
Generalized Search Trees for Database Systems

Joseph M. Hellerstein, Je�rey F. Naughton, Avi Pfe�er
fhellers, naughtong@cs.wisc.edu, avi@cs.berkeley.edu

June, 1995

Abstract

This paper introduces the Generalized Search Tree (GiST), an index structure supporting an extensi-

ble set of queries and data types. The GiST allows new data types to be indexed in a manner supporting

queries natural to the types; this is in contrast to previous work on tree extensibility which only sup-

ported the traditional set of equality and range predicates. In a single data structure, the GiST provides

all the basic search tree logic required by a database system, thereby unifying disparate structures such

as B+-trees and R-trees in a single piece of code, and opening the application of search trees to general

extensibility.

To illustrate the exibility of the GiST, we provide simple method implementations that allow it to

behave like a B+-tree, an R-tree, and an RD-tree, a new index for data with set-valued attributes. We

also present a preliminary performance analysis of RD-trees, which leads to discussion on the nature of

tree indices and how they behave for various datasets.

1 Introduction

An e�cient implementation of search trees is crucial for any database system. In traditional relational

systems, B+-trees [Com79] were su�cient for the sorts of queries posed on the usual set of alphanumeric

data types. Today, database systems are increasingly being deployed to support new applications such as

geographic information systems, multimedia systems, CAD tools, document libraries, sequence databases,

�ngerprint identi�cation systems, biochemical databases, etc. To support the growing set of applications,

search trees must be extended for maximum exibility. This requirement has motivated two major research

approaches in extending search tree technology:

1. Specialized Search Trees: A large variety of search trees has been developed to solve speci�c problems.

Among the best known of these trees are spatial search trees such as R-trees [Gut84]. While some of

this work has had signi�cant impact in particular domains, the approach of developing domain-speci�c

search trees is problematic. The e�ort required to implement and maintain such data structures is

high. As new applications need to be supported, new tree structures have to be developed from scratch,

requiring new implementations of the usual tree facilities for search, maintenance, concurrency control

and recovery.

2. Search Trees For Extensible Data Types: As an alternative to developing new data structures, existing

data structures such as B+-trees and R-trees can be made extensible in the data types they sup-

port [Sto86]. For example, B+-trees can be used to index any data with a linear ordering, supporting

equality or linear range queries over that data. While this provides extensibility in the data that can

be indexed, it does not extend the set of queries which can be supported by the tree. Regardless of the

type of data stored in a B+-tree, the only queries that can bene�t from the tree are those containing

equality and linear range predicates. Similarly in an R-tree, the only queries that can use the tree are

those containing equality, overlap and containment predicates. This inexibility presents signi�cant
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problems for new applications, since traditional queries on linear orderings and spatial location are

unlikely to be pertinent for new data types.

In this paper we present a third direction for extending search tree technology. We introduce a new data

structure called the Generalized Search Tree (GiST), which is easily extensible both in the data types it can

index and in the queries it can support. Extensibility of queries is particularly important, since it allows

new data types to be indexed in a manner that supports the queries natural to the types. In addition to

providing extensibility for new data types, the GiST uni�es previously disparate structures used for currently

common data types. For example, both B+-trees and R-trees can be implemented as extensions of the GiST,

resulting in a single code base for indexing multiple dissimilar applications.

The GiST is easy to con�gure: adapting the tree for di�erent uses only requires registering six methods

with the database system, which encapsulate the structure and behavior of the object class used for keys in

the tree. As an illustration of this exibility, we provide method implementations that allow the GiST to be

used as a B+-tree, an R-tree, and an RD-tree, a new index for data with set-valued attributes. The GiST

can be adapted to work like a variety of other known search tree structures, e.g. partial sum trees [WE80],

k-D-B-trees [Rob81], Ch-trees [KKD89], Exodus large objects [CDG+90], hB-trees [LS90], V-trees [MCD94],

TV-trees [LJF94], etc. Implementing a new set of methods for the GiST is a signi�cantly easier task than

implementing a new tree package from scratch: for example, the POSTGRES [Gro94] and SHORE [CDF+94]

implementations of R-trees and B+-trees are on the order of 3000 lines of C or C++ code each, while our

method implementations for the GiST are on the order of 500 lines of C code each.

In addition to providing an uni�ed, highly extensible data structure, our general treatment of search trees

sheds some initial light on a more fundamental question: if any dataset can be indexed with a GiST, does

the resulting tree always provide e�cient lookup? The answer to this question is \no", and in our discussion

we illustrate some issues that can a�ect the e�ciency of a search tree. This leads to the interesting question

of how and when one can build an e�cient search tree for queries over non-standard domains | a question

that can now be further explored by experimenting with the GiST.

1.1 Structure of the Paper

In Section 2, we illustrate and generalize the basic nature of database search trees. Section 3 introduces the

Generalized Search Tree object, with its structure, properties, and behavior. In Section 4 we provide GiST

implementations of three di�erent sorts of search trees. Section 5 presents some performance results that

explore the issues involved in building an e�ective search tree. Section 6 examines some details that need to

be considered when implementing GiSTs in a full-edged DBMS. Section 7 concludes with a discussion of

the signi�cance of the work, and directions for further research.

1.2 Related Work

A good survey of search trees is provided by Knuth [Knu73], though B-trees and their variants are covered in

more detail by Comer [Com79]. There are a variety of multidimensional search trees, such as R-trees [Gut84]

and their variants: R*-trees [BKSS90] and R+-trees [SRF87]. Other multidimensional search trees include

quad-trees [FB74], k-D-B-trees [Rob81], and hB-trees [LS90]. Multidimensional data can also be transformed

into unidimensional data using a space-�lling curve [Jag90]; after transformation, a B+-tree can be used to

index the resulting unidimensional data.

Extensible-key indices were introduced in POSTGRES [Sto86, Aok91], and are included in Illustra [Sto93],

both of which have distinct extensible B+-tree and R-tree implementations. These extensible indices allow

many types of data to be indexed, but only support a �xed set of query predicates. For example, POSTGRES

B+-trees support the usual ordering predicates (<;�;=;�; >), while POSTGRES R-trees support only the

predicates Left, Right, OverLeft, Overlap, OverRight, Right, Contains, Contained and Equal [Gro94].

Extensible R-trees actually provide a sizable subset of the GiST's functionality. To our knowledge this

paper represents the �rst demonstration that R-trees can index data that has not been mapped into a spatial

domain. However, besides their limited extensibility R-trees lack a number of other features supported by
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Figure 1: Sketch of a database search tree.

the GiST. R-trees provide only one sort of key predicate (Contains), they do not allow user speci�cation of

the PickSplit and Penalty algorithms described below, and they lack optimizations for data from linearly

ordered domains. Despite these limitations, extensible R-trees are close enough to GiSTs to allow for the

initial method implementations and performance experiments we describe in Section 5.

Classi�cation trees such as ID3 and C4.5 [Qui93] are similar in spirit to the GiST, but have some major

di�erences. Most signi�cantly, classi�cation trees are not intended as search structures, and are not suited

for indexing large amounts of data. Additionally, ID3 and C4.5 are built over pre-de�ned, discrete classes,

whereas the GiST is a dynamic structure that develops its own, unspeci�ed data buckets (leaves), with

potentially overlapping keys. Finally, classi�cation trees are not generally extensible: they are de�ned

over traditional tuple-like objects with attributes from numeric or �nitely enumerated domains. However,

extensions of the GiST may be able to leverage some of the lessons learned in the development of classi�cation

trees, particularly in implementing methods for picking a way to split nodes (the PickSplit method described

below) and for choosing good keys (the Union and Compress methods described below.)

