
A Declarative Semantics for Dedalus

Peter Alvaro
Tom J. Ameloot
Joseph M. Hellerstein
William Marczak
Jan Van den Bussche

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2011-120

http://www.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-120.html

November 29, 2011

Copyright © 2011, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

A Declarative Semantics for Dedalus

Peter Alvaro
UC Berkeley

palvaro@cs.berkeley.edu

Tom J. Ameloot
∗

Hasselt University &
Transnational University of

Limburg
tom.ameloot@uhasselt.be

Joseph M. Hellerstein
UC Berkeley

hellerstein@cs.berkeley.edu

William R. Marczak
UC Berkeley

wrm@cs.berkeley.edu

Jan Van den Bussche
Hasselt University &

Transnational University of
Limburg

jan.vandenbussche@uhasselt.be

ABSTRACT
The language Dedalus is a Datalog-like language in which
distributed computations and networking protocols can be
programmed, in the spirit of the Declarative Networking
paradigm. Whereas recently formal, operational, semantics
for Dedalus-like languages have been developed, a purely
declarative semantics has been lacking so far. The challenge
is to capture precisely the amount of nondeterminism that
is inherent to distributed computations due to concurrency,
networking delays, and asynchronous communication. This
paper shows how a declarative semantics can be obtained
by simply using the well-known stable model semantics for
Datalog with negation. This semantics is applied to the orig-
inal Dedalus rules, modified to account for nondeterminis-
tic choices, and augmented with control rules which model
causality. The main result then is that, as far as fair runs
are concerned, the proposed declarative semantics matches
exactly the previously proposed formal operational seman-
tics.

1. INTRODUCTION
In recent years, logic programming has been proposed as

an attractive foundation for distributed and cloud program-
ming, building on work in declarative networking [24]. One
of the latest incarnations of this approach is Dedalus [7, 8,
20], a Datalog-inspired language that has influenced other
recent language designs for distributed and cloud comput-
ing such as WebDamLog [3] and Bloom [6]. Indeed, issues
related to Dedalus and data-oriented distributed comput-
ing are recently receiving some attention at database theory
conferences [19, 9, 3, 10, 29].

∗PhD Fellow of the Fund for Scientific Research, Flanders
(FWO).

It is well understood how an operational semantics for
Dedalus-like languages can be defined formally [15, 25, 18,
9, 3, 26]. Such a formal semantics is typically defined as a
transition system. The transition system is infinite even
if the distributed computation is working on a finite in-
put database, because compute nodes can run indefinitely;
moreover, they can keep on sending messages so that an un-
bounded number of messages can be floating around in the
network. In addition, the transition system is highly non-
deterministic, because nodes work concurrently, communi-
cation is asynchronous, and messages can be delayed and
eventually delivered out of order by the network.

A purely declarative formal semantics for the languages
used in declarative (!) networking, however, has been lacking
so far. The purpose of this paper is to contribute towards
filling this gap. Concretely, our work can be summarized as
follows.

1. We begin by presenting a formal operational semantics
for Dedalus. As mentioned above, this part is quite
standard. Our definition leads to the notion of fair
runs of a Dedalus program P on an input distributed
database instance I. Runs represent distributed com-
putations and, due to the nondeterminism mentioned
above, there are typically many fair runs of P on I.

2. Each run can be completely described by a structure
which we call a trace, which includes for each compute
node in the network the detailed information about
the local steps it has performed and about the mes-
sages it has sent and received. The trace also includes
information about the vector clocks associated to the
run. Vector clocks are the standard mechanism to ex-
tract the “causal order” from a distributed computa-
tion [12]; this causal order (which is a partial order)
relates the local steps of the different compute nodes
through chains of communicated messages.

3. The main idea now is that the set of traces of runs
can be obtained precisely as the set of stable models
[17] of P on I. A few manipulations are needed be-
fore we can aim for such a result, however, because
the Dedalus program P is not really a Datalog¬ pro-
gram, due to the“asynchronous rules”that are used for
sending messages. First, these rules, which involve a
choice construct, are transformed into Datalog¬ rules

1

that simulate nondeterministic choice [22, 27]. Fur-
thermore, P is augmented with a fixed, instance- and
network-independent set of rules that express the vec-
tor clock mechanism. Finally, a simple definition for
the notion of “fair”model is proposed. Our main result
can then be proved, to the effect that the traces of fair
runs are exactly the fair stable models of the obtained
Datalog¬ program.

We believe that our result is interesting because it shows
the equivalence between two quite different ways to define
the semantics of a Dedalus program. It is also interesting
in its own right to see a rigorous proof that vector clocks
can be expressed in Datalog¬ under the stable model se-
mantics, capturing the operational notion of causality in a
model-theoretic fashion. On a more technical note, we ex-
pand upon prior work on non-deterministic choice in logic
programs: the correct expression of choice rules by Datalog¬

rules under the stable model semantics has so far only been
proven rigorously when the original choice rules are part of
a Datalog program without negation [27]. In our work, the
semantics is proven correct in the presence of negation; as
a matter of fact, the vector clock rules are not even locally
stratified.

Perhaps most importantly, the result is of interest for
grounding a representative database language for distributed
and cloud computating in a well-motivated model-theoretic
semantics. Indeed our characterization provides a purely
declarative axiomatization of fair distributed program be-
haviors in terms of the stable models of a logical theory
(finite set of Datalog¬ rules).

To conclude this introduction we mention that our paper
fits in the more general theme of data management in net-
worked and peer-to-peer settings, which has been important
for some time, e.g., [1, 2, 13]. In recent years we are also
seeing a more general resurgence of interest in Datalog, e.g.,
[14, 21].

This paper is organized as follows. In Section 2 we give
preliminaries, including the language Dedalus. In Sections 3
and 4 we present the operational and declarative semantics
for Dedalus. In Section 5 we define the trace for each run
and in Section 6 we give our main result that relates the op-
erational and declarative semantics. We conclude in Section
7.

2. PRELIMINARIES
A database schema D is a finite set of pairs (R, k) where R

is a relation name and k ∈ N its associated arity. A relation
name occurs at most once in a database schema. We also
write (R, k) as R(k). To sometimes improve readability, as a
slight abuse of notation, we treat D as a set of only relation
names (without associated arities).

We assume a countably infinite universe dom of atomic
data values that includes the set N of natural numbers. A
fact f is a pair (R, ā), often denoted as R(ā), where R is
a relation name and ā is a tuple of values over dom. For
a fact R(ā), we call R the predicate. We say that a fact

R(a1, . . . , ak) is over a database schema D if R(k) ∈ D. A
database instance I over a database schema D is a set of
facts over D. For a database schema D′ ⊆ D we write I|D′
to denote the set of facts in I whose predicate occurs as a
relation name in D′.

For a set of facts I we write adom(I) to denote the set of

all values that occur in the facts of I.

Location specifier and timestamp.
Let D be a database schema. We want to associate a lo-

cation specifier and a discrete timestamp to facts over D.
The intuition of a fact R(x, s, v̄) with location specifier x
and timestamp s will be that R(v̄) holds in node x at step
s, where s is the local time in x. We will always take times-
tamps to be values in N. Formally, we do this by considering
facts over extended schemas of D, as follows.

First, we write DL to denote the database schema ob-
tained from D by incrementing the arity of every relation
by one. The extra component for every relation will contain
the location specifier, which is by convention the first com-
ponent of a fact. For a database instance I over DL we write
I|x to denote the facts of I that have location specifier x.

Secondly, we write DLT to denote the database schema
obtained from D by incrementing the arity of every relation
by two. The two extra components will contain the location
specifier and timestamp, which are by convention the first
and second components of a fact. For a database instance
I over DLT we write I|x,s to denote the facts of I that have
location specifier x and timestamp s.

For a fact f over DL and a timestamp s ∈ N, we write f↑s

to denote the fact over DLT obtained by adding timestamp
s to f . For example, R(x, a)↑5 = R(x, 5, a). We also use
this notation for a set of facts, with the meaning that the
timestamp is added to every fact of the set. Conversely, for
a fact f over schema DLT we write f↓ to denote the fact
over schema DL obtained by removing the timestamp. For
example, R(x, 5, a)↓ = R(x, a).

2.1 Network and distributed databases
A network is a nonempty finite set of nodes N , which are

values in dom. Intuitively, N represents a set of identifiers
of compute nodes involved in a distributed system. Explicit
edges (channels) are not necessary because we work in a
model where any node x can send a message to any other
node y, as long as x knows about y, from input tables or
from messages that x received itself. When using Dedalus
for general distributed or cluster computing, the delivery of
messages is handled by the network layer which is abstracted
away. But Dedalus programs can also be used to describe
the network layer itself [24]. In that case we would restrict
attention to programs where nodes only send messages to
nodes to which they are linked; these nodes would again be
provided as input.

A distributed database instance H over N and a database
schema D is a total function mapping every node of N to
a finite database instance over D. For a node x ∈ N , we
denote H|x = {R(x, ā) | R(ā) ∈ H(x)}, which is a database
instance over DL. This represents how data is spread over
the nodes of a network.

2.2 Datalog with negation
We recall the language Datalog with negation (and non-

equalities) as a database query language [4]. We abbreviate
this language as Datalog¬ and we formally define it below.
We use a slightly unconventional formalization.

Let var be a universe of variables, disjoint from dom.
An atom is of the form R(u1, . . . , uk) where R is a relation
name and ui ∈ var ∪ dom for i = 1, . . . , k. We call R the
predicate. If an atom contains no data values, then we call

2

it constant-free. A literal is an atom or a negated atom. A
literal that is an atom is called positive and otherwise it is
called negative.

A Datalog¬ rule ϕ is a four-tuple

(head(ϕ), pos(ϕ),neg(ϕ),neq(ϕ))

where head(ϕ) is an atom, pos(ϕ) and neg(ϕ) are sets of
atoms, and neq(ϕ) is a set of nonequalities of the form u 6= v
where u, v ∈ var ∪ dom. The components head(ϕ), pos(ϕ)
and neg(ϕ) are called respectively the head, the positive body
atoms and the negative body atoms. The union of the last
two sets is called the body atoms. Importantly, the set neg(ϕ)
contains just atoms, not negative literals. Every Datalog¬

rule ϕ must have a head, whereas pos(ϕ), neg(ϕ) and neq(ϕ)
may be empty. If neg(ϕ) = ∅ then ϕ is called positive. If
all atoms comprising ϕ are constant-free, then ϕ is called
constant-free.

A rule ϕ may be written in the conventional syntax. For
instance, if head(ϕ) = T (u, v), pos(ϕ) = {R(u, v)}, neg(ϕ) =
{S(v)} and neq(ϕ) = {u 6= v}, then we can write ϕ as

T (u, v)← R(u, v),¬S(v), u 6= v.

We require rules ϕ to be safe in the sense that the vari-
ables occurring in head(ϕ), neg(ϕ) and neq(ϕ) must occur
in pos(ϕ). The set of variables of ϕ is denoted vars(ϕ). If
vars(ϕ) = ∅ then ϕ is called ground, in which case we will
consider {head(ϕ)} ∪ pos(ϕ) ∪ neg(ϕ) to be a set of facts.

Let D be a database schema. A rule ϕ is said to be
over schema D if for each atom R(u1, . . . , uk) ∈{head(ϕ)}∪
pos(ϕ)∪neg(ϕ) we have R(k) ∈ D. Then a Datalog¬ program
P over D is a set of safe Datalog¬ rules over D. We call P
constant-free if all rules in P are constant-free. The database
schema that P is over will also be denoted as sch(P). We de-
fine idb(P) ⊆ sch(P) to be the database schema consisting
of all relations occuring in rule-heads of P . We abbreviate
edb(P) = sch(P) \ idb(P). An input for P is a database
instance over sch(P). Note that we allow inputs to already
contain facts over idb(P), cf. Section 3.1.

Let P be a Datalog¬ program. Let I be an instance over
sch(P). Let ϕ ∈ P . A valuation for ϕ is a total function
V : vars(ϕ) → dom. We define the application of V to an
atom R(u1, . . . , uk), denoted V (R(u1, . . . , uk)), as the fact
R(a1, . . . , ak) where for i = 1, . . . , k we have ai = V (ui)
if ui ∈ var and ai = ui otherwise. In words: variables
are replaced by data values and the old data values are left
unchanged. This notation is naturally extended to a set of
atoms, which results in a set of facts. Now, the valuation V
is said to be satisfied on I if V (pos(ϕ)) ⊆ I, V (neg(ϕ)) ∩
I = ∅ and V (u) 6= V (v) for each nonequality (u 6= v) ∈
neq(ϕ). If V is satisfied on I, then ϕ is said to derive the
fact V (head(ϕ)).

2.2.1 Positive and semi-positive
Let P be a Datalog¬ program. We say that P is positive

if it has only positive rules. We say that P is semi-positive
if for each rule ϕ ∈ P all predicates used in neg(ϕ) are
contained in edb(P). Naturally, positive programs are semi-
positive.

Let P be a semi-positive Datalog¬ program. We now give
the semantics of P [4]. We define the immediate consequence
operator TP that maps each instance J over sch(P) to the
instance J ′ = J ∪ A where A contains the facts derived by
all possible satisfying valuations for the rules of P on J .

Let I be an instance over sch(P). Consider the infinite
sequence I0, I1, I2, etc, with I0 = I and Ii = TP (Ii−1) for
i ≥ 1. We define the output of P on input I, denoted P (I),
as
⋃
l Il; this is the minimal fixpoint of the TP operator

containing I. When I is finite, the fixpoint is finite and can
be computed in polynomial time.

2.2.2 Stratified semantics
We now recall the notion of stratified semantics for a

Datalog¬ program [4]. A Datalog¬ program P is called syn-
tactically stratifiable if there is a function σ : idb(P) →
{1, . . . , |idb(P)|} such that for each rule ϕ ∈ P , with head
predicate T , the following conditions are satisfied:

• σ(R) ≤ σ(T) for each R(v̄) ∈ pos(ϕ)|idb(P);

• σ(S) < σ(T) for each R(v̄) ∈ neg(ϕ)|idb(P).

For R ∈ idb(P), we call σ(R) the stratum number of R. For
technical convenience, we may assume that if there is an
R ∈ idb(P) with σ(R) > 1 then there is an S ∈ idb(P) with
σ(S) = σ(R)−1. Intuitively, the function σ partitions P into
a sequence of semi-positive Datalog¬ programs P1, . . . , Pk
with k ≤ |idb(P)| such that for i = 1, . . . , k program Pi is the
set of rules of P whose head predicate has stratum i. Rules
with the same head predicate are in the same semi-positive
program. This sequence is called a syntactic stratification
of P . We can now apply the stratified semantics to P : for
an input I over sch(P), we first compute the fixpoint P1(I),
then the fixpoint P2(P1(I)), etc. The output of P on I is
then defined as P (I) = Pk(Pk−1(. . . P1(I) . . .)). It is well
known that the output of P does not depend on the chosen
syntactic stratification.

Not all Datalog¬ programs are syntactically stratifiable.

2.2.3 Stable model semantics
We now recall the notion of stable model semantics [17,

27]. Let P be a Datalog¬ program and let I be a database
instance over sch(P). Let ϕ ∈ P . Let V be a valuation for
ϕ whose image is contained in adom(I). Together, V and ϕ
give rise to a ground rule ψ, that is precisely ϕ except that
each u ∈ vars(ϕ) is replaced by V (u). We call ψ a ground
rule of ϕ with respect to I. Let ground(ϕ, I) denote the set
of all ground rules of ϕ we can make with respect to I. The
ground program of P on input I, denoted ground(P, I), is
defined as

⋃
ϕ∈P ground(ϕ, I).

Let M be a set of facts over the schema sch(P). We
write groundM (P, I) to denote the program obtained from
ground(P, I) as follows:

1. remove every rule ψ ∈ ground(P, I) for which neg(ψ)∩
M 6= ∅;

2. remove the negative (ground) body atoms from all re-
maining rules.

Note that groundM (P, I) is a positive program. We say that
M is a stable model of P on input I if M is the output
of groundM (P, I) on input I. This implies I ⊆ M by the
semantics of positive Datalog¬ programs.

Not all Datalog¬ programs have stable models on every
input.

3

2.3 Dedalus programs
We now recall the language Dedalus [7, 8, 20]. Essentially,

Dedalus is a fragment of Datalog¬ extended with dedicated
time-relations and choice-operators.

A choice-operator is of the form choice(〈x̄〉, 〈ȳ〉) where x̄
and ȳ are sequences of variables [22, 27]. Intuitively, this
expresses a functional dependency x̄→ ȳ.

We define the database schemaDtime = {time(1), tsucc(2)}.
Intuitively, a database instance over Dtime provides a uni-
verse of discrete timestamp values with a successor relation.
Specifically, the only instance that we will use over this
schema will have time = N and tsucc = {(s, s+ 1) | s ∈ N}.

Now, let D be a database schema, with relation names
disjoint from those in Dtime. We first define the general
form that all Dedalus rules obey; afterwards we will restrict
attention to the three specific cases that are allowed to occur
in a program. Formally, a general Dedalus rule ϕ over D is
a constant-free Datalog¬ rule over schema DLT ∪Dtime with
an additional set cho(ϕ) of choice-operators:

(head(ϕ), pos(ϕ),neg(ϕ),neq(ϕ), cho(ϕ))

where the components head(ϕ), pos(ϕ), neg(ϕ) and neq(ϕ)
are as defined for Datalog¬ rules and where two restrictions
are satisfied: (i) the predicate of head(ϕ) must be in DLT;
(ii) all variables occurring in cho(ϕ) must be in vars(ϕ),
which is simply an extension of the safety requirement.

Next we restrict attention to three specific forms of Dedalus
rules. A crucial notation thereto is B{x, s | ū}, which de-
notes any body β that is a sequence of nonequalities and
literals over database schema DLT, such that

• all literals from β have the same variables x and s on
the location specifier and timestamp component re-
spectively;

• s occurs only in the timestamp component of these
literals;1 and

• the variables that occur in β are precisely x, s and ū.

Consider a general Dedalus rule ϕ over schema D.

• We call ϕ deductive if it is of the form

R(x, s, v̄)← B{x, s | v̄, w̄}.

In this form no relations over Dtime are used. The location
specifier and timestamp are the same for all atoms in the
body and the head.

• We call ϕ inductive if it is of the form

R(x, t, v̄)← B{x, s | v̄, w̄}, tsucc(s, t).

The location specifier in the head is the same as in the body.
The timestamp of the head is the successor of the timestamp
in the body.

• We call ϕ asynchronous if it is of the form

R(y, t, v̄)← B{x, s | v̄, w̄, y}, time(t), choice(〈x, s, y, v̄〉, 〈t〉).

The location specifier and timestamp variables of the head
may now be different from those in the body. Intuitively, the

1In some earlier presentations of Dedalus [7], s is also al-
lowed to occur in other places within the body. This very
powerful feature has been called “temporal entanglement”
and allows the simulation of arbitrary Turing machines [9].
We do not consider it here.

choice-operator enforces the restriction that the timestamp
in the head is functionally determined by the other variables
in the head and the location specifier and timestamp in the
body.

To illustrate, if D = {R(2), S(1), T (2)} then the following
three rules are examples of, respectively, deductive, induc-
tive and asynchronous rules over D:

R(x, s, u, v) ← T (x, s, u, v),¬S(x, s, v).

R(x, t, u, v) ← T (x, s, u, v), tsucc(s, t).

R(y, t, u, v) ← T (x, s, u, v), S(x, s, y), time(t),

choice(〈x, s, y, u, v〉, 〈t〉).

We define:

Definition 2.1. A Dedalus program over schema D is a
finite set P of Dedalus rules over D such that each rule is
deductive, inductive, or asynchronous, and such that the set
of deductive rules from P is syntactically stratifiable.

We denote sch(P) = D, so not including Dtime. Because
P is a set of rules, the definitions of idb(P) and edb(P) are
like for Datalog¬ programs.

An input for P is a distributed database instance H over
some network N and the schema edb(P).

Note that we have defined Dedalus programs to be constant-
free, as is common in the theory of database query languages,
and which is not really a limitation, since constants that are
important for the program can always be indicated by unary
relations in the input.

2.4 Vector clocks
Vector clocks are a common technique to represent the

relative order of events in a distributed system, also known
as the causal order [12]. Specifically, in our two semantics for
Dedalus, vector clocks will allow us to reason about which
messages (possibly indirectly) caused other messages to be
sent.

Let N be a network. Formally, a vector clock over N is a
function v that maps each node x ∈ N to a number in N. It
is common to consider a vector clock to be an array, so for
x ∈ N we will write v [x] to mean v(x).

For each network N , we can define a partial order � on
vector clocks over N as follows: for two vector clocks v1 and
v2, we write v1 � v2 iff v1[x] ≤ v2[x] for all x ∈ N . For
two vector clocks v1 and v2 we write v1 ≺ v2 if v1 � v2 and
v1 6= v2.

3. OPERATIONAL SEMANTICS
In this section we give an operational semantics for Dedalus.

We describe how a network executes a Dedalus program P
when a distributed input database is given. The nodes of
the network are made active one by one in some arbitrary
order, and this continues an infinite number of times. Dur-
ing each active moment, called a (local) step, a node receives
messages and derives facts by means of simplified deductive,
inductive and asynchronous rules. The ordinal of the step
of a node is called the timestamp, which can be regarded as
a local clock value. For technical convenience these ordinals
begin at value 0.

3.1 Simplified rules
Let P be a Dedalus program. For a rule ϕ ∈ P we define

the simplified version s(ϕ) = ϕ′, as follows:

4

• head(ϕ′) = head(ϕ)↓;

• pos(ϕ′) =
(
pos(ϕ)|sch(P)

)↓
;

• neg(ϕ′) =
(
neg(ϕ)|sch(P)

)↓
;

• neq(ϕ′) = neq(ϕ); and,

• cho(ϕ′) = ∅.

In words: we drop the use of relations in Dtime, the choice-
operators and the variables on timestamp components. To
illustrate, consider the following (asynchronous) rule ϕ:

T (y, t, u) ← R(x, s, y, u),¬S(x, s, u), x 6= y,

time(t), choice(〈x, s, y, u〉, 〈t〉).

The rule s(ϕ) is then:

T (y, u)← R(x, y, u),¬S(x, u), x 6= y.

Note that all atoms that make up the simplified rules are
over a relation in sch(P)L.

We define deduc(P) to be the Datalog¬ program consist-
ing of precisely all simplified deductive rules of P . Note that
this program is syntactically stratifiable because the deduc-
tive rules of P are syntactically stratifiable. Similarly, we
define induc(P) and async(P) to be respectively the set of
all simplified inductive rules of P and the set of all simplified
asynchronous rules of P . It is possible that induc(P) and
async(P) are not syntactically stratifiable.

Let I be a database instance over sch(P)L. The output of
deduc(P) on input I, denoted deduc(P)(I), is given by the
stratified semantics. Importantly, I is allowed to contain
facts over idb(P)L and the intuition is that these facts are
already derived on a previous timestamp (by an inductive
rule). The need for this will become clear in Section 3.2.

We define the output of induc(P) on input I to be the
set of facts derived by the rules of induc(P) for all possible
valuations that are satisfied in I, in just one derivation step.
Intuitively, there is no fixpoint in this definition because
facts derived for the next timestamp are not visible at the
current timestamp and can thus not be used again to derive
more facts. This output is denoted as induc(P)(I). The
output for async(P) on input I is defined similarly to that
of induc(P), of course using the rules of async(P) instead
of induc(P). The intuition for not requiring a fixpoint for
async(P) is that a message fact will arrive at a later moment
than when it was sent and will therefore not be used again
to derive more facts.

3.2 Transitions and runs
Let P be a Dedalus program. Let H be an input dis-

tributed database instance for P , over a network N .
We define a configuration ρ of P on N to be a pair (sρ, bρ)

where sρ is a set of facts over sch(P)L and bρ is a set of
pairs 〈k,f〉 with k ∈ N and f is a fact over database schema
idb(P)L. The location specifiers of facts in sρ or bρ must be
contained in N , and this way we can uniquely identify the
node to which a fact belongs. We call sρ the state and bρ

the (message) buffer respectively.
Intuitively, a configuration describes the network at a cer-

tain point in its evolution: it says something about the state
of each node and about the message buffer of each node. The
message buffer represents per node the messages that have

been sent to that node but that the node has not yet re-
ceived. Thus, one should not think of the buffer as a queue
of already delivered messages, but rather as representing the
messages that are still floating around in the network. The
number k attached to a fact f in bρ, as 〈k,f〉, indicates that
f was sent at global transition number k. This will be made
precise below.

The start configuration of P on input H, denoted by
start(P,H), is the configuration ρ defined by sρ =

⋃
x∈N H|

x

and bρ = ∅.
We will now define the transitions to go from one config-

uration to another, called global transitions. They describe
how one active node does a local computation step to up-
date its state and to send messages around the network. We
call this active node the recipient and its local computation
step is formalized by means of a local transition. Formally, a
local transition is a four-tuple (I, Ircv, J, Jsnd), also denoted
as

I, Ircv −→ J, Jsnd,

where

• I is a finite database instance over the schema sch(P)L;

• Ircv is a finite database instance over the schema idb(P)L;

• letting D = deduc(P)(I ∪ Ircv), we have

J = I|edb(P) ∪ induc(P)(D).

• Jsnd = async(P)(D) with D as above.

Intuitively, instances I and Ircv represent the old state and
incoming messages, respectively. The instances J and Jsnd
represent the new state and outgoing messages, respectively.
Instance J preserves the input facts of I (having their pred-
icate in edb(P)) and it also includes all facts derived in-
ductively from the old state and incoming messages. This
represents mutable state for the relations in idb(P), where
only the facts that are explicitly derived are preserved. Con-
ceptually, the inductive and asynchronous rules are applied
after deduc(P) has completed the information in I ∪ Ircv.
This way of defining local transitions is the same as was
done for WebDamLog [3].

Note that local transitions are deterministic, in the sense
that if I, Ircv −→ J, Jsnd and I, Ircv −→ J ′, J ′snd are local tran-
sitions, then J = J ′ and Jsnd = J ′snd. Local transitions are
computable in polynomial time.

