the number of platter switches and the the seek cost. Note that both Prefetch and

Reordered incur the same I/O cost but the total time for Prefetch is slightly more.

This is mainly because with Reordered the base relation is fragmented and each fragment

has its own index tree whereas with Prefetch there is a single index tree for the entire

relation. So, with Prefetch the RID of the entire relation needs to be sorted into a single

list whereas with Reordered the RID list of each fragment is sorted separately, resulting

in a smaller sorting cost.

Next, two users concurrently submitted the index scan query on the two relations.

The �rst user's scan was on relation 1 that was spread on platters 1 to 5 whereas the second

user's scan was on relation 2 that was spread on platter 2 to 6 as described earlier. For this

case too, NoPrefetch was much worse than Prefetch and Reordered. In addition,

Reordered performed almost factor of 2.5 better than Prefetch. Reordered does

much fewer platter switches than Prefetch because the execution of user-1 is modi�ed

such that �rst both users �nished processing on the data lying on tapes 2 though 5, then

user-1 scans its part of the relation on tape 1, and �nally user-2 scans its part of the relation

on tape 6. Thus, the total number of platter switches is 6. In contrast, with Prefetch the

scans of users 1 and 2 interfered. For instance, in the beginning when user-1 was fetching

data from tape 1, user-2 was fetching data from tape 2. Although each user's scan was

clustered (because of list prefetch), when the two users executed concurrently, for every

prefetch request a tape switch was incurred. Even if we increase the size of the prefetch

unit, Prefetch will incur at least four more media switches than Reordered.

We demonstrate how this result for two users scales over multiple users by running

concurrently a collection of �ve index scans queries on �ve di�erent relations of 25 GB each.

Each relation was spread in units of 5 GB each across �ve di�erent platters chosen randomly

from 1 to 13. Each platter could hold a maximum of 10 GB. In this case too, the number

of platter switches incurred is almost two orders of magnitude more with Prefetch than

with Reordered.

76

This experiment demonstrates that statically reordering index scans reduces ran-

dom I/O considerably for single user index scans. But, with multiple users static reordering

is not su�cient for reducing random I/O. Summarizing, the sequential example showed how

the amount of data transferred can be reduced by doing better scheduling of queries that

share data accesses. The index scan example showed how the number of platter switches

can be reduced by doing better scheduling of queries that share common platters. Thus,

simply reordering execution based on static data storage order is not su�cient. When mul-

tiple users interact, dynamic execution reordering can yield signi�cant gains even for simple

workloads like sequential and index scans.

4.2.3 Multiuser-mixed workload tests

In this section we report performance of some multi-user mixed workloads of select

and join queries. We �rst present the performance of a synthetically constructed workload

and later present the performance of the sequoia-2000 benchmark.

We took measurements under di�erent con�gurations of cache sizes, number of

drives and number of users to identify conditions where reordering pays o� and where it

does not. We report measurements on the simulated tape tertiary memory of the previous

section and a real HP magneto-optical jukebox (performance characteristics summarized in

Table 4.1) that is connected to our prototype1.

Synthetic dataset

Table 4.3 summarizes the details of experimental setup for the synthetic dataset.

In Figure 4.3(a) we plot the total time for this workload on the tape-jukebox and

the MO-jukebox with one drive each2. On the tape-jukebox, the total time with Prefetch

is about one-�fth of NoPrefetch while Reordered is one-seventh of Prefetch. On

the MO-jukebox, the total time with Prefetch is about one-third of NoPrefetch and

Reordered is about one-third of Prefetch. For both NoPrefetch and Prefetch, the

execution time is dominated by I/O on tertiary memory unlike in Reordered. As shown

in Figure 4.3(a), the main I/O bottleneck is platter switches for both NoPrefetch and

1Magneto-optical jukeboxes o�er substantially lower price-performance advantage over tape-jukeboxes,

hence they are less popular in mass storage systems. We, therefore, prefer to do most of our experiments on

tape jukeboxes.
2The one drive MO jukebox also had to be simulated since we only had a two-drive MO jukebox

77

Description Default

Workload
Number of queries per user 5
Number of users 3
% of 2-way join queries 50
% of single relation queries 50
% index scans 80
Index selectivity 0.1-10%

Hardware parameters
Storage device DLT tape jukebox (simulated)

Magneto optical jukebox (Table 4.1)
Cache size 512 MB

Database characteristics
Tuple size 300 bytes
of relations 10
Relation size (Uniform distribution) 100 MB to 10 GB
Data layout each relation stored from 1 to 5 platters
Fragment size � 85 MB (one-sixth cache size)

Table 4.3: Experimental setup for experiments on the synthetic workload.

Prefetch. Reordered performs better since it greatly reduces the number of platter

switches. For the MO-jukebox the platter switch cost is not as high as for the tape-jukebox.

Therefore, we observe smaller relative gains with Reordered for the MO-jukebox.

Increasing the number of drives: Since the main bottleneck is platter switches,

increasing the number of drives from 1 to 2 decreases the di�erence between the reordering

and non-reordering based schemes as shown in Figure 4.3(b). For the two-drive case we plot

only the total execution time since it is di�cult to separately account for the time spent in

doing various I/O activities. For instance, data transfer on one drive might be overlapped

with seeks on another drive. For Reordered there was negligible change in execution time

when we increased the number of drives from 1 to 2 since the total execution time was not

bound by tertiary memory I/O.

In general, if we further increase the number of drives we can expect this trend

to continue. At the stage where the number of drives is so large that all required platters

are always loaded, the various schemes will di�er only in the amount of data transfered and

the seek overhead. We observed that in this case, Reordered performed 25% better than

78

 Transfer Switch Seek Rest

 0

 0.2

 0.4

 0.6

 0.8

 1

 N
oP

re

 P
re

fe

 R
eo

rd

 Tape

 N
oP

re

 P
re

fe

 R
eo

rd

 MO

(a) Single Drive

 Total-time

 0

 0.2

 0.4

 0.6

 0.8

 1

 N
oP

re

 P
re

fe

 R
eo

rd

 Tape:2drives

 N
oP

re

 P
re

fe

 R
eo

rd

 MO:2drives

(b) Two Drives

Figure 4.3: Di�erence in total execution time for three methods (NoPrefetch, Prefetch, Re-
ordered) using the mixed workload. The execution time is normalized by the time taken by scheme
NoPrefetch to allow drawing on the same scale.

Prefetch for the tape-jukebox.

Decreasing working set: For all the experiments so far, the transfer cost incurred with

all three schemes was not signi�cantly di�erent. One of the merits of our query scheduling

policies is better reuse of the cached data. Therefore, we also expected to observe signi�cant

reduction in transfer time with Reordered. Closer inspection of the workload revealed

that there was very little opportunity for reusing data since the degree of sharing between

the three concurrent users was limited. Each of the three users picked at most two of the

ten relations in the database with equal likelihood. Hence there was little chance of overlap

between the component relations of queries running concurrently. To verify this claim, we

repeated the 2-drive experiments, with �ve users instead of three and skewed the access

requests so that 80% of the accesses go to 30% of the data. We observed that the transfer

time for Reordered was almost one-half of that with Prefetch for the skewed dataset

(Figure 4.4). Note that the amount of data transferred is slightly more for Prefetch

because the prefetched data can often replace more useful data and thus adversely a�ect

caching performance [CFKL95].

There experiments demonstrate that scheduling is bene�cial for tertiary memory

databases either when the platter switch or seek costs are high or when the degree of sharing

79

 Transfer-time

 0

 0.2

 0.4

 0.6

 0.8

 1

 N
oP

re

 P
re

fe

 R
eo

rd

 Uniform

 N
oP

re

 P
re

fe

 R
eo

rd

 Skewed

Figure 4.4: Di�erence in total transfer time for the three methods (NoPrefetch, Prefetch,
Reordered) using the mixed workload on the tape jukebox. The time is normalized by the time
taken by scheme NoPrefetch to allow drawing on the same scale.

Table name # of tuples tuple size total size

raster 130 129 MB 16,744 MB
point 1,148,760 24 bytes 27.5 MB
polygon 1400, 000 204 bytes 286 MB
graph 6500,000 175 bytes 1110 MB

Table 4.4: Sequoia Benchmark relations (national).

between queries is large.

Sequoia Benchmark

We ran the national version of the sequoia-2000 benchmark which is of total size

18 GB. The database consists of four di�erent kinds of relations: raster, point, polygon

and graph as summarized in Table 4.4. For the raster data, each tuple contains a 2-

dimensional array of size 129 MB. The benchmark consists of 10 data retrieval queries which

are either two-way joins and select queries on various relations. The last query involves a

recursive (*") operator on the graph table which we could not run on postgres since

it does not support recursive queries. Since, the Sequoia benchmark does not have any

information about the frequencies of posing individual queries, we let each user choose one

of the 9 queries uniformly randomly. In Table 4.5 we summarize the details of the default

80

Description Default

Number of queries per user 6
Number of users 5
Storage device DLT tape jukebox (simulated)
Cache size 512 MB
Fragment size � 50 MB (one-tenth cache size)

Database Layout
Indices magnetic disk
raster base table magnetic disk
2-dimensional arrays spread over 10 platters; each platter has 13 arrays.
point platters 1 and 2
polygon platters 3,4,5 and 6.

Table 4.5: Experimental setup for experiments on the sequoia-2000 benchmark.

experimental setup used for running this benchmark.

Figure 4.5 shows the di�erence in total execution time for the three schemes for

varying number of users. In single user mode, Reordered is 40% better than the No-

Prefetch scheme used in the original postgres architecture. This di�erence is mainly

due to the reduction in platter switch and seek cost. Compared to Prefetch, Reordered

is only 10% better in single user mode. However, as we increase the number of users Re-

ordered performs almost a factor of 2.5 times faster than Prefetch. In general, the

bene�t of reordering is higher for larger numbers of users since there is more opportunity

for batching and scheduling subqueries from multiple users. For eight users, Reordered

is almost a factor of 15 faster than NoPrefetch. This di�erence arose out of a factor of

2.3 reduction in transfer time, a factor of 14.5 reduction in platter switches and a factor of

11.8 reduction in seek cost.

Figure 4.6 shows the e�ect of changing the cache size on the performance of various

schemes. Notice that, as we increase the cache size from 256 MB to 512 MB, the total time

taken with all three schemes decreases much more dramatically than increasing the cache

size from 512 MB to 1024 MB. This is because of the special nature of the sequoia-2000

benchmark. The majority of the data volume is due to the raster arrays (16.7 GB out of

a total of 18 GB) whereas the rest of tables (point and polygon tables only, in our case)

are a total of 314 MB in size. However, of the nine queries we ran, �ve queries access the

raster arrays and six queries access point and polygon data. There is little locality on the

81

 Transfer Switch Seek Rest

 0

 20

 40

 60

 80

 100

 N
oP

re

 P
re

f

 R
eo

rd

 Users=1

 N
oP

re

 P
re

fe

 R
eo

rd

 Users=2

 N
oP

re

 P
re

fe

 R
eo

rd

 Users=4
 N

oP
re

 P
re

fe

 R
eo

rd

 Users=6

 N
oP

re

 P
re

fe

 R
eo

rd

 Users=8

Figure 4.5: Results of running Sequoia benchmark with the three schemes for varying number of
users.