The Predicate Trees of Valduriez and Viemont [VV84] are similar to classi�cation trees, in that they are

not used to index data sets, and can be de�ned only on traditional alphanumeric predicates. Predicate Trees

are used to generate hash keys. A even more limited notion is that of the Interval Hierarchy [WE77], which

can be used to index a �le of simple conjunctive ordering predicates.

Analyses of R-tree performance have appeared in [FK94] and [PSTW93]. This work is dependent on the

spatial nature of typical R-tree data, and thus is not generally applicable to the GiST. However, similar ideas

may prove relevant to our questions of when and how one can build e�cient indices in arbitrary domains.

2 Getting The Gist of Database Search Trees

As an introduction to GiSTs, it is instructive to review search trees in a simpli�ed manner. Most people with

database experience have an intuitive notion of how search trees work, so our discussion here is purposely

vague: the goal is simply to illustrate that this notion leaves many details unspeci�ed. After highlighting the

unspeci�ed details, we can proceed to describe a structure that leaves the details open for user speci�cation.

The canonical rough picture of a database search tree appears in Figure 1. It is a balanced tree, with

high fanout. The internal nodes are used as a directory. The leaf nodes contain pointers to the actual data,

and are stored as a linked list to allow for partial or complete scanning.

Within each internal node is a series of keys and pointers. To search for tuples which match a query
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predicate q, one starts at the root node. For each pointer on the node, if the associated key is consistent

with q, i.e. the key does not rule out the possibility that data stored below the pointer may match q, then
one traverses the subtree below the pointer, until all the matching data is found. As an illustration, we

review the notion of consistency in some familiar tree structures. In B+-trees, queries are in the form of

range predicates (e.g. \�nd all i such that c1 � i � c2"), and keys logically delineate a range in which the

data below a pointer is contained. If the query range and a pointer's key range overlap, then the two are

consistent and the pointer is traversed. In R-trees, queries are in the form of region predicates (e.g. \�nd

all i such that (x1; y1; x2; y2) overlaps i"), and keys delineate the bounding box in which the data below a

pointer is contained. If the query region and the pointer's key box overlap, the pointer is traversed.

Note that in the above description, the only restriction placed on a key is that it must logically match

each datum stored below it, so that the consistency check does not miss any valid data. In B+-trees and R-

trees, keys are essentially \containment" predicates: they describe a contiguous region in which all the data

below a pointer are contained. Containment predicates are not the only possible key constructs, however.

For example, the predicate \elected o�cial(i)^ has criminal record(i)" is an acceptable key if every data item

i stored below the associated pointer satis�es the predicate. As in R-trees, keys on a node may \overlap",

i.e. two keys on the same node may hold simultaneously for some tuple.

This exibility allows us to generalize the notion of a search key: a search key may be any arbitrary

predicate that holds for each datum below the key. Given a data structure with such exible search keys, a

user is free to form a tree by organizing data into arbitrary nested sub-categories, labelling each with some

characteristic predicate. This in turn lets us capture the essential nature of a database search tree: it is a

hierarchy of categorizations, in which each categorization holds for all data stored under it in the hierarchy.

Searches on arbitrary predicates may be conducted based on the categorization. In order to support searches

on a predicate q, the user must provide a Boolean method to tell if q is consistent with a given search key.

When this is so, the search proceeds by traversing the pointer associated with the search key. The grouping of

data into categories may be controlled by a user-supplied node splitting algorithm, and the characterization

of categories can be done with user-supplied search keys. Thus by exposing the key methods and the tree's

split method to the user, arbitrary search trees may be constructed, supporting an extensible set of queries.

These ideas form the basis of the GiST, which we proceed to describe in detail.

3 The Generalized Search Tree

In this section we present the abstract data type (or \object") Generalized Search Tree (GiST). We de�ne

its structure, its invariant properties, its extensible methods and its built-in algorithms. As a matter of

convention, we refer to each indexed datum as a \tuple"; in an Object-Oriented or Object-Relational DBMS,

each indexed datum could be an arbitrary data object.

3.1 Structure

A GiST is a balanced tree of variable fanout between kM andM , 2

M
� k � 1

2
, with the exception of the root

node, which may have fanout between 2 andM . The constant k is termed the minimum �ll factor of the tree.

Leaf nodes contain (p; ptr) pairs, where p is a predicate that is used as a search key, and ptr is the identi�er

of some tuple in the database. Non-leaf nodes contain (p; ptr) pairs, where p is a predicate used as a search

key and ptr is a pointer to another tree node. Predicates can contain any number of free variables, as long

as any single tuple referenced by the leaves of the tree can instantiate all the variables. Note that by using

\key compression", a given predicate p may take as little as zero bytes of storage. However, for purposes of

exposition we will assume that entries in the tree are all of uniform size. Discussion of variable-sized entries

is deferred to Section 6.3. We assume in an implementation that given an entry E = (p; ptr), one can access

the node on which E currently resides. This can prove helpful in implementing the key methods described

below.
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3.2 Properties

The following properties are invariant in a GiST:

1. Every node contains between kM and M index entries unless it is the root.

2. For each index entry (p; ptr) in a leaf node, p is true when instantiated with the values from the

indicated tuple (i.e. p holds for the tuple.)

3. For each index entry (p; ptr) in a non-leaf node, p is true when instantiated with the values of any

tuple reachable from ptr. Note that, unlike in R-trees, for some entry (p0; ptr0) reachable from ptr,

we do not require that p0 ! p, merely that p and p0 both hold for all tuples reachable from ptr0.

4. The root has at least two children unless it is a leaf.

5. All leaves appear on the same level.

Property 3 is of particular interest. An R-tree would require that p0 ! p, since bounding boxes of an

R-tree are arranged in a containment hierarchy. The R-tree approach is unnecessarily restrictive, however:

the predicates in keys above a node N must hold for data below N , and therefore one need not have keys

on N restate those predicates in a more re�ned manner. One might choose, instead, to have the keys at N
characterize the sets below based on some entirely orthogonal classi�cation. This can be an advantage in

both the information content and the size of keys.

3.3 Key Methods

In principle, the keys of a GiST may be arbitrary predicates. In practice, the keys come from a user-

implemented object class, which provides a particular set of methods required by the GiST. Examples of

key structures include ranges of integers for data from Z (as in B+-trees), bounding boxes for regions in Rn

(as in R-trees), and bounding sets for set-valued data, e.g. data from P(Z) (as in RD-trees, described in

Section 4.3.) The key class is open to rede�nition by the user, with the following set of six methods required

by the GiST:

� Consistent(E,q): given an entry E = (p; ptr), and a query predicate q, returns false if p ^ q can be

guaranteed unsatis�able, and true otherwise. Note that an accurate test for satis�ability is not required

here: Consistent may return true incorrectly without a�ecting the correctness of the tree algorithms.

The penalty for such errors is in performance, since they may result in exploration of irrelevant subtrees

during search.

� Union(P ): given a set P of entries (p1; ptr1); : : : (pn; ptrn), returns some predicate r that holds for

all tuples stored below ptr
1
through ptr

n
. This can be done by �nding a predicate r such that

(p1 _ : : : _ pn)! r.

� Compress(E): given an entry E = (p; ptr) returns an entry (�; ptr) where � is a compressed repre-

sentation of p.