For a set of facts I and a number i ∈ N we define the set
of pairs tag(i, I) = {〈i,f〉 | f ∈ I}. For a set m of such
pairs we define untag(m) = {f | ∃k : 〈k,f〉 ∈ m}.

Now we are ready to describe global transitions. Formally,
a global transition of P on N with send-tag i ∈ N is a five-

tuple (ρ1, x,m, i, ρ2), also denoted as ρ1
x,m−−→
i

ρ2, where

• ρ1 and ρ2 are two configurations of P on N ;

• x ∈ N ;

• m ⊆ bρ1 , such that all facts in m have location specifier
x;

• there exist database instances J and Jsnd over sch(P)L

and idb(P)L respectively such that

sρ1 |x, untag(m) −→ J, Jsnd

5

is a local transition of P and

sρ2 = (sρ1 \ sρ1 |x) ∪ J ;

bρ2 = (bρ1 \m) ∪ tag(i, δ)

with δ =
⋃
y∈N Jsnd|

y.

In the definition of global transition, we call x the recipi-
ent, m the set of delivered messages and δ the set of sent
messages. Intuitively, a global transition expresses that the
node x receives some messages addressed to it (without the
attached number) and locally executes the program P . Pos-
sibly new messages are generated this way; the set δ repre-
sents the generated messages. Also, note that the location
specifiers in J will all be x because (i) all location specifiers
in sρ1 |x ∪untag(m) are x and (ii) J is defined only in terms
of deductive and inductive rules. For the location specifiers
in Jsnd this does not hold because Jsnd is also defined in
terms of asynchronous rules. The send-tag i is attached to
each fact of δ, and the resulting pairs are placed in the mes-
sage buffer. The facts in Jsnd with a location specifier not in
N are ignored. The send-tags help us differentiate between
multiple instances of the same message that are sent dur-
ing different global transitions. We could have equivalently
modeled the message buffer as a multiset of message facts,
without any numbers attached to them. The current mod-
elling however turns out to be technically more convenient
for talking about when a sent message arrives, as we will see
in Section 3.3. Importantly, the send-tags are not visible to
the Dedalus program, i.e., to the local transitions.

Note that in a global transition as above, ρ2 is uniquely
determined given ρ1, x, and m, but because from a given
configuration ρ1 there may be many choices of recipient x
and of set m of delivered messages, the global transition
system is highly non-deterministic. Now let H be an input
distributed database instance for P , over a network N . A
run R of P on input H is defined as an infinite sequence of
global transitions

ρ0
x0,m0−−−−→

0
ρ1, ρ1

x1,m1−−−−→
1

ρ2, ρ2
x2,m2−−−−→

2
ρ3, . . .

where ρ0 = start(P,H). Note that the next global transition
starts from the ending configuration of the previous global
transition. We refer to the global transitions with indices
i ∈ N (where the first transition has index 0). In a run
an infinite number of global transitions is always possible
because the set of delivered messages may be empty. Note
also that m0 = ∅ because bρ0 = ∅. Finally, note that the
local transition happening in each global transition of a run
involves finite instances only, because the start configuration
given by H is finite (by definition of distributed database
instance).

An important aspect of the operational semantics given
here is that the predicate of every message fact is simply a
relation name of sch(P) itself. This allows the local (sim-
plified) Dedalus rules of a recipient node to treat received
message facts in the same way as facts in its old state, i.e.,
there is no noticeable difference. From this viewpoint, com-
munication is in some sense transparent to the nodes, which
is one of the design principles of Dedalus.

3.3 Fairness and arrival function
In the literature on process models it is customary to re-

quire certain “fairness” conditions on the execution of a sys-
tem [16, 11, 23].

Let P be a Dedalus program. Let H be an input dis-
tributed database instance for P , over a network N . Let
R be a run of P on H. Write global transition i of R as

ρi
xi,mi−−−−→
i

ρi+1. We call R fair if (i) every node of N is the

recipient in an infinite number of global transitions of R and
(ii) for each i ∈ N and for each 〈k,f〉 ∈ bρi , there exists a
j ≥ i such that 〈k,f〉 ∈ mj .

Intuitively, fairness disallows “starvation”: it requires that
every node does an infinite number of local computation
steps and that every sent message is eventually delivered.
In this last condition, it is possible that j = i, and in that
case 〈k,f〉 is delivered in the global transition immediately
following configuration ρi. Also, it follows from the opera-
tional semantics that this j is unique for 〈k,f〉. Hence we
will denote j as αR(k,f). This function αR is called the
arrival function, and its domain is sent(R) =

⋃
i∈N tag(i, δi)

where δi is the set of sent messages during global transition
i. Intuitively, for every global transition index k, for every
sent message f ∈ δk, the function αR maps the pair (k,f)
to the global transition index j in which 〈k,f〉 is delivered.
An important property of the arrival function is that for
(k,f) ∈ sent(R) we have αR(k,f) > k. Indeed, the de-
livery of a message can only happen after it was sent. So,
when the delivery of one message causes another to be sent,
then the second one is delivered in a later global transition.
When R is clear from the context, we write α instead of αR.

Importantly, when we consider a run in this text, this run
is assumed to fair, unless explicitly stated otherwise.

4. DECLARATIVE SEMANTICS
In this section we give a declarative semantics to any

Dedalus program by using the stable model semantics ap-
plied to a pure Datalog¬ program, obtained from the Dedalus
program. The Datalog¬ program is described in Section 4.1.

4.1 Causality transformation
Let P be a Dedalus program. In the following, we describe

how to construct a pure Datalog¬ program, pure(P), that is
based on P . Intuitively, this program enforces the communi-
cation, as represented by the asynchronous rules of P , to be
causal in the sense that a message sent by a node x at local
timestamp s cannot directly or indirectly cause a message
to arrive in the past of node x, thus before local timestamp
s. We call pure(P) the causal version of P . The key idea in
its construction is inspired by the temporal constraints that
arise from causally-ordered vector clocks.

We define pure(P) incrementally. All rules we add are
constant-free. First, we add to pure(P) all deductive and
inductive rules of P . These do not contain choice-operators.
Now to augment pure(P) further, we assume without loss
of generality that the following relation names do not yet
occur in sch(P) ∪ Dtime: notZero, zero, <, ≤, rcvClock,
isBehind, clock, all, and for each relation name R in
idb(P) the relation names Rsnd, chosenR and otherR. The
relations < and ≤ are binary and will be written in infix
notation. We add the following auxiliary rules to pure(P),
just to get the value zero:

notZero(t)← tsucc(s, t). (4.1)

zero(t)← time(t),¬notZero(t). (4.2)

To represent vector clocks, we add the following rules to

6

pure(P), for which we give the intuition afterwards:

rcvClock(x, s, y, s)← all(x), all(y), x 6= y,

zero(s).
(4.3)

rcvClock(x, s, x, s′)← all(x), tsucc(s, s′). (4.4)

rcvClock(x, s′, y, t)← clock(x, s, y, t), x 6= y,

tsucc(s, s′).
(4.5)

isBehind(x, s, y, t)← rcvClock(x, s, y, t),

rcvClock(x, s, y, t′),

t < t′.

(4.6)

clock(x, s, y, t)← rcvClock(x, s, y, t),

¬isBehind(x, s, y, t).
(4.7)

Here, the relation all holds all nodes of the network and
will be initialized as an EDB relation. A fact of the form
rcvClock(x, s, y, t) expresses that node x at its local time
s has a lower-bound estimate that node y’s local clock has
advanced to be at least value t. Possibly x = y. There can
be multiple rcvClock-facts with the first three components
and these represent different estimates that node x at its
local time s has about y’s clock. By contrast, a fact of the
form clock(x, s, y, t) expresses that x at its local time s has
settled on the largest estimate t about y’s clock. So, relation
clock represents the actual vector clock.

The intuition behind the above rules (which are not strat-
ified) is the following. Rule (4.3) expresses the initialization
of clock estimates on node x: the clocks for the other nodes
y are assumed to be at least zero. Rule (4.4) expresses how
the node x updates its own local component in the vector
clock, which is uniformly represented as a rcvClock-fact.
Intuitively, the use of tsucc(s, s′) is to make sure that when
x sends a message to itself, the arrival timestamp can be
chosen to be strictly larger than the timestamp when it was
sent. Rule (4.5) expresses that at the next timestamp, a
node x knows its previous vector clock, for nodes different
from x. This way the component of a node y in the new
vector clock is at least the previous value. Rules (4.6) and
(4.7) compute for node x and its local timestamp s the max-
imum clock estimate t for the node y. Naturally, because in
the above rules x is just a variable, the rules compute the
vector clock on every node. Importantly, as we will see be-
low, a fact of the form rcvClock(x, s, y, t) can also arise from
communication between nodes.

The previous rules are always added to pure(P). Finally
we have to add rules based on what asynchronous rules occur
in P . The construction described next needs to be performed
for each asynchronous rule. Using the notations from Sec-
tion 2.3, suppose we have the following asynchronous rule in
P :

R(y, t, v̄)← B{x, s | v̄, w̄, y}, time(t), choice(〈x, s, y, v̄〉, 〈t〉).

Based on this rule, we add to pure(P) the following rules:

Rsnd(x, s, y, t, v̄) ← B{x, s | v̄, w̄, y}, all(y),

clock(x, s, y, u), time(t), u ≤ t,
chosenR(x, s, y, v̄, t). (4.8)

chosenR(x, s, y, v̄, t) ← B{x, s | v̄, w̄, y}, all(y),

clock(x, s, y, u), time(t), u ≤ t,
¬otherR(x, s, y, v̄, t). (4.9)

otherR(x, s, y, v̄, t) ← B{x, s | v̄, w̄, y}, all(y),

clock(x, s, y, u), time(t), u ≤ t,
chosenR(x, s, y, v̄, t′),

t 6= t′. (4.10)

R(y, t, v̄)← Rsnd(x, s, y, t, v̄). (4.11)

rcvClock(y, t, z, u) ← Rsnd(x, s, y, t, v̄),

clock(x, s, z, u). (4.12)

The intuition behind these rules is as follows. Rule (4.8)
represents the sending of R-messages that are generated by
the original asynchronous rule from P . Relation Rsnd con-
tains all R-messages that are sent, with some additional in-
formation: the sender x, the local clock s of x at the moment
of sending, and the local clock value t of recipient node y at
the moment of arrival. Intuitively, to compute relation Rsnd,
the sending node x looks at his vector clock to know the best
estimate u for the local clock of y. The node x then knows
that when it sends a message to node y, then that message
will arrive at a local clock value t of y that is at least u. If we
assume that in relation chosenR the last component is func-
tionally determined by the set of all other components, then
the body of rule (4.8) uses relation chosenR to select only
one arrival time for the message. Also, if we assume that
relation all contains precisely the nodes of a network, then
the body atom all(y) allows sending only to valid nodes,
and this reflects the operational semantics. Whenever we
write “Rsnd” in this text, it is meant that R is a relation
name in sch(P) and that Rsnd is a relation name obtained
after applying the above transformation.

Rules (4.9) and (4.10) together enforce the functional de-
pendency x, s, y, v̄ → t expressed by choice(〈x, s, y, v̄〉, 〈t〉).
These rules simulate choice using non-stratified negation as
pioneered by Saccà and Zaniolo [27].

Rule (4.11) represents the arrival of an R-message. The
data-tuple v̄ becomes part of node y’s state for the local
arrival time. As the node y works with relation R, it thus
transparantly reads the R-messages. This corresponds well
to the operational semantics of Section 3.

Rule (4.12) delivers to the recipient y at the local arrival
time t the entire vector clock of the sender x at the local
sending time s. Intuitively, the idea is that the vector clock
of y will incorporate the estimates in node x’s vector clock,
so that when node y later replies (possibly indirectly) to x,
that reply will arrive at a later timestamp of x than s.

If there are multiple asynchronous rules in P with head
predicate R, then their corresponding Rsnd-rules all use the
same relation chosenR in their body. This is to express
set sending semantics: at any given moment, a node can
only send a set of facts, not a multiset. Indeed, the sharing
of relation chosenR makes sure that if the same message
fact is generated by multiple asynchronous rules with head
relation Rsnd, then the timestamp of arrival is always the
same. If there are multiple asynchronous rules in P with
head relation R, then there are also multiple rules in pure(P)
with head relation chosenR and otherR. The arity of these
head relations is always the same because (i) the number of
variables mentioned in a choice-operator of an asynchronous
rule is the number of variables in the head plus two (the
variables for the body location specifier and timestamp);
and (ii) the different asynchronous rules with head relation

7

R all have the same head arity, namely, the arity of R given
by the schema plus two.

Because P is constant-free, pure(P) is as well.

4.2 Input and stable models
Now we define the actual declarative semantics for Dedalus.

Let P be a Dedalus program. Let H be an input distributed
database instance for P , over a network N . Let pure(P)
be as described in Section 4.1. We now describe an input
database instance decl(H) for pure(P).

First we define the set of facts decl(N) = {all(x) | x ∈
N}. Also, let Itime be the set of facts consisting of

• {time(s), tsucc(s, s+ 1) | s ∈ N};

• {< (s, s′) | s, s′ ∈ N, s < s′};

• {≤ (s, s′) | s, s′ ∈ N, s ≤ s′}.

We define decl(H) to be the database instance over the

schema edb(P)LT∪{all(1)}∪Dtime∪{<(2),≤(2)} consisting
of the following facts:⋃

x∈N

⋃
s∈N

(H|x)↑s ∪ decl(N) ∪ Itime.

The first term of the above union makes for each node its
local input facts available at all local timestamps. The sec-
ond term gives the set of all nodes. The third term provides
relations containing the discrete timestamps and compari-
son relations. Note that because the set N is infinite, the
instance decl(H) contains infinitely many facts.

We now define the declarative semantics for Dedalus pro-
grams:

Definition 4.1. Any stable model of pure(P) on input
decl(H) is called a model of P on input H.

Recall from Section 4.1 that relation name all is not used
in the rules of the original Dedalus program P . So, if the
rules of P need access to node identifiers, then those must
be explicitly provided by some input relations or they must
be received from other nodes by means of messages.

4.3 Fairness
Like for the operational semantics, we now give a fairness

condition on the declarative semantics. Let P be a Dedalus
program. Let H be an input distributed database instance
for P , over a networkN . LetM be a stable model of pure(P)
on input decl(H).

We say that M is fair if for each pair (x, s) ∈ N × N the
following subset of M is finite:

{Rsnd(y, t, z, u, ā) ∈M | (z, u) = (x, s) and R ∈ sch(P)}.

Intuitively, this means that only a finite number of messages
arrive at node x at local timestamp s.

While our main theorem formally justifies this definition,
a partial intuition behind it can be found in the operational
semantics: in a fair run, every node is the recipient in an
infinite number of global transitions and every message is
eventually delivered. This prevents the message buffer of
every node from becoming infinitely large and thus it only
receives finite sets of delivered messages at any of its lo-
cal timestamps. This intuition is only partial, because the
notion of stable model itself also rules out some unfair situ-
ations. Indeed, our work leaves open an interesting problem
in connection with unfair runs: see the Conclusion.

5. TRACE
In this section we show how to associate with each run of

a Dedalus program a set of facts that naturally expresses its
computation. This set of facts is called the trace. This will
allow us to unite the operational and declarative semantics.

As an auxiliary construct, in the first subsection we asso-
ciate vector clocks with the global transitions of a run.

5.1 Vector clocks
Let P be a Dedalus program. Let H be an input dis-

tributed database instance for P , over a network N . Let
R be a run of P on input H. We write xi to denote the
recipient during global transition i of R. Below we will de-
fine for each global transition index i a vector clock vR(i).
Intuitively, vR(i) is associated with the local transition of
the recipient xi.

We will need the following auxiliary functions. First,
for each global transition index i and y ∈ N , we define
localR(i, y) to be the number of global transitions in R that
come strictly before i and in which y is the recipient. Thus,
if local clock values start at 0, the value localR(i, y) can be
thought of as the local clock value that node y will be at the
next time it is the recipient in a global transition j ≥ i. We
abbreviate localR(i, xi) as localR(i). Secondly, for a global
transition index i we define prevR(i) to be the set contain-
ing the largest global transition index j < i of R in which
xj = xi and if no such j exists, then prevR(i) is empty.
Thus prevR(i) contains at most one element.

Let α be the arrival function for R. Now we define the
vector clocks, by induction on the global transition index i.
For the base case (global transition 0), we define vR(0)[x0] =
1 and vR(0)[y] = 0 for each y ∈ N with y 6= x0. For the
inductive step, we define vR(i)[xi] = localR(i) + 1, and for
each y ∈ N with y 6= xi we define

vR(i)[y] = max
(
{0} ∪ µR(i, y) ∪ πR(i, y)

)
where

µR(i, y) = {vR(k)[y] | ∃f : (k,f) ∈ sent(R), α(k,f) = i},
πR(i, y) = {vR(j)[y] | j ∈ prevR(i)},

and sent(R) is as defined in Section 3.3. In the definition of
µR(i, y), we have k < i by definition of α, so the induction
is well-founded. Intuitively, if we imagine that during every
global transition j < i the node xj attaches its local vector
clock vR(j) to all messages its sends, then µR(i, y) is the set
of all the clock estimates that nodes have about y and that
were attached to messages delivered to node xi during global
transition i. Next, πR(i, y) is the singleton set containing the
previous vector clock value that xi had about y if there was a
previous transition with recipient xi, and otherwise πR(i, y)
is empty. The addition of the set {0} is because µR(i, y)
and πR(i, y) can be empty. The reason for calculating the
maximum in the definition of vR(i)[y] is that we want the
highest estimate about node y’s clock value.

The following property states that the vector clock’s esti-
mate about the clock value of other nodes y is never larger
than the real clock value of those nodes y.

Proposition 5.1. Let P be a Dedalus program. Let H be an
input distributed database instance for P , over a network N .
Let R be a run of P on input H. Let i be a global transition
index. For y ∈ N , if xi 6= y then vR(i)[y] ≤ localR(i, y).

The proof is in the Appendix (Proposition D.1).

8

5.2 Trace definition
Let P be a Dedalus program. Let H be an input dis-

tributed database instance for P , over a network N . Let R
be a run of P on input H. Recall the pure Datalog¬ version
pure(P) as defined in Section 4.1. In this section we do not
really need pure(P) itself, but we are going to define for R a
set of facts over the schema of pure(P) that represents the
computation of R. This set is called the trace of R.

We write global transition i of R as ρi
xi,mi−−−−→
i

ρi+1.

First, let M−1 be the set consisting of the following facts:

• decl(N) and Itime, as defined in Section 4.2;

• {rcvClock(x, 0, y, 0) | x, y ∈ N , x 6= y};

• {notZero(s) | s ∈ N \ {0}};

• zero(0).

Now, by induction, for global transition i of R we define
Mi as the union of Mi−1 with several different sets of facts,
that we individually motivate and describe next. Denote
s = localR(i).

First, we want to describe the state for node xi precisely at
local timestamp s. Intuitively, this state consists of the facts
over only the schema sch(P)LT that (i) were previously in-
ductively derived and that are now read during global tran-
sition i, or that (ii) result from freshly arrived messages mi

or that (iii) are deductively derived from the previous two.
This motivates the addition of the following set of facts to
Mi:

D↑si (5.1)

with Di = deduc(P)
(
sρi |xi ∪ untag(mi)

)
. Note that this

corresponds exactly to the operational semantics as defined
in Section 3.2.

A second aspect of the trace is the description of the vector
clocks. Specifically, for global transition i we have defined
in Section 5.1 the vector clock vR(i), the vector clock that
node xi has during its local timestamp s. Note that we
defined these vector clocks solely based on the operational
semantics, thus entirely independently of the causality rules
(4.3)–(4.7) in pure(P). We next add facts that represent the
operational vector clocks in terms of the predicates used in
the causality rules. Specifically, we add to Mi, in order, the
following sets of facts:

{rcvClock(xi, s, xi, s+ 1)}; (5.2)

{rcvClock(xi, s, y, t) | y ∈ N , xi 6= y, t ∈ πR(i, y)}; (5.3)

{isBehind(xi, s, y, t) | rcvClock(xi, s, y, t) ∈Mi,

rcvClock(xi, s, y, t
′) ∈Mi,

t < t′};
(5.4)

{clock(xi, s, y, t) | y ∈ N , t = vR(i)[y]}, (5.5)

where πR(i, y) is as defined in Section 5.1.
A third aspect of the trace is representing the message

sending in R, again in terms of the predicate names of
pure(P). Specifically, during global transition i the node
xi produces a set δi of sent messages (see the set δ in the
definition of global transitions in Section 3.2). Let f ∈ δi,
which is a fact of the form R(y, ā). The arrival function α
maps the pair (i,f) to the global transition index j in which
the pair 〈i,f〉 is delivered. The global transition index j can

be uniquely transformed to the local clock t = localR(j) of
the recipient y. Thus the arrival function directly specifies
at what local time of y each message of δi arrives. Also, it
follows from Proposition 5.1 that vR(i)[y] ≤ t. The facts
Rsnd(xi, s, y, t, ā) and chosenR(xi, s, y, ā, t) over the schema
of pure(P) capture the sending of f , including the arrival
time. All other local times t′ 6= t of y with vR(i)[y] ≤ t′ are
not arrival times for 〈i,f〉 and a fact otherR(xi, s, y, ā, t

′)
captures this. Finally, because α(i,f) = j, by definition of
vR(j) we have vR(i)[z] ≤ vR(j)[z] for each z ∈ N . To
model this with facts, we make for each z ∈ N a fact
rcvClock(y, t, z, u) with u = vR(i)[z]. When we general-
ize all of the previous fact-constructions to the entire set
δi, we have to add the following sets to Mi, where l(i,f)
abbreviates localR(α(i,f)):

{Rsnd(xi, s, y, t, ā) | f = R(y, ā) ∈ δi, t = l(i,f)}; (5.6)

{chosenR(xi, s, y, ā, t) | f = R(y, ā) ∈ δi, t = l(i,f)};
(5.7)

{otherR(xi, s, y, ā, t
′) | f = R(y, ā) ∈ δi, t′ ∈ N,

vR(i)[y] ≤ t′,
t′ 6= l(i,f)}; (5.8)

{rcvClock(y, t, z, u) | f = R(y, ā) ∈ δi, t = l(i,f),

z ∈ N , u = vR(i)[z]}. (5.9)

The attentive reader may wonder whether the rcvClock-
facts from (5.9) may have an influence on the addition of
the isBehind-facts from (5.4). But we can show that there
is no influence (see Lemma D.4 in the appendix).

Now we have defined Mi for each each global transition
index i. The trace of R is defined as:

M =
⋃

i∈N∪{−1}

Mi.

6. MAIN RESULT
Our main result shows a natural correspondence between

the operational and declarative semantics of Dedalus:

Theorem 6.1. For a Dedalus program P and an input dis-
tributed database instance H for P , the set of fair stable
models of pure(P) on input decl(H) equals the set of traces
of fair runs of P on input H.

The full proof is in the Appendix, but here we sketch the
proofs of the two directions of Theorem 6.1. In Section 6.1
we show that the trace of every fair run is a fair stable model
of the declarative semantics and in Section 6.2 we show that
for every fair stable model there exists a fair run having that
model as its trace.

We use the following notations. Let P be a Dedalus pro-
gram. Let H be an input distributed database instance for
P , over a networkN . LetM be a set of facts over the schema
of pure(P). The input instance H will always be clear from
the context, and therefore we write GM (P) to abbreviate
the ground program groundM (pure(P), decl(H)).

6.1 Run to stable model
Let P be a Dedalus program. Let H be an input dis-

tributed database instance for P , over a network N . Let
R be a fair run of P on input H. Let M be the trace of

9

R. Using the notations from Section 5.2, we have M =⋃
i∈N∪{−1}Mi. Let N be the least fixpoint of GM (P) on

input decl(H). We have to show that M = N and that M is
fair. We omit the fairness argument in this sketch and only
show M ⊆ N .

We write global transition i of R as ρi
xi,mi−−−−→
i

ρi+1, and

we abbreviate Si = sρi |xi ∪ untag(mi), Di = deduc(P)(Si)
and Ii = induc(P)(Di).

To show M ⊆ N we show Mi ⊆ N by induction on i =
−1, 0, 1, 2, etc. We omit the sketch for the base case. As in-
duction hypothesis, suppose that Mi−1 ⊆ N with i−1 ≥ −1.
Thus i ≥ 0. For the inductive step we have to show that the
sets (5.1) through (5.9) defined for global transition index
i are included in N . We show this for each set individu-
ally. Let localR(i) and prevR(i) be as defined in Section 5.1.
Denote s = localR(i).

Consider the set (5.1). It can be shown that S↑si ⊆ N .
Then, since deduc(P) is syntactically stratified, it can be

shown by induction on the strata that D↑si ⊆ N .
The set (5.2) for i is in N because these facts are derived

by ground rules of the form (4.4) in GM (P). To show that
the set (5.3) for i is in N , we can first apply the induc-
tion hypothesis to j ∈ prevR(i) with localR(j) = s − 1 to
know that the set (5.5) for j is in N , so for z ∈ N we have
clock(xi, s − 1, z, vR(j)[z]) ∈ N . Then ground rules of the
form (4.5) in GM (P) derive in N the facts of set (5.3) for
i. The previous two inclusions in N and the induction hy-
pothesis imply that all rcvClock-facts in Mi are in N . Now,
positive ground rules of the form (4.6) derive in N the set
(5.4) for i.

Now we show inclusion of the set (5.5) for i. Let y ∈ N and
let t = vR(i)[y]. We must show that clock(xi, s, y, t) ∈ N .
It can be shown that rcvClock(xi, s, y, t) ∈ N and that there
is no value u ∈ N such that rcvClock(xi, s, y, u) ∈ Mi with
t < u. Then by definition of the set (5.4) for i, we have
isBehind(xi, s, y, t) /∈Mi. It can be shown that the set (5.4)
for i is the only part of M where we add isBehind-facts with
first components xi and s. Thus isBehind(xi, s, y, t) /∈ M
and, based on the form (4.7), the following ground rule is in
GM (P) and it derives clock(xi, s, y, t) ∈ N :

clock(xi, s, y, t)← rcvClock(xi, s, y, t).