 Transfer Switch Seek Rest

 0

 20

 40

 60

 80

 100

 N
oP

re

 P
re

f

 R
eo

rd

 Cache=256MB

 N
oP

re

 P
re

fe

 R
eo

rd

 Cache=512MB

 N
oP

re

 P
re

fe

 R
eo

rd

 Cache=1024MB

Figure 4.6: Results of running the sequoia-2000 benchmark with the three schemes for di�erent
cache sizes.

82

raster data. Therefore, as soon as we can cache the 314 megabytes of point and polygon

data we get most of the bene�t of caching.

Another observation from Figure 4.6 is that, for the smaller value of cache size (256

MB) relative improvement with Reordered is higher than for larger cache. This is because

our algorithms can achieve better reuse of cached data since they base replacement decisions

on pending queries whereas the lru strategy used with NoPrefetch and Prefetch bases

its decision on just time of last reference. When the cache is large enough to hold the hot

set, lru is good enough.

4.2.4 Scheduling overheads

Finally, we measured the overhead of scheduling in our prototype. For the ex-

periments presented earlier, scheduling has de�nitely paid o�, despite the overhead. But

an important question is how well these bene�ts scale with increasing numbers of users

or increasing numbers of fragments. The answer is crucially dependent on the scheduling

overhead.

We measure the following overheads using the synthetic dataset described earlier

in Table 4.3: (1) The per-fragment overhead that is directly proportional to the number of

fragments in the query, e.g., the time to fragment a plan-tree. Measured as a percentage of

the time to scan a cached fragment, this overhead was typically 0.06% (1.5 milliseconds). (2)

the per-subquery overhead: e.g, the time spent in the extraction phase or in communicating

with the scheduler. Measured as a fraction of the time spent in processing a two-way

hash-join query on cached data, this overhead was typically 0.15% (5 milliseconds). (3)

the per-session overhead e.g., time spent by the scheduler in deciding what subquery to

schedule next. Unlike the previous two overheads this overhead depends on factors like the

number of users concurrently active and the number of fragments per relation and can only

be measured as a function of these factors. We plot this overhead as a function of number of

users (1 through 9) and total number of fragments in the database (10 to 100) in Figure 4.7.

The overhead per subquery increases only at a rate of 2 millisecond per additional user and

less than 1/4th millisecond per additional fragment. The total overhead is thus measured to

be typically less than 30 milliseconds per subquery and less than 1% of the total execution

time.

83

20

25

30

35

40

45

50

55

60

15

in milliseconds

1 2 3 4 5 6 7 8 9
0.15

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.20

O
ve

rh
ea

d
in

 m
ill

is
ec

on
ds

Number of users

O
ve

rh
ea

d
in

 %
 o

f
to

ta
l t

im
e

in %total time

in %total time

10 20 30 40 50 60 70 80 90 100
10

15

20

25

30

35

0.10

0.15

0.20

0.25

0.30

0.35

O
ve

rh
ea

d
in

 m
ill

is
ec

on
ds

Number of fragments

O
ve

rh
ea

d
in

 %
 o

f
to

ta
l t

im
e

in milliseconds

Figure 4.7: The per-session overhead as a function of the number of users and number of fragments.
The Y-axes are overhead in milliseconds per subquery (top) and overhead as a percentage of the
total execution time (bottom).

84

4.3 Summary

Our prototype yields almost an order of magnitude improvement over schemes

that use prefetching and almost three orders of magnitude improvement over schemes that

do not, even for simple index scan queries. Further experiments demonstrate that either (1)

when the platter switch and seek costs are high, or (2) when the cache is small and there

is overlap between data accesses of concurrent queries, our reordering scheme will enable

better scheduling of I/O requests and more e�ective reuse of cached data than conventional

schemes. The overhead of reordering is measured to be small compared to the total query

execution time (less than 1%). Thus, at least for tertiary memory databases the penalty of

reordering is so negligible that reordering can almost always be used to advantage.

85

Chapter 5

Array Organization

In the preceding three chapters, we discussed techniques for improving the per-

formance of queries on tertiary memory using better scheduling, caching, prefetching and

execution techniques. Another signi�cant means for improving query performance is by

doing better data clustering. The problem of clustering relations on one or more keys

is well-studied for secondary memory databases and can be extended to tertiary memory

databases. One problem that has not received adequate attention from the database com-

munity is the storage organization of large multidimensional arrays, even for magnetic disks.

This chapter discusses techniques for organizing the storage of large multidimensional arrays

for tertiary memory devices, but many of these techniques can also be applied to magnetic

disks.

The rest of this chapter is organized as follows. Section 5.1 presents the di�erent

schemes we used for organizing arrays, namely chunking, reordering, redundancy and par-

titioning. Section 5.2 presents the simulation of several earth science arrays used by global

change researchers [Sto91b] and shows the results of applying various array organization

schemes to this data. Lastly, Section 5.3 presents future work and conclusions.

5.1 Storage of Arrays

We begin this section by presenting the access pattern model used for optimization

of array layout. The feasibility and usefulness of data clustering algorithms is inherently

linked to the expected access patterns on the data. Data is said to be well-clustered only

when data items that are likely to be accessed together are stored together. Therefore,

86

before making any attempt at �nding good storage methods for clustering arrays, we have to

devise a model for representing accesses. A good access model should neither be too precise

(since it is di�cult to precisely specify future accesses), nor should it be too complicated

(since it is di�cult to �nd good storage methods for complicated patterns). Based on these

considerations, we designed the following for representing array accesses.

Our model of access pattern is a set containing typical \shapes" of subarrays

accessed from the array. We restrict each shape to be rectangular | therefore individual

shapes di�er only in the aspect ratio of the rectangle. In addition, each shape is associated

with the probability p of accessing a rectangle of that shape. A more rigorous de�nition of

access pattern is as follows. Consider an n dimensional array. Each user access request is

an n-multidimensional rectangle (or hypercube) located somewhere within the array. User

accesses are then grouped into collections of classes L1; : : :LK such that each Li contains

all rectangles of a speci�c size [Ai1; : : :Ain] located anywhere within the array. Each class

i is then associated with a probability Pi of accessing a rectangle of that class. Therefore,

the access pattern for an array can be described by the set:

f(Pi; Li)such that1 � i � K; 0 � Pi � 1; Li = [Ai1; Ai2; : : : ; Ain]g

III

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

I

II

Figure 5.1: An Example Array

Figure 5.1 illustrates an example on a 10� 10 array. The three shaded rectangles

are each accessed with probability 1

3
and represent accesses in two classes. Rectangles I and

II belong to the �rst class since they have the same aspect ratio of [3,4] and rectangle III

87

belongs to a second class of aspect ratio [5,3]. The probability of accessing a rectangle in

the �rst class is thus 2

3
(1
3
+ 1

3
) and the probability of accessing a rectangle in the second

class is 1

3
. This corresponds to the following access pattern:

f(2
3
; [3; 4]); (1

3
; [5; 3])g

The access pattern can either be provided by an end user at array organization time

or can be determined by statistically sampling array accesses in a database management

system.

5.1.1 Chunking

Instead of using Fortran style linear allocation, we can decompose the array into

multidimensional chunks, each the size of one storage block. A block is the unit of transfer

used by the �le system for data movement to and from the storage device. The shape of

the chunk is chosen to minimize the average number of block fetches for a given access

pattern. To illustrate the signi�cance of chunking we consider the example shown in Figure

5.2. Figure 5.2(a) shows a 3-dimensional array of size X1=100, X2=2000 and X3=8000

stored using linear allocation and Figure 5.2(b) illustrates the same array stored using a

chunked representation.

20

20

20

(b)(a)

X

=

20
00

X = 8000
3

X

=
 1

00

2

1

Figure 5.2: An example of array chunking

Assume the array is stored on a magnetic disk and data transfer between main

88

memory and disk occurs in 8000 byte pages. Let the access pattern for this array be

f(0:5; [10; 400; 10]); (0:5; [20; 5; 400])g:

The array is stored linearly with X3 as the innermost axis followed by X2 and then X1,

as shown in Figure 5.2(a). The innermost axis corresponds to the axis along which data

is stored contiguously. For this method, each disk block will hold just one row of values

along X3. We will now estimate the average number of block fetches required for accessing

a rectangle from the above access pattern. For these examples, assume for the sake of

simplicity that the lowest point of each access request aligns exactly with the lowest point

of the �rst block it touches. Thus, a request for a rectangle of shape [10; 400; 10] (�rst

element of the access pattern) will span a total of 10 � 400 = 4000 blocks. Similarly a

request for a rectangle of the second type [20; 5; 400] will span 20� 5 = 100 blocks. Hence

on average, this access pattern needs to fetch 0:5 � 4000 + 0:5 � 100 = 2050 blocks per

request. The average amount of data requested is 40,000 bytes which can �t in 5 blocks.

Hence, the amount of data fetched is 410 times the amount of useful data.

Suppose we divide the array into 8000-byte chunks. The shape of each chunk is a

(20, 20, 20) cube as shown in Figure 5.2(b). For the same access pattern, the number of

blocks fetched is 20 for the �rst access and 20 for the second access, assuming that the start

of the access rectangle aligns perfectly with the start of a chunk. The average number of

blocks fetched is 20 as compared to 2050 for the unchunked array. Thus, chunking results

in more than a factor of 100 reduction in the number of blocks fetched.

In order to realize these improvements, we need a way to optimize the shape of

a chunk. Although, in this example all the sides of the chunk are the same, in general

the sides of the optimal chunk can be of varying lengths based on the patterns of access

on the array. Although, the idea of chunking arrays has been proposed earlier in other

contexts [MC69, FP79], there has not been any work reported on �nding good chunk shapes.

This topic is discussed next.

We �rst present a formal de�nition of the problem. Given an n-dimensional array

[X1; X2 : : :Xn] where Xi is the length of the i-th axis of the array, block size C and an

access pattern f(Pi; [Ai1; Ai2; : : : ; Ain]) : 1 � i � Kg, the objective is to �nd the shape

of the chunk into which the array should be decomposed such that the average number of

blocks fetched is minimized. The shape of the chunk is speci�ed by a tuple (c1; c2; : : : ; cn)

where ci is the length of the ith axis of the multidimensional chunk. The size of the chunk

89

puts the following additional constraints on each ci:

nY
i=1

ci � C

The average number of blocks fetched for a speci�ed access pattern and chunk shape is

given by:

KX
i=1

0
@ nY
j=1

&
Aij

cj

'1
APi (5.1)

In the expression above, the quantity within the parenthesis (
Qn
j=1d

Aij

cj
e) is the

minimum number of blocks to be fetched for a query rectangle of the ith type in the access

pattern. Thus, formula 5.1 is the number of blocks fetched averaged over all classes in the

access pattern. The goal is to choose the chunk shape, satisfying the constraints, that

minimizes the above expression.