� Decompress(E): given a compressed representation E = (�; ptr), where � = Compress(p), returns
an entry (r; ptr) such that p! r. Note that this is a potentially \lossy" compression, since we do not

require that p$ r.

� Penalty(E1; E2): given two entries E1 = (p1; ptr1); E2 = (p2; ptr2), returns a domain-speci�c penalty
for inserting E2 into the subtree rooted at E1. This is used to aid the Split and Insert algorithms

(described below.) Typically the penalty metric is some representation of the increase of size from

E1:p1 to Union(E1; E2). For example, Penalty for keys from R
2 can be de�ned as area(Union(E1; E2))�

area(E1:p1) [Gut84].
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� PickSplit(P ): given a set P of M + 1 entries (p; ptr), splits P into two sets of entries P1; P2, each of

size at least kM . The choice of the minimum �ll factor for a tree is controlled here. Typically, it is

desirable to split in such a way as to minimize some badness metric akin to a multi-way Penalty, but

this is left open for the user.

The above are the only methods a GiST user needs to supply. Note that Consistent, Compress, Union

and Penalty have to be able to handle any predicate in their input. In full generality this could become very

di�cult, especially for Consistent. But typically a limited set of predicates is used in any one tree, and this

set can be constrained in the method implementation.

There are a number of options for key compression. A simple implementation can let both Compress

and Decompress be the identity function. A more complex implementation can have Compress((p; ptr))
generate a valid but more compact predicate r, p ! r, and let Decompress be the identity function. This

is the technique used in SHORE's R-trees, for example, which upon insertion take a polygon and compress

it to its bounding box, which is itself a valid polygon. It is also used in pre�x B+-trees [Com79], which

truncate split keys to an initial substring. More involved implementations might use complex methods for

both Compress and Decompress.

3.4 Tree Methods

The key methods in the previous section must be provided by the designer of the key class. The tree methods

in this section are provided by the GiST, and may invoke the required key methods. Note that keys are

Compressed when placed on a node, and Decompressed when read from a node. We consider this implicit,

and will not mention it further in describing the methods.

3.4.1 Search

Search comes in two avors. The �rst method, presented in this section, can be used to search any dataset

with any query predicate, by traversing as much of the tree as necessary to satisfy the query. It is the most

general search technique, analogous to that of R-trees. A more e�cient technique for queries over linear

orders is described in the next section.

Algorithm Search(R; q)

Input: GiST rooted at R, predicate q

Output: all tuples that satisfy q

Sketch: Recursively descend all paths in tree whose keys are consistent with q.

S1: [Search subtrees] If R is not a leaf, check each entry E on R to determine whether

Consistent(E; q). For all entries that are Consistent, invoke Search on the subtree

whose root node is referenced by E:ptr.

S2: [Search leaf node] If R is a leaf, check each entry E on R to determine whether

Consistent(E; q). If E is Consistent, it is a qualifying entry. At this point E:ptr could
be fetched to check q accurately, or this check could be left to the calling process.

Note that the query predicate q can be either an exact match (equality) predicate, or a predicate satis�able
by many values. The latter category includes \range" or \window" predicates, as in B+ or R-trees, and

also more general predicates that are not based on contiguous areas (e.g. set-containment predicates like \all

supersets of f6, 7, 68g".)
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3.4.2 Search In Linearly Ordered Domains

If the domain to be indexed has a linear ordering, and queries are typically equality or range-containment

predicates, then a more e�cient search method is possible using the FindMin and Next methods de�ned in

this section. To make this option available, the user must take some extra steps when creating the tree:

1. The ag IsOrdered must be set to true. IsOrdered is a static property of the tree that is set at

creation. It defaults to false.

2. An additional method Compare(E1; E2) must be registered. Given two entries E1 = (p1; ptr1) and
E2 = (p2; ptr2), Compare returns a negative number if p1 precedes p2, returns a positive number if p1
follows p2 and returns 0 otherwise. Compare is used to insert entries in order on each node.

3. The PickSplit method must ensure that for any entries E1 on P1 and E2 on P2, Compare(E1; E2) < 0.

4. The methods must assure that no two keys on a node overlap, i.e. for any pair of entries E1; E2 on a

node, Consistent(E1; E2:p) = false.

If these four steps are carried out, then equality and range-containment queries may be evaluated by

calling FindMin and repeatedly calling Next, while other query predicates may still be evaluated with the

general Search method. FindMin/Next is more e�cient than traversing the tree using Search, since FindMin

and Next only visit the non-leaf nodes along one root-to-leaf path. This technique is based on the typical

range-lookup in B+-trees.

Algorithm FindMin(R; q)

Input: GiST rooted at R, predicate q

Output: minimum tuple in linear order that satis�es q

Sketch: descend leftmost branch of tree whose keys are Consistent with q. When a leaf node

is reached, return the �rst key that is Consistent with q.

FM1: [Search subtrees] If R is not a leaf, �nd the �rst entry E in order such that

Consistent(E; q)1. If such an E can be found, invoke FindMin on the subtree whose

root node is referenced by E:ptr. If no such entry is found, return NULL.

FM2: [Search leaf node] If R is a leaf, �nd the �rst entry E on R such that Consistent(E; q),
and return E. If no such entry exists, return NULL.

Given one element E that satis�es a predicate q, the Next method returns the next existing element that

satis�es q, or NULL if there is none. Next is made su�ciently general to �nd the next entry on non-leaf levels

of the tree, which will prove useful in Section 4. For search purposes, however, Next will only be invoked on

leaf entries.

1The appropriate entry may be found by doing a binary search of the entries on the node. Further discussion of intra-node

search optimizations appears in Section 6.1.
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Algorithm Next(R; q; E)

Input: GiST rooted at R, predicate q, current entry E

Output: next entry in linear order that satis�es q

Sketch: return next entry on the same level of the tree if it satis�es q. Else return NULL.

N1: [next on node] If E is not the rightmost entry on its node, and N is the next entry

to the right of E in order, and Consistent(N; q), then return N . If :Consistent(N; q),
return NULL.

N2: [next on neighboring node] If E is the righmost entry on its node, let P be the next

node to the right of R on the same level of the tree (this can be found via tree traversal,

or via sideways pointers in the tree, when available [LY81].) If P is non-existent, return

NULL. Otherwise, let N be the leftmost entry on P . If Consistent(N; q), then return

N , else return NULL.

3.4.3 Insert

The insertion routines guarantee that the GiST remains balanced. They are very similar to the insertion

routines of R-trees, which generalize the simpler insertion routines for B+-trees. Insertion allows speci�cation

of the level at which to insert. This allows subsequent methods to use Insert for reinserting entries from

internal nodes of the tree. We will assume that level numbers increase as one ascends the tree, with leaf

nodes being at level 0. Thus new entries to the tree are inserted at level l = 0.

Algorithm Insert(R;E; l)

Input: GiST rooted at R, entry E = (p; ptr), and level l, where p is a predicate such that p
holds for all tuples reachable from ptr.

Output: new GiST resulting from insert of E at level l.

Sketch: �nd where E should go, and add it there, splitting if necessary to make room.

I1. [invoke ChooseSubtree to �nd where E should go] Let L = ChooseSubtree(R;E; l)

I2. If there is room for E on L, install E on L (in order according to Compare, if IsOr-

dered.) Otherwise invoke Split(R;L;E).

I3. [propagate changes upward] AdjustKeys(R;L).