Now we show inclusion in N of the sets (5.6) to (5.9) of
global transition i. For f ∈ δi we make the following reason-
ing, with δi the set of sent messages during global transition
i. Fact f is of the form R(y, ā). Denote k = α(i,f) and
t = localR(k). It can be shown that vR(i)[y] ≤ t. Since
f ∈ δi there is a simplified rule ϕ of async(P) and val-
uation V that have derived f . Also, by definition of the
set (5.8) for i, we have otherR(xi, s, y, ā, t) /∈ M . Then
for inclusion of the set (5.7) of i in N , there is a ground
rule of the form (4.9), based on ϕ and V , that derives
chosenR(xi, s, y, ā, t) ∈ N . For inclusion of the set (5.8) of
i in N , because chosenR(xi, s, y, ā, t) ∈ N , there are ground
rules of the form (4.10) in GM (P), based on ϕ and V , that
derive otherR(xi, s, y, ā, t

′) for t′ ∈ N with vR(i)[y] ≤ t′ and
t′ 6= t. The inclusion of the sets (5.6) and (5.9) of i can be
shown because chosenR(xi, s, y, ā, t) ∈ N , and we omit the
sketch.

The inclusion N ⊆ M is shown by induction of the (infi-
nite) fixpoint computation of N , and arguing separately for
each predicate of pure(P).

6.2 Stable model to run
Let P be a Dedalus program. Let H be an input dis-

tributed database instance for P , over a network N . Let
M be a fair stable model of pure(P) on input decl(H). By
definition M = GM (P)(decl(H)).

The direction already shown in Section 6.1 is perhaps the
most intuitive direction because we only have to show that
the concrete trace is actually a stable model. The core part
of the direction shown here is to construct a run out of M .

6.2.1 Local vector clocks
A first step towards constructing a run is understanding

how we can (causally) order the computation events that
are represented by the facts in M . To this purpose, we now
show that for x, y ∈ N and s ∈ N there is precisely one
value t ∈ N such that clock(x, s, y, t) ∈M . This is a crucial
insight in the clock information represented by M , and it
depends on the fairness assumption on M .

Firstly, it can be shown that for each clock(a, b, c, d) ∈M
and rcvClock(a, b, c, d) ∈M we have a, c ∈ N and b, d ∈ N.
We now show that there is at most one value t such that
clock(x, s, y, t) ∈ M . Suppose there are clock(x, s, y, t) ∈
M and clock(x, s, y, t′) ∈ M with t 6= t′. These facts
are derived by ground rules of the form (4.7), and thus
rcvClock(x, s, y, t) ∈M and rcvClock(x, s, y, t′) ∈M . With-
out loss of generality, we may assume that t < t′. Then a
ground rule of the form (4.6) derives isBehind(x, s, y, t) ∈
M . But then the following ground rule, based on the rule
(4.7), cannot exist in GM (P):

clock(x, s, y, t)← rcvClock(x, s, y, t).

Besides (4.7) there is no other rule in pure(P) to derive
clock-facts, so clock(x, s, y, t) /∈M , a contradiction.

Now we show that there is at least one value t such that
clock(x, s, y, t) ∈M . It can be shown that there is at least
one value u such that rcvClock(x, s, y, u) ∈ M . Suppose
that clock(x, s, y, u) /∈ M . Then, based on rule (4.7), the
following ground rule can not be available in GM (P), be-
cause otherwise clock(x, s, y, u) ∈M :

clock(x, s, y, u)← rcvClock(x, s, y, u).

This implies that isBehind(x, s, y, u) ∈ M . The only rule
in pure(P) to derive isBehind-facts is (4.6), so the exis-
tence of isBehind(x, s, y, u) ∈M implies that there is some
value u′ such that rcvClock(x, s, y, u′) ∈ M and u < u′.
Now similarly, clock(x, s, y, u′) /∈M would again imply that
there is yet another fact rcvClock(x, s, y, u′′) ∈M such that
u′ < u′′. Importantly, if there would only be a finite number
of rcvClock-facts with first two components x and s, then we
are bound to eventually find the existence of a value t such
that rcvClock(x, s, y, t) ∈ M and isBehind(x, s, y, t) /∈ M .
Then the following ground rule, based on the form (4.7),
exists in GM (P) and it derives clock(x, s, y, t) ∈M :

clock(x, s, y, t)← rcvClock(x, s, y, t).

We show that there actually are only a finite number of
rcvClock-facts with first two components x and s.

Ground rules of the forms (4.3), (4.4), (4.5) can together
produce only a finite number of rcvClock-facts with first
two components x and s because (i) in decl(H) there are
only a finite number of all-facts and the tsucc-facts form
a chain, and (ii) because for y ∈ N there is at most one
value t such that clock(x, s, y, t) ∈ M (see above). Also,

10

because M is fair, there are only a finite number of ground
rules of the form (4.12) that derive rcvClock-facts with first
two components x and s.

Let L = N ×N. The intuitive meaning of a pair (x, s) ∈ L
is that s is a local timestamp of the node x. So, L contains
per node all local timestamps. Now, for (x, s) ∈ L we define
the (local) vector clock over N associated with node x at
local timestamp s, denoted vM (x, s), as follows: for y ∈ N ,
we define vM (x, s)[y] = t such that clock(x, s, y, t) ∈ M ,
which we have just shown to be unique. It can be shown
that for (x, s) ∈ L and (y, t) ∈ L that if (x, s) 6= (y, t) then
vM (x, s) 6= vM (y, t).

6.2.2 Construction of run
In this section we show how to construct from M a fair

run R of P on input H, whose trace is again M .
Let L be as previously defined. We can define a partial

order �L on L as follows: (x, s) �L (y, t) iff vM (x, s) �
vM (y, t). This relation has the intuition of a happens-before
relation [12], but the novelty is that it comes from a purely
declarative model M . Choose a total order ≤L on L that
respects �L, in the sense that (x, s) ≤L (y, t) if (x, s) �L
(y, t). Ordering the elements of L according to the order ≤L
gives us a sequence C.

Let ord : L → N denote the function that maps a pair
(x, s) ∈ L to its ordinal in the sequence C. Ordinals start
at 0. We can uniquely define the sequence of nodes x0, x1,
x2, etc such that for each i ∈ N there exists a value si ∈ N
such that ord(xi, si) = i. Intuitively, these nodes, in order,
will be the recipients during the global transitions of our
constructed run.

Let localC : N×N → N be the function that maps a pair
(i, x) to the size of the set {(x, s) ∈ L | ord(x, s) < i}. So,
localC(i, x) is the number of pairs of L in which x occurs
that are ordered strictly before position i in C. Intuitively,
if i is regarded to be a global transition index, the number
localC(i, x) is the timestamp of the local transition that the
node x will perform next, during a global transition with
index j ≥ i. Intuitively, this correponds to the function
localR in section 5.1.

Next, based on sequence C, we will define a sequence of
tuples, where each tuple resembles a global transition. First
we define the sequence of configurations entailed by C. We
define the function state that maps (x, s) ∈ L to the set of
facts H|x ∪ (M ind|x,s)↓, where M ind denotes the restriction
of M to the facts f over schema sch(P)LT for which there
exists a (positive) inductive ground rule ψ ∈ GM (P) with
head f and whose body is true on M . Also, we define the
function pairs that maps a set I of Rsnd-facts with R a
relation in sch(P) to the set

pairs(I) = {〈ord(x, s), R(y, ā)〉 | ∃t : Rsnd(x, s, y, t, ā) ∈ I}.

Formally, for i ∈ N we define configuration ρi of P on input
H as follows:

• sρi =
⋃
x∈N state(x, localC(i, x));

• bρi = pairs(bufi) with

bufi = {Rsnd(y, t, z, u, ā) ∈M | ord(y, t) < i ≤ ord(z, u)}.

Using this definition, we obtain a sequence of configurations
ρ0, ρ1, ρ2, etc. Now we define the sequence of tuples, one
tuple per index i ∈ N. For i ∈ N, the tuple τi is defined as

(ρi, xi,mi, i, ρi+1), where mi = pairs(delivi) with

delivi = {Rsnd(y, t, z, u, ā) ∈M | ord(z, u) = i}.

Let us denote this sequence of tuples as R. We next show
that R is a fair run of P on input H, having M as its trace.

6.2.3 Correctness
Let R be as previously defined. First, it can be shown

(argument omitted) that ρ0 = start(P,H). Now let i ∈ N.
We must show that τi is a valid global transition of P on
input H. It can be shown that mi ⊆ bρi . Therefore, there

exists a configuration ρ such that ρi
xi,mi−−−−→
i

ρ, and this ρ is

unique. The (lengthy) proof that ρi+1 = ρ is omitted from
this sketch.

Finally, we can show that R is fair as follows. Let i ∈ N.
Firstly, every node x ∈ N is the recipient in an infinite
number of global transitions because there are an infinite
number of pairs in L with first component x. Now we show
that every message is eventually delivered. Let 〈k,f〉 ∈ bρi .
Fact f is of the form R(y, ā). By definition of bρi , 〈k,f〉 ∈
bρi means that there is some fact Rsnd(x, s, y, t, ā) ∈M such
that k = ord(x, s) < i ≤ ord(y, t). Denote j = ord(y, t), so
i ≤ j. By definition, mj = pairs(delivj) with

delivj = {Rsnd(x′, s′, y′, t′, b̄) ∈M | ord(y′, t′) = j}.

Therefore, Rsnd(x, s, y, t, ā) ∈ delivj and 〈k,f〉 ∈ mj . We
conclude that the run R is fair.

Similarly to the sketch in Section 6.1, we can show that
the trace of R is included in M . Then, because the trace is
a stable model itself, it can be shown that the trace actually
equals M .

7. CONCLUSION AND FUTURE WORK
We have proven that stable models can be used to formally

reason about distributed programs, in addition to more op-
erational formalisms.

One technical issue concerns our restriction to fair runs
and models. Intriguingly, our current proof approach really
relies on fairness; the aspects related to fairness cannot be
simply removed from the proof to obtain the corresponding
theorem not restricted to fair runs and models. While fair-
ness is certainly a desirable property, it would still be good
to have a characterization of the set of traces of all possible
runs, including unfair ones. This is an interesting topic for
further work.

Another interesting question concerns the necessity of the
causality rules (4.3)–(4.7) present in the pure Datalog¬ ver-
sion pure(P) of any Dedalus program P used to define the
declarative semantics. To investigate the necessity of the
causality rules, one may omit them from pure(P); call this
the “noncausal” variant of pure(P). Certainly the causality
rules are necessary in the sense that there exist programs for
which the noncausal pure version has stable models that do
not correspond to any run. But in practice, one is mainly
interested in programs that have a deterministic result; this
can easily be formalized in the operational semantics by re-
quiring, for some designated output relations, that their con-
tent becomes eventually the same in every possible fair run
(eventual consistency [28, 20, 9, 10]). By our theorem, if P is
eventually consistent, all stable models of pure(P) will agree
on these output relations. We conjecture that this does not
hold for all stable models of the noncausal variant. A natural

11

next step is to consider syntactic restrictions on programs,
such as negation-free programs, where consistency is guar-
anteed [3]. One side of the CRON conjecture [20] is that for
such programs, the causal rules are redundant. Settling this
conjecture is another interesting topic for further work.

Dedalus is a language with the promise that many dis-
tributed computations can be programmed in it (e.g., [5]).
Until now, claims on expressive power and other properties
of the language could not be rigorously proved correct, due
to the lack of a formal semantics. We hope that our work
encourages further exploration of the potential for logic to
illuminate issues in distributed computing, via both declar-
ative semantics and operational formalisms.

8. REFERENCES
[1] K. Aberer, editor. Special Section on Peer to Peer

Data Management, volume 32(3) of SIGMOD Record.
ACM, September 2003.

[2] S. Abiteboul, O. Benjelloun, and T. Milo. The Active
XML project: an overview. The VLDB Journal,
17(5):1019–1040, 2008.

[3] S. Abiteboul, M. Bienvenu, A. Galland, et al. A
rule-based language for Web data management. In
Proceedings 30th ACM Symposium on Principles of
Database Systems, pages 283–292. ACM Press, 2011.

[4] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[5] P. Alvaro, T. Condie, N. Conway, J.M. Hellerstein,
and R. Sears. I do declare: consensus in a logic
language. SIGOPS Review, 43(4):25–30, 2010.

[6] P. Alvaro, N. Conway, J.M Hellerstein, and W.R.
Marczak. Consistency analysis in Bloom: A CALM
and collected approach. In Proceedings 5th Biennial
Conference on Innovative Data Systems Research,
pages 249–260. www.cidrdb.org, 2011.

[7] P. Alvaro, W.R. Marczak, et al. Dedalus: Datalog in
time and space. Technical Report EECS-2009-173,
University of California, Berkeley, 2009.

[8] P. Alvaro, W.R. Marczak, et al. Dedalus: Datalog in
time and space. In de Moor et al. [14]. To appear.

[9] T.J. Ameloot, F. Neven, and J. Van den Bussche.
Relational transducers for declarative networking. In
Proceedings 30th ACM Symposium on Principles of
Database Systems, pages 283–292. ACM Press, 2011.

[10] T.J. Ameloot and J. Van den Bussche. Deciding
eventual consistency for a simple class of relational
transducer networks. In Proceedings 15th International
Conference on Database Theory, 2012. To appear.

[11] K.R. Apt, N. Francez, and S. Katz. Appraising
fairness in languages for distributed programming.
Distributed Computing, 2(4):226–241, 1988.

[12] H. Attiya and J. Welch. Distributed Computing:
Fundamentals, Simulations, and Advanced Topics.
Wiley, 2004.

[13] D. Calvanese, G. De Giacomo, M. Lenzerini, and
R. Rosati. Logical foundations of peer-to-peer data
integration. In Proceedings 23rd ACM Symposium on
Principles of Database Systems, pages 241–251. ACM
Press, 2004.

[14] O. de Moor, G. Gottlob, T. Furche, and A. Sellers,
editors. Datalog Reloaded: Proceedings Datalog 2.0

Workshop, 2010, volume 6702 of Lecture Notes in
Computer Science, 2011. To appear.

[15] A. Deutsch, L. Sui, V. Vianu, and D. Zhou.
Verification of communicating data-driven Web
services. In Proceedings 25th ACM Symposium on
Principles of Database Systems, pages 90–99. ACM
Press, 2006.

[16] N. Francez. Fairness. Springer-Verlag, 1986.

[17] M. Gelfond and V. Lifschitz. The stable model
semantics for logic programming. In R.A. Kowalski
and K.A. Bowen, editors, Proceedings 5th
International Conference and Symposium on Logic
Programming, pages 1070–1080. MIT Press, 1988.

[18] S. Grumbach and F. Wang. Netlog, a rule-based
language for distributed programming. In M. Carro
and R. Peña, editors, Proceedings 12th International
Symposium on Practical Aspects of Declarative
Languages, volume 5937 of Lecture Notes in Computer
Science, pages 88–103, 2010.

[19] J.M. Hellerstein. Datalog redux: experience and
conjecture. PODS 2010 keynote.

[20] J.M. Hellerstein. The declarative imperative:
experiences and conjectures in distributed logic.
SIGMOD Record, 39(1):5–19, 2010.

[21] S.S. Huang, T.J. Green, and B.T. Loo. Datalog and
emerging applications: an interactive tutorial. In
Proceedings 2011 ACM SIGMOD International
Conference on Management of Data, pages 1213–1216.
ACM Press, 2011.

[22] R. Krishnamurthy and S.A. Naqvi. Non-deterministic
choice in Datalog. In C. Beeri, J.W. Schmidt, and
U. Dayal, editors, Proceedings 3rd International
Conference on Data and Knowledge Bases, pages
416–424. Morgan Kaufmann, 1988.

[23] L. Lamport. Fairness and hyperfairness. Distributed
Computing, 13(4):239–245, 2000.

[24] B.T. Loo et al. Declarative networking.
Communications of the ACM, 52(11):87–95, 2009.

[25] J.A. Navarro and A. Rybalchenko. Operational
semantics for declarative networking. In A. Gill and
T. Swift, editors, Proceedings 11th International
Symposium on Practical Aspects of Declarative
Languages, volume 5419 of Lecture Notes in Computer
Science, pages 76–90, 2009.

[26] V. Nigam et al. An operational semantics for Network
Datalog. In Third International Workshop on Logics,
Agents, and Mobility, 2010.

[27] D. Saccà and C. Zaniolo. Stable models and
non-determinism in logic programs with negation. In
Proceedings of the Ninth ACM Symposium on
Principles of Database Systems, pages 205–217. ACM
Press, 1990.

[28] W. Vogels. Eventual consistency. Communications of
the ACM, 52(1):40–44, 2009.

[29] D. Zinn, T.J. Green, and B. Ludaescher. Win-move is
coordination-free. In Proceedings 15th International
Conference on Database Theory, 2012. To appear.

12

APPENDIX
The appendix contains the proofs of all the results and further needed notations. Everything is grouped into coherent sections
that correspond to the organization of the paper.

A. GENERAL NOTATIONS
For technical convenience, we assume for every Dedalus program that some fixed syntactic stratification is used for the

deductive rules. A stratum is indicated by its stratum number (≥ 1). For technical convenience we assume that a stratum
0 exists that contains no rules. Let P be a Dedalus program. Recall the notation deduc(P) from Section 3.1. We write
deduck(P) to denote the rules of deduc(P) whose stratum number is smaller than or equal to k.

We sometimes write B to denote a sequence of nonequalities and literals over sch(P)LT that all have the same location
specifier and timestamp. The exact values used in B are not important in this notation.

Let H be an input distributed database instance for P . Let M be a set of facts over the schema of pure(P). To obtain
a simpler notation, we write GM (P,H) to abbreviate groundM (pure(P), decl(H)). If H is clear from the context, we write
GM (P).

B. OPERATIONAL SEMANTICS
To avoid repetitive definitions at the beginning of the lemmas, consider the following setting to which we can refer:

Setting B.1. Let P be a Dedalus program. Let H be an input distributed database instance for P , over a network N . Let
R be a run of P on input H. �

B.1 Notations about runs
Consider Setting B.1. Let i be a global transition of R. When R is known from the context, we use the following notations:

• The global transition i of R is denoted as ρi
xi,mi−−−−→
i

ρi+1.

• We denote Si = sρi |xi ∪ untag(mi), Di = deduc(P)(Si), Ii = induc(P)(Di) and δi =
⋃
y∈N

(
async(P)(Di)

)
|y. Here,

S, D and I stand for “state”, “deductive” and “inductive” respectively. Also, δi are the messages effectively sent during
global transition i, because they have a valid recipient (a node in N). By definition of the semantics of deduc(P)(Si),
we have Si ⊆ deduc(P)(Si).

B.2 General properties
Lemma B.2. Consider Setting B.1. Let ρi be a configuration of R. For x ∈ N we have H|x ⊆ sρi |x.

Proof. We show this by induction on i. For the base case (i = 0) we have ρ0 = start(P,H) and then by definition of start(P,H)
we have H|x ⊆ sρ0 |x for x ∈ N . For the induction hypothesis, we assume that H|x ⊆ sρi−1 |x for x ∈ N , with i−1 ≥ 0. For the

inductive step, we show that H|x ⊆ sρi |x for x ∈ N . Global transition i− 1 is denoted as ρi−1
xi−1,mi−1−−−−−−−→

i−1
ρi. Firstly, consider

y ∈ N \ {xi−1}. By definition of global transition we have sρi−1 |y = sρi |y and by now applying the induction hypothesis, we
have H|y ⊆ sρi−1 |y = sρi |y. Secondly, by definition of global transition there are instances J and Jsnd over sch(P)L such that

sρi−1 |xi−1 , untag(mi−1) −→ J, Jsnd

is a valid local transition of P . Now, we have H|xi−1 ⊆ sρi−1 |xi−1 by the induction hypothesis and by definition of local and
global transition we then have H|xi−1 ⊆ J ⊆ sρi |xi−1 , because local transitions preserve facts over edb(P)LT. �

Lemma B.3. Consider Setting B.1. Consider a pair (x, s) ∈ N ×N. There is precisely one global transition i in R for which
xi = x and localR(i) = s.

Proof. Because x ∈ N , s ≥ 0 and because of fairness, there is at least one global transition i in R for which xi = x and
s = localR(i). But for another global transition j 6= i with xj = x, we must have localR(j) 6= localR(i) by definition of the
function localR. Thus i is unique. �

Lemma B.4. Consider Setting B.1. Let i ∈ N be a global transition index. We have that δi is finite.

Proof. We show by induction on i ∈ N that sρi and bρi are finite. This implies that δi is finite by the semantics of local
transitions: on finite inputs, the programs deduc(P) and async(P) produce finite outputs.

For the base case (i = 0) the property holds because ρ0 = start(P,H). For the induction hypothesis, we assume that sρi−1

and bρi−1 are finite, with i − 1 ≥ 0. Now consider global configuration i − 1: ρi−1
xi−1,mi−1−−−−−−−→

i−1
ρi. For the inductive step, we

show that sρi and bρi are finite. Consider the set Si−1 = sρi−1 |xi−1 ∪ untag(mi−1). The set Si−1 is finite because by the
induction hypothesis sρi−1 is finite and bρi−1 is finite, and by definition mi−1 ⊆ bρi−1 . This implies that Di−1 = deduc(P)(Si),
induc(P)(Di−1) and async(P)(Di−1) are finite. Thus δi−1 is finite. By the semantics of global transitions, it follows that now
sρi and bρi are finite. �

13

C. DECLARATIVE SEMANTICS

C.1 About Dedalus ground programs
Let P be a Dedalus program. Let H be an input distributed database instance for P . For a set of facts M over the schema

of pure(P), the ground rules of GM (P) that are based on the original rules of P itself can be nicely divided into deductive,
inductive and asynchronous rules. The deductive ground rules are recognizable as the rules with their head predicate in
sch(P)LT and in which the location specifier and timestamp of the head are the same as in the body, and in which no relations
of Dtime are used. For a deductive ground rule ψ ∈ GM (P) we define its stratum number stratum(ψ) to be the stratum number
of the head relation. The inductive ground rules are recognizable as the rules with their head predicate in sch(P)LT, in which
the timestamp of the head is the successor of the timestamp in the body, in which the location specifier is the same in the
head and the body, and in which one tsucc-atom occurs in the body. Finally, the asynchronous ground rules are recognizable
as the rules with a head predicate of the form Rsnd with R a relation name of sch(P) and in which some chosenR-atom occurs
in the body.

C.2 Further notations
Let P be a Dedalus program. Let H be an input distributed database instance. Let M be a set of facts over the schema of

pure(P). Let GM (P) denote the ground program based on M and input I.
Let M |x,s denote the restriction of M to the facts f over schema sch(P)LT that have location specifier x and timestamp s.
Let M ind denote the restriction of M to the facts f over schema sch(P)LT for which there exists an inductive ground rule

ψ ∈ GM (P) with head f and whose body is true on M (formally, pos(ψ) ⊆M and the nonequalities hold).
Let MN be defined as follows:

MN = M |edb(P)LT ∪

M ind ∪
{R(x, s, ā) | ∃y, t : Rsnd(y, t, x, s, ā) ∈M}.

Intuitively, MN ⊆ M contains the input facts, the inductively derived facts and the received facts, all over the schema
sch(P)LT.

Let k be a stratum number. We write Mk to denote the union of MN with the restriction of M to all facts f over schema
sch(P)LT for which there exists a deductive ground rule ψ ∈ GM (P) of stratum k, with head f and whose body is true on
M (formally, pos(ψ) ⊆ M and the nonequalities are satisfied). This second group of facts can have an overlap with MN. To
rephraze, Mk contains the input, the inductively derived facts, the received facts and finally, the facts that are derived by
deductive rules whose stratum is less than or equal to k. The intuition about Mk is that MN contains the inputs for the
deductive reasoning, together with facts derived by strata up to and including stratum k.

C.3 General properties
Let P be a Dedalus program. Let H be an input distributed database instance for P , over a network N . Let M be a set

of facts over the schema of pure(P). A fact f ∈M is called well-formed when the following conditions are satisfied:

• if f is over sch(P)LT, then the location specifier of f is in N and the timestamp of f is in N;

• if f is of the form rcvClock(x, s, y, t), isBehind(x, s, y, t) or clock(x, s, y, t), then x ∈ N , y ∈ N , s ∈ N and t ∈ N;

• if f is of the form Rsnd(x, s, y, t, ā), chosenR(x, s, y, ā, t) or otherR(x, s, y, ā, t) with R a relation name in sch(P), then
x ∈ N , y ∈ N , s ∈ N and t ∈ N;

• if f is of the form zero(t) or notZero(t), then t ∈ N;

• if f is of the form all(x) then x ∈ N ;

• if f is of the form time(s) then s ∈ N;

• if f is of the form tsucc(s, t), < (s, t) or ≤ (s, t) then s, t ∈ N.

We call M well-formed if all facts in M are well-formed. Intuitively, this property ensures that we use nodes and timestamps
on places were we expect nodes and timestamps respectively.

Lemma C.1. Let P be a Dedalus program. Let H be an input distributed database instance for P , over a network N . Let M
be a set of facts over the schema of pure(P). Let N be the output of GM (P) on input decl(H). We have that N is well-formed.

Proof. We may assume that N is calculated by deriving one fact at a time. So we have a sequence N0 ⊆ N1 ⊆ N2 ⊆ . . . with
N0 = decl(H) and N∞ = N . We show by induction on i that Ni is well-formed. For the base case (i = 0), the property
immediately holds because decl(H) is well-formed by construction. For the induction hypothesis, assume that Ni−1 with
i− 1 ≥ 0 is well-formed. We show that Ni is well-formed. Let f be the fact that is added to Ni−1 in order to obtain Ni. Let
ψ be a ground rule of GM (P) that has derived f . We have pos(ψ) ⊆ Ni−1 and thus, by applying the induction hypothesis,
we know that pos(ψ) is well-formed. We now consider only the cases where f is over idb(pure(P)):

• Suppose f is over sch(P)LT. The rule ψ can be of the following forms:

– ψ is a deductive ground rule. It must be that f is well-formed since pos(ψ) is well-formed, and the location specifier
and timestamp in the head are those of the facts in pos(ψ)|sch(P)LT .