The presence of the \ceiling" function in (5.1) makes a closed form solution di�-

cult. One can always �nd the optimal solution by exhaustive search of all possible shapes

that satisfy the size constraint. In this case, the number of shapes generated is exponential

in the dimensionality of the array. Various techniques can be used to prune the search

space. For example:

1. Instead of considering all possible shapes, we only generate the ones which are max-

imal. A shape is maximal when increasing the length of any one of the sides of the

shapes will violate the size constraint. For example, if C = 15 and n = 2, then shape

(5,3) is maximal whereas (4,3) and (5,2) are not. A shape that is not maximal cannot

be the optimal solution because the storage block will contain fewer useful bits for any

query than another storage block that contains the corresponding maximal shape.

2. The maximum length of a side of the chunk need not be more than the maximum

length of the corresponding side over all classes in the access pattern. For example,

for the access pattern f(0:5; 10; 400); (0:5; 20; 5)g on a 2-dimensional array, we need

not consider shapes with the �rst side greater than 20 and the second side greater

than 400.

3. Instead of considering all possible shapes, we �rst generate an approximate solution

by only considering shapes for which the length of each side is a power of 2. This

90

solution is then re�ned by considering the shapes that are in the \neighborhood" of

this shape. The neighborhood consists of sides varying between double and half of

the corresponding side in the approximate solution. The optimality of the solution is

not guaranteed with this pruning step. However for all cases we considered, the shape

generated using this method was equal to the optimal solution that was found using

a fully exhaustive search.

5.1.2 Reordering

Once the array is chunked, we require a good method of laying out the chunks on

disk or tape. The natural way is to lay out the chunks by traversing the chunked array in the

axis order. Hence, di�erent axis orders will result in di�erent chunk layouts. The time to

fetch the blocks for a requested rectangle can be greatly reduced by choosing the right axis

order. We now derive a simple formula for �nding a good ordering of the array axes so that

the average seek distance to retrieve a rectangle from the access pattern set is minimized.

For this analysis, we assume that the blocks of the array are laid out contiguously on the

platter and that the platter is used exclusively for retrievals on the array data.

To minimize seek cost, we minimize the average distance between the �rst and last

block of a query rectangle in a 1-dimensional layout of the array. Consider an n dimensional

array [X1; X2 : : :Xn] divided into chunks of shape [c1; c2 : : : cn]. We will �rst consider the

seek cost when the array is stored in a one-dimensional storage medium.

Lemma 5.1.1 The number of blocks between the �rst and last byte of an access request

(y1; y2 : : : yn) is at least

(z1 � 1)(d2d3 : : : dn) + : : :+ (zi � 1)(di+1 : : :dn�1dn) + : : :+ (zn�1 � 1)dn + zn (5.2)

where zi = dyi=cie, di = Xi=ci (assuming ci divides Xi exactly).

Proof. Transform all indices to a new coordinate system where chunk [c1; c2; : : : cn] is the

basis element. In the new coordinate system the array dimension is [X1=c1; X2=c2; : : :Xn=cn]

which is equal to [d1; d2; : : :dn] and the access request is (dy1=c1e; dy2=c2e; : : :dyn=cne) which

is equal to (z1; z2; : : :zn). We now have an array [d1; d2; : : :dn] with an access request

(z1; z2; : : :zn) on it. If the array is laid out linearly in the axis order 1; 2; : : :n, with n as

the innermost axis, the number of blocks between the start block and the end block of the

access rectangle is given by formula (5.2).

91

Lemma 5.1.2 Given an access pattern, the value of expression (5.2) averaged over all

elements of the access pattern is minimized for the order 1; 2; : : :n (with n as the innermost

axis) if
a1 � 1

d1 � 1
�
a2 � 1

d2 � 1
� : : :

an � 1

dn � 1
; di 6= 1

where aj =
PK

i=1A
0

ijPi; A0

ij = dAij=cje and di = Xi=ci.

Proof. Substituting ai for zi in (5.2) gives the expression to be minimized. Rewriting it

with ai � 1 replaced by xi; 8i we get,

(((: : :(x1d2 + x2)d3 + : : :)di + xi)di+1 + : : :)dj + xj) : : :+ xn�1)dn + xn: (5.3)

Interchanging positions of dimensions di and dj (i < j) gives,

((: : :(x1d2 + x2)d3 + : : :)dj + xj)di+1 + : : :)di + xi) : : :+ xn�1)dn + xn: (5.4)

If (5.3) is minimal then (5.3) � (5.4) which is true i�

((xidi+1 + xi+1) : : :)dj + xj � ((xjdi+1 + xi+1) : : :)di + xi (5.5)

We next prove that (5.5) holds if,

xi

di � 1
�

xi+1

di+1 � 1
� : : :

xj

dj � 1
(5.6)

Let P (i; j) denote the statement : if (5.6) holds then inequality (5.5) holds. The proof is

done using induction over k = j � i. For k = 1, P (i; i+ 1) is clearly true. Assume P (i; j)

is true for all i; j st j � i � some k. For j � 1 = i+ k, therefore,

((xidi+1 + xi+1) : : :)dj�1 + xj�1)dj + xj

� (((xj�1di+1 + xi+1) : : :)di + xi)dj + xj

� (((xj�1di+1 + xi+1) : : :)dj + xj)di + xi (since (5)) xi
di�1

�
aj

dj�1
)

� (((xjdi+1 + xi+1) : : :)dj�1 + xj�1)di + xi (since P (i+ 1; j) is true)

Extending this for any pair (i; j) such that i < j and substituting ai � 1 for xi

completes the proof for Lemma (2).

To illustrate the advantage of re-ordering the array axes reconsider the example

in Figure 5.2(b). Then for the access pattern assumed for Figure 5.2, the average distance

92

between the �rst and last byte of an access request (from Lemma 1) is 4020 for the array

axis order (X1; X2; X3). Using Lemma 2, if we reorder the axis as (X1; X3; X2) the distance

is reduced to 1020.

Even if the assumptions stated in the beginning of this subsection do not hold

strictly and the storage medium is not one-dimensional, it is worthwhile to reorder the

array axes. Intuitively, the ordering of Lemma (2) increases the sequentiality of array

accesses and hence reduces seek time.

5.1.3 Redundancy

Data layout using one chunk size minimizes average access cost, meaning it is

e�cient for some rectangles but ine�cient for others. We propose maintaining redundant

copies of the array which are organized di�erently to optimize for the various classes in

the access pattern. Speci�cally, we divide the classes in the access pattern into as many

partitions as there are proposed copies and optimize each copy for its associated partition.

Hence, the �rst step is to �nd R partitions, where R is the number of copies, such that the

cumulative access time for the queries in the classes of the access pattern is minimized. We

can do this using one of the following two approaches:

� Use brute force to try all possible partitions and choose the best. In the worst scenario,

the number of partitions to be considered is exponential in the number of elements in

the access pattern.

� Use vector clustering techniques [LBG80] to group classes into clusters. We have a

starting set of K classes and wish to divide them into R clusters. Initially, each class

belongs to a di�erent cluster and we progressively merge pairs of clusters with the

minimal weighted distance between them until R clusters remain. Algorithms for

computing minimal distance are given in [Equ89].

When a read request arrives for a replicated array, the runtime system �rst �nds

the replica with the smallest estimated access cost. The estimated cost is a weighted sum of

the number of block fetches, seek distance and media switches (in case of tertiary devices).

The least cost replica is then used to answer the query.

93

5.1.4 Partitioning

So far we have presented optimizations for reducing the number of blocks and the

seek cost. The third important cost component for tertiary memory devices is the platter

switch cost and we now present a method of partitioning a large array across multiple

platters to minimize the number of switches. Intuitively, the array should be partitioned

such that the parts of the array accessed together frequently lie on the same media. We

can extend the chunking methodology to deal with platter switches by:

� modeling the size of the chunk as platter instead of a disk block.

� minimizing the number of platter switches instead of number of page fetches.

Each partition is therefore a chunk of size equal to the amount of data stored in a platter

and whose shape is found using the method discussed in Section 5.1.1.

Summary

In this section, we presented the di�erent schemes to reduce the access cost on

arrays. Access costs are comprised mainly of data transfer time, seek time and media switch

time (for tertiary memory devices). We proposed a step by step procedure for optimizing

the storage of an array as summarized in Figure 5.3. We �rst apply chunking to minimize

the number of blocks fetched and hence the transfer time. The chunked array is reordered

with the aim of reducing the seek time. For arrays larger than the platter size, we use

partitioning to reduce the number of media switches. If R level redundancy is to be used,

the access pattern is divided into R clusters and chunking, reordering and partitioning is

applied to each cluster.

5.2 Performance

In this section we present the performance improvement provided by our organiza-

tion techniques. Our experiments were done on a DECstation 5000/200 running Ultrix 4.2.

Measurements were made on two di�erent tertiary memory devices: (1) the Sony WORM

optical jukebox [Son89b, Son89a] | the tertiary storage device supported by postgres

[Ols92] and (2) the Exabyte tape library | this device had to be simulated (as discussed

94

Redundancy Chunking Reordering

Redundancy Block

size, C

Blocks per

track, B

Platter

Capacity, P

Switches

Access

Array

Minimize platter

pattern

Dimension

of access
pattern

Find Chunk

Shape

Minimize block

fetches

Reorder array

Axes

Minimize seek

cost

memory

for each tertiaryIf

Partitioning

level, R

Make R groups

group ..

Find partition

size and shape

Figure 5.3: Array organization schemes

in Section 4.1 of Chapter 4) since the real device was unavailable. The performance char-

acteristics of these devices appear in Table 3.1. The unit of transfer between the disk and

tertiary memory was 256 KB and hence the block or chunk size was set to 256 KB.

Our measurements were on arrays actually used by global change scientists in the

Sequoia project [Sto91b]. The �rst data source was atmospheric output from the General

Circulation Model (GCM) experiments done at UCLA. In this model, the entire earth

(180� latitude by 360� longitude) is divided into regular grids with resolution varying from

1:25� to 5� for 9 to 57 horizontal layers of the atmosphere. For each point in the three

dimensional grid, a collection of 38 variables are recorded at regularly spaced time steps.

Thus, the output is another �ve dimensional array of time, elevation, latitude, longitude

and variables. The UCLA scientists currently store the array by a nested traversal of the

array axes in the order time, latitude, variables, longitude and elevation with time as the

least rapidly varying dimension.