ChooseSubtree can be used to �nd the best node for insertion at any level of the tree. When the IsOrdered

property holds, the Penalty method must be carefully written to assure that ChooseSubtree arrives at the

correct leaf node in order. An example of how this can be done is given in Section 4.1.
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Algorithm ChooseSubtree(R;E; l)

Input: subtree rooted at R, entry E = (p; ptr), level l

Output: node at level l best suited to hold entry with characteristic predicate E:p

Sketch: Recursively descend tree minimizing Penalty

CS1. If R is at level l, return R;

CS2. Else among all entries F = (q; ptr0) on R �nd the one such that Penalty(F;E) is

minimal. Return ChooseSubtree(F:ptr0; E; l).

The Split algorithm makes use of the user-de�ned PickSplit method to choose how to split up the elements

of a node, including the new tuple to be inserted into the tree. Once the elements are split up into two

groups, Split generates a new node for one of the groups, inserts it into the tree, and updates keys above the

new node.

Algorithm Split(R;N;E)

Input: GiST R with node N , and a new entry E = (p; ptr).

Output: the GiST with N split in two and E inserted.

Sketch: split keys of N along with E into two groups according to PickSplit. Put one group

onto a new node, and Insert the new node into the parent of N .

SP1: Invoke PickSplit on the union of the elements of N and fEg, put one of the two

partitions on node N , and put the remaining partition on a new node N 0.

SP2: [Insert entry for N 0 in parent] Let EN 0 = (q; ptr0), where q is the Union of all entries

on N 0, and ptr0 is a pointer to N 0. If there is room for EN 0 on Parent(N), install EN 0

on Parent(N) (in order if IsOrdered.) Otherwise invoke Split(R;Parent(N); EN 0)2.

SP3: Modify the entry F which points to N , so that F:p is the Union of all entries on N .

Step SP3 of Split modi�es the parent node to reect the changes in N . These changes are propagated

upwards through the rest of the tree by step I3 of the Insert algorithm, which also propagates the changes

due to the insertion of N 0.

The AdjustKeys algorithm ensures that keys above a set of predicates hold for the tuples below, and are

appropriately speci�c.

2We intentionally do not specify what technique is used to �nd the Parent of a node, since this implementation interacts

with issues related to concurrency control, which are discussed in Section 6. Depending on techniques used, the Parent may be

found via a pointer, a stack, or via re-traversal of the tree.
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Algorithm AdjustKeys(R;N)

Input: GiST rooted at R, tree node N

Output: the GiST with ancestors of N containing correct and speci�c keys

Sketch: ascend parents fromN in the tree, making the predicates be accurate characterizations

of the subtrees. Stop after root, or when a predicate is found that is already accurate.

PR1: If N is the root, or the entry which points to N has an already-accurate representation

of the Union of the entries on N , then return.

PR2: Otherwise, modify the entry E which points to N so that E:p is the Union of all

entries on N . Then AdjustKeys(R, Parent(N).)

Note that AdjustKeys typically performs no work when IsOrdered = true, since for such domains predi-

cates on each node typically partition the entire domain into ranges, and thus need no modi�cation on simple

insertion or deletion. The AdjustKeys routine detects this in step PR1, which avoids calling AdjustKeys on

higher nodes of the tree. For such domains, AdjustKeys may be circumvented entirely if desired.

3.4.4 Delete

The deletion algorithms must maintain the balance of the tree, and attempt to keep keys as speci�c as

possible. The CondenseTree algorithm uses the B+-tree \borrow or coalesce" technique for underow if

there is a linear order. Otherwise it uses the R-tree reinsertion technique.

Algorithm Delete(R;E)

Input: GiST R, leaf entry E = (p; ptr)

Output: balanced GiST with E removed

Sketch: Remove E from its leaf node. If this causes underow, adjust tree accordingly. Update

predicates in ancestors to keep them as speci�c as possible.

D1: [Find node containing entry] Invoke Search(R;E:p) and �nd leaf node L containing

E. Stop if E not found.

D2: [Delete entry.] Remove E from L.

D3: [Propagate changes.] Invoke CondenseTree(R;L);

D4: [Shorten tree.] If the root node has only one child after the tree has been adjusted,

make the child the new root.
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Algorithm CondenseTree(R;L)

Input: GiST R containing leaf node L

Output: GiST with invariant properties maintained

Sketch: If L has fewer than kM elements, either eliminate L and relocate its entries, or borrow

entries from elsewhere to put on L. Propagate node elimination upwards as neces-

sary. Adjust all predicates on the path to the root, making them more speci�c as

appropriate.

CT1: [Initialize.] Set N = L. Set Q, the set of eliminated nodes, to be empty.

CT2: If N is the root, go to CT6. Otherwise let P = Parent(N), and let EN be the entry

on P that points to N .

CT3: [Handle under-full node] If N has fewer than kM entries:

CT3.1 [If not IsOrdered, delete N ] If not IsOrdered, add the elements of N to set Q,
delete EN from P , and invoke AdjustKeys(R;P ).

CT3.2 [If IsOrdered, try to borrow entries, else coalesce with a neighbor] Otherwise

let N 0 be the neighboring node in order. If the number of keys on N and N 0

combined is 2kM or greater, then evenly split the entries on N and N 0 between

the two nodes. Otherwise, place the entries from N onto N 0, and delete EN from

P . Invoke AdjustKeys(R;N 0), and AdjustKeys(R;P ).

CT4: [Adjust covering predicate] If EN was not deleted from P , then AdjustKeys(R;N);

CT5: [Propagate deletes] If EN was deleted from P , let N = P , and goto CT2;

CT6: [Re-insert orphaned entries] If Q is not empty, invoke Insert(R;E; level(E)) for all

elements E of Q.

In some implementations, it is considered preferable to leave a node under-full after a delete, in the

expectation that it will �ll up soon thereafter [JS93]. To support such behavior, step D3 of algorithm Delete

could invoke AdjustKeys(R;L), and avoid CondenseTree.

4 The GiST for Three Applications

In this section we briey describe implementations of key classes used to make the GiST behave like a

B+-tree, an R-tree, and an RD-tree, a new R-tree-like index over set-valued data.

4.1 GiSTs Over Z (B+-trees)

In this example we index integer data. Before compression, each key in this tree is a pair of integers,

representing the interval contained below the key. Particularly, a key <a; b> represents the predicate

Contains([a; b); v) with variable v. The query predicates we support in this key class are Contains(interval,

v), and Equal(number, v). The interval in the Contains query may be closed or open at either end. The

boundary of any interval of integers can be trivially converted to be closed or open. So without loss of

generality, we assume below that all intervals are closed on the left and open on the right.

The implementations of the Contains and Equal query predicates are as follows:

� Contains([x; y); v) If x � v < y, return true. Otherwise return false.
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� Equal(x; v) If x = v return true. Otherwise return false.

Now, the implementations of the GiST methods:

� Consistent(E; q) Given entry E = (p; ptr) and query predicate q, we know that

p = Contains([xp; yp); v), and either q = Contains([xq ; yq); v) or q = Equal(xq ; v). In the �rst case,

return true if (xp < yq) ^ (yp > xq) and false otherwise. In the second case, return true if xp � xq < yp,
and false otherwise.

� Union(E1 = ([x1; y1); ptr1); : : : ; En = ([xn; yn); ptrn)) Return [min(x1; : : : ; xn);max(y1; : : : ; yn)).

� Compress(E = ([x; y); ptr)) If E is the leftmost key on a non-leaf node, return a 0-byte object.