14

– ψ is an inductive ground rule. Like in the previous item we obtain that the location specifier in the head is in N . In
addition, the timestamp in the head is in N because it occurs in a tsucc-fact in pos(ψ) and the only values occuring
in tsucc-facts are N. Therefore f is well-formed.

– ψ is of the form (4.11):

R(y, t, ā)← Rsnd(x, s, y, t, ā).

Now, f is well-formed because Rsnd(x, s, y, t, ā) is well-formed.

• Suppose f is of the form rcvClock(x, s, y, t), isBehind(x, s, y, t) or clock(x, s, y, t). Then ψ can be of following forms
(4.3), (4.4), (4.5), (4.6), (4.7) and (4.12) respectively:

rcvClock(x, s, y, s)← all(x), all(y), x 6= y, zero(s).

rcvClock(x, s, x, s′)← all(x), tsucc(s, s′).

rcvClock(x, s′, y, t) ← clock(x, s, y, t), x 6= y,

tsucc(s, s′).

isBehind(x, s, y, t) ← rcvClock(x, s, y, t),

rcvClock(x, s, y, t′), t < t′.

clock(x, s, y, t) ← rcvClock(x, s, y, t).

rcvClock(y, t, z, u) ← Rsnd(x, s, y, t, v̄), clock(x, s, z, u).

Because pos(ψ) is well-formed, it is clear that f is well-formed.

• Suppose f is of the form Rsnd(x, s, y, t, ā), chosenR(x, s, y, t, ā) or otherR(x, s, y, ā, t) with R a relation name in sch(P).
This is similar to the above.

• Suppose f is of the form zero(t) or notZero(t). This is similar to the above.

�

D. TRACE

D.1 Vector clocks
The following properties provide insight into the vector clocks we associated with each global transition index of a run, as

defined in Section 5.1. Let � denote the partial order on vector clocks.

Proposition D.1. Consider Setting B.1. Let i be a global transition index. For y ∈ N , if xi 6= y then vR(i)[y] ≤ localR(i, y).

Proof. We show this by induction on i. For the base case (i = 0), we have vR(i)[y] = 0 by definition and the property trivially
holds. For the induction hypothesis we assume that the property holds for all global transition indices up to and including
i− 1 with i− 1 ≥ 0. For the inductive step, we show that the property holds for global transition index i. We have i > 0, so
by definition vR(i)[y] = max({0} ∪ µR(i, y) ∪ πR(i, y)). Let u ∈ {0} ∪ µR(i, y) ∪ πR(i, y). We show that u ≤ localR(i, y). For
u = 0 this trivially holds.

• Suppose that u ∈ µR(i, y). By definition of µR(i, y) there is a global transition k < i and a fact f ∈ δk such that α(k,f) =
i and u = vR(k)[y]. If xk = y then by definition u = localR(k, y)+1, but since k < i we have localR(k, y)+1 ≤ localR(i, y).
If xk 6= y then by the induction hypothesis vR(k)[y] ≤ localR(k, y) ≤ localR(i, y). So in either case u ≤ localR(i, y).

• Suppose that u ∈ πR(i, y). By definition of πR(i, y) there is a global transition index j ∈ prevR(i) such that xj = xi
and u = vR(j)[y]. Now since xj 6= y and j < i we can apply the induction hypothesis to know vR(j)[y] ≤ localR(j, y) ≤
localR(i, y).

�

Lemma D.2. Consider Setting B.1. For global transition index i, and j ∈ prevR(i), we have vR(j) ≺ vR(i).

Proof. Denote x = xi. We have x = xj and j < i by definition of prevR(i). Now, by definition vR(j)[x] = localR(j) + 1 and
vR(i)[x] = localR(i) + 1. But since j < i we have localR(j) < localR(i) and thus vR(j)[x] < vR(i)[x].

Now let y ∈ N with y 6= x. We show vR(j)[y] ≤ vR(i)[y]. By definition, vR(j)[y] ∈ πR(i, y) and thus by definition of
vR(i)[y] we have vR(j)[y] ≤ vR(i)[y].

Overall, we have vR(j) ≺ vR(i). �

15

Lemma D.3. Consider Setting B.1. For global transition indices i and j with j < i we have vR(j)[xi] < vR(i)[xi].

Proof. If xj = xi then by definition of vR(j) and vR(i) we have vR(j)[xi] = localR(j) + 1 < localR(i) + 1 = vR(i)[xi].
Now suppose xj 6= xi. By Proposition D.1 we then have vR(j)[xi] ≤ localR(j, xi). Since j < i we have localR(j, xi) ≤

localR(i, xi). By definition, vR(i)[xi] = localR(i, xi) + 1 and thus vR(j)[xi] < vR(i)[xi]. �

D.2 Trace definition
Consider the following lemma:

Lemma D.4. Consider Setting B.1. Let i be a global transition of R. Let rcvClock(y, t, z, u) be a fact in the set (5.9) for i.
If y = xi then t ≥ localR(i) + 1.

Proof. By definition of the set (5.9) for i, there is a fact f ∈ δi such that t = localR(α(i,f)). By definition of α this implies
i < α(i,f). Denote j = α(i,f). By definition of y, we have y = xj . By assumption y = xi and thus xj = xi. Then
localR(i) < localR(j) because i < j, and thus localR(i) < t. We obtain that localR(i) + 1 ≤ t. �

Lemma D.5. Consider Setting B.1. Let M be the trace of R. We have decl(H) ⊆M .

Proof. Recall that by definition decl(H) consists of the following facts:

1.
⋃
x∈N

⋃
s∈N(H|x)↑s;

2. decl(N);

3. Itime.

First, by definition of M−1 we have decl(N) ⊆ M−1 and Itime ⊆ M−1. Since M−1 ⊆ M we thus have decl(N) ⊆ M and
Itime ⊆M . In order to obtain decl(H) ⊆M , now we check that M also includes the set

⋃
x∈N

⋃
s∈N(H|x)↑s:

⋃
x∈N

⋃
s∈N

(H|x)↑s =
⋃
j∈N

(H|xj)↑localR(j) (∗)

⊆
⋃
j∈N

(sρj |xj)↑localR(j) (**)

⊆
⋃
j∈N

S
↑localR(j)
j

⊆
⋃
j∈N

D
↑localR(j)
j

⊆
⋃
j∈N

Mj

⊆ M,

where (∗) follows from Lemma B.3 and (∗∗) from Lemma B.2, and the other inclusions follow from the definitions of Sj , Dj
and the set (5.1) for j. �

E. RUN TO STABLE MODEL
In this section we show that the trace of a (fair) run is a fair stable model of the declarative semantics. All proofs will be

about the following setting:

Setting E.1. Let P be a Dedalus program. Let H be an input distributed database instance, over a network N . Let R be a
run of P on input H. Let α be the arrival function for R. Let M be the trace of R, as defined in Section 5, so M is a union
of sets

⋃
i∈N∪{−1}Mi as defined there. Let N be the output of GM (P) on input decl(H). �

We reuse the notations from the previous sections.

E.1 Properties

Lemma E.2. Consider Setting E.1. We have M ⊆ N .

Proof. By definition M =
⋃
i∈N∪{−1}Mi. We show by induction that for i ∈ N ∪ {−1} we have Mi ⊆ N . For the base case

(i = −1), the property holds by Lemma E.3. For the induction hypothesis we assume that Mi−1 ⊆ N with i− 1 ≥ −1. This
implies Mj ⊆ N for j = −1, 0, . . . , i− 1. For the inductive step, we show that Mi ⊆ N . Denote s = localR(i). We have s ≥ 0
by definition of localR(i).

16

State (5.1).
For set (5.1), we show that D↑si ⊆ N . Abbreviate Si = sρi |xi ∪ untag(mi).

We first show that S↑si ⊆ N |
xi,s and we start with showing that (sρi |xi)↑s ⊆ N |xi,s:

1. If s = 0 then ρ0 = start(P,H) and thus sρi |xi = Hxi by definition of start(P,H). And in that case, (sρi |xi)↑s ⊆
NN|xi,s ⊆ N |xi,s because (H|xi)↑s ⊆ decl(H) ⊆ N and by definition of NN.

2. If s > 0, then prevR(i) 6= ∅. Let j ∈ prevR(i). By definition of prevR(i) we have j < i. By the operational semantics of

the run R, we have (sρi |xi)↑s = I↑sj , with Ij = induc(P)(Dj). We have D↑s−1
j ⊆ Mj by definition of the set (5.1) for j.

By applying the induction hypothesis to j we then have D↑s−1
j ⊆ N . Now by applying Lemma E.5 we have I↑sj ⊆ N |

xi,s.

Now we show that untag(mi)
↑s ⊆ N |xi,s. Consider R(xi, ā) ∈ untag(mi). Using the operational semantics, there must exist

a previous global transition k < i such that R(xi, ā) ∈ δk, i.e., the global transition where R(xi, ā) is sent. By definition of
the set (5.6) for k we have Rsnd(xk, l, xi, s, ā) ∈Mk where l = localR(k). Now, by applying the induction hypothesis we have
Mk ⊆ N and thus the following ground rule of GM (P), based on the form (4.11), derives R(xi, s, ā) ∈ N |xi,s:

R(xi, s, ā)← Rsnd(xk, l, xi, s, ā).

We obtain that overall S↑si ⊆ N |
xi,s. Now we apply Lemma E.4 to obtain that D↑si ⊆ N |

xi,s ⊆ N .

Clock (5.2).
For the set (5.2) of global transition i, we show that rcvClock(xi, s, xi, s + 1) ∈ N . We have the following ground rule in

GM (P), based on the form (4.4):

rcvClock(xi, s, xi, s+ 1)← all(xi), tsucc(s, s+ 1).

Therefore rcvClock(xi, s, xi, s+ 1) ∈ N because N is a fixpoint.

Clock (5.3).
Let y ∈ N with xi 6= y and let t ∈ πR(i, y). We show that rcvClock(xi, s, y, t) ∈ N .
Because πR(i, y) 6= ∅, we have prevR(i) 6= ∅ and s > 0. Let j ∈ prevR(i). We have j < i. We have localR(j) =

localR(i) − 1 = s − 1. By definition of the set (5.5) for j, set Mj contains clock(xi, s − 1, y, t) with t = vR(j)[y]. Therefore
clock(xi, s− 1, y, t) ∈ N by applying the induction hypothesis to Mj . In GM (P) we have the following ground rule, based on
the form (4.5):

rcvClock(xi, s, y, t)← clock(xi, s− 1, y, t), xi 6= y, tsucc(s− 1, s).

This implies rcvClock(xi, s, y, t) ∈ N because N is a fixpoint.

Clock (5.4).
We take two facts rcvClock(xi, s, y, t) and rcvClock(xi, s, y, t

′) in Mi with t < t′. We show that isBehind(xi, s, y, t) ∈ N .
First we show that rcvClock(xi, s, y, t) ∈ N and rcvClock(xi, s, y, t

′) ∈ N . By Lemma D.4, there are only three kinds of
rcvClock-facts in Mi with first two components xi and s: (i) rcvClock-facts in Mi−1, (ii) facts in the set (5.2) for i, and (iii)
facts in the set (5.3) for i. We can apply the induction hypothesis to know that the first kind is in N . Also, we have shown
above that the second and third kinds are also in N .

Now consider the following ground rule, based on the form (4.6):

isBehind(xi, s, y, t) ← rcvClock(xi, s, y, t),

rcvClock(xi, s, y, t
′), t < t′.

Because rcvClock(xi, s, y, t) ∈ N , rcvClock(xi, s, y, t
′) ∈ N and N is a fixpoint, we have isBehind(xi, s, y, t) ∈ N .

Clock (5.5).
Let y ∈ N . Denote t = vR(i)[y]. We show that clock(xis, y, t) ∈ N .
Suppose we would already know that rcvClock(xi, s, y, t) ∈ N and isBehind(xi, s, y, t) /∈ M . Then, based on the form

(4.7), the following ground rule is in GM (P):

clock(xi, s, y, t)← rcvClock(xi, s, y, t).

And thus clock(xi, s, y, t) ∈ N because N is a fixpoint.
Now, to actually show that rcvClock(xi, s, y, t) ∈ N and isBehind(xi, s, y, t) /∈M we consider two cases: y = xi and y 6= xi.

To show that isBehind(xi, s, y, t) /∈M , it is sufficient to show that isBehind(xi, s, y, t) /∈Mi, because by Lemma B.3, the set
(5.4) of global transition i is the only part of M where we add isBehind-facts with first two components xi and s.

First, suppose y = xi. We show that clock(xi, s, xi, t) ∈ N . By definition vR(i)[xi] = localR(i) + 1 = s + 1. We have
shown above that rcvClock(xi, s, xi, s + 1) ∈ N , by set (5.2) for i. Now we show that isBehind(xi, s, xi, s + 1) /∈ Mi. Let
rcvClock(xi, s, xi, u) ∈ Mi with u 6= s + 1. We abbreviate this fact as f . We show that u < s + 1. If f ∈ M−1 then u = 0,
and the inequality holds immediately. Now suppose f /∈M−1. There are several possible cases:

1. The fact f cannot be generated by the set (5.2) for i because that requires u = s+ 1.

17

2. The fact f cannot be generated by set (5.3) for i because that requires the first and third component to be different.

3. The fact f cannot be generated by the set (5.9) for i because facts in this set with first component xi have a second
component that is at least s+ 1 by Lemma D.4.

4. The last option is that there is a global transition index j < i with rcvClock(xi, s, xi, u) ∈ Mj \Mj−1. Denote s′ =
localR(j). The fact f cannot be in the sets (5.2) or (5.3) for j because s′ < s. So, the final possibility is that the set (5.9)
for j contains f . This implies u = vR(j)[xi]. Now by applying Lemma D.3 we obtain that vR(j)[xi] < vR(i)[xi] = s+ 1.

So, there is no value u ∈ N with rcvClock(xi, s, xi, u) ∈ Mi and s + 1 < u. Then, by construction of Mi we have not added
the fact isBehind(xi, s, xi, s+ 1) to the set (5.4) for i.

Now suppose y 6= xi. We first show that clock(xi, s, y, t) ∈ N . Denote t = vR(i)[y]. By definition, t = max({0}∪µR(i, y)∪
πR(i, y)) where µR(i, y) and πR(i, y) are as defined in Section 5.1. If both µR(i, y) = ∅ and πR(i, y) = ∅ then s = 0 and by
definition t = 0, but by Lemma E.3 we have rcvClock(xi, 0, y, 0) ∈ N . Now suppose that at least one of µR(i, y) and πR(i, y)
is not empty:

• Let u ∈ µR(i, y). We show that rcvClock(xi, s, y, u) ∈ N . By definition of µR(i, y) there is a global transition k < i and
a fact f ∈ δk with α(k,f) = i and vR(k)[y] = u. The fact f is of the form R(xi, ā). Now by the set (5.9) for k, we have
rcvClock(xi, s, y, u) ∈Mk. By applying the induction hypothesis to Mk we then have rcvClock(xi, s, y, u) ∈ N .

• Let u ∈ πR(i, y). We show that rcvClock(xi, s, y, u) ∈ N . By definition of πR(i, y), there exists j ∈ prevR(i) such that
vR(j)[y] = u. By definition of prevR(i), this implies s > 0, xj = xi and localR(j) = s − 1. By construction of Mj , the
set (5.5) for j contains clock(xj , s− 1, y, u). Thus, by substituting xj = xi and by applying the induction hypothesis to
Mj , we obtain clock(xi, s− 1, y, u) ∈ N . Since y 6= xi the following ground rule, based on (4.5), exists in GM (P) and it
derives rcvClock(xi, s, y, u) ∈ N :

rcvClock(xi, s, y, u) ← clock(xi, s− 1, y, u), xi 6= y,

tsucc(s− 1, s).

So, overall, we have rcvClock(xi, s, y, t) ∈ N . Now we show that isBehind(xi, s, y, t) /∈ Mi. Let rcvClock(xi, s, y, u) ∈ Mi

with u 6= t. We abbreviate this fact as f . We show that u < t. By construction of M and by definition of vR(i)[y] we have
u ≥ 0 and t ≥ 0 respectively. So, if u = 0 then t > 0, and the inequality immediately holds. Now suppose u > 0, which
implies f /∈M−1. There are several options:

1. The fact f can not be in the set (5.2) for i because it requires xi = y.

2. It is possible that f is in the set (5.3) for i and in that case u = vR(j)[y] with j ∈ prevR(i). But then u ∈ πR(i, y) and
thus u ≤ t. Since by assumption u 6= t, we have u < t.

3. The fact f can not be in the set (5.9) for i because if those facts have first component xi, then their second component
is at least s+ 1 by Lemma D.4.

4. It is possible that there is a global transition j < i with f ∈ Mj \Mj−1. Again, f can not be in the set (5.2) for j
because that requires xi = y. If xj = xi, then f can not be in the set (5.3) for j, because localR(j) < localR(i). The
final option is that f is in the set (5.9) for j. This implies u = vR(j)[y]. By definition of the set (5.9) for j, there is a
fact g ∈ δj of the form R(xi, ā) with s = localR(α(j, g)) where xi is the recipient during global transition α(j, g). Denote
h = α(j, g). Because xi is the recipient during global transitions i and h and because localR(i) = s = localR(h) we have
i = h by Lemma B.3. Thus by definition of µR(i, y) we have u = vR(j)[y] ∈ µR(i, y) and therefore u ≤ t by definition of
t. But since u 6= t we have u < t.

Thus there is no value u ∈ N with rcvClock(xi, s, y, u) ∈ Mi and t < u. By definition of the set (5.4) for i, we obtain that
isBehind(xi, s, y, t) /∈Mi.

Message sending (5.6), (5.7), (5.8), (5.9).
Let f ∈ δi, which is a fact of the form R(y, ā). Denote k = α(i,f), t = localR(k) and u = vR(i)[y].
We first show that u ≤ t. First, by definition of α, we have i < k. Because y is the recipient during transition k, by Lemma

D.3 we have u < vR(k)[y]. By definition, vR(k)[y] = t+ 1. Therefore u < t+ 1 and thus u ≤ t.
Let ϕ and V be an asynchronous (simplified) rule of async(P) and a valuation respectively that together produced f ∈ δi

on input Di. We will use ϕ and V to show inclusion of the sets (5.6), (5.7), (5.8) and (5.9) in N . But before we continue we
need to map ϕ to rules in pure(P). For this purpose, let ϕ2 be an original, unsimplified rule of P such that ϕ is the simplified
version of ϕ2. The rule ϕ2 is of the following form:

R(y′, t′, v̄) ← B{x′, s′ | v̄, w̄, y′}, time(t′),

choice(〈x′, s′, y′, v̄〉, 〈t′〉);

where we have added a prime (′) to some variables to distinguish them from some symbols we use here for values. Let us
denote the Rsnd-rule in pure(P) that is based on ϕ2 (and the form (4.8)) as follows:

Rsnd(x′, s′, y′, t′, v̄) ← B{x′, s′ | v̄, w̄, y′}, all(y′),

clock(x′, s′, y′, u′), time(t′), u′ ≤ t′,
chosenR(x′, s′, y′, v̄, t′).

18

Let V2 be V extended with the additional mappings s′ 7→ s, t′ 7→ t and u′ 7→ u. Because V is satifying for ϕ, we have
V (pos(ϕ)) ⊆ Di and thus V2(pos(ϕ2)|sch(P)) ⊆ D↑si by definition of ϕ from ϕ2. And as we have shown above for the set 5.1

for i that D↑si ⊆ N and thus V2(pos(ϕ2)|sch(P)) ⊆ N . Also, V (neg(ϕ)) ∩Di = ∅ and thus V2(neg(ϕ2)) ∩D↑si = ∅ (using that

neg(ϕ2)|sch(P) = neg(ϕ2)). Specifically, the facts in V2(neg(ϕ2)) are over the schema sch(P)LT and have location specifier xi
and timestamp s. By Lemma B.3, the set (5.1) for i is the only part of M where we add facts over the schema sch(P)LT with
location specifier xi and timestamp s. Therefore V2(neg(ϕ2)) ∩M = ∅.

Now, for the set (5.7) of global transition i, we can show that chosenR(xi, s, y, ā, t) ∈ N . By construction of the sets (5.7)
and (5.8) for i, we have added to Mi the facts chosenR(xi, s, y, ā, t) and other(xi, s, y, ā, t2) with t2 ≥ u and t2 6= t. The
absence of the facts other(xi, s, y, ā, t) and V2(neg(ϕ2)) from M imply that the following positive ground rule is present in
GM (P), based on the above Rsnd-rule by applying valuation V2 to the variables and respecting the form (4.9):

chosenR(xi, s, y, ā, t) ← V2(pos(ϕ2)|sch(P)), V2(neq(ϕ2)), all(y),

clock(xi, s, y, u), time(t), u ≤ t.

We now show that the body of this ground rule is true on N . From above we have V2(pos(ϕ2)|sch(P)) ⊆ N and the ground
nonequalities V2(neq(ϕ2)) must be satisfied because V is satisfying for ϕ. We have shown above for the set (5.5) for i that
clock(xi, s, y, u) ∈ N . We have all(y) ∈ decl(H) and time(t) ∈ decl(H) and thus all(y) ∈ N and time(t) ∈ N by definition
of N . Also, we have shown above that u ≤ t. Therefore, overall, the body of the above ground chosenR-rule is true on N and
thus chosenR(xi, s, y, ā, t) ∈ N because N is a fixpoint.

Now let t2 ∈ N with vR(i)[y] ≤ t2 and t2 6= t. Thus u ≤ t2, by definition of u. For the set (5.8) of global transition i, we
show that otherR(xi, s, y, ā, t2) ∈ N . Reusing the rule ϕ2 and valuation V2 from above, we have the following ground rule in
GM (P), based on the form (4.10):

otherR(xi, s, y, ā, t2) ← V2(pos(ϕ2)|sch(P)), V2(neq(ϕ2)), all(y),

clock(xi, s, y, u), time(t2), u ≤ t2,
chosenR(xi, s, y, ā, t), t2 6= t.

Since chosenR(xi, s, y, ā, t) ∈ N we have otherR(xi, s, y, ā, t
′) ∈ N because N is a fixpoint.

For the set (5.6) of global transition i, we show that Rsnd(xi, s, y, t, ā) ∈ N . We have the following ground rule, based on
the above Rsnd-rule:

Rsnd(xi, s, y, t, ā) ← V2(pos(ϕ2)|sch(P)), V2(neq(ϕ2)), all(y),

clock(xi, s, y, u), time(t), u ≤ t,
chosenR(xi, s, y, ā, t).

Since chosenR(xi, s, y, ā, t) ∈ N we have Rsnd(xi, s, y, t, ā) ∈ N because N is a fixpoint.
Let z ∈ N . Denote v = vR(i)[z]. For the set (5.9) of global transition i, we show that rcvClock(y, t, z, v) ∈ N . The

following ground rule is in GM (P), based on the rule (4.12), because the rule 4.12 contains no negation:

rcvClock(y, t, z, v)← Rsnd(xi, s, y, t, ā), clock(xi, s, z, v).

First, we have already shown for the set (5.5) of i that clock(xi, s, z, v) ∈ N . Now since Rsnd(xi, s, y, t, ā) ∈ N from above,
we have rcvClock(y, t, z, v) ∈ N because N is a fixpoint. �

Lemma E.3. Consider Setting E.1. We have M−1 ⊆ N .

Proof. Recall that M−1 consists of the following facts:

1. decl(N) and Itime;

2. {rcvClock(x, 0, y, 0) | x, y ∈ N};
3. {notZero(j) | j ∈ N \ {0}};
4. zero(0).

For each group of facts we show inclusion in N :

1. We have decl(N) ∪ Itime ⊆ decl(H) by definition of decl(H). We have decl(H) ⊆ N by definition of N .

2. These facts are created by the ground rules in GM (P) of the form (4.3):

rcvClock(x, s, y, s)← all(x), all(y), x 6= y, zero(s).

3. For j ∈ N \ {0} the following ground rule derives notZero(j), based on the form (4.1):

notZero(j)← tsucc(j − 1, j).

4. By construction of M , there is no fact notZero(0) ∈ M . Therefore, the following ground rule, based on the form (4.2),
exists in GM (P) and it derives zero(0):

zero(0)← time(0).

19

�

Lemma E.4. Consider Setting E.1. Let i be a global transition of R. Denote s = localR(i). Suppose that S↑si ⊆ N |
xi,s. We

have D↑si ⊆ N |
xi,s.

Proof. The reasoning of this proof is similar to the known reasoning used to show that stratified semantics and stable model
semantics coincide for syntactically stratified programs.

Recall that by definition Di = deduc(P)(Si).

Abbreviate Ak = deduck(P)(Si). We show by induction on the stratum numbers k that A↑sk ⊆ N |xi,s. For the base case

(k = 0), we have A0 = Si. We are given that S↑si ⊆ N |
xi,s and thus A↑s0 ⊆ N |xi,s. For the induction hypothesis, assume that

the property holds for stratum k−1 with k−1 ≥ 0: A↑sk−1 ⊆ N |
xi,s. For the inductive step, we show that A↑sk ⊆ N |

xi,s. Since

Ak−1 ⊆ Ak, it is sufficient to show that (Ak \Ak−1)↑s ⊆ N |xi,s. We can consider the computation of stratum k in Ak to be a
fixpoint computation. So, we have a sequence of fact-sets A0

k ⊆ A1
k ⊆ A2

k ⊆ . . . with A0
k = Ak−1. We now show by induction

on j = 0, 1, 2, . . . that (Ajk)↑s ⊆ N |xi,s:

• For the base case (j = 0) we have (A0
k)↑s = (Ak−1)↑s ⊆ N |xi,s by applying the outer induction hypothesis.

• For the induction hypothesis, assume that (Aj−1
k)↑s ⊆ N |xi,s with j − 1 ≥ 0.