The second source of data was ocean model output from the General Circula-

tion Model (GCM) simulations done at UCLA [M+92, Wei]. The arrays consist of three-

dimensional snapshots of the ocean (covering the world or a region of it) taken at regular

intervals of time with horizontal grid resolution varying from 1

3

�

to 1�. For each point in

the three dimensional space (of latitude, longitude and depth) there are 5 model variables

namely, temperature, salinity and three velocity components along the x, y and z direction

in space. Hence the arrays have �ve dimensions: time, latitude, longitude, depth and the

variables. The UCLA scientists currently store the array by a nested traversal of the array

axes in the order time, latitude, longitude, depth and variables with time as the outermost

95

benchmark # array size dimension element size storage media

data set 1 4.255 GB [072 090 038 144 30] 4 bytes tertiary memory
data set 2 4.255 GB [114 360 180 024 06] 4 bytes tertiary memory

Table 5.1: Benchmarks

axis.

We selected two benchmark arrays from the two sources described above as sum-

marized in Table 5.1. The third column indicates the number of values along each of the

�ve array dimensions. Data set 2 is chosen from the ocean GCM and data set 1 from the

atmosphere GCM.

For each of the data sets, we obtained a collection of queries (10 to 20 in number)

composed after consulting UCLA scientists. Some sample queries include:

� making surface plots of some variables over some portion of the total surface

� �nding the mean or variance of a variable over time or elevation

� making cross-section plots of some variable over some region.

The access pattern was derived from the sample queries that were run to evaluate

various array organization schemes. To study the performance improvement with the array

organization techniques we performed the following measurements for each of the four data

sets:

We �rst determined a good chunk shape for the user-provided access pattern using

the method discussed in Section 5.1.1. The time to �nd the chunk shape for all the four data

sets took less than a minute. We organized the array into chunks and ran the benchmark

queries on the chunked array. The total execution time and the number of blocks fetched

for executing the queries were recorded. Next, we reorganized the chunked array using

the axis order speci�ed by Lemma 2 and repeated the measurements using the same query

set. Finally, we made two copies of the array as described in Section 5.1.3 and measured

performance by executing each query on the array copy that has the smaller estimated cost.

96

20%

4

50%

10

30%

chunked
reordered
2-redundant

Data set 1

N
um

be
r

of
 b

lo
ck

s
fe

tc
he

d
x

10
0

150

180

2

Data set 2

2T
im

e
 in

 m
in

ut
es

45

N
um

be
r

of
 b

lo
ck

s
fe

tc
he

d
x

10
0

5

80

Data set 1 Data set 2

40%

T
im

e
 in

 m
in

ut
es

250

300

original

5

Figure 5.4: Performance measurements on the Sony WORM

97

5.2.1 Measurements on Sony WORM

For the Sony WORM, the total capacity of each platter is 3.27 GB, which is less

than the total size of the array. We divided each array over two platters each containing

approximately 2 GB. The Sony WORM has two drives. Thus, the two platters containing

the array were always loaded into the reader during the course of running all queries on a

particular array.

Figure 5.4 shows the results of applying various organization schemes on our data

sets. Comparison of bars 1 and 2 for data set 1 shows that queries on the unorganized data

take 5.2 hours to complete compared to 10.2 minutes on the chunked array. Similarly for

data set 2 we observe a factor of 12 reduction in elapsed time. Reordering also works well

and a 20% and 12% reduction in access times is achieved for data set 1 and 2 respectively.

With 2-level redundancy the number of blocks fetched is lowered by another 60% and the

access time by 50% as compared to the best single copy version for both data sets. Note that

2-redundancy, is not always twice better, the actual bene�t depends on the query workload.

For instance, when all queries are the same, 2-redundancy will provide no additional bene�t.

5.2.2 Measurements on the tape jukebox

For the Exabyte tape jukebox, the entire array was stored on a single platter. In

Figure 5.5 we show the total time and the seek cost for the four reorganization schemes.

Note that the number of blocks transfered is the same as in the case of Sony WORM since

we used the same access pattern and the same chunk size and shape. For this case, we notice

almost a factor of 70 reduction in total time for dataset 1 and a factor of two reduction for

dataset 2 when moving from the original layout to the chunked layout. The reason, we get

lesser improvement with dataset 2 then with dataset 1 is because the original layout is good

to start with for dataset 2. With reordering we observe a 5% reduction in total time with

dataset 1 and a 25% reduction with dataset 2. Redundancy of level 2 reduces the total time

further by another factor of two for both cases. An important di�erence between the results

on the tape jukebox as compared with the Sony WORM is the percentage of time spent in

seeks. In the right side of Figure 5.5 we show the seek time for each run. For most runs

more than 80 to 90% of the total time is spent in seeks. The predominant seek cost also

explains why we get lesser improvement with chunking for the Sony WORM than for the

Exabyte tape library. Chunking, not only reduces the number of blocks transfered, it also

98

45 45

original
chunked
reordered
2-redundant

15

30

60

75

90

Data set 1 Data set 2

1800

751500

30

15

T
im

e
 in

 m
in

ut
es

T
im

e
 in

 m
in

ut
es

Data set 1 Data set 2

1800

1500

30

15

S
ee

k
tim

e
 in

 m
in

ut
es

S
ee

k
tim

e
 in

 m
in

ut
es

15

30

60

Figure 5.5: Performance measurements on Exabyte tape jukebox.

99

90

Original
Default chunking
Chuking with

Data set 1

30

60

120

150

180

N
um

be
r

of
 b

lo
ck

s
fe

tc
he

d
x

10
0

Data set 2

access pattern

Figure 5.6: Performance of default chunking

reduces the seek distance between adjacent blocks. Reducing seek cost has higher payo�s

on the tape jukebox than the Sony WORM. This explains the higher payo� on dataset 1.

On the other hand, for dataset 2 the payo�s are smaller for tape jukebox than for Sony

WORM because the array storage order is good to start with and therefore there is not

signi�cant reduction in the total seek cost. Reducing the number of blocks transfered does

not reduce total cost as much for tape jukebox since the transfer cost is not dominant.

5.2.3 E�ect of Access Pattern

In all of the optimization strategies discussed, the input access pattern has played

a crucial role. To evaluate the role of the access pattern, we measured the performance on

arrays that are chunked without regard to a particular access pattern. Instead, each array

is organized using a default chunk, each side of which is chosen to be proportional to the

side in the original array. Figure 5.6 shows the di�erence in total number of blocks accessed

between an array chunked using a perfect access pattern and an array chunked using the

default strategy. From the �gure we notice that even with default chunking we can get

100

signi�cant improvments but chunking with an access pattern can improve the performance

further. For instance, for dataset 1, default chunking reduced the number of blocks fetched

by one order of magnitude and using better access pattern reduces this further by almost

another order of magnitude. Hence even when no knowledge of the access pattern is available

linear layout is inferior to chunking for most real-world workloads.

5.3 Summary

In this chapter, we presented a number of strategies for optimizing layout of large

multidimensional arrays on tertiary memory devices. Based on a suitably captured access

pattern, we used chunking of arrays to reduce the number of blocks fetched, and reordering of

array axes to reduce seek distance between accessed blocks. In cases where it was a�ordable,

we suggested the use of redundancy to organize multiple copies of the same array based

on di�erent access patterns. Finally, we suggested partitioning as a method to reduce the

media switch costs.

These optimization techniques were tested for their e�ectiveness in reducing the

enormous access time on large arrays. Towards this end, we collected data from real users

of large multidimensional arrays. Measurements based on their usage patterns showed

signi�cant reduction of access times with our optimization strategies.

101

Chapter 6

Related Work

This chapter places the thesis research in perspective with related research work.

Section 6.1 discusses some of the early methods of deploying tertiary memory devices in

mass storage systems. Then, Section 6.2 discusses tertiary memory database systems. Al-

though there is limited work on query processing for tertiary memory databases per-se, a

number of areas in secondary memory databases are relevant, particularly, query scheduling,

centralized resource allocation, device scheduling, bu�er management and multiple query

optimization. Section 6.3 discusses these topics. Finally Section 6.4 covers related work in

the area of data placement.

6.1 Mass storage systems

Although tertiary memory devices have only recently attracted the interest of

database researchers, they have long been used in �le-oriented mass storage systems like

the National Center for Atmospheric Research (NCAR)'s MSS [N+87], Lawrence Livermore

Laboratory's LSS [Hog90] and Los Alamos National Laboratory's CFS [C+82]. These are

typically centralized supercomputing systems with multiple clients storing user �les in huge

tape libraries (e.g. Storage Tek Silos). Disk caches are used for staging data from the tape

libraries in units of �les. Files are brought from tape on user requests that are normally

submitted long before the �le is actually needed, to accommodate the huge latency of

accessing the tape library. When space needs to be freed from the disk cache, techniques

like LRU and weighted LRU [Smi81] are used to select �les to be replaced.

102

6.2 Tertiary memory database systems

Tertiary memory devices are being increasingly deployed in a large number of new

data intensive applications like digital libraries [W+], video on demand systems [FR94],

image archiving systems [SB+93, OS95] and document repositories [FMW90]. We will

concentrate our discussion on the use of tertiary memory devices with a DBMS.

As a result of the increasing demand for handling larger and larger datasets, the

database community started realizing the need for handling tertiary memory devices and

many researchers proposed doing so [SSU95, Sto91a, CHL93, Sel93, Moh93]. As a result

some DBMSs started providing support for storing and accessing data on tertiary mem-

ory devices. Such DBMSs can be classi�ed into two categories. The �rst and the more

common category consists of DBMSs that do not exercise direct control of the tertiary

memory device [Isa93, CK92]. Instead, they rely on the �le system or a hierarchical storage

manager (HSM) [CWCH93] to get transparent access to tertiary memory data, and store

only metadata information in the database. The second category and the one of greater

interest to us consist of DBMSs that directly control the tertiary memory device, e.g., post-

gres [Ols92] and Digital's relational database product DEC Rdb [RFJ+93]. postgres is a

pioneer system in this regard. It included a Sony optical jukebox as an additional level of

the storage hierarchy by 1992. The DEC Rdb supported storage of large multimedia objects

on a write-once optical jukebox. Although these systems provide the enabling technology

for supporting tertiary memory devices, they do very little tertiary memory speci�c perfor-

mance optimization. More recently, a few research projects have started work on building

a more \tertiary memory aware" system. We discuss them next.

The Paradise project (a database system for GIS applications) atWisconsin [DKL+94]

has recently integrated support for storing and accessing data on tertiary memory devices.