Otherwise return x.

� Decompress(E = (�; ptr))We must construct an interval [x; y). If E is the leftmost key on a non-leaf

node, let x = �1. Otherwise let x = �. If E is the rightmost key on a non-leaf node, let y = 1. If

E is any other key on a non-leaf node, let y be the value stored in the next key (as found by the Next

method.) If E is on a leaf node, let y = x+ 1. Return ([x; y); ptr).

� Penalty(E = ([x1; y1); ptr1); F = ([x2; y2); ptr2)) If E is the leftmost pointer on its node, return

max(y2 � y1; 0). If E is the rightmost pointer on its node, return max(x1 � x2; 0). Otherwise return
max(y2 � y1; 0) +max(x1 � x2; 0).

� PickSplit(P ) Let the �rst b jP j

2
c entries in order go in the left group, and the last d

jP j

2
e entries go in

the right. Note that this guarantees a minimum �ll factor of M

2
.

Finally, the additions for ordered keys:

� IsOrdered = true

� Compare(E1 = (p1; ptr1); E2 = (p2; ptr2)) Given p1 = [x1; y1) and p2 = [x2; y2), return x1 � x2.

There are a number of interesting features to note in this set of methods. First, the Compress and

Decompress methods produce the typical \split keys" found in B+-trees, i.e. n�1 stored keys for n pointers,

with the leftmost and rightmost boundaries on a node left unspeci�ed (i.e. �1 and 1). Even though

GiSTs use key/pointer pairs rather than split keys, this GiST uses no more space for keys than a traditional

B+-tree, since it compresses the �rst pointer on each node to zero bytes. Second, the Penalty method

allows the GiST to choose the correct insertion point. Inserting (i.e. Unioning) a new key value k into a

interval [x; y) will cause the Penalty to be positive only if k is not already contained in the interval. Thus

in step CS2, the ChooseSubtree method will place new data in the appropriate spot: any set of keys on a

node partitions the entire domain, so in order to minimize the Penalty, ChooseSubtree will choose the one

partition in which k is already contained. Finally, observe that one could fairly easily support more complex

predicates, including disjunctions of intervals in query predicates, or ranked intervals in key predicates for

supporting e�cient sampling [WE80].

4.2 GiSTs Over Polygons in R
2 (R-trees)

In this example, our data are 2-dimensional polygons on the Cartesian plane. Before compression, the keys

in this tree are 4-tuples of reals, representing the upper-left and lower-right corners of rectilinear bounding

rectangles for 2d-polygons. A key (xul; yul; xlr ; ylr) represents the predicate Contains((xul; yul; xlr ; ylr); v),
where (xul; yul) is the upper left corner of the bounding box, (xlr ; ylr) is the lower right corner, and v is the
free variable. The query predicates we support in this key class are Contains(box, v), Overlap(box, v), and
Equal(box, v), where box is a 4-tuple as above.

The implementations of the query predicates are as follows:
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� Contains((x1
ul
; y1
ul
; x1

lr
; y1
lr
); (x2

ul
; y2
ul
; x2

lr
; y2
lr
)) Return true if

(x1
lr
� x2

lr
) ^ (x1

ul
� x2

ul
) ^ (y1

lr
� y2

lr
) ^ (y1

ul
� y2

ul
):

Otherwise return false.

� Overlap((x1
ul
; y1
ul
; x1

lr
; y1
lr
); (x2

ul
; y2
ul
; x2

lr
; y2
lr
)) Return true if

(x1
ul
� x2

lr
) ^ (x2

ul
� x1

lr
) ^ (y1

lr
� y2

ul
) ^ (y2

lr
� y1

ul
):

Otherwise return false.

� Equal((x1
ul
; y1
ul
; x1

lr
; y1
lr
); (x2

ul
; y2
ul
; x2

lr
; y2
lr
)) Return true if

(x1
ul
= x2

ul
) ^ (y1

ul
= y2

ul
) ^ (x1

lr
= x2

lr
) ^ (y1

lr
= y2

lr
):

Otherwise return false.

Now, the GiST method implementations:

� Consistent((E; q) Given entry E = (p; ptr), we know that p = Contains((x1
ul
; y1
ul
; x1

lr
; y1
lr
); v), and

q is either Contains, Overlap or Equal on the argument (x2
ul
; y2
ul
; x2

lr
; y2
lr
). For any of these queries,

return true if Overlap((x1
ul
; y1
ul
; x1

lr
; y1
lr
); (x2

ul
; y2
ul
; x2

lr
; y2
lr
)), and return false otherwise.

� Union(Eq = ((x1
ul
; y1
ul
; x1

lr
; y1
lr
); ptr

1
); : : : ; En = (xn

ul
; yn
ul
; xn

lr
; yn
lr
))

Return (min(x1
ul
; : : : ; xn

ul
), max(y1

ul
; : : : ; yn

ul
), max(x1

lr
; : : : ; xn

lr
), min(y1

lr
; : : : ; yn

lr
)).

� Compress(E = (p; ptr)) Form the bounding box of polygon p, i.e., given a polygon stored as a set of

line segments li = (xi1; y
i

1; x
i

2; y
i

2), form � = (8imin(x
i

ul
), 8imax(y

i

ul
), 8imax(x

i

lr
), 8imin(y

i

lr
)). Return

(�; ptr).

� Decompress(E = ((xul; yul; xlr; ylr); ptr)) The identity function, i.e., return E.

� Penalty(E1; E2) Given E1 = (p1; ptr1) and E2 = (p2; ptr2), compute q = Union(E1; E2), and return

area(q)� area(E1:p). This metric of \change in area" is the one proposed by Guttman [Gut84].

� PickSplit(P ) A variety of algorithms have been proposed for R-tree splitting. We thus omit this

method implementation from our discussion here, and refer the interested reader to [Gut84] and

[BKSS90].

The above implementations, along with the GiST algorithms described in the previous chapters, give

behavior identical to that of Guttman's R-tree. A series of variations on R-trees have been proposed, notably

the R*-tree [BKSS90] and the R+-tree [SRF87]. The R*-tree di�ers from the basic R-tree in three ways: in

its PickSplit algorithm, which has a variety of small changes, in its ChooseSubtree algorithm, which varies

only slightly, and in its policy of reinserting a number of keys during node split. It would not be di�cult to

implement the R*-tree in the GiST: the R*-tree PickSplit algorithm can be implemented as the PickSplit

method of the GiST, the modi�cations to ChooseSubtree could be introduced with a careful implementation

of the Penalty method, and the reinsertion policy of the R*-tree could easily be added into the built-in GiST

tree methods (see Section 7.) R+-trees, on the other hand, cannot be mimicked by the GiST. This is because

the R+-tree places duplicate copies of data entries in multiple leaf nodes, thus violating the GiST principle

of a search tree being a hierarchy of partitions of the data.

Again, observe that one could fairly easily support more complex predicates, including n-dimensional

analogs of the disjunctive queries and ranked keys mentioned for B+-trees. Other examples include arbitrary

variations of the usual overlap or ordering queries, e.g. \�nd all polygons that overlap more than 30% of this

box", or \�nd all polygons that overlap 12 to 1 o'clock", which for a given point p returns all polygons that
are in the region bounded by two rays that exit p at angles 90� and 60� in polar coordinates. Note that this

in�nite region cannot be de�ned as a polygon made up of line segments, and hence this query cannot be

expressed using typical R-tree predicates.
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4.3 GiSTs Over P(Z) (RD-trees)

In the previous two sections we demonstrated that the GiST can provide the functionality of two known

data structures: B+-trees and R-trees. In this section, we demonstrate that the GiST can provide support

for a new search tree that indexes set-valued data.