• For the inductive step, we show that (Ajk)↑s ⊆ N |xi,s. Let f ∈ Ajk \A
j−1
k . Let ϕ and V be the simplified deductive rule in

deduck(P) and valuation that have produced f on input Aj−1
k . Let ϕ2 be the original, unsimplified rule of P on which ϕ

is based. Let V2 be V extended to assign the value s to the body timestamp variable of ϕ2. We have V (pos(ϕ)) ⊆ Aj−1
k

and thus V2(pos(ϕ2)) ⊆ (Aj−1
k)↑s ⊆ N |xi,s by applying the inner induction hypothesis. Also, V (neg(ϕ))∩Ak−1 = ∅ since

negation in a stratified program can only be applied to lower strata. Because a relation only belongs to one stratum of
deduc(P), we additionally have V (neg(ϕ)) ∩Di = ∅ and thus V2(neg(ϕ2)) ∩D↑si = ∅. Now, since only in the definition
of the set (5.1) for Mi do we add facts over schema sch(P)LT with location specifier xi and timestamp s, and those

facts are precisely D↑si , we have V2(neg(ϕ2)) ∩M = ∅. Lastly, the nonequalities of ϕ and thus of ϕ2 must be satisfied
under V . Thus, the ground rule based on ϕ2 and V2 (without negative body literals) is in GM (P) and it derives the fact
V2(head(ϕ2)) = f↑s ∈ N because N is a fixpoint.

To conclude, let l be the largest stratum number of deduc(P). We have

D↑si = deduc(P)(Si)
↑s

= deducl(P)(Si)
↑s

= A↑sl
⊆ N |xi,s.

�

Lemma E.5. Consider Setting E.1. Let i be a global transition of R. Denote s = localR(i). Suppose that D↑si ⊆ N |
xi,s. We

have I↑s+1
i ⊆ N |xi,s+1.

Proof. Let f ∈ Ii. Let ϕ and V be the (simplified) rule of induc(P) and valuation that have generated f on input Di. Let
ϕ2 be the original, unsimplified inductive rule of P on which ϕ is based. The rule ϕ2 has an additional positive body atom
with predicate tsucc. Let V2 be V extended to assign the timestamp s to the body timestamp-variable of ϕ2 and to assign
s + 1 to the head timestamp-variable. We have tsucc(s, s + 1) ∈ decl(H) ⊆ N . We have V (pos(ϕ)) ⊆ Di and using the

given, D↑si ⊆ N |xi,s, and tsucc(s, s + 1) ∈ N , we have V2(pos(ϕ2)) ⊆ N . We must also have V (neg(ϕ)) ∩ Di = ∅. The
facts in Di have location specifier xi and timestamp s. Since the set (5.1) for global transition i is the only part in the
definition of M where we add facts over schema sch(P)LT with location specifier xi and timestamp s, and because those facts

are precisely D↑si , we have V2(neg(ϕ2)) ∩M = ∅. Lastly the nonequalities of ϕ and thus of ϕ2 must be satisfied under V2.
Therefore the inductive ground rule based on ϕ2 and V2 (without negative body literals) occurs in GM (P) and it derives
V2(head(ϕ2)) = f↑s+1 ∈ N |xi,s+1. �

Lemma E.6. Consider Setting E.1. We have N ⊆M .

Proof. We can imagine that the facts of N are obtained by an infinite sequence of fact derivations, one fact at the time. This
gives a sequence N0 ⊆ N1 ⊆ N2 ⊆ . . . of sets with N0 = decl(H) and N∞ = N . We can apply Lemma C.1 to find that N ,
and each of its subsets is well-formed as well. We show by induction for i ∈ N that Ni ⊆M .

First we look at the base case (i = 0): we must show N0 ⊆ M . Since N0 = decl(H), we can apply Lemma D.5 to know
that N0 ⊆M . For the induction hypothesis, we assume that Ni−1 ⊆M with i− 1 ≥ 0. For the inductive step we show that
Ni ⊆M . Let f denote the fact added to Ni−1 in order to obtain Ni. Below, we will consider the different kinds of predicates
that f can have. For each case we then show that f ∈M .

20

Facts over sch(P)LT.
Suppose that f is over a relation of sch(P)LT. Let x and s be the location specifier and timestamp of f respectively. Let

ψ be the ground rule of GM (P) that derived f in Ni. This ground rule can have several forms:

• Suppose that ψ is deductive. Because ψ exists in GM (P), we can choose an original deductive rule ϕ of P and a valuation
for ϕ such that V (head(ϕ)) = head(ψ), V (pos(ϕ)) = pos(ψ), V (neq(ϕ)) = neq(ψ) and V (neg(ϕ))∩M = ∅. Let ϕ′ denote
the simplication of ϕ and let V ′ denote the accompanying simplification of V . Because R is fair and f is well-formed,
by Lemma B.3 we can consider the global transition k so that its recipient xk is x and localR(k) = s. We show that V ′

is satisfying for ϕ′ during global transition k, so that f↓ ∈ Dk is derived.

We first show that V ′(pos(ϕ′)) ⊆ Dk. Because ψ derives f , we have pos(ψ) ⊆ Ni−1 ⊆ M by using the induction
hypothesis. Because ψ is deductive, the facts in pos(ψ) are over the schema sch(P)LT and have location specifier x and
timestamp s. By Lemma B.3, it follows that the set (5.1) for global transition k is the only part of M that contains facts

over schema sch(P)LT with location specifier x and timestamp s. Thus pos(ψ) ⊆ D↑sk . Now since by definition of ϕ′ we

have V ′(pos(ϕ′))↑s = V (pos(ϕ)) = pos(ψ), we obtain V ′(pos(ϕ′))↑s ⊆ D↑sk and thus V ′(pos(ϕ′)) ⊆ Dk.

We now show that V ′(neg(ϕ′)) ∩Dk = ∅. From above we have V (neg(ϕ)) ∩M = ∅ and thus V (neg(ϕ)) ∩D↑sk = ∅ since

D↑sk ⊆M . From this it follows that V ′(neg(ϕ′)) ∩Dk = ∅.
Lastly, the nonequalities of neq(ϕ′) = neq(ϕ) must also be satisfied under V ′, because they are satisfied under V .
Therefore, during global transition k, during the computation of the stratum of f ’s predicate in Dk, the rule ϕ′ under
valuation V ′ derives f↓ ∈ Dk and thus f ∈ D↑sk ⊆Mk ⊆M .

• Suppose that ψ is inductive. There must be a fact tsucc(s−1, s) ∈ pos(ψ) and thus s > 0. Because ψ is in GM (P), we can
choose an original inductive rule ϕ from P and a valuation V for ϕ such that V (head(ϕ)) = head(ψ), V (pos(ϕ)) = pos(ψ),
V (neq(ϕ)) = neq(ψ) and V (neg(ϕ))∩M = ∅. Valuation V assigns the value s−1 to the body timestamp variable and s to
the head timestamp-variable of ϕ. Let ϕ′ denote the simplication of ϕ and let V ′ denote the accompanying simplification
of V . Because R is fair, f is well-formedand s − 1 ∈ N, by Lemma B.3 we can consider the global transition k so that
its recipient xk is x and localR(k) = s− 1. We show that V ′ is satisfiable for ϕ′ during global transition k.

We first show that V ′(pos(ϕ′)) ⊆ Dk. This is similar as in the deductive case above, but we write it down because
it is also slightly different. By definition of ϕ′, we have pos(ϕ′) = (pos(ϕ)|sch(P))

↓. Since ψ produced f , we have
V (pos(ϕ)) ⊆ Ni−1 and thus V (pos(ϕ)) ⊆ M by applying the induction hypothesis. Specifically, V (pos(ϕ)|sch(P)) ⊆ M .

The facts in V (pos(ϕ)|sch(P)) are over the schema sch(P)LT, have location specifier x and timestamp s− 1. By Lemma

B.3, it follows that the set (5.1) is the only part of M that contains facts over schema sch(P)LT with location specifier

x and timestamp s− 1. Therefore V (pos(ϕ)|sch(P)) ⊆ D↑s−1
k . From this it follows that V ′(pos(ϕ′)) ⊆ Dk.

Showing that V ′(neg(ϕ′))∩Dk = ∅ is similarly as in the deductive case above. Also, by definition of ϕ′, neq(ϕ′) = neq(ϕ).
Therefore, overall, the rule ϕ′ under valuation V ’ derives f↓ ∈ Ik (the inductively derived facts during global transition
k). Thus f↓ ∈ sρk+1 |x by the operational semantics. Let j > k be the global transition index such that xj = xk and
k ∈ prevR(j), so j is the first global transition after k in which x is the recipient again. We have

f ∈ I↑sk ⊆ (sρk+1 |x)↑s = (sρj |x)↑s

⊆ S↑sj ⊆ D
↑s
j ⊆Mj ⊆M.

• Suppose that ψ is of the form (4.11):

R(x, s, ā)← Rsnd(y, t, x, s, ā),

for some values y ∈ N and t ∈ N. We have Rsnd(y, t, x, s, ā) ∈ Ni−1 and thus Rsnd(y, t, x, s, ā) ∈ M by applying
the induction hypothesis. By construction of M , there must be some global transition j such that Rsnd(y, t, x, s, ā) ∈
Mj \ Mj−1. By construction of the set (5.6) for j, this implies recipient xj is y, localR(j) = t and R(x, ā) ∈ δj .
Furthermore, s = localR(k) with k = α(j, R(x, ā)). By definition of α, this then implies R(x, ā) ∈ untag(mk) ⊆ Sk ⊆ Dk.

Thus R(x, s, ā) ∈ D↑sk ⊆Mk ⊆M by definition of the set (5.1) for k.

Relation Rsnd.
Suppose f is an Rsnd-fact, which is of the form Rsnd(x, s, y, t, ā), where R is a relation name in sch(P). Let ψ in GM (P)

be a ground rule that produced f .
We first show that there is a global transition k in R with R(y, ā) ∈ δk. First, because ψ exists in GM (P), we can choose

a non-ground rule ϕ in pure(P) and a valuation V for ϕ on which ψ is based, with specifically V (neg(ϕ)) ∩M = ∅. Rule ϕ
has head-predicate Rsnd and is based on the form (4.8). Let ϕ2 be the original asynchronous rule of P on which ϕ in turn is
based, which is of the following form:

R(y′, t′, v̄) ← B{x′, s′ | v̄, w̄, y′}, time(t′),

choice(〈x′, s′, y′, v̄〉, 〈t′〉);

where B is a sequence of literals and nonequalities, where x′ and s′ are the variables for the location specifier and timestamp
of the body respectively. The valuation V can be used as a valuation of ϕ2 because, by definition of ϕ out of ϕ2, the variables

21

of ϕ2 are included in those of ϕ. Let ϕ′ be the simplified version of ϕ2. Let V ′ be the restriction of V to vars(ϕ′). Because f
is well-formed, by Lemma B.3, there is a unique global transition k of R such that the recipient xk is x and s = localR(k).

We show that V ′ is satisfying for ϕ′ during global transition k. We first show that V ′(pos(ϕ′)) ⊆ Dk. Since ψ derives
f , we know that pos(ψ) ⊆ Ni−1 and thus pos(ψ) ⊆ M by applying the induction hypothesis. Therefore V (pos(ϕ)) ⊆ M
since V (pos(ϕ)) = pos(ψ). By definition of ϕ out of ϕ2, we have pos(ϕ2) ⊆ pos(ϕ), and thus V (pos(ϕ2)) ⊆ M . The
facts in V (pos(ϕ2)|sch(P)) are over the schema sch(P)LT, have location specifier x and timestamp s. By Lemma B.3, the

set (5.1) for k is the only part of M where we add facts over sch(P)LT with location specifier x and timestamp s. Thus

V (pos(ϕ2)|sch(P)) ⊆ D↑sk . By definition of ϕ′ we have pos(ϕ′) = (pos(ϕ2)|sch(P))
↓. From this it follows that V ′(pos(ϕ′)) ⊆ Dk.

Now we show that V ′(neg(ϕ′)) ∩Dk = ∅. From above we have V (neg(ϕ)) ∩M = ∅ and thus V (neg(ϕ)) ∩D↑sk = ∅ because

D↑sk ⊆ M . Since neg(ϕ2) = neg(ϕ) and neg(ϕ′) ⊆ neg(ϕ2)↓, it follows that V ′(neg(ϕ′)) ∩ Dk = ∅. The nonequalities of ϕ′

must also be satisfied under V ′. Alltogether, this causes ϕ′ to produce the fact R(y, ā) ∈ δk under valuation V ′.
Now we show that Rsnd(x, s, y, t, ā) ∈M . The rule ϕ is of the form (4.8). There must be a fact chosenR(x, s, y, ā, t) ∈ pos(ψ),

which is in M by the induction hypothesis. By Lemma (B.3), this chosenR-fact is more specifically in the set (5.7) of global
transition k. By definition of this set, we have t = localR(j) where j = α(k,R(y, ā)). Then, by definition of the set (5.6) for
k, we have Rsnd(x, s, y, t, ā) ∈Mk ⊆M .

Relation rcvClock.
Suppose f is a rcvClock-fact. There are several ways in which it can have been generated.

• By a ground rule of the form (4.3):

rcvClock(x, s, y, s)← all(x), all(y), x 6= y, zero(s).

By the induction hypothesis, M contains all(x), all(y) and zero(s). Because M is well-formed by construction, this
implies x, y ∈ N and s ∈ N. By construction of M , zero(s) ∈M−1 and thus s = 0. Now, by construction of the set M−1

we now have rcvClock(x, 0, y, 0) ∈M−1 ⊆M .

• By a ground rule of the form (4.4):

rcvClock(x, s, x, s′)← all(x), tsucc(s, s′).

By the induction hypothesis, M and more specifically decl(H) contains all(x) and tsucc(s, s′). This implies we have
s, s′ ∈ N and s′ = s + 1. By Lemma B.3 there is a unique global transition k such that the recipient xk is x and
s = localR(k). Now by definition of the set (5.2) for k, we have rcvClock(x, s, x, s′) ∈Mk ⊆M .

• By a ground rule of the form (4.5):

rcvClock(x, s′, y, t) ← clock(x, s, y, t), x 6= y,

tsucc(s, s′).

By the induction hypothesis, M contains clock(x, s, y, t) and tsucc(s, s′). Because M is well-formed by construction,
this implies x, y ∈ N and s, t ∈ N. Since tsucc(s, s′) ∈ decl(H) we have s′ ∈ N and s′ = s + 1. Additionally, the
ground rule above implies x 6= y. By Lemma B.3 there is a unique global transition k such that the recipient xk is x and
s′ = localR(k). Similarly there is a unique global transition j where the recipient xj is also x and s = localR(j). Because
localR(j) + 1 = localR(k) we have j < k and more specifically j ∈ prevR(k). Because the set (5.5) for global transition
j is the only part of M where we add clock-facts with first components x and s, we have clock(x, s, y, t) ∈ Mj . By
definition of the set (5.5) for j, we have vR(j)[y] = t. Now, since x 6= y, we have t ∈ πR(k, y). And by definition of the
set (5.3) for global transition k, we obtain rcvClock(x, s′, y, t) ∈Mk.

• By a rule of the form (4.12):

rcvClock(y, t, z, u) ← Rsnd(x, s, y, t, ā), clock(x, s, z, u).

Then by applying the induction hypothesis both body facts are in M . By construction of M , there must be a global
transition k such that Rsnd(x, s, y, t, ā) ∈ Mk \Mk−1. More specifically, Rsnd(x, s, y, t, ā) is in the set (5.6) for k. This
implies x = xk, s = localR(k), R(y, ā) ∈ δk and t = localR(j) with j = α(k,R(y, ā)). Furthermore, clock(x, s, z, u) is
in the set (5.5) for k because by Lemma (B.3) this is the only part of M where we add clock-facts with the first two
components x and s. By definition of the set (5.5) for k , we have z ∈ N and vR(k)[z] = u. Now by definition of the set
(5.9) for k we have rcvClock(y, t, z, u) ∈M .

Relation isBehind.
Suppose f is an isBehind-fact. The ground rule that has derived f is of the form (4.6):

isBehind(x, s, y, t) ← rcvClock(x, s, y, t),

rcvClock(x, s, y, t′), t′ < t.

By applying the induction hypothesis, we have rcvClock(x, s, y, t) ∈ M and rcvClock(x, s, y, t′) ∈ M . Because M is well-
formed by construction, we have x, y ∈ N and s, t, t′ ∈ N. by Lemma (B.3) there is a global transition k of R such that
the recipient xk is x and s = localR(k). By Lemma E.8 we have rcvClock(x, s, y, t) ∈ Mk and rcvClock(x, s, y, t′) ∈ Mk.

22

Now since rcvClock(x, s, y, t) ∈ Mk, rcvClock(x, s, y, t′) ∈ Mk and t′ < t, by definition of the set (5.4) for k, we have
isBehind(x, s, y, t) ∈Mk.

Relation clock.
Suppose f is a clock-fact. Let ψ be the ground rule, based on the form (4.7), that derived f :

clock(x, s, y, t)← rcvClock(x, s, y, t).

By applying the induction hypothesis, we must have rcvClock(x, s, y, t) ∈ Ni−1 ⊆ M . Because M is well-formed by
construction, by Lemma B.3 there is a unique global transition k of R such that xk = x and s = localR(k). Since
rcvClock(x, s, y, t) ∈M , by Lemma E.8 we have rcvClock(x, s, y, t) ∈Mk.

As mentioned above, the non-ground rule ϕ in pure(P) on which ψ is based is of the form (4.7):

clock(x′s′, y′, t′)← rcvClock(x′, s′, y,′ t′),¬isBehind(x′, s′, y′, t′).

Since ψ ∈ GM (P) we must have isBehind(x, s, y, t) /∈ M and thus isBehind(x, s, y, t) /∈ Mk since Mk ⊆ M . By definition of
the set (5.4) for k, this implies that for all facts rcvClock(x, s, y, v) ∈Mk we have v ≤ t.

Denote u = vR(k)[y]. Now we show that t = u. First, we show that rcvClock(x, s, y, u) ∈ Mk. If u = 0 then surely
u ≤ t because t ∈ N. Now suppose u > 0. We show that rcvClock(x, s, y, u) ∈ Mk. If u > 0 it is not possible that
rcvClock(x, s, y, u) ∈M−1.

• Suppose y = x. By definition u = localR(k) + 1. By definition of the set (5.2) for k we have rcvClock(x, s, y, u) ∈Mk.

• Suppose y 6= x. By definition u = max({0} ∪ µR(k, y) ∪ πR(k, y)). Suppose u ∈ µR(k, y). Then by Lemma E.7 we have
rcvClock(x, s, y, u) ∈Mk. Suppose u ∈ πR(k, y). Then by definition of the set (5.3) for Mk we have rcvClock(x, s, y, u) ∈
Mk.

For each fact rcvClock(x, s, y, v) ∈Mk we have v ≤ t by our reasoning above. Therefore u ≤ t.
Now we show that u = t. We already have u ≤ t. We show that t ≤ u. Abbreviate g = rcvClock(x, s, y, t). We look at the

options where g can come from:

• Suppose g is in the set (5.2) for k. Then x = y and t = s+ 1 = u by definition of u.

• Suppose that g is in the set (5.3) for k. Then t ∈ πR(k, y) and then t ≤ u by definition of u.

• Fact g can not be in the set (5.9) for k because the second component should then be at least s+ 1 by Lemma (D.4).

• Suppose that g ∈M−1. Then t = 0 and t ≤ u immediately holds.

• Suppose that there is a global transition j < k such that rcvClock(x, s, y, t) ∈Mj \Mj−1. The sets (5.2) and (5.3) for j
cannot contain rcvClock(x, s, y, t): if x 6= xj then the first component would have to be different from x, and if x = xj
then localR(j) < localR(k) = s. Therefore, only the set (5.9) for j can contain rcvClock(x, s, y, t). By construction of
this set, we have vR(j)[y] = t, and there is a fact g ∈ δj and a global transition h = α(j, g) such that j < h, xh = x,
localR(h) = s. Then h = k by Lemma B.3. If y = x then vR(j)[y] < vR(k)[y] by Lemma D.3 and thus t < u. If y 6= x
then vR(j)[y] ∈ µR(k, y) by definition of µR(k, y), and thus t ≤ u by definition of u as vR(k)[y].

From u ≤ t and t ≤ u we obtain that u = t. Now by construction of the set (5.5) for k we have clock(x, s, y, t) ∈Mk ⊆M .

Relation chosenR.
Suppose f is a chosenR-fact with R a relation in sch(P). Then f was generated by a ground rule ψ, based on the form

(4.9):

chosenR(x, s, y, ā, t) ← B{x, s | ā, b̄, y}, all(y),

clock(x, s, y, u), time(t), u ≤ t;

where the (ground) literals in B{x, s | ā, b̄, y} are over sch(P). The values x and s are the location specifier and timestamp
of the body facts over schema sch(P)LT respectively. This location specifier and timestamp are used for all body facts over
schema sch(P)LT. There must be a non-ground rule ϕ in pure(P) and a valuation V on which ψ is based, of the form 4.9. In
turn, there must be an original asynchronous rule ϕ2 in P such that ϕ is obtained from ϕ by applying the form (4.9). The
head predicate of ϕ2 is R. Because the positive variables of ϕ2 are included in those of ϕ by construction of ϕ, we can apply
V to ϕ2 as well. Let ϕ′ be the simplification of ϕ2 and let V ′ be the restriction of V to the variables of ϕ′.

Because M is well-formed, by Lemma B.3 there is a unique global transition k of R so that the recipient xk is x and
s = localR(k). Similarly to the case where f is a fact with predicate Rsnd (see earlier), we can show that V ′ is satisfying for
ϕ′ during global transition k and we obtain that R(y, ā) ∈ δk.

Since ψ exists in GM (P), we have V (neg(ϕ))∩M = ∅ and specifically using the form (4.9), we have otherR(x, s, y, ā, t) /∈M .
Since the set (5.8) for k is the only part of M that can contain otherR-facts with first two components x and s, we have that
otherR(x, s, y, ā, t) is not in this set, which could be for the following reasons (looking at the definition of the set (5.8)):

• Suppose R(y, ā) /∈ δk. That is not possible (see earlier);

• Suppose t /∈ N. That is is not possible because time(t) ∈ decl(H) and decl(H) is well-formed;

23

• Suppose t < vR(k)[y]. Referring to ground rule ψ above, we have clock(x, s, y, u) ∈ Ni−1 ⊆ M by the induction
hypothesis. By Lemma B.3, the set (5.5) for k is the only part of M where we add clock-facts with first components x
and s. Thus clock(x, s, y, u) is in the set (5.5) for k and thus vR(k)[y] = u. Also, since according to ground rule ψ above
we have u ≤ t, we cannot have t < vR(k)[y].

• Suppose t = localR(j) with j = α(k,R(y, ā)). This is the only case that remains, so it must be true.

Now by using the definition of the set (5.7) for k, we have chosenR(x, s, y, ā, t) ∈Mk ⊆M .

Relation otherR.
Suppose f has predicate otherR with R a relation in sch(P). The fact was generated by a ground rule ψ, based on the

form (4.10):

otherR(x, s, y, ā, t) ← B{x, s | ā, b̄, y}, all(y),

clock(x, s, y, u), time(t), u ≤ t,
chosenR(x, s, y, ā, t′), t 6= t′.

We use a similar notation as for the ground rule in the reasoning about the chosenR-fact above. Because M is well-formed,
by Lemma B.3 there is a unique global transition k such that the recipient xk is x and s = localR(k). We can show similarly
as for the chosenR-fact above, that R(y, ā) is sent during global transition k, formally, R(y, ā) ∈ δk.

In addition, by applying the induction hypothesis, chosenR(x, s, y, ā, t′) ∈ Ni−1 ⊆ M . Because the set (5.7) for global
transition k is the only part of M where we add chosenR-facts with first components x and s, we have that chosenR(x, s, y, ā, t′)
is in this set, and thus t′ = localR(j) with j = α(k,R(y, ā)). Similarly, the fact clock(x, s, y, u) ∈ Ni−1 ⊆ M implies that
clock(x, s, y, u) is in the set (5.5) for k and thus vR(k)[y] = u. The rule ψ above then implies t ∈ N, vR(k)[y] ≤ t and t 6= t′.
Now, by definition of the set 5.8 for global transition k, we have otherR(x, s, y, ā, t) ∈Mk ⊆M .

Relation notZero.
Suppose that f is of the form notZero(s). Then f is derived by a ground rule, based on (4.1):

notZero(s)← tsucc(t, s).

Since tsucc(t, s) ∈ decl(H) implies s > 0, we have notZero(s) ∈M−1 ⊆M .

Relation zero.
Suppose that f is of the form zero(s). Then f is derived by a ground rule of the following form, based on (4.2):

zero(s)← time(s).

Because this ground rule exists in GM (P), we have notZero(s) /∈ M and thus notZero(s) /∈ M−1. But time(s) ∈ decl(H)
implies s ∈ N and by definition of the set M−1 this implies s = 0. Furthermore, we have zero(s) ∈ M−1, again by definition
of M−1. �

Lemma E.7. Consider Setting E.1. Let i be a global transition of R. Denote x = xi and s = localR(i). Let z ∈ N with
z 6= x. Let u ∈ µR(i, z). We have rcvClock(x, s, z, u) ∈Mi.

Proof. By definition of µR(i, z) there is a global transition k < i and a fact f ∈ δk with α(k,f) = i and vR(k)[z] = u. The fact
f is of the form R(x, ā). Abbreviate l = localR(k). By the set (5.9) for global transition k, we have rcvClock(x, s, z, u) ∈Mk.
�

Lemma E.8. Consider Setting E.1. Consider a fact rcvClock(x, s, y, t) ∈ M . Because M is well-formed, we have x ∈ N
and s ∈ N. Then by Lemma B.3 there is a unique global transition i of R such that xi = x and localR(i) = s. We have
rcvClock(x, s, y, t) ∈Mi.

Proof. Abbreviate f = rcvClock(x, s, y, t). First suppose f ∈ M−1. Then we immediately have f ∈ Mi because M−1 ⊆ Mi

by definition of Mi.
Now suppose f /∈ M−1. As a proof by contradiction, suppose now that f /∈ Mi. Because f ∈ M , there must be a global

transition j with f ∈Mj \Mj−1. We must have i < j because otherwise Mj ⊆Mi and f ∈Mi. The sets (5.2) and (5.3) for
global transition j cannot contain f :

• If xj 6= x then the first component of f should be different from x.