Yu et al in [YD96] discuss the mechanism used by Paradise for storing satellite images on

tape tertiary memory, and for optimizing accesses to these images. In their model, only

satellite images reside on tape, and the rest of the data | including the base relations that

refer the images | reside on magnetic disk. For optimizing accesses to these images, they

�rst pre-execute each query to collect a batch of images and the list of blocks within each

image that the query needs. Then, they optimize the retrieval of these blocks from tape by

reordering the blocks of this batch along with those of other concurrent queries. However,

unlike in our system, they cannot reorder the processing of tuples.

103

The Strata project [HSb] at Bell-labs is in the early stages of building a tertiary

memory storage manager. In the context of the Strata project, [HS96a, HS96b] presents

algorithms for scheduling small random I/O requests on a DLT tape device.

6.2.1 Single query execution on tertiary memory

[ML95] reports evaluation of various approaches for processing a single two-way

join query where one relation is stored on magnetic disk and the second is streamed directly

from a tape to main memory. This is di�erent from our approach of staging data to

the disk cache before processing any query on it. While their approach could lead to

higher throughput when a single two-way join query is being processed, it is not clear

how this approach scales when multiple users each executing multi-way joins are running

concurrently. Since memory caches are typically much smaller than disk caches, the amount

of asynchronous I/O and hence the degree of concurrency might be limited if we require

relations to be streamed directly from tape to memory. Ideally, one should support a mix of

the two approaches, choosing dynamically based on the number of user queries concurrently

active, the number of drives and the sizes of the relations joined.

6.3 Related topics in secondary memory systems

6.3.1 Query scheduling

Parallel and distributed database systems Query scheduling is common in paral-

lel [AC88, BSCD91, HS93, Y.W95, Gra90, CYW92] and distributed database systems [S+96,

CP84]. Processing a plan-tree accessing multiple relations each of which could be horizon-

tally fragmented across many di�erent sites raises many interesting scheduling issues, and

a variety of algorithms have been proposed. The details of the scheduling algorithms are

not relevant to us since our goals are di�erent to start with. Our goal is to maximize

cached data reuse and to minimize platter and seek cost, whereas the goal in parallel and

distributed DBMSs is to maximize load balance and minimize communication between pro-

cessors. In spite of the di�erence in goal, there is similarity in the mechanism of scheduling

plan-trees between these systems and our system. For parallel scheduling, plan trees have

to be analyzed for meeting pipelining and ordering dependencies in a manner somewhat

analogous to our subquery extraction step. However, our mechanism is di�erent because,

104

for e�ciency reasons discussed earlier (Chapter 2,Section 2.3.1), we execute all subqueries

from a single plan-tree together. In contrast, most parallel and distributed systems use

di�erent plan-trees for subqueries to be scheduled on di�erent processors. For example,

suppose a nested loop join between relation, R consisting of 3 fragments and S consisting

of 2 fragments is broken into 6 nested subqueries. In a parallel DBMS, typically, we would

construct 6 di�erent plan-trees, each of which are then executed independently. In our case,

we construct only one plan-tree. If the scheduler makes more than one subquery ready to-

gether, say (R1; S1) and (R1; S2), we can execute them together since they are part of the

same plan-tree. If we had two di�erent plan-trees for (R1; S1) and (R1; S2), we would have

to execute them one after the other, causing R1 to be scanned twice | once for S1 and once

for S2. Since the number of subqueries that the scheduler will mark \ready" is not known

in advance, we cannot break a plan-tree into smaller parts that will be executed as a unit.

Our execution engine gives the
exibility to decide dynamically what fragments pairs will

be joined simultaneously.

Page join graphs: In centralized database systems, intra-query scheduling has been

proposed to reduce the I/O cost when processing two-way nest-loop joins queries. Merrett

et. al. in [MKY81] address the problem of minimizing the number of pages fetched from

disk to a limited main memory when executing a two-way join query. They formulate the

two-way join query as a graph (called the page join graph) where the nodes are the pages

of the two relations and an edge between two nodes indicates that there is a matching tuple

between the two pages. This problem is a special case of our formulation for fetching and

evicting fragments from tertiary memory to disk cache as discussed in detail in Section 3.2 of

Chapter 3. Similar page join graphs are also discussed in [MR93] and [LC93] for scheduling

a two-way join query with the goal of maximizing resource utilization in a parallel database

system. However, all these scheduling techniques apply for the special case of a two-way

join query whereas we consider scheduling of more general query plans in a multi-user

environment. Also, scheduling on tertiary memory devices is more di�cult since we are

also trying to optimize for platter switches and seeks and not just transfers.

6.3.2 Query optimization

Our technique is reminiscent of the way multiple query optimizers combine queries

with common subexpressions [Hal76, GM81, RC88, RC88, SP89, AR92]. The scheduler in

105

our framework optimizes processing of multiple queries by scheduling together the execution

of subqueries that refer the same data item. Most multiple query optimizers also attempt

to combine together the execution of queries that access the same relation, but the key

di�erence is that they combine queries at a whole relation or subexpression level whereas

we combine queries at a �ner granularity. This enables us to do several optimizations that

are not possible with conventional multiple query optimizers. For instance, we can combine

a new scan query on a relation with another query that is part way through scanning

the relation. A limitation of our approach is that we do not further combine queries to

be executed together based on common subexpressions. The scheduler represents each

subquery simply as the list of fragments it needs and does not have any information about

the predicates or expressions on the subquery. Thus, it can combine subqueries only at

the level of fragment accesses from tertiary memory. Further, modifying the execution

architecture to combine queries of separate user processes would require extensive changes

to our process architecture. This is an interesting topic for future work.

Dynamic query optimization [Ant93, CG94] is relevant to our work since it also

involves plan tree modi�cation at runtime. However, in contrast to our method of plan-tree

modi�cation for dynamically reordering subqueries, the emphasis in dynamic optimization

is on choosing dynamically from some �xed set of methods for performing an operation in

the plan-tree.

6.3.3 Device scheduling

The scheduler, in our framework, integrates the tasks of device scheduling and

cache management. Hence, many device scheduling algorithms are relevant in our context.

One class of algorithms [BK79, Wie87, Hof83, SLM93] deals with reordering a set of pending

I/O requests to reduce seek and rotational latency on magnetic disks. There is also work

on scheduling a collection of I/O requests on tape so as to reduce seek cost. For instance,

[KMP90] addresses the problem of �nding the optimum execution order of queries on a �le

stored on a tape assuming a linear seek cost model, and [HS96b] studies the scheduling

problem on a DLT tape assuming a non-linear seek cost. Scheduling in robotic devices is

more challenging because tertiary memory devices have three cost components, all of which

are signi�cant in some situation.

106

6.3.4 Bu�er management

Previous work on bu�er management falls into three categories based on the kind

of information used for making decisions:

1. those based on tuning to an expected reference pattern (e.g. LRU and the more

adaptive variations like LRU/k [OOW93] and 2Q [JS94]),

2. those based on exact date needs of each query as inferred by the optimizer. (e.g.,

DBMIN [CD85], Hot set model [SS86], MG-x-y (bu�er allocation based on marginal

gains) [RN91, YC91])

3. those based on hints from the optimizer instead of exact and complete data reference

pattern (e.g.,[HC+90, JCL90]).

Our approach falls in the second category, but is di�erent from previous algorithms in that

category for three reasons:

1. we modify execution order based on contents of bu�ers,

2. we integrate data replacement decisions with the state of the I/O device (e.g., by

replacing fragments that are on currently loaded platters in preference to fragments

on unloaded platters as suggested in [Yu95]) and

3. we make bu�er management decisions on the basis of parts of a query instead of whole

queries.

6.3.5 Prefetching

Prefetching is useful both in operating systems [CFKL95, Kot94, PGGo95] and

database systems [TG84, CKSV93, AFZ96, GK94] especially when accompanied by execu-

tion reordering, e.g., list prefetch [MHWC90, Ant93, CHH+91] used with index scans. Our

system extends prefetching to entire plan trees and not simply to index scans. A signi�cant

di�erence is that we can reorder based on dynamic conditions like cached data, the state of

the I/O device, and the data needs of other queries whereas existing prefetching techniques

reorder execution based on static storage layout.

107

Prefetching in OODBs: In object oriented databases, the navigational nature of

queries can lead to bad I/O performance making it important to do prefetching [GK94]

and batching [KGM91]. Keller et al. in [KGM91] present ways of modifying the plan-tree

to replace object-at-a-time references with an assembly operator that collects multiple ob-

ject references �rst and then reorders them to optimize I/O accesses. However the main

di�erence between their scheme and ours (apart from the obvious di�erence in the architec-

ture | relational vs object oriented) is that they cannot handle reordering across di�erent

operators of a plan-tree or across data references of di�erent users. They can only reorder

I/O accesses within a single operator and thus cannot handle interaction between the I/O

requests of di�erent operators.

6.4 Array Organization

The idea of array chunking is not new. McKellar and Co�man [MC69] explored the

bene�ts of chunking in improving the performance of various matrix algorithms in a paging

environment. They concluded that the use of sub-arrays can improve paging performance

by orders of magnitude. Similar work on the use of chunking to make matrix computations

e�cient is discussed in [FP79]. Blinn [Bli90] reports a 10-fold reduction in the number of

page fetches with chunking in a graphics rendering application. Chunking in the context

of image processing has been used to build tiled virtual memory systems [Wad84] [RCM80]

[Fra92]. Whereas all these systems deal only with two dimensional arrays and assume mag-

netic disk as the storage device, our interest is in arrays of higher dimensions with tertiary

memory as storage devices. A more theoretical approach to organizing multidimensional

arrays is presented in [Ros75]. Jagadish in [Jag90] discusses issue of organizing multidimen-

sional arrays by reducing it to the general problem of mapping a multidimensional space on

to a one dimensional space. All these approaches organize data without regard to any user

speci�ed access pattern, whereas our work considers access patterns to optimize layout.

Array organization is related to the general problem of data clustering. Most

clustering algorithms [JD88] work on a collection of records that are not structured in

any way. Arrays have a regular structure that facilitates a di�erent approach to storage

organization. This is also the reason why indexing structures like grid �les [NHS84] or KDB

trees used for indexing multi-attribute data are not relevant to array organization.

Subsequent to our work in 1992-93, a few mass storage systems have incorporated

108

similar techniques and enhanced them in various ways. Notable examples are: [DHL+93],

[Bau93] and [SW94]. [SW94] deals with layout of arrays on disks of a multiprocessor and

[DHL+93] discusses use of mass storage �le systems to e�ciently store and retrieve arrays

on tertiary memory.

109

Chapter 7

Conclusion

7.1 Summary

In this thesis we discussed query processing and data placement techniques for

optimizing retrieval of data stored on tertiary memory devices. Our basic goal in designing

these techniques was to reduce and reorder I/O on tertiary memory.

Towards this end, we extended conventional query processing architecture with

a centralized scheduler and modi�ed the execution engine to allow arbitrary reordering of

queries. The scheduler keeps system-wide information about the state of the tertiary storage

device, the size and the contents of the disk cache and the data requirements of the pending

queries. It uses this global information for making query scheduling, I/O scheduling and

cache management decisions with the aim of maximizing over all system throughput.