The problem of handling set-valued data is attracting increasing attention in the Object-Oriented data-

base community [KG94], and is fairly natural even for traditional relational database applications. For

example, one might have a university database with a table of students, and for each student an attribute

courses passed of type setof(integer). One would like to e�ciently support containment queries such as \�nd

all students who have passed all the courses in the prerequisite set f101, 121, 150g."

We handle this in the GiST by using sets as containment keys, much as an R-tree uses bounding boxes

as containment keys. We call the resulting structure an RD-tree (or \Russian Doll" tree.) The keys in an

RD-tree are sets of integers, and the RD-tree derives its name from the fact that as one traverses a branch of

the tree, each key contains the key below it in the branch. We proceed to give GiST method implementations

for RD-trees.

Before compression, the keys in our RD-trees are sets of integers. A key S represents the predicate

Contains(S; v) for set-valued variable v. The query predicates allowed on the RD-tree are Contains(set, v),
Overlap(set, v), and Equal(set, v).

The implementation of the query predicates is straightforward:

� Contains(S; T ) Return true if S � T , and false otherwise.

� Overlap(S; T ) Return true if S \ T 6= ;, false otherwise.

� Equal(S; T ) Return true if S = T , false otherwise.

Now, the GiST method implementations:

� Consistent(E = (p; ptr); q) Given our keys and predicates, we know that p = Contains(S; v), and
either q = Contains(T; v), q = Overlap(T; v) or q = Equal(T; v). For all of these, return true if

Overlap(S; T ), and false otherwise.

� Union(E1 = (S1; ptr1); : : : ; En = (Sn; ptrn)) Return S1 [ : : : [ Sn.

� Compress(E = (S; ptr)) A variety of compression techniques for sets are given in [HP94]. We briey

describe one of them here. The elements of S are sorted, and then converted into a set of n disjoint

ranges f[l1; h1]; [l2; h2]; : : : ; [ln; hn]g where li � hi, and hi < li+1. The conversion is done using the

following algorithm:

Initialize: consider each element am 2 S to be a range [am; am].
while (more than n ranges remain) f

find the pair of adjacent ranges with the least interval between them;

form a single range of the pair;

g

The resulting structure is called a rangeset. It can be shown that this algorithm produces a rangeset

of n items with minimal addition of elements not in S [HP94].

� Decompress(E = (rangeset; ptr)) Rangesets are easily converted back to sets by enumerating the

elements in the ranges.

� Penalty(E1 = (S1; ptr1); E2 = (S2; ptr2) Return jE1:S1 [E2:S2j � jE1:S1j. Alternatively, return the

change in a weighted cardinality, where each element of Z has a weight, and jSj is the sum of the

weights of the elements in S.
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Figure 2: Space of Factors A�ecting GiST Performance

� PickSplit(P ) Guttman's quadratic algorithm for R-tree split works naturally here. The reader is

referred to [Gut84] for details.

This GiST supports the usual R-tree query predicates, has containment keys, and uses a traditional

R-tree algorithm for PickSplit. As a result, we were able to implement these methods in Illustra's extensible

R-trees, and get behavior identical to what the GiST behavior would be. This exercise gave us a sense of the

complexity of a GiST class implementation (c. 500 lines of C code), and allowed us to do the performance

studies described in the next section. Using R-trees did limit our choices for predicates and for the split and

penalty algorithms, which will merit further exploration when we build RD-trees using GiSTs.

5 GiST Performance Issues

In balanced trees such as B+-trees which have non-overlapping keys, the maximum number of nodes to be

examined (and hence I/O's) is easy to bound: for a point query over duplicate-free data it is the height of

the tree, i.e. O(log n) for a database of n tuples. This upper bound cannot be guaranteed, however, if keys

on a node may overlap, as in an R-tree or GiST, since overlapping keys can cause searches in multiple paths

in the tree. The performance of a GiST varies directly with the amount that keys on nodes tend to overlap.

There are two major causes of key overlap: data overlap, and information loss due to key compression.

The �rst issue is straightforward: if many data objects overlap signi�cantly, then keys within the tree are

likely to overlap as well. For example, any dataset made up entirely of identical items will produce an

ine�cient index for queries that match the items. Such workloads are simply not amenable to indexing

techniques, and should be processed with sequential scans instead.

Loss due to key compression causes problems in a slightly more subtle way: even though two sets of data

may not overlap, the keys for these sets may overlap if the Compress/Decompress methods do not produce

exact keys. Consider R-trees, for example, where the Compress method produces bounding boxes. If objects

are not box-like, then the keys that represent them will be inaccurate, and may indicate overlaps when none

are present. In R-trees, the problem of compression loss has been largely ignored, since most spatial data

objects (geographic entities, regions of the brain, etc.) tend to be relatively box-shaped.3 But this need not

be the case. For example, consider a 3-d R-tree index over the dataset corresponding to a plate of spaghetti:

although no single spaghetto intersects any other in three dimensions, their bounding boxes will likely all

intersect!

3Better approximations than bounding boxes have been considered for doing spatial joins [BKSS94]. However, this work

proposes using bounding boxes in an R*-tree, and only using the more accurate approximations in main memory during

post-processing steps.
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The two performance issues described above are displayed as a graph in Figure 2. At the origin of

this graph are trees with no data overlap and lossless key compression, which have the optimal logarithmic

performance described above. Note that B+-trees over duplicate-free data are at the origin of the graph. As

one moves towards 1 along either axis, performance can be expected to degrade. In the worst case on the x

axis, keys are consistent with any query, and the whole tree must be traversed for any query. In the worst

case on the y axis, all the data are identical, and the whole tree must be traversed for any query consistent

with the data.

In this section, we present some initial experiments we have done with RD-trees to explore the space of

Figure 2. We chose RD-trees for two reasons:

1. We were able to implement the methods in Illustra R-trees.

2. Set data can be \cooked" to have almost arbitrary overlap, as opposed to polygon data which is

contiguous within its boundaries, and hence harder to manipulate. For example, it is trivial to construct

n distant \hot spots" shared by all sets in an RD-tree, but is geometrically di�cult to do the same for

polygons in an R-tree. We thus believe that set-valued data is particularly useful for experimenting

with overlap.

To validate our intuition about the performance space, we generated 30 datasets, each corresponding

to a point in the space of Figure 2. Each dataset contained 10000 set-valued objects. Each object was

a regularly spaced set of ranges, much like a comb laid on the number line (e.g. f[1; 10]; [100001; 100010];
[200001; 200010]; : : :g). The \teeth" of each comb were 10 integers wide, while the spaces between teeth were

99990 integers wide, large enough to accommodate one tooth from every other object in the dataset. The

30 datasets were formed by changing two variables: numranges, the number of ranges per set, and overlap,

the amount that each comb overlapped its predecessor. Varying numranges adjusted the compression loss:

our Compress method only allowed for 20 ranges per rangeset, so a comb of t > 20 teeth had t � 20 of

its inter-tooth spaces erroneously included into its compressed representation. The amount of overlap was

controlled by the left edge of each comb: for overlap 0, the �rst comb was started at 1, the second at 11,

the third at 21, etc., so that no two combs overlapped. For overlap 2, the �rst comb was started at 1, the

second at 9, the third at 17, etc. The 30 datasets were generated by forming all combinations of numranges

in f20, 25, 30, 35, 40g, and overlap in f0, 2, 4, 6, 8, 10g.