• If xj = x then the second component of f should be localR(j), which is different from s since localR(i) < localR(j), which
follows from i < j and the definition of localR.

The fact f can only be in the set (5.9) for j. Now, by definition of the set (5.9) for j, there must be a fact g ∈ δj of the form
R(x, ā) and a global transition h such that h = α(j, g) and s = localR(h). But by definition of α we have j < h and xh = x.
By Lemma (B.3) we have i = h. But then j < i is a contradiction.

Therefore rcvClock(x, s, y, t) ∈Mi. �

24

Proposition E.9. Consider Setting E.1. The trace M of R is a fair stable model of pure(P) on input decl(H).

Proof. First, using Lemmas E.2 and E.6 we know that M = N and thus M is stable.
Now we show that M is fair as well. Let (x, s) ∈ N × N. Fix a relation R in sch(P) for which the relation Rsnd occurs in

pure(P). We must show that the number of Rsnd-facts in M with x and s as third and fourth components is finite. First, by
Lemma B.3 there is one unique global transition k of R such that the recipient xk is x and localR(k) = s.

Consider a fact Rsnd(y, t, x, s, ā) ∈ M . We first show that Rsnd(y, t, x, s, ā) ∈ Mk. By construction of M there must be a
global transition j such that Rsnd(y, t, x, s, ā) ∈Mj \Mj−1. By definition of the set (5.6) for j, we have xj = y, t = localR(j),
there is a fact R(x, ā) ∈ δj and a global transition h with j < h such that h = α(j, R(x, ā)), xh = x and s = localR(h). By
Lemma B.3 this implies h = k. Therefore j < k. And since Mj ⊆Mk, we have Rsnd(y, t, x, s, ā) ∈Mk.

As an intermediate conclusion, all Rsnd-facts in M with x and s as third and fourth components are generated by global
transitions smaller than k. Let j be such a global transition, like above. By Lemma B.4, the set δj is finite. Therefore,
the number of Rsnd-facts contributed by the set (5.6) for j is finite. Now, because there are only a finite number of global
transitions that came before global transition k, there are only a finite number of Rsnd-facts in Mk with x and s as third and
fourth components. We conclude that M is fair. �

F. STABLE MODEL TO RUN
In this section we show that for every fair stable model of a Dedalus program on a distributed input database there exists

a fair run whose trace is that stable model.
Let P be a Dedalus program. Let H be an input distributed database instance for P , over a network N . Let M be a fair

stable model of pure(P) on input decl(H). All lemmas mentioned in this section are relative to this setting.
As a general property, because decl(H) is well-formed by construction and because M is the output of GM (P) on input

decl(H), by Lemma C.1 we have that M is well-formed.
We reuse the notations from the previous sections.

F.1 Time properties
The following properties give insight in what clock information is represented by M .

Lemma F.1. For t ∈ N \ {0} we have notZero(t) ∈M and zero(t) /∈M . Also, zero(0) ∈M .

Proof. Let t ∈ N \ {0}. By definition of decl(H) we have tsucc(t − 1, t) ∈ decl(H) ⊆ M . Therefore, the fact notZero(t) is
derived by the following ground rule in GM (P), based on the rule (4.1):

notZero(t)← tsucc(t− 1, t).

The only rule in pure(P) with head-predicate zero is (4.2). Because notZero(t) ∈ M the following ground rule cannot exist
in GM (P):

zero(t)← time(t).

Therefore zero(t) /∈M .
The fact notZero(0) cannot be derived with ground rules of the form (4.1) because there is no fact tsucc(s, 0) ∈ decl(H),

therefore notZero(0) /∈M . Thus, the following ground rule, based on the rule (4.2), exists in GM (P) and it derives zero(0) ∈
M :

zero(0)← time(0).

�

Lemma F.2. For x, y ∈ N with x 6= y we have rcvClock(x, 0, y, 0) ∈M .
For x ∈ N and s ∈ N we have rcvClock(x, s, x, s+ 1) ∈M .

Proof. First, by definition, decl(H) contains for each x ∈ N the fact all(x) and for each s ∈ N the fact tsucc(s, s+ 1). Also,
from Lemma F.1 we know that there is a fact zero(0) ∈M . Now, the facts of this lemma are derived by ground rules of the
forms (4.3) and (4.4), because M is a fixpoint:

rcvClock(x, s, y, s)← all(x), all(y), x 6= y, zero(s).

rcvClock(x, s, x, s+ 1)← all(x), tsucc(s, s+ 1).

�

Lemma F.3. For x, y ∈ N and s ∈ N, there is at most one value t such that clock(x, s, y, t) ∈M .

25

Proof. Suppose that there are two different values t and t′ such that clock(x, s, y, t) ∈ M and clock(x, s, y, t′) ∈ M . Be-
cause M is well-formed, we have t, t′ ∈ N. The only rule in pure(P) for deriving clock-facts is the rule (4.7). This im-
plies that rcvClock(x, s, y, t) ∈ M and rcvClock(x, s, y, t′) ∈ M . Assume without loss of generality that t < t′. Then
isBehind(x, s, y, t) ∈M is derived by a ground rule based on the form (4.6) because M is a fixpoint. But then the following
ground rule cannot exist in GM (P), based on the rule (4.7):

clock(x, s, y, t)← rcvClock(x, s, y, t).

Therefore clock(x, s, y, t) /∈M , a contradiction. �

Lemma F.4. Let (x, s) ∈ N × N. The following subset of M is finite:

{clock(z, u, y, t) ∈M | (z, u) = (x, s)}.

Proof. First, because M is well-formed there can be no fact clock(x, s, y, t) ∈M with y /∈ N . Also, for a node y ∈ N , Lemma
F.3 tells us that there is at most one value t ∈ N such that clock(x, s, y, t) ∈M . Now since N is finite, overall there are only
a finite number of clock-facts in M with x and s as first and second components. �

Lemma F.5. Let (x, s) ∈ N × N. The following subset of M is finite:

{rcvClock(z, u, y, t) ∈M | (z, u) = (x, s)}.

Proof. First, suppose that rcvClock-facts in M could only be generated by ground rules in GM (P) that are based on the
forms (4.3), (4.4) and (4.5):

• Ground rules of the form (4.3) cannot cause the property of this lemma to be violated because the second and fourth
component of the generated rcvClock-facts must be the same and because N is finite, which implies that there are only
a finite number of all-facts in decl(H).

• Ground rules of the form (4.4) cannot cause the property to be violated because if tsucc(s, s′) ∈ decl(H) and tsucc(s, s′′) ∈
decl(H) then s′ = s′′ (functional dependency).

• Ground rules of the form (4.5) cannot cause the property to be violated because (i) if tsucc(s′, s) ∈ decl(H) and
tsucc(s′′, s) ∈ decl(H) then s′ = s′′ (functional dependency) and (ii) by Lemma F.4, for each (y, t) ∈ N × N there are
only a finite number of clock-facts in M having y and t as first two components.

Now the only way the property could be violated is by ground rules of the form (4.12), where R is a relation in sch(P):

rcvClock(x′, s′, z′, u′) ← Rsnd(y′, t′, x′, s′, v̄), clock(y′, t′, z′, u′).

Let us first focus on a fact Rsnd(y, t, x, s, ā) ∈ M . Because M is well-formed, we have y ∈ N and t ∈ N. Let z ∈ N . By
Lemma F.4, there are only a finite number of clock-facts in M having y and t as first two components. Therefore, if we fix
one Rsnd-fact and combine it with clock-facts as indicated by the above rule, then only a finite number of rcvClock-facts can
result with first components x and s. Now since M is fair, there are only a finite number of Rsnd-facts in M with third and
fourth components x and s, and thus ground rules of the form (4.12) cannot cause the property to be violated.

There are only a finite number of asynchronous rules in P and therefore there are only a finite number of rules of the form
(4.12) in pure(P), and for each of these latter rules we have shown just above that they cannot cause the property to be
violated. �

Lemma F.6. Let x, y ∈ N and s ∈ N. Suppose there is a value u ∈ N such that rcvClock(x, s, y, u) ∈ M . Then there is a
value t ∈ N such that clock(x, s, y, t) ∈M .

Proof. Suppose that clock(x, s, y, u) /∈ M . Because the only rule in pure(P) to derive clock-facts is (4.7), the following
ground rule can thus not be available in GM (P):

clock(x, s, y, u)← rcvClock(x, s, y, u).

This implies that isBehind(x, s, y, u) ∈M . By rule (4.6), the existence of this isBehind-fact implies that there is some value
u′ such that rcvClock(x, s, y, u′) ∈M and u < u′. Now similarly, clock(x, s, y, u′) /∈M would imply that there is yet another
fact rcvClock(x, s, y, u′′) ∈M such that u′ < u′′. But by Lemma F.5, this reasoning can’t go on forever. Eventually we find
the existence of a value t such that rcvClock(x, s, y, t) ∈ M and isBehind(x, s, y, t) /∈ M . Then the following ground rule,
based on the rule (4.7), exists and derives clock(x, s, y, t):

clock(x, s, y, t)← rcvClock(x, s, y, t).

�

Lemma F.7. Let x, y ∈ N and s ∈ N. There exists at least one value t ∈ N such that clock(x, s, y, t) ∈M .

Proof. We show by induction on s ∈ N that there exists a value t ∈ N such that clock(x, s, y, t) ∈M .

26

1. Base base (s = 0). If x = y then rcvClock(x, s, x, 1) ∈ M by Lemma F.2. If x 6= y then rcvClock(x, s, y, 0) ∈ M , again
by Lemma F.2. Thus there is some value u such that rcvClock(x, s, y, u) ∈ M . Then we can apply Lemma (F.6) to
know that there is a value t ∈ N such that clock(x, s, y, t) ∈M .

2. Induction hypothesis: assume that for s ∈ N there is a value t ∈ N such that clock(x, s, y, t) ∈M .

3. Inductive step: we show that there is a value t such that clock(x, s + 1, y, t) ∈ M . Like in the base case, if x = y then
rcvClock(x, s + 1, x, s + 2) ∈ M by Lemma F.2. If x 6= y, we apply the induction hypothesis to know that there is
some value u such that clock(x, s, y, u) ∈ M . Now, the following ground rule in GM (P), based on rule (4.5), derives
rcvClock(x, s+ 1, y, u) ∈M :

rcvClock(x, s+ 1, y, u) ← clock(x, s, y, u), x 6= y,

tsucc(s, s+ 1).

Thus, there is at least one value v ∈ N such that rcvClock(x, s+ 1, y, v) ∈M . Now we can again apply Lemma (F.6) to
obtain that there is a value t ∈ N such that clock(x, s+ 1, y, t) ∈M .

�

Corollary F.8. For x, y ∈ N and s ∈ N there is precisely one t ∈ N such that clock(x, s, y, t) ∈M .

Proof. This follows from Lemmas F.3 and F.7. �

F.2 Message sending
The following properties give insight in the message sending represented by M .

Lemma F.9. For Rsnd(x, s, y, t, ā) ∈M and Rsnd(x, s, y, t′, ā) ∈M we have t = t′ (functional dependency), with R a relation
name in sch(P).

Proof. Proof by contradiction: suppose that t 6= t′. The facts Rsnd(x, s, y, t, ā) ∈ M and Rsnd(x, s, y, t′, ā) ∈ M imply the
existence of two ground rules to derive them, based on the form (4.8):

ψ1 : Rsnd(x, s, y, t, ā) ← B, all(y),

clock(x, s, y, u), time(t), u ≤ t,
chosenR(x, s, y, ā, t).

ψ2 : Rsnd(x, s, y, t′, ā) ← B′, all(y),

clock(x, s, y, u′), time(t′), u′ ≤ t′,
chosenR(x, s, y, ā, t′).

Here B and B′ are lists of positive ground atoms (facts) and ground nonequalities. Since the above ground rules derived
Rsnd(x, s, y, t, ā) ∈M and Rsnd(x, s, y, t′, ā) ∈M , the positive body facts in the above ground rules must be in M . Specifically
chosenR(x, s, y, ā, t) ∈M and chosenR(x, s, y, ā, t′) ∈M . Also, by Lemma F.3 we have u = u′.

The presence of these chosenR-facts in turn implies the presence of ground rules in GM (P) to derive them, based on the
form (4.9):

ψ3 : chosenR(x, s, y, ā, t) ← C, all(y),

clock(x, s, y, u), time(t), u ≤ t.

ψ4 : chosenR(x, s, y, ā, t′) ← C′, all(y),

clock(x, s, y, u), time(t′), u ≤ t′.

Similarly to ψ1 and ψ2, here C and C′ are lists of positive ground atoms and ground nonequalities. However, the original
rules in pure(P) on which these ground rules are based contain negative otherR-literals in their body; see rule (4.9). Since ψ2

and ψ3 are in GM (P), the following facts must be absent from M : otherR(x, s, y, ā, t) and otherR(x, s, y, ā, t′) (respectively).
The ground rules ψ3 and ψ4 are based on original rules ϕ and ϕ′ respectively, that are in pure(P) and that are of the form

(4.9). The rules ϕ and ϕ′ in turn are based on original asynchronous rules ϕ2 and ϕ′2 respectively, that are in P . Applying the
form (4.10) to ϕ2 and ϕ′2 respectively gives the following rules are in pure(P), where variable names are written in boldface
and, for technical convenience, shared between the rules:

ϕ3 : otherR(x, s,y, v̄, t) ← pos(ϕ2)|sch(P),neg(ϕ2),neq(ϕ2), all(y),

clock(x, s,y,u), time(t),u ≤ t,

chosenR(x, s,y, v̄, t′), t 6= t′.

27

ϕ′3 : otherR(x, s,y, v̄, t′) ← pos(ϕ′2)|sch(P),neg(ϕ′2),neq(ϕ′2), all(y),

clock(x, s,y,u), time(t′),u ≤ t′,

chosenR(x, s,y, v̄, t), t′ 6= t.

By the correspondence of ψ3 to ϕ2 we have a valuation V for ϕ2, such that C is the sequence consisting of V (pos(ϕ2)) and
V (neq(ϕ2)). The valuation V can be extended to a valuation for ϕ3 by adding the mappings u 7→ u and t′ 7→ t′. This goes
similarly for ψ4, ϕ′2 and C′. Therefore the following ground rules are in GM (P):

ψ5 : other(x, s, y, ā, t) ← C, all(y),

clock(x, s, y, u), time(t), u ≤ t,
chosenR(x, s, y, ā, t′), t 6= t′.

ψ6 : other(x, s, y, ā, t′) ← C′, all(y),

clock(x, s, y, u), time(t′), u ≤ t′

chosenR(x, s, y, ā, t), t′ 6= t.

Since the bodies of ψ3 and ψ4 are true on M , and because chosenR(x, s, y, ā, t) ∈M , chosenR(x, s, y, ā, t′) ∈M and t 6= t′, we
obtain that the bodies of ψ5 and ψ6 are also true on M . Now, since M is a fixpoint, we must have otherR(x, s, y, ā, t) ∈ M
and otherR(x, s, y, ā, t′) ∈M , and we have arrived at the contradiction. �

Lemma F.10. Let ψ ∈ GM (P) be a ground rule of the form (4.8):

Rsnd(x, s, y, t, ā) ← B, all(y), clock(x, s, y, u),

time(t), u ≤ t,
chosenR(x, s, y, ā, t).

where B is a sequence of positive ground atoms (facts) and ground nonequalities. Suppose that M |= B, all(y) ∈ decl(H) ⊆M ,
clock(x, s, y, u) ∈M , time(t) ∈ decl(H) ⊆M and u ≤ t.

Now, if chosenR(x, s, y, ā, t) /∈M then there exists a value t′ ∈ N with u ≤ t′ such that chosenR(x, s, y, ā, t′) ∈M .

Proof. Assume the contrary. Consider a value t′ ∈ N such that u ≤ t′ (and thus time(t′) ∈ decl(H) ⊆ M). Consider the
following ground rule, based on the above ground rule except that t has been replaced by t′:

ψ : Rsnd(x, s, y, t′, ā) ← B, all(y), clock(x, s, y, u),

time(t′), u ≤ t′,
chosenR(x, s, y, ā, t′)

By the given, M |= B, all(y) ∈ decl(H) ⊆ M and clock(x, s, y, u) ∈ M . By contradiction we have assumed that
chosenR(x, s, y, ā, t′) /∈ M . The rule ψ is based on a non-ground rule ϕ in pure(P) and a valuation V for ϕ, which is
of the form (4.8). In turn, ϕ is based on an original asynchronous rule ϕ2 in P such that B is the sequence consisting of
V (pos(ϕ2)) and V (neq(ϕ2)). Based on ϕ2 there is a rule ϕ3 in pure(P) of the form (4.9), that derives chosenR-facts. Although
the fact chosenR(x, s, y, ā, t′) could in principle be derived by multiple ground rules, chosenR(x, s, y, ā, t′) /∈ M implies that
amongst others the following ground rule based on ϕ3 and V is absent from GM (P):

chosenR(x, s, y, ā, t′) ← B, all(y), clock(x, s, y, u),

time(t′), u ≤ t′.

Looking at the form (4.9), the absence of the previous ground rule from GM (P) implies that otherR(x, s, y, ā, t′) ∈M . This
otherR-fact must be derived by a ground rule, of the following form, based on (4.10):

otherR(x, s, y, ā, t′) ← B′, all(y), clock(x, s, y, v),

time(t′), v ≤ t′,
chosenR(x, s, y, ā, t′′), t′′ 6= t′.

Thus apparently there is some value t′′ ∈ N such that chosenR(x, s, y, ā, t′′) ∈ M . Again, the fact chosenR(x, s, y, ā, t′′) was
derived by a ground rule of the following form, based on (4.9):

chosenR(x, s, y, ā, t′′) ← B′′, all(y), clock(x, s, y, w),

time(t′′), w ≤ t′′.

Using Lemma F.3 and clock(x, s, y, u) ∈M , we know that w = u and therefore u ≤ t′′. Thus there exists t′′ ∈ N with u ≤ t′′
and chosenR(x, s, y, ā, t′′) ∈M , and we have arrived at the contradiction. �

28

F.3 Local vector clocks
Based on Corollary F.8, for x ∈ N and s ∈ N we define the (local) vector clock associated with node x at local timestamp

s, denoted vM (x, s), as follows: for y ∈ N , we set vM (x, s)[y] = t such that clock(x, s, y, t) ∈M .
The following lemmas provide insight into these local vector clocks.

Lemma F.11. Let x, y ∈ N and s ∈ N. A fact rcvClock(x, s, y, u) ∈M implies vM (x, s)[y] ≥ u.

Proof. Denote vM (x, s)[y] = v. Suppose by contradiction that v < u. Then by definition of vM (x, s)[y], we have clock(x, s, y, v) ∈
M , and thus rcvClock(x, s, x, v) ∈M by the rule (4.7). Because both rcvClock(x, s, y, u) ∈M and rcvClock(x, s, y, v) ∈M ,
a ground rule of the form (4.6) derives isBehind(x, s, y, v) ∈M because M is a fixpoint. Consider the following ground rule,
based on rule (4.7):

clock(x, s, y, v)← rcvClock(x, s, y, v).

Because isBehind(x, s, y, v) ∈ M , this rule is not in GM (P) and because there are no other ground rules with this head, we
have clock(x, s, y, v) /∈M , a contradiction. �

Lemma F.12. Let x ∈ N and s ∈ N. We have vM (x, s)[x] = s+ 1.

Proof. First we show that vM (x, s)[x] ≥ s + 1. We have rcvClock(x, s, x, s + 1) ∈ M by Lemma F.2. Then by Lemma F.11
we have vM (x, s)[x] ≥ s+ 1.

Now we show that vM (x, s)[x] ≤ s + 1, which combined with the above implies vM (x, s)[x] = s + 1. As a proof by
contradiction, suppose that vM (x, s)[x] > s+ 1. Abbreviate u = vM (x, s)[x]. By definition of u, we have clock(x, s, x, u) ∈M
and thus rcvClock(x, s, x, u) ∈M by the rule (4.7). Because u > s+1, the fact rcvClock(x, s, x, u) can not have been derived
by ground rules of the forms (4.3), (4.4) and (4.5): ground rules of the forms (4.3) or (4.5) would require the first and third
components to be different, whereas ground rules of the form (4.4) would force u = s + 1. So, rcvClock(x, s, x, u) ∈ M can
only have been derived by means of a ground rule of the form (4.12):

rcvClock(x, s, x, u)← Rsnd(y, t, x, s, ā), clock(y, t, x, u).

This implies Rsnd(y, t, x, s, ā) ∈M and clock(y, t, x, u) ∈M . The fact Rsnd(y, t, x, s, ā) ∈M was derived by a ground rule of
the form (4.8):

Rsnd(y, t, x, s, ā) ← B, all(x), clock(y, t, x, w),

time(s), w ≤ s,
chosenR(y, t, x, ā, s).

Using Corollary F.8 and clock(y, t, x, u) ∈M from above, we find that w = u. Since the body of the previous ground rule is
true, thus u ≤ s and u < s+ 1. We have arrived at the contradiction. �

Lemma F.13. Let x ∈ N and s ∈ N. We have vM (x, s) ≺ vM (x, s+ 1).

Proof. We first show for y ∈ N with y 6= x that vM (x, s)[y] ≤ vM (x, s+1)[y]. Let u = vM (x, s)[y]. By definition of vM (x, s)[y],
we have clock(x, s, y, u) ∈M . The following ground rule, based on (4.5), is in GM (P) and it derives rcvClock(x, s+1, y, u) ∈
M :

rcvClock(x, s+ 1, y, u) ← clock(x, s, y, u), x 6= y,

tsucc(s, s+ 1).

Then by Lemma F.11 we have vM (x, s+ 1)[y] ≥ u as desired.
By Lemma F.12 we have vM (x, s)[x] = s+ 1 < s+ 2 = vM (x, s+ 1)[x] and together with the above we conclude vM (x, s) ≺

vM (x, s+ 1). �

Lemma F.14. For each Rsnd(x, s, y, t, ā) ∈M with R a relation in sch(P) we have vM (x, s) ≺ vM (y, t).

Proof. First we show that vM (x, s) � vM (y, t). Let z ∈ N . We must show that vM (x, s)[z] ≤ vM (y, t)[z]. Abbreviate
u = vM (x, s)[z]. By definition of vM (x, s)[z] we have clock(x, s, z, u) ∈M . The following rule derives rcvClock(y, t, z, u) ∈M
because M is a fixpoint:

rcvClock(y, t, z, u)← Rsnd(x, s, y, t, ā), clock(x, s, z, u).

By Lemma F.11 we then have u ≤ vM (y, t)[z]. Because z ∈ N was taken in general, we have vM (x, s) � vM (y, t).
Now we show that vM (x, s)[y] < vM (y, t)[y]. The fact Rsnd(x, s, y, t, ā) was derived by a ground rule of the form (4.8):

Rsnd(x, s, y, t, ā) ← B, all(y),

clock(x, s, y, w), time(t), w ≤ t,
chosenR(x, s, y, ā, t).

29

Here B is a sequence of positive ground atoms (facts) and ground nonequalities. Because the body of this rule is true on M , we
have clock(x, s, y, w) ∈M . By definition of vM (x, s), we have vM (x, s)[y] = w ≤ t. By Lemma F.12 we have vM (y, t)[y] = t+1
and thus vM (x, s)[y] < vM (y, t)[y].

Now combining vM (x, s) � vM (y, t) and vM (x, s)[y] < vM (y, t)[y] gives us vM (x, s) ≺ vM (y, t). �

Lemma F.15. Let (x, s) ∈ N × N and (y, t) ∈ N × N. If (x, s) 6= (y, t) then vM (x, s) 6= vM (y, t).

Proof. Let (x, s) ∈ N × N and (y, t) ∈ N × N be such that (x, s) 6= (y, t). We show that vM (x, s) 6= vM (y, t). First suppose
that x = y but s 6= t. Suppose without loss of generalisation that s < t. Then vM (x, s) ≺ vM (x, t) by Lemma F.13 and thus
vM (x, s) 6= vM (y, t).

Now suppose that x 6= y. We show that vM (x, s) 6= vM (y, t). As a proof by contradiction, suppose that vM (x, s) = vM (y, t).
Abbreviate u = vM (x, s)[x]. Since vM (x, s) = vM (y, t) by assumption, we have vM (y, t)[x] = u. By definition of vM (y, t)
we have clock(y, t, x, u) ∈ M . Intuitively, we will now trace the derivation of this clock-fact backwards, and arrive at a
contradiction.

By definition of u = vM (x, s)[x], we have u = s+ 1 by Lemma F.12 and thus u > 0. The fact clock(y, t, x, u) ∈M implies
rcvClock(y, t, x, u) ∈ M , by the rule (4.7). This rcvClock-fact cannot be generated by ground rules of the forms (4.3) and
(4.4), because they force u = 0 and y = x respectively. The fact rcvClock(y, t, x, u) can thus have been generated only by
ground rules of the forms (4.5) or (4.12). We will name these forms the local-rule and send-rule respectively. First, if the
local-rule applies to the origin of rcvClock(y, t, x, u), then clock(y, t − 1, x, u) ∈ M and thus rcvClock(y, t − 1, x, u) ∈ M ,
by the rule (4.7). We can repeat the same backward reasoning with the local-rule until we hit a local time t′ ≤ t of y
such that clock(y, t′, x, u) ∈ M but clock(y, t′ − 1, x, u) /∈ M . At that moment only the send-rule can be applied. Thus,
rcvClock(y, t′, x, u) ∈M was generated by a ground rule of the form (4.12):

rcvClock(y, t′, x, u) ← Rsnd(z, v, y, t′, ā), clock(z, v, x, u).

Thus Rsnd(z, v, y, t′, ā) ∈M , clock(z, v, x, u) ∈M . Now we follow this send-rule backward and jump to the node z. Now again,
we use the local-rule on node z until we hit a local time v′ ≤ v of z such that clock(z, v′, x, u) ∈M but clock(z, v′−1, x, u) /∈
M . Then we are forced to follow a send-rule backward again.