We designed an execution engine that can work in cooperation with the scheduler

to process queries in the order in which data arrives rather than demand data in a �xed

order as most conventional systems do. For building a reorderable execution engine, we

extended the plan tree data structure with three new meta-nodes that are added in an

extra phase between optimization and execution of the plan tree. These operators enable

the executor to communicate and synchronize with the scheduler for ordering the execution

of subqueries. Our changes are restricted only to these new operators and the extra phase

and thus enable modular extension of existing execution engines.

We then designed policies for deciding on the order of fetching and evicting data

from tertiary memory. The policies are a function of the device parameters, the querying

pattern of the application, the current load on the system and the size of the disk cache.

110

By identifying a few crucial device and workload parameters that are used to drive our

optimization process, we make our system responsive to changes in these parameters.

We extended the postgres execution engine and used it for building a prototype

of a tertiary memory database. Our prototype yields almost an order of magnitude improve-

ment over schemes that use prefetching and almost three orders of magnitude improvement

over schemes that do not, even for simple index scan queries. Further experiments demon-

strate that either (1) when the platter switch and seek costs are high, or (2) when the

cache is small and there is overlap between data accesses of concurrent queries, our scheme

will enable better scheduling of I/O requests and more e�ective reuse of cached data than

conventional schemes.

Another approach to optimizing query processing on tertiary memory databases

is through better data placement. We explored techniques for optimizing the storage of

large multidimensional arrays. We presented a number of strategies for optimizing layout

of large multidimensional arrays on tertiary memory devices. Based on a suitably captured

access pattern, we used chunking of arrays to reduce the number of blocks fetched and

reordering of array axes to reduce seek distance between accessed blocks. In cases where it

is a�ordable, we suggested the use of redundancy to organize multiple copies of the same

array based on di�erent access patterns. Finally, we suggested partitioning as a method

to reduce the media switch costs. Our measurements on several real-life datasets showed

almost an order of magnitude reduction in access times.

7.2 Contribution

In the area of query processing, our main contribution is integrating device schedul-

ing, cache management and query execution functionalities. Normally, these functions are

handled independently but we show that by integrating these decisions in a centralized

unit better optimizations are possible. For instance, our device scheduling decisions can

be in
uenced by the contents of the cache | if a fragment joins with one of the cached

fragments it will be fetched in preference to another fragment that does not. Similarly, our

cache replacement decision can be in
uenced by the device state | a fragment on a loaded

platter could be replaced in preference to those on unloaded platters. This is a departure

from conventional cache management algorithms like lru or weighted-lru. The order in

which di�erent parts of a query plan-tree execute can also be in
uenced by the contents of

111

the cache and the state of the storage device. In contrast, in conventional query processing

engines, once a plan is optimized, it is processed in a �xed order.

Our method of query scheduling and execution reordering can be packaged as a

general framework applicable to other cases where the data access latency in various parts

of the plan-tree varies widely and dynamically. The key features of our framework for

reordering execution are:

1. Relations are comprised of fragments that are available together. This corresponds

to part of a relation stored contiguously for tertiary memory databases.

2. Each query plan tree is divided into parts (called subqueries) that can be executed

independently in arbitrary order.

3. A scheduling unit collects subqueries from many users and decides at runtime the

order in which they are executed.

4. A reorderable executor communicates with the scheduler to process the query plan

in the order dictated by the scheduler.

We can apply this framework in a number of alternative scenarios as follows:

� Cache systems: In all caching environments, the cached data is \nearer" than the un-

cached data and it might help to use our method of reordering to process the cached

data before fetching more data that might replace it. Database cache replacement

algorithms [CD85, Gra93a, TG84] are extensively researched but none of these algo-

rithms have considered applying execution reordering to adapt to the cached data.

Using this framework, we can do optimizations like scan a relation from the mid-

dle instead of the beginning if a prior scan query on the relation is already mid-way

through. Such optimizations might be speci�cally useful in data warehousing envi-

ronments where users scan a few large relations and the chances of �nding multiple

user-queries on the same relation is high.

� Broadcast disks for mobile computing: Broadcast disks [AAFZ95, IVB94, HGLW87]

are gaining importance in mobile and asymmetric environments where the data band-

width in the server to the client direction is much higher than in the reverse direction.

With broadcast disks, data is periodically transmitted by base stations or servers to

multiple clients instead of clients explicitly requesting data from the servers. This

112

reduces the number of messages from the clients to the data servers. In such an en-

vironment, it will help to reorder execution of queries at the client size so that they

process the plan tree in the order in which data is broadcast by the server instead of

following a �xed order of processing. For applying our framework to this environment,

�rst one has to identify collections of data pages that are broadcast together. The

scheduling unit would be responsible for watching the broadcast data stream, caching

relevant data when appropriate and scheduling ready subqueries for execution.

In all these cases, the bene�ts have to be compared against the overhead of scheduling to

evaluate overall payo�s. For instance, scheduling on fragments as small as a disk page is

probably not a viable option since the measured overhead of scheduling per subquery in our

prototype is around 25 milliseconds which is more than the time required to fetch a page

from magnetic disk. For scheduling to pay o� it is important to divide a relation into larger

fragments, but too large a fragment can limit the degree of concurrency between queries.

Also, the di�erence between the best case and worst-case time for accessing data must be

high, and/or there should be signi�cant overlap between data needed by multiple queries

so that they can be batched together.

In the area of data placement, our main contribution was employing user-de�ned

access patterns to optimize storage of multidimensional arrays. Normally, large arrays in

database systems are stored as binary large objects without any inherent understanding of

their structure. The ideas of chunking and reordering array axes have been in existence for

a long time; our contribution was to provide means for choosing the shape of the chunks

and to determine the optimal ordering of the axes based on expected access patterns.

7.3 Future Work

7.3.1 Query Optimization

The subquery-based execution paradigm introduced in this thesis raises many

query optimization issues. Our method of executing queries in parts invalidates some of

the assumptions and cost functions used by the optimizer. One such case arose when using

index scans to get data in sorted order. When each fragment has its own index tree, an extra

merge step is necessary to scan the whole relation in sorted fashion; we handled this case

by explicitly taking into account the merge cost when index scans are used for getting data

113

in sorted fashion. For the case of nest-loop joins, the number of times each outer fragment

is scanned cannot be known during optimization, and hence it is not possible to correctly

estimate the cost of nest-loop joins. Other cases where optimizer changes are necessary

are (1) estimating the access cost when some relations are stored permanently on disk and

others on tertiary memory; (2) including the size of the disk cache in optimizing queries.

When the disk cache is smaller than the relation, sorting may not be attractive since there

is not enough space to hold intermediate runs.

Our approach of dynamically determining what part of a query gets executed to-

gether would bene�t from dynamic query optimization [CG94]. For instance, the optimizer

might have chosen a nest-loop query because of memory limitation but when a smaller

fragment of the relation is scheduled, it might be more pro�table to execute the join using

hash-join instead of nest-loop join. Also, it might be useful to consider plans where the in-

dex scan is used only during query processing, but the relation itself is fetched sequentially

from tape.

Another area of complexity arises with respect to storage of intermediate relations.

We have assumed in this thesis that there is enough space on disk for storing intermediate

relations. Since predicates on large datasets can be expected to be highly selective, this is a

reasonable assumption in many cases. When this assumption does not hold, we either need

to be able to modify the query plan to execute in parts as discussed in [SS94, ML95], or be

able to store intermediate results on tertiary memory. This opens avenues for interesting

research, especially on a sequential medium like tape. Where should the intermediate results

be stored? How can we store the hash buckets to enable both fast writes during bucket

creation stage and e�cient reads during the probe phase? Similar issues arise when storing

sorted runs during sort-merge joins.

Another assumption we have made is that the intermediate results are stored in

an area di�erent from the disk cache. This is a reasonable assumption in many installations

where the disk cache comes as part of the tertiary memory device and can only be used for

staging data in and out of tertiary memory. Removing this assumption greatly complicates

the fragment transfer decisions because now the intermediate space will need to be managed

as another resource. Scheduling of a subquery depends not only on the cached fragments

but also on the amount of intermediate space that it will consume or free. The scheduling

problem becomes more complex and interesting if we are willing to dynamically change

execution methods inorder to trade o� time for space. For example, changing a hash-join

114

method to nest-loop join, can enable us to schedule the join on cached fragments when

scratch space is limited.

7.3.2 Caching directly to main memory

In this thesis we have assumed that all data is staged �rst to the disk cache before

processing any queries on it. Sometimes, it might be more bene�cial to cache data directly

from tertiary memory to main memory. Bypassing the disk cache in certain cases, could

reduce contention on disk and increase I/O parallelism. Myllymaki and Livny [ML95],

for instance, propose methods for executing single two-way join queries where one of the

relations is cached to disk and the other is streamed from a tape. However, this method of

join processing may not be desirable in all cases. Since main memory sizes are a factor of

10 to 100 times smaller than disk sizes the amount of data that can be prefetched will be

smaller. Most of our gain was obtained by scheduling large amounts of data to be transferred

asynchronously. Also, streaming data from tertiary memory to main memory during join

processing means that we are reserving drives for the entire duration of execution of the

query. This might limit the number of concurrent user queries. Ideally, the scheduler should

also manage main memory caching and exploit cases where it is more pro�table to cache

data directly to main memory.

7.3.3 Alternative storage con�gurations

So far we have assumed that data is stored only on a single tertiary memory

device. An interesting extension is when data resides on more than one tertiary memory

device, possibly of di�ering performance characteristics. We can extend our fragment fetch

and eviction heuristics to handle multiple devices. First, we apply the same technique we

used for increasing I/O parallelism between multiple drives of the same tertiary memory

to increase I/O parallelism between multiple tertiary memory devices. Next, we modify

the fetch policy so that we calculate the threshold values for each tertiary memory device

and when the cache pressure mounts we fetch the next fragment from the device with the

smaller value of the threshold �rst. Also, when evicting a fragment we replace the one which

has lower cost of replacement.

115

7.3.4 Handling update queries

In this thesis, we optimized for read-only queries. Our belief is that in most cases

data on tertiary memory will be loaded periodically in batch mode rather than updated

interactively along with query processing. In cases where update queries are allowed con-

currently with read-only queries, the job of the scheduler becomes more complicated. For

instance, the decision of which fragment to fetch will be a�ected by the location (on tertiary

memory) of the dirty blocks to be evicted from the cache to make space for this fragment.

Similarly, the decision of where to place a dirty (new) block can be in
uenced by the pending

read queries when there is no restriction on the location of the new block.

7.3.5 Data placement

In this thesis we concentrated only on placement of large multidimensional arrays.