For each of the 30 datasets, �ve queries were performed. Each query searched for objects overlapping

a di�erent tooth of the �rst comb. The query performance was measured in number of I/Os, and the �ve

numbers averaged per dataset. A chart of the performance is shown in Appendix A. More illustrative is the

3-d plot shown in Figure 3, where the x and y axes are the same as in Figure 2, and the z axis represents the

average number of I/Os. The landscape is much as we had expected: it slopes upwards as we move away

from 0 on either axis.

While our general insights on data overlap and compression loss are veri�ed by this experiment, a number

of performance variables remain unexplored. Two issues of concern are hot spots and the correlation factor

across hot spots. Hot spots in RD-trees are integers that appear in many sets. In general, hot spots can be

thought of as very speci�c predicates satis�able by many tuples in a dataset. The correlation factor for two

integers j and k in an RD-tree is the likelihood that if one of j or k appears in a set, then both appear. In

general, the correlation factor for two hot spots p; q is the likelihood that if p _ q holds for a tuple, p ^ q
holds as well. An interesting question is how the GiST behaves as one denormalizes data sets to produce

hot spots, and correlations between them. This question, along with similar issues, should prove to be a rich

area of future research.

6 Implementation Issues

In previous sections we described the GiST, demonstrated its exibility, and discussed its performance as an

index for secondary storage. A full-edged database system is more than just a secondary storage manager,
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This surface was generated from the data in Appendix A. Compression loss was calculated

as (numranges� 20)=numranges, while data overlap was calculated as overlap=10.

however. In this section we briey address how the GiST can be implemented, taking into account important

database system issues.

6.1 In-Memory E�ciency: Streamlining Intra-node Operations

The GiST is an index for secondary storage. As a result, the algorithms described above focus on minimizing

node accesses, which are the only operations that involve I/O. However, even secondary storage structures

should be implemented with an eye on algorithmic e�ciency, and in some situations it is bene�cial to

streamline in-memory operations on a single node. We facilitate such optimizations in the GiST for situations

where they can be exploited, although the default behavior is general-purpose and can be relied upon for

correctness in all scenarios.

For the sake of simplicity and generality, the algorithms described above compare input predicates with

each entry on a node. More e�cient schemes may be used for particular domains. For example, in ordered

domains the appropriate entries on a node may be found via binary search. Another example is the hB-tree,

in which the entries on a node are themselves indexed via a k-d tree [Ben79], which is used for �nding the

appropriate entries on the node. Many alternative optimizations may exist, depending on the domain of the

key predicates.

To facilitate these techniques, additional extensibility in the GiST may optionally be leveraged for high

performance. The Node object in the GiST may be subclassed, and methods for searching, inserting and

deleting entries on a node may be specialized. For the sake of brevity, we do not describe the Node interface

in detail here, but instead give an illustrative example. The default behavior of the Node object is to store

entries in a typical slotted-page format, and do intra-node search in a linear fashion. The behavior of an hB-

tree may be achieved instead, by specifying a subclass of the Node object which has a k-d tree member, and

overloaded member functions for intra-node insertion, deletion, and search which maintain and exploit the

k-d tree. Improved Node methods such as these can streamline the intra-node search operations mentioned

in steps S1, S2, FM1, FM2, and CS2. Small overheads may be incurred in steps which insert, delete or

modify entries on nodes.
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Another in-memory optimization is to avoid the overhead of calling user methods for each operation.

This can be done by writing methods as inline code, and recompiling the system. This is discussed in more

detail in Section 6.6.

6.2 Concurrency Control, Recovery and Consistency

High concurrency, recoverability, and degree-3 consistency are critical factors in a full-edged database

system. Concurrency control for B+-trees is a well-understood problem, with Lehman and Yao's B-link

variant [LY81] being a typical way of implementing high-concurrency B+-trees. Recovery for B-link trees

has been explored by Lomet and Salzberg [LS92], who show that a �-tree, which generalizes the B-link

tree, can be reconstructed gradually from any interim state. Until recently, no analogous results existed for

R-trees. The main stumbling block was the fact that Lehman and Yao's techniques were based on linear

ordering in the data | sideways pointers were introduced at each level of the tree to connect the nodes of

each level into a linked list, ordered by key value. R-tree data has no such natural ordering, and imposing

an arti�cial ordering upsets the balancing techniques for the tree.

Fortunately, recent work extends Lehman and Yao's sideways pointer techniques, along with recovery

techniques, to R-trees. Ng and Kameda [NK94] do so by generating a pending update list at each node

of the tree, and applying Lomet and Salzberg's results on �-trees to this context. Banks, Kornacker and

Stonebraker [BKS94, KB95] have a simpler solution that marks keys and nodes with sequence numbers,

and uses the sequence numbers to determine order among the nodes. Both approaches provide solutions for

degree-3 consistency | Ng and Kameda via aborting transactions that read phantoms, and Banks, et al.

via predicate locking.

These techniques can be used in GiSTs in the same way they are used in R-trees. The sequence number

approach seems more attractive for the GiST, since it is a simple generalization of the original B-link

approach. As a result, the original approach could be used in the case of linearly ordered data, and the more

complex sequence number approach for unordered data. A full implementation of concurrency, recoverability,

and consistency in the GiST will certainly have to revisit some issues, but the bulk of the problems have

already been addressed.

6.3 Variable-Length Keys

It is often convenient to allow keys to vary in length, particularly because of the Compress method available

in GiSTs. Unfortunately, variable length keys can cause problems for the GiST (and for R-trees), due to the

following possible scenario:

1. A new entry is to be inserted in leaf node L

2. L is full, so a new node L0 is generated, and the data on L is split among L and L0

3. During split, the new entry is assigned to L. This results in the key above L being readjusted.

4. The key above L grows in size, and no longer �ts on the parent node, so...

5. the entry for the key above L must be removed from the parent node

At this point, we are in the unpleasant situation of having both L and L0 detached from our tree. The

traditional split propagation algorithm only works for one detached node, not for two. Some new technique

is required to handle this.

For linearly ordered domains, the situation outlined above cannot occur, since key propagation is not

necessary (recall the discussion at the end of Section 3.4.3.) For unordered domains, the problem can indeed

occur. We suggest two possible solutions:

� Reinsertion: The scenario described can be handled by calling the Insert method to reinsert the two

orphaned nodes at their original level. Some care must be taken to ensure that the problem described

above does not re-occur on reinsert.
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� New Entry on New Node: An alternative is to force the new entry to be placed on L0 after the split.

Then we know that some su�ciently small key can be found that is appropriate for L: in particular,

the old key for L is still valid after the split. The old key may be unacceptably general though, and it

is advisable to search for a more speci�c key that is small enough to �t.

The �rst solution has the advantage of being exible, and potentially improving the performance of the tree

through re�ned data placement [BKSS90]. It may require some modi�cations to the concurrency control

techniques described in the previous section. The second solution, while simpler, presents the problem of

�nding a good key that requires su�ciently little storage. This is always possible if one can ensure that as

the generality of a key decreases, the storage required for its compressed key does not increase. Although

this cannot be guaranteed in general, it does seem natural for some domains, e.g. sets.