We can keep repeating this reasoning: when we arrive at a node by means of a send-rule, then we first try to follow as many
local-rules as possible until we are forced to use a send-rule again. This gives us a sequence Z = (z0, l0), (z1, l1), (z2, l2), . . .
such that for i = 0, 1, 2, . . . we have clock(zi, li, x, u) ∈M but clock(zi, li− 1, x, u) /∈M and thus we jumped from node zi to
node zi+1 by means of a send-rule. We have z0 = y and l0 ≤ t. At this point we don’t know whether the sequence Z is finite.

We now show that we eventually end up following a send-rule backward to the node x itself. By Lemma F.13 (for the
local-rule) and Lemma F.14 (for the send-rule), we obtain for each index i of Z for which the index i+ 1 is also defined that
vM (zi, li) � vM (zi+1, li+1). So intuitively, the sequence Z respects a (reversed) causal order. Now we show that nodes are
not repeated in the sequence Z. Suppose that there is a repetition of a node z in Z: there are indices i and j with 0 ≤ i < j
such that zi = zj = z. Using the previously mentioned causal ordering of the sequence Z we have vM (z, li) � vM (z, lj). Using
Lemma F.13 this implies lj < li. By construction of sequence Z we have clock(z, li, x, u) ∈M and clock(z, lj , x, u) ∈M . Then
by definition of the local vector clocks, we have vM (z, lj)[x] = u and vM (z, li)[x] = u. Now take l such that lj + 1 ≤ l ≤ li− 1.
We have vM (z, lj) � vM (z, l) � vM (z, li) by Lemma F.13. Thus u = vM (z, lj)[x] ≤ vM (z, l)[x] ≤ vM (z, li)[x] = u and we
thus find that vM (z, l)[x] = u. For the case l = li − 1, this implies clock(zi, li − 1, x, u) ∈M , but this is a contradiction. So,
there can be no repetition of a node in the sequence Z. This implies that Z is finite because N is finite and because M is
well-formed. Also, Z contains x because while we are building the sequence Z, on a node z 6= x we are forced to (eventually)
follow a send-rule to another node that does not yet occur in the sequence.

We have shown that we eventually follow a send-rule back to node x. This rule is of the form (4.12):

rcvClock(z, v, x, u)← Rsnd(x, s′, z, v, ā), clock(x, s′, x, u).

Since clock(x, s′, x, u) ∈M , we have defined vM (x, s′)[x] = u. Now there are three options that each result in a contradiction:

1. Suppose s′ = s. By Lemma F.14 we then have vM (x, s) ≺ vM (z, v). If (z, v) = (y, t) then immediately vM (x, s) 6= vM (y, t),
a contradiction. Suppose (z, v) 6= (y, t). Then by construction of the sequence Z we have vM (x, s) ≺ vM (z, v) �
vM (z0, l0) � vM (y, t) and because � is partial order on vector clocks, therefore vM (x, s) ≺ vM (y, t) and thus vM (x, s) 6=
vM (y, t), a contradiction.

2. Suppose s′ < s. By Lemma F.12 we have vM (x, s′)[x] = s′+1 < s+1 = vM (x, s)[x], which implies u < u, a contradiction.

3. Suppose s < s′. Similarly to the previous case, by Lemma F.12 we must have vM (x, s)[x] = s+ 1 < s′+ 1 = vM (x, s′)[x],
which again implies u < u, a contradiction.

Therefore, if x 6= y, supposing that vM (x, s) = vM (y, t) leads to a contradiction. Therefore vM (x, s) 6= vM (y, t).
Thus overall, (x, s) 6= (y, t) implies vM (x, s) 6= vM (y, t). �

F.4 Construction of run
Consider the definitions in Section 6.2. We first show that relation �L on L is actually a partial order. This relation

is reflexive and transitive because the partial order � on vector clocks is reflexive and transitive. We now show that it is
antisymmetric as well. Let (x, s) ∈ L and (y, t) ∈ L be such that (x, s) �L (y, t) and (y, t) �L (x, s). Then vM (x, s) � vM (y, t)

30

and vM (y, t) � vM (x, s) by definition of �L. Because � is a partial order on vector clocks, we have vM (x, s) = vM (y, t) and,
by Lemma F.15 this implies (x, s) = (y, t), as desired. Therefore, �L is a partial order on L.

We will henceforth abbreviate the partial order �L and the total order ≤L as � and ≤ respectively. It will be clear from
the context whether “�” denotes the partial order on L or the partial order on vector clocks.

As a converse to the function ord , let p : N → L be the function that maps an ordinal i to the pair (x, s) on position i of
C. Note that p(ord(x, s)) = (x, s) and ord(p(i)) = i for (x, s) ∈ L and i ∈ N.

F.4.1 Properties
The following properties are relative to the sequence R, as defined in Section (6.2.2).

Lemma F.16. The sequence R constructed from M is a fair run of P on input H and the trace of R is M .

Proof. Using Lemma F.17 we know that ρ0 = start(P,H). Now, for each tuple i ∈ N of R, apply Lemma F.18 to see that
tuple i is a valid global transition, using send-tag i. Furthermore, the ending-configuration of one global transition is the
begin-configuration of the next one. Therefore R is a valid run of P on input H.

Now we show that R is fair. Let i ∈ N. Firstly, every node x ∈ N is the recipient in an infinite number of global transitions
because there are an infinite number of pairs in L with first component x. Now we show that every message is eventually
delivered. Let 〈k,f〉 ∈ bρi with f of the form R(y, ā). By definition of bρi , 〈k,f〉 ∈ bρi means that there is some fact
Rsnd(x, s, y, t, ā) ∈M such that k = ord(x, s) < i ≤ ord(y, t). Denote j = ord(y, t), so i ≤ j. By definition, mj = pairs(delivj)
with

delivj = {Rsnd(x′, s′, y′, t′, b̄) ∈M | ord(y′, t′) = j}.

Therefore, Rsnd(x, s, y, t, ā) ∈ delivj and 〈k,f〉 ∈ mj . We conclude that the run R is fair.
Finally, the trace of R is M by Lemma F.21. �

Lemma F.17. We have ρ0 = start(P,H).

Proof. Abbreviate ρ = start(P,H). First we show that sρ0 = sρ. First, we have localC(0, x) = |{(x, s) ∈ L | ord(x, s) < 0}|.
But there is no fact (x, s) ∈ L with ord(x, s) < 0, so localC(0, x) = 0. Now we have the following:

sρ0 =
⋃
x∈N

state(x, localC(0, x)) (by definition)

=
⋃
x∈N

state(x, 0)

=
⋃
x∈N

(
H|x ∪ (M ind|x,0)↓

)
. (by definition)

The timestamp in the head of inductive ground rules whose body is true on M must be at least 1 (this is enforced by the
ground tsucc-atom). Thus for any x we have M ind|x,0 = ∅. Therefore, sρ0 =

⋃
x∈N H|

x = sρ.
Now we show that bρ0 = bρ. By definition bρ0 = pairs(buf0) with

buf0 = {Rsnd(y, t, z, u, ā) ∈M | ord(y, t) < 0 ≤ ord(z, u)}.

But buf0 = ∅ because there are no pairs (y, t) ∈ L such that ord(y, t) < 0. Therefore bρ0 = ∅ = bρ. �

Lemma F.18. Let i ∈ N. We have that ρi
xi,mi−−−−→
i

ρi+1 is a valid global transition of P on input H.

Proof. We first show that mi ⊆ bρi . By Lemma F.14, for a fact Rsnd(y, t, z, u, ā) ∈M we have vM (y, t) ≺ vM (z, u). From this
it follows that ord(y, t) < ord(z, u). We now have

delivi = {Rsnd(y, t, z, u, ā) ∈M | ord(z, u) = i} (by definition)

= {Rsnd(y, t, z, u, ā) ∈M | ord(y, t) < ord(z, u) = i} (see above)

⊆ {Rsnd(y, t, z, u, ā) ∈M | ord(y, t) < i ≤ ord(z, u)}
= bufi. (by definition)

Therefore pairs(delivi) ⊆ pairs(bufi) and thus mi ⊆ bρi .
Now we show that all facts in mi have location specifier xi. Consider a pair 〈k,R(z, ā)〉 ∈ mi. By definition of mi, there is

a fact Rsnd(y, t, z, u, ā) ∈ M with ord(z, u) = i. Thus p(i) = (z, u) and z = xi by definition of xi. Thus all facts in mi have
location specifier xi.

Because mi ⊆ bρi holds, we can consider the unique result configuration ρ such that ρi
xi,mi−−−−→
i

ρ is a valid global transition

using send-tag i. We have to show that ρi+1 = ρ. We do this in two parts: (i) sρi+1 = sρ (state) and (ii) bρi+1 = bρ (buffers).
Denote S = sρi |xi ∪ untag(mi) and D = deduc(P)(S).

31

State.
Denote I = induc(P)(D). Recall that by definition,

sρi =
⋃
z∈N

state(z, localC(i, z)),

sρi+1 =
⋃
z∈N

state(z, localC(i+ 1, z)).

To show sρi+1 = sρ we must show both inclusions sρi+1 ⊆ sρ and sρ ⊆ sρi+1 .
Let f ∈ sρi+1 . We show that f ∈ sρ. Let y be the location specifier in f . Denote s = localC(i, y) and t = localC(i+ 1, y).

We have f ∈ state(y, t) = H|y ∪ (M ind|y,t)↓.

• Suppose y 6= xi. Then localC(i, y) = localC(i + 1, y). Thus t = s and f ∈ H|y ∪ (M ind|y,s)↓ = state(y, s) ⊆ sρi , by

definition of ρi. Furthermore, because y is not the recipient in the global transition ρi
xi,mi−−−−→
i

ρ, by the semantics of

global transitions we obtain f ∈ sρ.

• Suppose y = xi. First, suppose that the predicate of f is in edb(P)L. In that case f ∈ H|y ⊆ sρi . By the semantics of
local transitions (that preserve EDB facts) we then obtain f ∈ sρ.
Now suppose that the predicate of f is not in edb(P)L. By definition of sρi+1 we must have f ∈ (M ind|y,t)↓ and thus
f↑t ∈ M ind|y,t. We have t = s+ 1 because y = xi. Because f↑t ∈ M ind|y,t, there must be a ground inductive rule ψ in
GM (P) with head f↑t whose ground nonequalities are true and such that pos(ψ)|sch(P) ⊆M |xi,s, because the timestamp
in the head is the successor of the timestamp in the body. Furthermore, because ψ exists in GM (P), it is possible to
choose a non-ground inductive rule ϕ from pure(P) and a valuation V of ϕ such that ψ is the ground version of ϕ based
on V (without negative body literals) and such that V (pos(ϕ)|sch(P)) ⊆ M |xi,s and V (neg(ϕ)) ∩M = ∅. Now because
M |xi,s ⊆ M , we have V (neg(ϕ)) ∩M |xi,s = ∅. Let ϕ′ denote the simplified version of ϕ, which is in induc(P). Let V ′

denote the restriction of V to the variables of ϕ′. We have V ′(head(ϕ′)) = f . By Lemma F.19 we have D↑s = M |xi,s.
Thus V (pos(ϕ)|sch(P)) ⊆ M |xi,s implies V ′(pos(ϕ′)) ⊆ D and V (neg(ϕ)) ∩M |xi,s = ∅ implies V ′(neg(ϕ′)) ∩ D = ∅.
Therefore V ′ is satisfying for the simplified version ϕ′ on input D and thus we derive the fact f ∈ I ⊆ sρ.

Let f ∈ sρ. We show that f ∈ sρi+1 . Let y be the location specifier in f . Denote again s = localC(i, y) and t =
localC(i+ 1, y).

• Suppose y 6= xi. This implies t = s. By the semantics of global transitions, we have f ∈ sρi because during the global
transition, facts without location specifier xi are copied unmodified to sρ and new facts must have location specifier xi. By
definition of sρi we must have f ∈ state(y, s). But since s = t we have by definition of sρi+1 that f ∈ state(y, t) ⊆ sρi+1 .

• Suppose y = xi. This implies t = s + 1. First, suppose that the predicate of f is in edb(P)L. In that case f ∈ sρi by
using the semantics of local transitions (that preserve EDB facts). Now, by definition of sρi we then have f ∈ H|y. Thus
by definition of sρi+1 also f ∈ state(y, t) ⊆ sρi+1 .

Now suppose that the predicate of f is not in edb(P)L. Then there must be a simplified inductive rule ϕ in induc(P)

and valuation V of ϕ that have produced f during the global transition ρi
xi,mi−−−−→
i

ρ, thus f ∈ induc(P)(D). Let

ϕ′ be the original inductive rule of P on which ϕ is based. We can extend V to a valuation V ′ for ϕ′ to assign
value s to the body timestamp-variable and t = s + 1 to the head timestamp-variable. We have V (pos(ϕ)) ⊆ D and
V (neg(ϕ)) ∩ D = ∅. Therefore V ′(pos(ϕ′)) ⊆ D↑s and V ′(neg(ϕ′)) ∩ D↑s = ∅. By Lemma F.19 we have D↑s = M |x,s
and thus V ′(pos(ϕ′)) ⊆ M |x,s ⊆ M and V ′(neg(ϕ′)) ∩M |x,s = ∅. The latter implies V ′(neg(ϕ′)) ∩M = ∅ because all
facts in V ′(neg(ϕ′)) have location specifier x and timestamp s. Therefore, the positive ground rule ψ based on ϕ′ and
V ′ (without negative body literals) is in GM (P) and it derives f↑t ∈ M ind|x,t because M is a fixpoint. By definition of
sρi+1 we then have f ∈ state(y, t) ⊆ sρi+1 .

Buffers .
Denote δ = async(P)(D). Recall the notation tag(i, δ) = {〈i, g〉 | g ∈ δ}.
By the semantics of global transitions, we have bρ = (bρi \mi) ∪ tag(i, δ). Denote s = localC(i, xi). By Lemma F.23 we

have ord(xi, s) = i.
Let 〈k,f〉 ∈ bρi+1 . We show that 〈k,f〉 ∈ bρ. Fact f is of the form R(z, ā). By definition of bρi+1 there must be a fact

Rsnd(y, t, z, u, ā) ∈M with k = ord(y, t) < i+ 1 ≤ ord(z, u). Thus i < ord(z, u).

• Suppose that (y, t) 6= (xi, s). Then ord(y, t) 6= ord(xi, s) because ord is injective. Since ord(xi, s) = i, this implies
ord(y, t) 6= i and combined with ord(y, t) < i + 1 we thus have ord(y, t) < i. In that case 〈k,f〉 ∈ bρi by definition of
bρi . We now show that 〈k,f〉 /∈ mi, which would give 〈k,f〉 ∈ (bρi \ mi) ⊆ bρ. First, because i < ord(z, u) we have
Rsnd(y, t, z, u, ā) /∈ delivi. Also, there can be no fact Rsnd(y, t, z, v, ā) ∈ delivi with v 6= u by Lemma F.9. Additionally,
there is no (y′, t′) ∈ L with (y′, t′) 6= (y, t) and ord(y′, t′) = k because ord is injective. Thus 〈k,f〉 /∈ mi.

• Suppose that (y, t) = (xi, s). Then k = i. We show that 〈k,f〉 ∈ tag(i, δ), which would give 〈k,f〉 ∈ bρ. Because
(y, t) = (xi, s) we have Rsnd(y, t, z, u, ā) = Rsnd(xi, s, z, u, ā) ∈ M . This fact must be generated by a ground rule

32

ψ ∈ GM (P) of the form (4.8):

Rsnd(xi, s, z, u, ā) ← B, all(z), clock(xi, s, z, v),

time(u), v ≤ u,
chosenR(xi, s, z, ā, u).

Let ϕ be the original non-ground rule of pure(P) (with head predicate Rsnd) on which this ground rule is based. Let
ϕ2 be the original asynchronous rule of P on which ϕ is based (without relation clock but with the choice operator).
The ground rule above gives rise to a valuation V such that V (pos(ϕ2)|sch(P)) ⊆ M |xi,s. The existence of ψ ∈ GM (P)
implies additionally that V (neg(ϕ2)) ∩M = ∅ and thus V (neg(ϕ2)) ∩M |xi,s = ∅ because M |xi,s ⊆ M . Let ϕ3 denote
the simplification of ϕ2, which is in async(P). Using Lemma F.19 we know that D↑s = M |xi,s and thus V (pos(ϕ3)) ⊆ D
and V (neg(ϕ3)) ∩D = ∅. Therefore the rule ϕ3 produces R(z, ā) ∈ async(P)(D). Therefore 〈k,f〉 ∈ tag(i, δ).

For the converse containment, let 〈k,f〉 ∈ bρ. We show that 〈k,f〉 ∈ bρi+1 . Again, fact f is of the form R(z, ā).

• Suppose that 〈k,f〉 ∈ (bρi \mi). To rephrase, this means 〈k,f〉 ∈ bρi and 〈k,f〉 /∈ mi. By definition of bρi , the former
implies that there is a fact Rsnd(y, t, z, u, ā) ∈ M such that k = ord(y, t) < i ≤ ord(z, u). The latter implies that
ord(z, u) 6= i. Taking these two things together, we obtain k = ord(y, t) < i < ord(z, u) and thus ord(y, t) < i + 1 ≤
ord(z, u). By definition of bρi+1 we then have 〈k,f〉 ∈ bρi+1 .

• Suppose that 〈k,f〉 ∈ tag(i, δ). Then k = i. Let ϕ and V be a simplified asynchronous rule of async(P) and valuation
that produced f . Let ϕ2 denote the original asynchronous rule in P on which ϕ is based. Let V2 be V extended to
assign s to the body timestamp-variable. Note V2 is only partial because we don’t say what value should be assigned
to the time variable in the head. We have V (pos(ϕ)) ⊆ D and V (neg(ϕ)) ∩ D = ∅. Using Lemma F.19 we know that
D↑s = M |xi,s. This implies that V2(pos(ϕ2)|sch(P)) ⊆ M |xi,s ⊆ M and V2(neg(ϕ2)) ∩M |xi,s = ∅. Because the facts in

V2(neg(ϕ2)) are over sch(P)LT and have location specifier xi and timestamp s, we have V2(neg(ϕ2))∩M = ∅. Let ϕ3 be
the Rsnd-rule in pure(P) based on ϕ2, where ϕ3 has the form (4.8). There exists a ground rule ψ based on ϕ3 and V2:

Rsnd(xi, s, z, u, ā) ← V2(pos(ϕ2)|sch(P)), V2(neq(ϕ2)), all(z),

clock(xi, s, z, v), time(u), v ≤ u,
chosenR(xi, s, z, ā, u).

where v is a value that can be chosen such that clock(xi, s, z, v) ∈M (Corollary F.8) and there exists some value u ≥ v
such that chosenR(xi, s, z, ā, u) ∈M (Lemma F.10). The nonequalities neq(ϕ2) must be satisfied under V2 because they
are satisfied under V . We have ψ ∈ GM (P) because V2(neg(ϕ2)) ∩M = ∅. Thus we derive Rsnd(xi, s, z, u, ā) ∈ M
because M is a fixpoint. Using Lemma F.14, we have vM (xi, s) < vM (z, u). Therefore ord(xi, s) < ord(z, u) and thus
i < ord(z, u). We obtain ord(xi, s) < i+ 1 ≤ ord(z, u). Now, by definition of bρi+1 we have 〈k,f〉 = 〈i,f〉 ∈ bρi+1 .

�

Lemma F.19. Let i ∈ N. Let (ρi, xi,mi, i, ρi+1) denote the tuple i of R. Denote S = sρi |xi ∪ untag(mi), D = deduc(P)(S)
and s = localC(i, xi). We have D↑s = M |xi,s.

Proof. By Lemma F.23 we have ord(xi, s) = i.
For a stratum number k, denoteDk = deduck(P)(S). We show by induction on the stratum numbers k that (Dk)↑s = Mk|x,s.

We will show later that Ml|x,s = M |x,s with l the highest stratum number of deduc(P).

Base case: k = 0. . This stratum is empty by assumption (see Section A). Therefore by definition Dk = S and Mk|xi,s =
MN|xi,s. Recall by definition that

MN = M |edb(P)LT ∪M
ind

∪ {R(y, t, ā) | ∃z, u : Rsnd(z, u, y, t, ā) ∈M}.

Since

M |edb(P)LT =
⋃
z∈N

⋃
t∈N

(H|z)↑t,

we have

MN|xi,s = (H|xi)↑s ∪M ind|xi,s

∪ {R(xi, s, ā) | ∃z, u : Rsnd(z, u, xi, s, ā) ∈M}.

By definition, we have mi = pairs(delivi) with

delivi = {Rsnd(z, u, y, t, b̄) ∈M | ord(y, t) = i}.

But in this expression it must be that (y, t) = (xi, s) because ord(xi, s) = i and ord is injective. Then by definition of
pairs(delivi) and untag(mi) we have

untag(mi)
↑s = {R(xi, s, ā) | ∃z, u : Rsnd(z, u, xi, s, ā) ∈M}.

33

Next, by definition, we have state(xi, s) = H|xi ∪ (M ind|xi,s)↓. Also, from the definition of sρi it follows that sρi |xi =
state(xi, s). Therefore, by rewriting the expression for MN|xi,s above, we find MN|xi,s = (sρi |xi)↑s ∪ untag(mi)

↑s = S↑s.
Finally, by combining everything, we find (Dk)↑s = S↑s = MN|xi,s = Mk|xi,s.

Induction hypothesis.
Assume that the property holds up to and including stratum k − 1 (with k − 1 ≥ 0), thus (Dk−1)↑s = Mk−1|x,s.

Inductive step.
We show that the property holds for stratum k.
First we show that (Dk)↑s ⊆ Mk|xi,s. We can consider the fixpoint calculation of Dk for stratum k that is obtained by

deriving one fact at the time. This gives us a sequence D0
k ⊆ D1

k ⊆ D2
k . . . of fact-sets with D0

k = Dk−1. We show by
induction on j = 0, 1, 2, . . . that (Dj

k)↑s ⊆ Mk|xi,s. For the base case we have D0
k = Dk−1 and thus (D0

k)↑s = (Dk−1)↑s =

Mk−1|xi,s ⊆ Mk|xi,s by the outer induction hypothesis. For the induction hypothesis we assume that (Dj−1
k)↑s ⊆ Mk|xi,s

with j − 1 ≥ 0. For the inductive step we show that (Dj
k)↑s ⊆ Mk|xi,s. Let f ∈ Dj

k \ D
j−1
k . Let ϕ and V be a simplified

deductive rule of deduck(P) and valuation V that have derived f . Let ϕ2 be the original, unsimplified version of ϕ in P . Let
V2 be the valuation for ϕ2, obtained by extending V to assign value s to the timestamp variable of the body, which is the
same timestamp variable as in the head because ϕ2 is deductive. Let ψ be the deductive ground rule based on ϕ2 and V2 (ψ
has no negative body literals). We next show that ψ ∈ GM (P). Because V is satisfying for ϕ, we have V (pos(ϕ)) ⊆ Dj−1

k ,
V (neg(ϕ)) ∩ Dk−1 = ∅ and the nonequalities of ϕ are satisfied.2 By applying the inner induction hypothesis, we find that
V2(pos(ϕ2)) ⊆ (Dj−1

k)↑s ⊆ Mk|xi,s ⊆ M . Also, V2(neg(ϕ2)) ∩ (Dk−1)↑s = ∅. By applying the outer induction hypothesis we
have that V2(neg(ϕ2)) ∩Mk−1|xi,s = ∅. Suppose that there is some fact g ∈ V2(neg(ϕ2)) ∩M . We show that this leads to
a contradiction, so that V2(neg(ϕ2)) ∩M = ∅. Because ϕ2 is deductive, note that g is over the schema sch(P)LT and has
location specifier xi and timestamp s.

• Suppose that g ∈M is derived by a deductive ground rule. Because negation in ϕ2 can only be applied to lower strata,
we must have g ∈Mk−1|xi,s, a contradiction.

• Suppose that g ∈ M is derived by an inductive ground rule. Then g ∈ M ind|xi,s. By definition of state(xi, s) and sρi ,
we would then have g↓ ∈ state(xi, s) ⊆ sρi |xi ⊆ S ⊆ Dk−1 and thus g ∈ (Dk−1)↑s, a contradiction.

• Suppose that g ∈M is derived by a rule of the form

g ← Rsnd(z, u, xi, s, ā).

Then g↓ ∈ untag(mi) ⊆ S ⊆ Dk−1, again a contradiction.

We thus find that V2(neg(ϕ2)) ∩M = ∅. Therefore the rule ψ exists in GM (P) and it derives head(ψ) = f↑s ∈Mk|xi,s.

Now we show that Mk|xi,s ⊆ (Dk)↑s. Because M is a fixpoint of GM (P), we consider the fixpoint calculation of M to be
a sequence of fact sets M0 ⊆ M1 ⊆ M2 ⊆ . . . where M0 = decl(H) and where we only derive one new fact at the time. We
show by induction on j ∈ N that M j

k |
xi,s ⊆ (Dk)↑s. This results in Mk|xi,s = M∞k |xi,s ⊆ (Dk)↑s.

For the base case, there are no deductively or inductively derived facts nor Rsnd-message facts in M0 = decl(H). Therefore
M0
k = M0|edb(P)LT =

⋃
z∈N

⋃
t∈N(H|z)↑t. Thus M0

k |xi,s = (H|xi)↑s ⊆ state(xi, s)
↑s ⊆ S↑s ⊆ (Dk)↑s.

For the induction hypothesis we assume that M j−1
k |xi,s ⊆ (Dk)↑s with j − 1 ≥ 0. For the inductive step we show that

M j
k |
xi,s ⊆ (Dk)↑s. Let g ∈ (M j

k \ M
j−1
k)|xi,s. Let ψ ∈ GM (P) be the deductive ground rule that derived g. If the

stratum of ψ is k − 1 or smaller, then g ∈ Mk−1|xi,s and then we can apply the outer induction hypothesis to know that
g ∈ (Dk−1)↑s ⊆ (Dk)↑s. Now assume that ψ has stratum k. Since the body of ψ is true on M j−1 and ψ is deductive, we
specifically have pos(ψ) ⊆ M j−1|xi,s. Now for f ∈ pos(ψ) we show that f ∈ (Dk)↑s. Note that the location specifier and
timestamp in f are xi and s respectively. Let h be the index such that f ∈Mh \Mh−1, which implies h < j. There are three
ways in which f could have been derived:

• Suppose that f was derived by a deductive ground rule ψ2. Because the deductive rules of pure(P) are syntactically
stratified, stratum(ψ2) ≤ stratum(ψ) = k. Denote l = stratum(ψ2). We have pos(ψ2) ⊆ Mh−1 ⊆ Mh. Then f ∈ Mh

l by
definition of Mh

l . Now since Mh ⊆M j−1 we have f ∈M j−1
l . Also, since l ≤ k we have f ∈M j−1

k |xi,s. By applying the

inner induction hypothesis we now obtain f ∈ (Dk)↑s.