Placement of relations and other data types also presents some interesting problems, like,

How is a relation partitioned across multiple platters? It intuitively seems pro�table to

place fragments that are queried together frequently on the same platter. But, this means

that I/O requests might get sequentialized on the platter that holds all the frequently

accessed data. Hence, it might help to spread requests across multiple platters to exploit

drive parallelism. This raises many of the same kind of issues as declustering data across

parallel disks. When seek cost is high, it might help to put the most frequently accessed data

towards the beginning of the tape even if this requires spreading a relation across multiple

platters. Sometimes it might be useful to store multiple copies of a relation organized in

di�erent ways since storage is cheap and updates are often infrequent. However, allowing

for duplicates makes the query scheduling decision even more complicated.

7.4 Closing

In closing, it can be summarized that this thesis is a signi�cant step towards

improving performance of a tertiary memory database system. We concentrated on better

caching, prefetching and query scheduling techniques to hide the access latency of data on

tertiary memory devices. For the special class of multidimensional arrays we also studied

methods of array organization to improve performance. However, there are a large number

of topics that could still bene�t from intense study by the database research community.

116

Bibliography

[AAFZ95] S. Acharya, R. Alonso, M. Franklin, and S. Zdonik. Broadcast disks: Data

management for assymetric communication environments. Proc. ACM SIG-

MOD International Conference on Management of Data, 24(2):199{210, 1995.

[ABC+76] M.M. Astrahan, M.W. Blasgen, D.D Chamberlin, et al. System r: A relational

approach to database management. acm Transactions on Database Systems,

1(2):97{137, 1976.

[AC88] W. Alexandar and G. Copeland. Process and data
ow control in distributed

data-intensive systems. In Proc. ACM SIGMOD International Conference on

Management of Data, pages 90{98, 1988.

[AFZ96] S. Acharya, M. Franklin, and S. Zdonik. Prefetching from broadcast disks. In

Proc. International Conference on Data Engineering, 1996.

[Ant93] G. Antoshenkov. Dynamic query optimization in Rdb/VMS. In Proc. Interna-

tional Conference on Data Engineering, pages 538{547, 1993.

[AR92] J.R. Alsabbagh and V.V. Raghavan. A framework for multiple-query optimiza-

tion. In Second International Workshop on Research Issues on Data Engineer-

ing: Transaction and Query Processing, pages 157{162, 1992.

[Bau93] P. Baumann. Database support for multidimensional discrete data. In Proc.

of Symposium on Large Spatial Databases, pages 191{206, 1993.

[BK79] F.W. Burton and J. Kollias. Optimizing disk head movements in secondary

key retrievals. Computer Journal, 22(3):206{8, Aug 1979.

117

[Bli90] J F Blinn. The truth about texture mapping. IEEE computer graphics and

applications, 10:78{83, March 1990.

[BSCD91] P. Borla-Salamet, C. Chachaty, and B. Dageville. Compiling control into

database queries for parallel execution management. In Proceedings of the

First International Conference on Parallel and Distributed Information Sys-

tems, pages 271{279, Dec 1991.

[C+82] B. Collins et al. A network �le storage system. In Digest of Papers, Fifth IEEE

Symposium on Mass Storage Systems, pages 99{102, Oct 1982.

[CD85] H.T. Chou and D.J.DeWitt. An evaluation of bu�er management strategies for

relational database systems. In Proc. International Conference on Very Large

Databases, pages 127{141, 1985.

[CFKL95] Pei Cao, EdwardW. Felten, Anna R. Karlin, and Kai Li. Application-controlled

caching, prefetching and disk scheduling. Technical Report TR-493-95, Prince-

ton University, 1995.

[CG94] R.L. Cole and G. Graefe. Optimization of dynamic query evaluation plans.

Proc. ACM SIGMOD International Conference on Management of Data,

23(2):150{160, 1994.

[Che94] Ann Louise Chervenak. Tertiary Storage: An Evaluation of New Applications.

PhD thesis, U. C. Berkeley, December 1994.

[CHH+91] J. Cheng, D. Haderle, R. Hedges, B.R. Iyer, et al. An e�cient hybrid join

algorithm: a DB2 prototype. In Proc. International Conference on Data En-

gineering, pages 171{80, Apr 1991.

[CHL93] M.J. Carey, L.M. Haas, and M. Livny. Tapes hold data, too: challenges of

tuples on tertiary store. Proc. ACM SIGMOD International Conference on

Management of Data, 22(2):413{417, 1993.

[CK92] Jr. Carino, F. and P. Kostamaa. Exegesis of DBC/1012 and P-90: industrial

supercomputer database machines. In Proceedings of the fourth International

PARLE Conference, pages 877{92, Jun 1992.

118

[CKSV93] K.M. Curewitz, P. Krishnan, and J. Scott Vitter. Practical prefetching via

data compression. In Proc. ACM SIGMOD International Conference on Man-

agement of Data, pages 257{66, 1993.

[Cora] Exabyte Corporation. Exb-8505xl features.

http://www.Exabyte.COM:80/Products/8mm/8505XL/Rfeatures.html.

[Corb] Quantam Corporation. Digital linear tape meets critical need for data backup.

http://www.quantum.com/products/whitepapers/dlttips.html.

[CP84] S. Ceri and G. Pelagatti. Distributed Databases: Principles and Systems, chap-

ter 5,6. McGraw-Hill Book Company, 1984.

[CWCH93] S. Coleman, R. Watson, R. Coyne, and H. Hulen. The emerging storage man-

agement paradigm. In Digest of Papers, Twelfth IEEE Symposium on Mass

Storage Systems, pages 101{110, Apr 1993.

[CYW92] M. Chen, P.S. Yu, and K. Wu. Scheduling and processor allocation for parallel

execution of multi-join queries. In Proc. International Conference on Data

Engineering, pages 58{66, 1992.

[DHL+93] R. Drach, S. Hyer, S. Louis, et al. Optimizing mass storage organization and

access for multi-dimensional scienti�c data. In Proceedings Twelfth IEEE Sym-

posium on Mass Storage Systems., pages 215{219, Apr 1993.

[DKL+94] D. Dewitt, N. Kabra, J. Luo, J. Patel, and J.Yu. Client-server paradise. In

Proc. International Conference on Very Large Databases, 1994.

[DR91a] J. Dozier and H.K. Ramapriyan. Planning for the EOS data and information

system. In Global Environment Change, volume 1. Springer-Verlag, Berlin,

1991.

[DR91b] J. Dozier and H.K. Ramapriyan. Planning for the EOS data and information

system. In Global Environment Change, volume 1. Springer-Verlag, Berlin,

1991.

[Equ89] William H. Equitz. A new vector quantization clustering algorithm. IEEE

transactions on Accoustics, speech and signal processing, 37(10), 1989.

119

[FMW90] J. Fahnestock, T. Myers, and E. Williams. Summary of the intelligence com-

munity's mass storage requirements. Technical Report SRC-TR-90-026, Super-

computing Research Center Institute for Defense Analyses, 1990.

[FP79] P C Fisher and R L Prower. Storage reorganization techniques for matrix

computation in paging environments. Communications of the ACM, 22(7),

1979.

[FR94] C. Federighi and L. Rowe. A distributed hierarchical storage manager for

a video on demand system. In Storage and Retrieval for Image and Video

Databases II, SPIE, pages 185{97, Feb 1994.

[Fra92] James Franklin. Tiled virtual memory for UNIX. In Proceedings of USENIX,

San Antonio,TX, pages 99{106, 1992.

[GK94] C.A. Gerlhof and A. Kemper. A multi-threaded architecture for prefetching in

object bases. In Advances in database technology, pages 351{364, March 1994.

[GM81] J. Grant and J. Minker. Optimization in deductive and conventional relational

database systems. Advances in Data Base Theory, 1, 1981.

[Gra90] G. Graefe. Encapsulation of parallelism in the volcano query processing sys-

tem. Proc. ACM SIGMOD International Conference on Management of Data,

19(2):102{11, 1990.

[Gra93a] G. Graefe. Query evaluation techniques for large databases. ACM Computing

Surveys, 25(2):73{170, Jun 1993.

[Gra93b] Jim Gray. The Benchmark handbook : for database and transaction processing

systems. Morgan Kaufmann series in data management systems. M. Kaufmann

Publishers, San Mateo, Calif. ;, 2nd edition, c1993.

[Hal76] P.V. Hall. Optimizaton of a single relational expression in a relational database

system. IBM Journal of Research and Development, 20(3):262{266, 1976.

[HC+90] L.M. Haas, W. Chang, et al. Starburst mid
ight: As the dust clears. Transac-

tions on Knowledge and Data Engineering, 2(1):143{60, 1990.

120

[HCF+88] L.M. Haas, W.F. Cody, J.C. Freytag, et al. An entensible processor for an

extended relational query language. Technical Report RJ 6182 (60892), IBM

ALmaden Research Center, 1988.

[HGLW87] G. Herman, G. Gopal, K. Lee, and Weinrib. The datacycle architecture for

very high throughput database systems. Proc. ACM SIGMOD International

Conference on Management of Data, 16(3), 1987.

[Hof83] M. Hofri. Should the two headed disk be greedy?-yes, it should. Information

Processing Letters, 16(2):83{5, Feb 1983.

[Hog90] C. Hogan. The Livermore distributed storage system: requirements and

overview. In Digest of Papers, Tenth IEEE Symposium on Mass Storage Sys-

tems, pages 6{17, May 1990.

[HSa] B. Hillyer and A. Silberschatz. Storage technology: Status, issues and

opportunities. Submitted for publication, available at http://cm.bell-

labs.com/cm/is/what/strata/.

[HSb] B. Hillyer and A. Silberschatz. The strata tertiary storage system.

http://cm.bell-labs.com/cm/is/what/strata/.

[HS93] W. Hong and M. Stonebraker. Optimization of parallel query execution plans

in XPRS. Distributed and Parallel Databases, 1(1):9{32, Jan 1993.

[HS96a] B. Hillyer and A. Silberschatz. On the modeling and performance characteris-

tics of a serpentine tape drive. In Proc. 1996 ACM Sigmetrics Conference on

Measurement and Modeling of Computer Systems, 1996.

[HS96b] B. Hillyer and A. Silberschatz. Random i/o scheduling in online tertiary storage

systems. In Proc. ACM SIGMOD International Conference on Management of

Data, pages 195{204, 1996.

[Isa93] D. Isaac. Hierarchical storage management for relational databases. In Pro-

ceedings Twelfth IEEE Symposium on Mass Storage Systems., pages 139{44,

Apr 1993.

121

[IVB94] T. Imielinski, S. Viswanathan, and B. Badrinath. Energy e�cient indexing on

air. Proc. ACM SIGMOD International Conference on Management of Data,

23(2):25{36, 1994.