6.4 Bulk Loading

In unordered domains, it is not clear how to e�ciently build an index over a large, pre-existing dataset. To do

so, some ordering must be used to sort the data, and then the sorted data must be partitioned into a linked

list of nodes, so that a tree may be constructed over the list. A good sort order and partitioning results in

a relatively full tree with low overlap at the keys. Various sort orders have been developed for R-trees (e.g.

[KF93], [Jag90], etc.), but these solutions are speci�c to the spatial domain and thus not generally applicable

for an extensible structure like the GiST. Extending this work to new domains should prove interesting. An

extensible BulkLoad method may be added to the GiST to accommodate bulk loading for various domains.

6.5 Optimizer Integration

To integrate GiSTs with a query optimizer, one must let the optimizer know which query predicates match

each GiST. This can be done by registering the predicates supported by the Consistent method with the

optimizer. For trees with IsOrdered = TRUE, one can additionally specify to the optimizer those predicates

that can be evaluated using the FindMin/Next technique.

When planning a query, if the optimizer sees a Boolean Factor [SAC+79] based on one of the registered

predicates, then it knows it should consider probing the GiST as one of its potential access paths. The

question of estimating the cost of probing a GiST is more di�cult, and we defer it until Section 7.

6.6 Coding Details

We propose implementing the GiST in two ways: the Extensible GiST will be designed for easy exten-

sibility, while the Template GiST will be designed for maximal e�ciency. With a little care, these two

implementations can be built o� of the same code base, without replication of logic.

The Extensible GiST package is an object library providing a GiST class, and a GiSTkey class. The

latter is a skeleton from which users may inherit the method names described in Section 3.3, to provide their

own domain-speci�c implementations. In C++ terminology, these methods are virtual member functions,

meaning that each time a method, e.g. Compress, is invoked on a key object, the appropriate implementation

of Compress is looked up and invoked. Invoking virtual member functions can be ine�cient, but this

architecture allows for great exibility: new key classes may be implemented on demand, dynamically linked

into a running DBMS, and used to index new data types without halting the DBMS. This is analogous to

the extensible indexing scheme used in POSTGRES, and is suitable both for prototyping, and for systems

where high availability is important.

The Template GiST package provides a template GiST class, which is a C++ source code library. Users

develop a key class of their liking, say myGiSTkey, with the appropriate methods. Then they can declare

a class GiST<myGiSTkey> in their code. After compiling the code for GiST<myGiSTkey>, they have an

index that behaves as desired without the ine�ciencies of invoking virtual member functions. Note that

myGiSTkey may implement some key methods as inline code, particularly for trivial operations such as

identity function Compress and Decompress methods. This eliminates the pathlength involved in making
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a function call, thus masking the complexity of unexploited extensibility features. The Template GiST is

in the spirit of \extensible database toolkits" such as EXODUS, and can be used to build custom-designed,

e�cient systems.

7 Summary and Future Work

The incorporation of new data types into today's database systems requires indexes that support an ex-

tensible set of queries. To facilitate this, we isolated the essential nature of search trees, providing a clean

characterization of how they are all alike. Using this insight, we developed the Generalized Search Tree,

which uni�es previously distinct search tree structures. The GiST is extremely extensible, allowing arbitrary

data sets to be indexed and e�ciently queried in new ways. This exibility opens the question of when and

how one can generate e�ective search trees.

Since the GiST uni�es B+-trees and R-trees into a single structure, it is immediately useful for systems

which require the functionality of both. In addition, the extensibility of the GiST also opens up a number

of interesting research problems which we intend to pursue:

� Indexability: The primary theoretical question raised by the GiST is whether one can �nd a general

characterization of workloads that are amenable to indexing. The GiST provides a means to index

arbitrary domains for arbitrary queries, but as yet we lack an \indexability theory" to describe whether

or not trying to index a given data set is practical for a given set of queries.

� Indexing Non-Standard Domains: As a practical matter, we are interested in building indices for

unusual domains, such as sets, terms, images, sequences, graphs, video and sound clips, �ngerprints,

molecular structures, etc. Pursuit of such applied results should provide an interesting feedback loop

with the theoretical explorations described above. Our investigation into RD-trees for set data has

already begun: we have implemented RD-trees in SHORE and Illustra, using R-trees rather than the

GiST. Once we shift from R-trees to the GiST, we will also be able to experiment with new PickSplit

methods and new predicates for sets.

� Query Optimization and Cost Estimation: Cost estimates for query optimization need to take into

account the costs of searching a GiST. Currently such estimates are reasonably accurate for B+-trees,

and less so for R-trees. Recently, some work on R-tree cost estimation has been done [FK94], but more

work is required to bring this to bear on GiSTs in general. As an additional problem, the user-de�ned

GiST methods may be time-consuming operations, and their CPU cost should be registered with the

optimizer [HS93]. The optimizer must then correctly incorporate the CPU cost of the methods into its

estimate of the cost for probing a particular GiST.

� Lossy Key Compression Techniques: As new data domains are indexed, it will likely be necessary to

�nd new lossy compression techniques that preserve the properties of a GiST.

� Algorithmic Improvements: The GiST algorithms for insertion are based on those of R-trees. As noted

in Section 4.2, R*-trees use somewhat modi�ed algorithms, which seem to provide some performance

gain for spatial data. In particular, the R*-tree policy of \forced reinsert" during split may be generally

bene�cial. An investigation of the R*-tree modi�cations needs to be carried out for non-spatial domains.

If the techniques prove bene�cial, they will be incorporated into the GiST, either as an option or

as default behavior. Additional work will be required to unify the R*-tree modi�cations with the

techniques for concurrency control and recovery.

Finally, we believe that future domain-speci�c search tree enhancements should take into account the

generality issues raised by GiSTs. There is no good reason to develop new, distinct search tree structures

if comparable performance can be obtained in a uni�ed framework. The GiST provides such a framework,

and we plan to implement it as a C++ library package, so that it can be exploited by a variety of systems.
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A Query Performance Over Comb Data

numranges overlap Query 1 Query 2 Query 3 Query 4 Query 5 Average

20 0 7 2 2 2 2 3

20 2 7 2 2 2 2 3

20 4 7 2 2 2 2 3

20 6 7 2 2 2 2 3

20 8 8 2 2 2 2 3.2

20 10 3254 3252 3252 3252 3252 3252.4

25 0 7 4087 6 2 2 820.8

25 2 7 4067 6 2 2 816.8

25 4 7 4063 6 2 2 816

25 6 7 4086 6 2 2 820.6

25 8 8 4084 7 2 2 820.6

25 10 4096 4095 4095 4095 4095 4095.2

30 0 7 4087 4086 6 2 1637.6

30 2 7 4067 4066 6 2 1629.6

30 4 7 4063 4062 6 2 1628

30 6 8 4086 4086 6 2 1637.6

30 8 8 4084 4081 7 2 1636.4

30 10 4096 4095 4095 4095 4095 4095.2

35 0 7 5734 5734 5734 10 3443.8

35 2 7 5730 5729 5729 6 3440.2

35 4 7 5727 5726 5726 6 3438.4

35 6 8 5753 5753 5753 7 3454.8

35 8 10 5533 5534 5534 7 3323

35 10 5002 5002 5002 5002 5002 5002

40 0 8 5734 5734 5734 5734 4588.8

40 2 8 5730 5729 5729 5729 4585

40 4 8 5727 5726 5726 5726 4582.6

40 6 9 5753 5753 5753 5753 4604.2

40 8 10 5756 5754 5754 5754 4605

40 10 5751 5749 5749 5749 5749 5749.4
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