• Suppose that f ∈ M is derived by an inductive ground rule. Then f ∈ M ind|xi,s and thus f↓ ∈ H|xi ∪ (M ind|xi,s)↓ =
state(xi, s). Then, by definition of sρi and S, we have f↓ ∈ state(xi, s) ⊆ sρi |xi ⊆ S ⊆ Dk−1. Therefore f ∈ (Dk−1)↑s ⊆
(Dk)↑s.

• Suppose that f ∈M is derived by a ground rule of the form

f ← Rsnd(z, u, xi, s, ā).

Then f↓ ∈ untag(mi) ⊆ S ⊆ Dk−1 and thus f ∈ (Dk−1)↑s ⊆ (Dk)↑s.

Thus overall, pos(ψ) ⊆ (Dk)↑s. Next, because ψ ∈ GM (P) exists, it is possible to choose an original deductive rule ϕ of P
and a valuation V for ϕ such that ψ is the ground rule based on ϕ and V (without negative body literals) and such that

2Recall that in stratified programs negation is applied only to lower strata.

34

V (neg(ϕ)) ∩M = ∅. Since Mk−1|xi,s ⊆ M we also have V (neg(ϕ)) ∩Mk−1|xi,s = ∅. By now applying the outer induction
hypothesis we obtain V (neg(ϕ)) ∩ (Dk−1)↑s = ∅. Let ϕ′ be the simplified rule in deduck(P) that is based on ϕ and let V ′ be
the accompanying simplification of V . We now have V ′(pos(ϕ′)) ⊆ Dk and V ′(neg(ϕ′)) ∩ Dk−1 = ∅. We thus obtain that
during the computation of stratum k of D, the rule ϕ′ under valuation V ′ derives head(V ′(ϕ′)) = g↓ ∈ Dk. Thus g ∈ (Dk)↑s.

Last step.
It remains to show that Ml|xi,s = M |xi,s where l is the highest stratum number. Surely Ml|xi,s ⊆ M |xi,s. Now, assuming

the existence of a fact g ∈ (M \Ml)|xi,s can be shown to lead to a contradiction, in a similar manner as done in the proof
above:

• If g ∈M were derived by a deductive ground rule, we immediately get g ∈Ml because the stratum number of this rule
must be less than or equal to l.

• Suppose that g ∈ M is derived by an inductive ground rule. Then g ∈ M ind|xi,s. By definition of state(xi, s) and sρi ,
we would then have g↓ ∈ sρi |xi ⊆ S ⊆ Dl and thus g ∈ (Dl)

↑s = Ml|xi,s, a contradiction.

• Suppose that g ∈M is derived by a rule of the form

g ← Rsnd(z, u, xi, s, ā).

Then g↓ ∈ untag(mi) ⊆ S ⊆ Dl, and like above, this is a contradiction.

We obtain that D↑s = M |xi,s. �

Lemma F.20. Let i be a global transition index of R. We have bρi+1 = (bρi \mi) ∪ tag(i, δi).

Proof. This follows from Lemma F.18. �

Lemma F.21. M is the trace of the run R.

Proof. Let N denote the trace of R, as defined in Section 5. Using Proposition E.9 we know that N is a stable model. Using
Lemma F.22 we then know that the stable model N is included in the stable model M (N ⊆M). We now show that M ⊆ N
as well.

We can imagine that M is obtained by executing the ground rules of GM (P) one by one on input decl(H). This gives
us a sequence of fact sets M0 ⊆ M1 ⊆ M2 ⊆ . . . with M0 = decl(H) and M∞ =

⋃
iMi = M . We show by induction on

i = 0, 1, 2, . . . that Mi ⊆ N . For the base case we have M0 = decl(H) ⊆ N by Lemma D.5. For the induction hypothesis,
assume that Mi−1 ⊆ N with i− 1 ≥ 0. For the inductive step, let {f} = Mi \Mi−1. We show that f ∈ N . Let ψ ∈ GM (P)
be the ground rule that derived f in Mi. We have pos(ψ) ⊆Mi−1 and the nonequalities of ψ are satified. Let ϕ and V be an
original rule of pure(P) and valuation that give rise to the ground rule ψ. Because ψ is in GM (P) we can choose ϕ and V so
that V (neg(ϕ)) ∩M = ∅. Because N ⊆ M we have V (neg(ϕ)) ∩N = ∅. Therefore ψ is in GN (P) too. Using the induction
hypothesis we obtain that pos(ψ) ⊆ Mi−1 ⊆ N and because the nonequalities are satisfied, we obtain that ψ derives f ∈ N
because N is a stable model. �

Lemma F.22. The trace of R is included in M .

Proof. Let N =
⋃
iNi denote the trace of R, as defined in Section 5 (where we have used notation Mi for Ni). We show by

induction on i ∈ N∪ {−1} that Ni ⊆M . For the base case (i = −1), we have N−1 ⊆M by Lemmas F.1 and F.2 and because
decl(H) ⊆M . For the induction hypothesis we assume that Ni−1 ⊆M with i− 1 ≥ −1. For the inductive step we show that
Ni ⊆M .

Let (xi, s) ∈ L be such that ord(xi, s) = i. By Lemma F.23, we have localC(i, xi) = s, or equivalently localR(i) = s, using
the notation from Section 5.1. Therefore by Lemma F.24, for j ∈ prevR(i) we have j = ord(xi, s− 1).

Let α be the unique arrival function based on R. For each of the sets that comprise Ni \Ni−1 we show containment in M .

State (5.1).
For the set (5.1) of Ni, we show that D↑si ⊆M . Using Lemma F.19 we have D↑si = M |xi,s ⊆M .

Clock (5.2).
For the set (5.2) of Ni, we show {rcvClock(xi, s, xi, s+ 1)} ⊆M . This set is in M by Lemma F.2.

Clock (5.3).
For the set (5.3) of Ni, we show that M contains

{rcvClock(xi, s, y, t) | y ∈ N , xi 6= y, t ∈ πR(i, y)}.

Let y ∈ N with xi 6= y. By definition, πR(i, y) = {vR(j)[y] | j ∈ prevR(i)} (see Section (5.1)). Suppose that prevR(i) 6= ∅ and
let j ∈ prevR(i). This implies s > 0. From above, we have j = ord(xi, s− 1). By Lemma F.26 we have vM (xi, s− 1) = vR(j).

35

By definition of vM (xi, s−1), we have clock(xi, s−1, y, t) ∈M with t = vM (xi, s−1)[y]. Now if xi 6= y, the following ground
rule, based on the rule (4.5), is in GM (P) and it derives rcvClock(xi, s, y, t) ∈M because M is a fixpoint:

rcvClock(xi, s, y, t) ← clock(xi, s− 1, y, t), xi 6= y,

tsucc(s− 1, s).

Clock (5.4).
Let rcvClock(xi, s, y, t) ∈ Ni and rcvClock(xi, s, y, t

′) ∈ Ni with t < t′. By definition of the set (5.4) of Ni, we have
isBehind(xi, s, y, t) ∈ Ni. Now we show that isBehind(xi, s, y, t) ∈M .

Consider the fact rcvClock(xi, s, y, t) ∈ Ni. This fact is in Ni−1 or Ni \Ni−1.

• If it is in Ni−1 then we can apply the induction hypothesis to know that rcvClock(xi, s, y, t) ∈M .

• If it is in Ni \Ni−1, then it can not be in the set (5.9) of Ni because if there is a fact in this set with first component xi,
then the second component must be at least s + 1 by Lemma D.4. So, if rcvClock(xi, s, y, t) is in Ni \Ni−1, then it is
in the set (5.2) or the set (5.3). And for both of these sets we have shown above that then rcvClock(xi, s, y, t) ∈M .

Similarly we can show that rcvClock(xi, s, y, t
′) ∈M . Now, the following ground rule is in GM (P), based on the rule (4.6):

isBehind(x, s, y, t) ← rcvClock(x, s, y, t),

rcvClock(x, s, y, t′), t < t′.

Now since M is a fixpoint, we have isBehind(x, s, y, t) ∈M .

Clock (5.5).
For the set (5.5) of Ni we show that M contains:

{clock(xi, s, y, t) | y ∈ N , t = vR(i)[y]}.

Let y ∈ N . By Lemma F.26 we have vR(i) = vM (xi, s), which implies vR(i)[y] = vM (xi, s)[y]. Now by definition of
vM (xi, s)[y] = t this implies clock(xi, s, y, t) ∈M .

Sending (5.6).
For the set (5.6) of Ni we show that M contains

{Rsnd(xi, s, y, t, ā) | f = R(y, ā) ∈ δi, t = localR(α(i,f))}.

Let f = R(y, ā) ∈ δi. Denote j = α(i,f) and t = localR(j). By definition of j, we have 〈i,f〉 ∈ mj . Then by definition
of mj , there is a fact Rsnd(z, u, y, v, ā) ∈ M with ord(z, u) = i and ord(y, v) = j. We now show that Rsnd(z, u, y, v, ā) =
Rsnd(xi, s, y, t, ā). First, because ord is injective we have (z, u) = (xi, s). Because ord(y, v) = j and node y is the recipient
during global transition j, by Lemma F.23 we obtain v = localC(j, y) = localR(j, y) = localR(j) = t. Thus Rsnd(xi, s, y, t, ā) =
Rsnd(z, u, y, v, ā) ∈M .

Sending (5.7).
For the set (5.7) of Ni we show that M contains

{chosenR(xi, s, y, ā, t) | f = R(y, ā) ∈ δi, t = localR(α(i,f))}.

Let f = R(y, ā) ∈ δi. Denote j = α(i,f) and t = localR(j). Because Rsnd(xi, s, y, t, ā) ∈ M from above, there must be a
ground rule GM (P) of the form (4.8) that derives this fact:

ψ : Rsnd(xi, s, y, t, ā) ← B, all(y), clock(xi, s, y, u),

time(t), u ≤ t,
chosenR(xi, s, y, ā, t).

Therefore chosenR(xi, s, y, ā, t) ∈M .

Sending (5.8).
For the set (5.8) of Ni we show that M contains

{otherR(xi, s, y, ā, t
′) | f = R(y, ā) ∈ δi, t′ ∈ N,

vR(i)[y] ≤ t′, t′ 6= localR(α(i,f))}.

Let f = R(y, ā) ∈ δi. Denote j = α(i,f) and t = localR(j). We have vR(i) = vM (xi, s) by Lemma F.26. Denote
v = vR(i)[y]. Thus v = vM (xi, s)[y], and by definition of vM (xi, s), we have clock(xi, s, y, v) ∈ M . Take a value t′ ∈ N with
v ≤ t′ and t′ 6= t. We show that otherR(xi, s, y, ā, t

′) ∈M .

36

Based on the previously mentioned ground rule ψ with head-predicate Rsnd above, the following ground rule exists in
GM (P), based on the form (4.10):

ψ2 : otherR(xi, s, y, ā, t
′) ← B, all(y), clock(xi, s, y, u),

time(t′), u ≤ t′,
chosenR(xi, s, y, ā, t), t 6= t′.

For the set (5.7) above we have already shown chosenR(xi, s, y, ā, t) ∈ M . Because the body of the ground rule ψ is true on
M , we have clock(xi, s, y, u) ∈M and thus by Corollary F.8 we know u = v. Thus the restriction u ≤ t′ in ψ2 holds because
v ≤ t′ by assumption. Therefore the ground rule ψ2 derives otherR(xi, s, y, ā, t

′) ∈M because M is a fixpoint.

Sending (5.9).
For the set (5.9) of Ni we show that M contains

{rcvClock(y, t, z, u) | f = R(y, ā) ∈ δi, t = localR(α(i,f)),

z ∈ N , u = vR(i)[z]}.

Let f = R(y, ā) ∈ δi. Denote j = α(i,f) and t = localR(j). By Lemma F.26 we have vR(i) = vM (xi, s). Let z ∈ N . Denote
u = vR(i)[z]. Thus u = vM (xi, s)[z]. By definition of vM (xi, s), we have clock(xi, s, z, u) ∈M .

We have shown above for the set (5.6) that Rsnd(xi, s, y, t, ā) ∈M . Now, based on the rule (4.12), the following ground rule
in GM (P) derives rcvClock(y, t, z, u) ∈M because M is a fixpoint:

rcvClock(y, t, z, u) ← Rsnd(xi, s, y, t, ā),

clock(xi, s, z, u).

�

Lemma F.23. Let (x, s) ∈ L. Denote i = ord(x, s). We have s = localC(i, x).

Proof. First, consider the following sets

A = {(x, s′) ∈ L | ord(x, s′) < i};

B = {(x, s′) ∈ L | s′ < s}.

We show that A = B, by showing both inclusions separately:

• We show that A ⊆ B. Let (x, s′) ∈ A. Then ord(x, s′) < i and thus ord(x, s′) < ord(x, s). We show that if we would
suppose that s ≤ s′, we obtain a contradiction. So, suppose s ≤ s′. Then vM (x, s) � vM (x, s′) by Lemma F.13. Then
(x, s) � (x, s′). Since ≤ on L respects �, we have (x, s) ≤ (x, s′) and thus ord(x, s) ≤ ord(x, s′), which is a contradiction.
Therefore it must be that s′ < s and thus (x, s′) ∈ B.

• We show that B ⊆ A. Let (x, s′) ∈ B. We have s′ < s and thus by Lemma F.13 we have vM (x, s′) ≺ vM (x, s). Then,
vM (x, s′) � vM (x, s) and vM (x, s′) 6= vM (x, s) imply respectively (x, s′) � (x, s) and (x, s′) 6= (x, s). By definition of
ord we then have respectively ord(x, s′) ≤ ord(x, s) and ord(x, s′) 6= ord(x, s) (because ord is injective). Therefore
ord(x, s′) < ord(x, s) = i and thus (x, s′) ∈ A.

For every n ∈ N we have n = |{m ∈ N | m < n}|. Now we can combine everything:

localC(i, x) = |A| (by definition)

= |B|
= |{s′ ∈ N | s′ < s}| (by def. of L)

= s.

�

Lemma F.24. Let i be a global transition index of R. Let (xi, s) ∈ L be such that ord(xi, s) = i. For j ∈ prevR(i) we have
j = ord(xi, s− 1).

Proof. Let j ∈ prevR(i). Let (xi, t) ∈ L be such that ord(xi, t) = j. We show that t = s− 1.
We first show that t < s. Because by definition of prevR(i) we have j < i, we obtain ord(xi, t) < ord(xi, s). As a proof by

contradiction, suppose that t ≥ s. Then vM (xi, s) � vM (xi, t) by Lemma F.13 and thus (xi, s) � (xi, t). Then by definition
of ord we have ord(xi, s) ≤ ord(xi, t), which is a contradiction. Hence t < s.

We will now show that t = s− 1. Again, as a proof by contradiction, suppose that t < s− 1. Then there is a value t′ ∈ N
such that t < t′ < s. By Lemma F.13 we have vM (xi, t) ≺ vM (xi, t

′) ≺ vM (xi, s) and thus (xi, t) ≺ (xi, t
′) ≺ (xi, s). Also,

then by definition of ord we have ord(xi, t) < ord(xi, t
′) < ord(xi, s). But then there would be a global transition h with

xh = xi and j < h and thus j /∈ prevR(i) by definition of prevR(i). We have arrived at the contradiction. We conclude
t = s− 1. �

37

Lemma F.25. Let i be a global transition index of R. Let (xi, s) ∈ L be such that ord(xi, s) = i. We have s > 0 iff
prevR(i) 6= ∅.

Proof. First we show that if s > 0 then prevR(i) 6= ∅. We have (xi, s− 1) ∈ L and vM (xi, s− 1) ≺ vM (xi, s) by Lemma F.13.
Then (xi, s− 1) ≺ (xi, s) and by definition of ord we have ord(xi, s− 1) < ord(xi, s). So there is at least one pair (xi, t) ∈ L
ordered before (xi, s) in C. This implies that there is a global transition j < i with xj = xi. Therefore prevR(i) 6= ∅.

Now suppose prevR(i) 6= ∅. Let j ∈ prevR(i). Let (xi, t) ∈ L be such that ord(xi, t) = j. We have j < i by definition
of prevR(i) and thus ord(xi, t) < ord(xi, s). If s ≤ t then vM (xi, s) � vM (xi, t) by Lemma (F.13) and thus (xi, s) � (xi, t),
(xi, s) ≤ (xi, t) and ord(xi, s) ≤ ord(xi, t), which is false. Thus t < s and since t ∈ N by definition of L, this implies s > 0. �

Lemma F.26. Let i be a global transition index of R. Let (xi, si) ∈ L be such that ord(xi, si) = i. We have vM (xi, si) = vR(i)
where vR(i) is as defined in Section 5.1.

Proof. Proof by induction on i ∈ N.

• Base case: i = 0. We defined vR(0)[x0] = 1 and vR(0)[y] = 0 for y 6= x0. By Lemma F.23 we have s0 = localC(0, x0) = 0.
By Lemma F.12 we have vM (x0, 0)[x0] = 1.

Now consider y ∈ N with y 6= x0. We must show that vM (x0, 0)[y] = 0. Denote u = vM (x0, 0)[y]. As a proof
by contradiction, suppose that u > 0. We have clock(x0, 0, y, u) ∈ M by definition of vM (x0, 0) and thus also
rcvClock(x0, 0, y, u) ∈M by looking at the rule (4.7). Because s0 = 0, the only ground rule that could have derived this
rcvClock-fact is of the form (4.12):

rcvClock(x0, 0, y, u)← Rsnd(z, v, x0, 0, ā), clock(z, v, y, u).

But then by Lemma F.14 we would have vM (z, u) ≺ vM (x0, 0) and thus (z, u) ≺ (x0, 0) and ord(z, u) < ord(x0, 0) = 0.
But ord(z, u) < 0 is impossible by definition of ord . Thus u = 0.

• Inductive step: consider transition i. We defined vR(i)[xi] = localR(i) + 1. By construction of R out of C we have
localR(i) = localC(i, xi) and Lemma F.23 we have localC(i, xi) = si. Thus localR(i) = si. By Lemma F.12 we have
vM (xi, si)[xi] = si + 1 = localR(i) + 1 = vR(i)[xi].

Next, let y ∈ N with y 6= xi. Let α denote the arrival function for R. We defined vR(i)[y] = max({0}∪µR(i, y)∪πR(i, y))
with (see Section (5.1)):

µR(i, y) = {vR(k)[y] | ∃f : (k,f) ∈ sent(R), α(k,f) = i},

πR(i, y) = {vR(j)[y] | j ∈ prevR(i)}.

We now proceed in several steps.

1. We show that vM (xi, si)[y] ≥ max({0} ∪ πR(i, y)). If si = 0 then prevR(i) = ∅ by Lemma (F.25), and thus
πR(i, y) = ∅ and the inequality trivially holds. For the case si > 0, we show that vM (xi, si)[y] ≥ max(πR(i, y)).
Because si > 0 we have prevR(i) 6= ∅ by Lemma F.25. Let j ∈ prevR(i). By Lemma F.24 we have j = ord(xi, si−1).
By using the induction hypothesis, we have vR(j)[y] = vM (xi, si − 1)[y]. Denote u = vM (xi, si − 1)[y]. By definition
of vM (xi, si − 1) we have clock(xi, si − 1, y, u) ∈M . The following ground rule derives rcvClock(xi, si, y, u) ∈M :

rcvClock(xi, si, y, u) ← clock(xi, si − 1, y, u), xi 6= y,

tsucc(si − 1, si).

Now by Lemma F.11, rcvClock(xi, si, y, u) ∈ M implies vM (xi, si)[y] ≥ u. In summary, thus vM (xi, si)[y] ≥
max({0} ∪ πR(i, y)).

2. Suppose µR(i, y) 6= ∅. We show that vM (xi, si)[y] ≥ max(µR(i, y)). Let (k,f) ∈ sent(R) be such that α(k,f) = i.
Denote u = vR(k)[y]. We show that vM (xi, si)[y] ≥ u. By definition of α we have 〈k,f〉 ∈ mi. Because i = ord(xi, si)
the fact f is of the form R(xi, ā) (thus with location specifier xi). By definition, mi = pairs(delivi) and thus there
is a fact Rsnd(z, t, xi, si, ā) ∈ delivi ⊆M with ord(z, t) = k. By Lemma F.14 we have vM (z, t) ≺ vM (xi, si) and thus
k = ord(z, t) < ord(xi, si) = i. We have the following ground rule in GM (P), based on rule (4.12):

rcvClock(xi, si, y, v)← Rsnd(z, t, xi, si, ā), clock(z, t, y, v).

By applying the induction hypothesis to k we have vR(k)[y] = vM (z, t)[y] = u and thus v = u. By definition
of vM (z, t)[y] we have clock(z, t, y, u) ∈ M . The body of the previous ground rule is true on M . Now since M
is a fixpoint we have rcvClock(xi, si, y, u) ∈ M . By Lemma F.11 this implies vM (xi, si)[y] ≥ u. Thus overall
vM (xi, si)[y] ≥ max(µR(i, y)).

3. An intermediate conclusion is now that vM (xi, si)[y] ≥ max({0} ∪ µR(i, y) ∪ πR(i, y)).

4. We now show that vM (xi, si)[y] ≤ max({0}∪µR(i, y)∪πR(i, y)). Denote u = vM (xi, si)[y]. By definition of vM (xi, si)
we have clock(xi, si, y, u) ∈ M and thus rcvClock(xi, si, y, u) ∈ M by looking at rule (4.7). If u = 0 then clearly
u ≤ max({0} ∪ µR(i, y) ∪ πR(i, y)).
Now suppose u > 0. We will specifically show that vM (xi, si)[y] ≤ max(µR(i, y) ∪ πR(i, y)). We will now consider
the possible ways in which the fact rcvClock(xi, si, y, u) ∈M could have been generated. We can already eleminate
the rcvClock-rules in GM (P) that force u = 0 or force y = xi. Only the following forms of rcvClock-rules remain:

38

(a) The fact rcvClock(xi, si, y, u) ∈ M could have been generated by a ground rule of the following form, based on
rule (4.5):

rcvClock(xi, si, y, u) ← clock(xi, si − 1, y, u), xi 6= y,

tsucc(si − 1, si).

This implies si > 0. Since the body of this ground rule is true, we have clock(xi, si− 1, y, u) ∈M . By definition
of vM (xi, si − 1) this implies vM (xi, si − 1)[y] = u. Since vM (xi, si − 1) ≺ vM (xi, si) by Lemma F.13, we have
ord(xi, si−1) < ord(xi, si) = i. Denote j = ord(xi, si−1). By Lemmas F.25 and F.24 we have j ∈ prevR(i). By
applying the induction hypothesis to j we have vR(j)[y] = vM (xi, si − 1)[y] = u. Thus u ∈ πR(i, y), so certainly
u ≤ max(µR(i, y) ∪ πR(i, y)).

(b) The other option is that the fact rcvClock(xi, si, y, u) ∈M was generated by a ground rule of the following form,
based on the rule (4.12):

rcvClock(xi, si, y, u)← Rsnd(z, t, xi, si, ā), clock(z, t, y, u).

First, since the body of this ground rule is true on M , we have clock(z, t, y, u) ∈M and this implies vM (z, t)[y] =
u, by definition of vM (z, t). By Lemma F.14 we have vM (z, t) ≺ vM (xi, si) and therefore ord(z, t) < ord(xi, si) =
i. Denote k = ord(z, t) and f = R(xi, ā). Because k < ord(xi, si) we have k + 1 ≤ ord(xi, si). Thus by
definition of bufk and bufk+1, we have Rsnd(z, t, xi, si, ā) ∈ bufk+1 \ bufk. Because there are no pairs with
send-tag k in bρk we thus obtain 〈k,f〉 ∈ bρk+1 \ bρk , which implies 〈k,f〉 ∈ tag(k, δk), with δk the set of
sent messages during global transition k. Also, by definition of delivi, we have Rsnd(z, t, xi, si, ā) ∈ delivi and
thus 〈k,f〉 ∈ mi. Then, by definition of α we have α(k,f) = i. Now by applying the induction hypothesis
to k < i, we have vR(k)[y] = vM (z, t)[y] = u and thus u ∈ µR(i, y), by definition of µR(i, y). So certainly
u ≤ max(µR(i, y) ∪ πR(i, y)).

Thus overall vM (xi, si)[y] ≤ max({0} ∪ µR(i, y) ∪ πR(i, y)).

5. We conclude vM (xi, si)[y] = max({0} ∪ µR(i, y) ∪ πR(i, y)) = vR(i)[y].

�

Proposition F.27. Let P be a Dedalus program. Let H be an input distributed database instance for P , over a network N .
Every fair stable model of pure(P) on input decl(H) is the trace of a fair run of P on input H.

Proof. This follows from Lemma F.16, because the stable model M in this section was taken in general. �

39

	Introduction
	Preliminaries
	Network and distributed databases
	Datalog with negation
	Positive and semi-positive
	Stratified semantics
	Stable model semantics

	Dedalus programs
	Vector clocks

	Operational semantics
	Simplified rules
	Transitions and runs
	Fairness and arrival function

	Declarative Semantics
	Causality transformation
	Input and stable models
	Fairness

	Trace
	Vector clocks
	Trace definition

	Main Result
	Run to stable model
	Stable model to run
	Local vector clocks
	Construction of run
	Correctness

	Conclusion and future work
	References
	General notations
	Operational semantics
	Notations about runs
	General properties

	Declarative semantics
	About Dedalus ground programs
	Further notations
	General properties

	Trace
	Vector clocks
	Trace definition

	Run to stable model
	Properties

	Stable model to run
	Time properties
	Message sending
	Local vector clocks
	Construction of run
	Properties