[Jag90] H V Jagadish. Linear clustering of objects with multiple attributes. In Pro-

ceedings of the 1990 ACM SIGMOD International Conference on Management

of Data, 1990.

[JCL90] R. Juahari, M. Carey, and M. Linvy. Priority hints: An algorithm for priority

based bu�er management. In Proc. International Conference on Very Large

Databases, pages 708{21, 1990.

[JD88] Anil K. Jain and Richard C. Dubes. Algorithms for Clustering Data. Prentice

Hall, 1988.

[JS94] T. Johnson and D. Shasha. 2Q: A low overhead high performance bu�er man-

agement replacement algorithm. In Proc. International Conference on Very

Large Databases, 1994.

[KAOP91] Randy H. Katz, T. Anderson, J. Ousterhout, and D. Patterson. Robo-line stor-

age: High capacity storage systems over geographically distributed networks.

Technical Report Sequoia 2000, 91/3, University of California at Berkeley, 1991.

[KGM91] T. Keller, G. Graefe, and D. Maier. E�cient assembly of complex objects. Proc.

ACM SIGMOD International Conference on Management of Data, 20(2):148{

57, 1991.

[KMP90] J.G. Kollias, Y. Manolopoulos, and C.H. Papadimitriou. The optimum ex-

ecution order of queries in linear storage. Information Processing Letters,

36(3):141{5, Nov 1990.

[Kot94] D. Kotz. Disk-directed I/O for MIMD multiprocessors. In Proc. �rst USENIX

Symposium on OS Design and Implementation, 1994.

[LBG80] Yoseph Linde, Andres Buzo, and Robert Gray. An algorithm for vector quan-

tizer design. IEEE Transcations on Communications, 28(1), 1980.

122

[LC93] C. Lee and Zue-An Chang. Workload balance and page access scheduling for

parallel joins in shared-nothing systems. In Proc. International Conference on

Data Engineering, pages 411{8, Apr 1993.

[Lor95] R. D. Lorentz, 1995. Presentation at Mass Storage Symposium.

[LY77] J. H. Liou and S. B. Yao. Multidimensional clustering for database organiza-

tions. Information Systems, 2:187{198, 1977.

[M+92] C. Mechoso et al. Parallelization and distribution of a coupled atmosphere-

ocean general circulation model, 1992. sumitted to Monthly Weather Review,

Aug 4 1992.

[MC69] A C McKellar and E G Co�man. Organizing matrices and matrix operations

for paged virtual memory. Communications of the ACM, 12(3):153{165, 1969.

[MHWC90] C. Mohan, D Haderle, Y. Wang, and J. Cheng. Single table access using

multiple indexes: optimization, execution, and concurrency control techniques.

In Proc. International Conference on Extending Database Technology, pages

29{43, 1990.

[MKY81] T. Merrett, Y. Kambayashi, and H. Yasuura. Scheduling page-fetches in join

operations. In Proc. International Conference on Very Large Databases, pages

488{98, Sep 1981.

[ML95] J. Myllymaki and M. Livny. Disk tape joins: Synchronizing disk and tape

access. In Proceedings of the ACM SIGMETRICS Conference on Measurement

and Modeling on Computer Systems, May 1995.

[Moh93] C. Mohan. A survey of DBMS research issues in supporting very large tables.

In Proc. 4th International Conference on Foundations of Data Organization

and Algorithms, pages 279{300. Springer-Verlag, October 1993.

[MR93] M.C. Murphy and D. Rotem. Multiprocessor join scheduling. IEEE Transac-

tions on Knowledge and Data Engineering, 5(2):322{38, Apr 1993.

[N+87] M. Nelson et al. The National Center for Atmospheric Research Mass Storage

System. In Proc. Eighth IEEE Symposium on Mass Storage Systems, pages

12{20, May 1987.

123

[Nei89] Patrick O' Neil. A set query benchmark for large databases. Technical Report,

22(2):2{11, 1989.

[NHS84] J Nievergelt, H Hinterberger, and K C Sevcik. The grid �le: An adaptable

symmetric multikey �le structure. ACM Transactions on Database systems,

9(1), 1984.

[Ols92] Michael Allen Olson. Extending the POSTGRES database system to manage

tertiary storage. Master's thesis, University of California, Berkeley, 1992.

[Ome92] R. Omerza. United parcel service DIALS overview. In Proceedings Fourth

Annual International DB2 User Group Conference, May 1992.

[O'N94] Patrick O'Neil. Database Principles, Programming, Performance, chapter 8.

ISBN 1-55860-219-4. Morgan Kaufmann, 1994.

[OOW93] E.J. O'Neil, P.E. O'Neil, and G. Weikum. The LRU-k apge replacement al-

gorithm for database disk bu�ering. In Proc. ACM SIGMOD International

Conference on Management of Data, pages 297{306, 1993.

[OS95] Virginia Ogle and Michael Stonebraker. Chabot: Retrieval from a relational

database of images. IEEE Computer, 28(9), Sep 1995.

[PGGo95] R.H. Patterson, G.A. Gibson, E. Ginting, and others. Informed prefetching and

caching. In Proc. Fifteenth ACM Symposium on Operating Systems Principles,

1995.

[PI85] S. Pramanik and D. Ittner. Use of graph-theoretic models for optimal relational

database accesses to perform join. acm Transactions on Database Systems,

10(1):57{74, Mar 1985.

[Ran91] Sanjay Ranade. Jukebox and Robotic Libraries for Computer Mass Storage.

Meckler Publishing, 1991.

[RC87] J.E. Richardson and M.J. Carey. Programming constructs for database system

implementation in EXODUS. In Proc. ACM SIGMOD International Confer-

ence on Management of Data, pages 208{19, 1987.

124

[RC88] A. Rosenthal and Upen S. Chakravarthy. Anatomy of a modular multiple query

optimizer. In Proc. International Conference on Very Large Databases, pages

230{239, 1988.

[RCM80] J L Reuss, S K Chang, and B H McCormick. Picture paging for e�cient image

processing. In S K Chang and K S Fu, editors, Pictorial Information Systems,

pages 228{243. Spriger-Verlag, 1980.

[RFJ+93] M.F. Riley, J.J. Feenan Jr., et al. The design of multimedia object support in

DEC Rdb. Digital Technical Journal, 5(2):50{64, 1993.

[RN91] Timos Sellis Raymond Ng, Christos Faloutsos. Flexible bu�er allocation based

on marginal gains. In Proc. ACM SIGMOD International Conference on Man-

agement of Data, pages 387{396, 1991.

[Ros75] Arnold L. Rosenberg. Preserving proximity in arrays. SIAM journal on Com-

puting, 4:443{460, 1975.

[S+96] Michael Stonebraker et al. Mariposa: A wide-area distributed database system.

VLDB Journal, 5(1), Jan 1996.

[SB+93] T. Stephenson, R. Braudes, et al. Mass storage systems for image manage-

ment and distribution. In Digest of Papers, Twelfth IEEE Symposium on Mass

Storage Systems, pages 233{240, Apr 1993.

[SD91] Michael Stonebraker and Je� Dozier. Large capacity object servers to support

global change research. Technical Report 91/1, University of California at

Berkeley, 1991.

[Sel93] P. Selinger. Predictions and challenges for database systems in the year 2000.

In Proc. International Conference on Very Large Databases, pages 667{675,

1993.

[SK91] M. R. Stonebraker and Greg Kemnitz. The POSTGRES next generation

database management system. Communications of the ACM, 34(10), 1991.

[SLM93] B. Seeger, P. Larson, and R. McFadyen. Reading a set of disk pages. In Proc.

International Conference on Very Large Databases, pages 592{603, 1993.

125

[Smi81] A.J. Smith. Long term �le migration: development and evaluation of algo-

rithms. Communications of the ACM, 24(8):521{32, Aug 1981.

[Son89a] Sony Corporation, Japan. Writable Disk Auto Changer WDA-610 Speci�ca-

tions and Operating Instructions, 1989. 3-751-106-21(1).

[Son89b] Sony Corporation, Japan. Writable Disk Drive WDD-600 and Writable Disk

WDM-6DL0 Operating Instructions, 1989. 3-751-047-21(1).

[SP89] A. Segev and J. Park. Identifying common tasks in multiple access paths.

Technical Report LBL-27877, Lawrence Berkeley Laboratory, 1989.

[SS86] G.M. Sacco and M. Schkolnick. Bu�er management in relational database

systems. acm Transactions on Database Systems, 11(4):473{98, 1986.

[SS94] S. Sarawagi and M. Stonebraker. Single query optimization in tertiary memory.

Technical Report Sequoia 2000, S2k-94-45, University of California at Berkeley,

1994.

[SSU95] Avi Silberschatz, Mike Stonebraker, and Je� Ullman. Database re-

search: Achievements and opportunities into the 21st century. Re-

port of an NSF Workshop on the Future of Database Systems Research,

http://db.stanford.edu/pub/ullman/1995/lagii.ps, May 1995.

[Sto91a] M. Stonebraker. Managing persistent objects in a multi-level store. Proc. ACM

SIGMOD International Conference on Management of Data, 20(2):2{11, 1991.

[Sto91b] Michael Stonebraker. An overview of the Sequoia 2000 project. Technical

Report 91/5, University of California at Berkeley, 1991.

[SW94] K.E. Seamons and M. Winslett. Physical schemas for large multidimensional

arrays in scienti�c computing applications. In Proceedings of the 7th Interna-

tional Working Conference on Scienti�c and Statistical Database Management,

Sep 1994.

[TG84] J.Z. Teng and R.A. Gumaer. Managing IBM Database 2 bu�ers to maximize

performance. IBM Systems Journal, 23(2):211{18, 1984.

126

[W+] Robert Wilensky et al. Uc berkeley digital library project.

http://elib.cs.berkeley.edu/.

[Wad84] B T Wada. A virtual memory system for picture processing. Communications

of the ACM, 27:444{454, 1984.

[Wei] William Weibel. Personal Communication.

[Wie87] G. Wiederhold. File organization for database design. McGraw-Hill, New York,

1987.

[YC91] Philip S. Yu and Douglas W. Cornell. Optimal bu�er allocation in a multi-

query environment. In Proc. International Conference on Data Engineering,

pages 622{631, 1991.

[YD96] Y.Yu and D. Dewitt. Query pre-execution and batching in paradise. In Proc.

International Conference on Very Large Databases, 1996.

[YSLM85] C.T. Yu, Cheing-Mei Suen, K. Lam, and M.K.Siu. Adaptive record clustering.

ACM Transactions on Database Systems, 10:180{204, 1985.

[Yu95] Andrew Yu. Bu�er management for tertiary storage devices. Master's thesis,

University of California, Berkeley, 1995.

[Y.W95] Y.Wang. DB2 query parallelism: Staging and implementation. In Proc. Inter-

national Conference on Very Large Databases, pages 686{91, 1995.

