FUTURE TRENDS IN EXPERT DATA BASE SYSTEMS

Michael Stonebraker and Marti Hearst
EECS Dept.
University of California, Berkeley

Abstract

In this paper we discuss how we see the capabilities of DBMSs evolving over the next several years
to meet the needs of expert data base applications. We also present some of the research thrusts which we
see as important that appear to be receiving insufficient attention in the research community.

1. INTRODUCTION

We begin in Section 2 with an example application which we think characterizes the need for expert
data base management systems. This application will set the context for the discussion in the rest of the
paper.

This paper then turns in Section 3 to the architectural alternatives that can be adopted for the con-
struction of expert data base systems such as the one described in Section 2. We blegisendtupling
between a rule manager and a data manager. The serious flaws in this architecture are then discussed fol-
lowed by the possibility dfight coupling between rule and data management. We then point out that tight
coupling will allow simple expert systems to be entirely implemented within the data manager while more
complex ones can be written incaoperative style whereby a data manager with an embedded inference
engine and an expert system shell work cooperatively to implement an expert data base application.

Then we turn in Section 4 to the two thrusts which research on DBMSs with an embedded rule sys-
tem have taken. A collection of researchers have concentrated on the efficient solution of rules systems that
are recursive in nature. These naturally lead to the construction of query optimizers for a DBMS that can
deal with recursive queries. On the other hand, other researchers have focused on more mundane rule sys-
tems where recursion is not present and have worked on efficiently discovering when one must "fire" rules
from a large rule set. We conclude Section 4 by discussing the importance of these two thrusts and their
likely commercial exploitation.

In Section 5 we discuss the possible technical approaches to deciding when to "fire" rules from a
large rule set. We discuss approaches based on theorem provers, indexing techniques and physical markers
in the data base. We conclude that none are satisfactory alternatives, and we are enthusiastic about research
on other possible mechanisms.

Section 6 then concludes by indicating that the construction of real world expert systems entails
much more than adding rule management to a DBMS. Specifically, expert data base applications seem to
entail a collection of difficult object management problems. In Section 6 we discuss a simple expert system
which we have been working on and indicate why a conventional relational system with an inference
engine is not adequate for our application.

This research was sponsored by the U.S. Air Force Office of Scientific Research Grant 83-0254 and the Naval Electronics Sys-
tems Command Contract N39-82-C-0235



2. AN EXAMPLE EXPERT DATA BASE APPLICATION

Consider a computer program which is intended to give a person directions from any starting location
in a particular geographic area to his destination. Such a program would be useful to car rental companies
who must give directions from an airport location to the traveler’s final destination. It would also be useful
to route delivery vehicles in unfamiliar territory, etc. In fact, simple systems with the capabilities which we
will describe are under development commerically at the present time.

The intended program will run off a data base which consists of a street map of the area in question.
For each adjacent pair of nodes, the data base must store:

the travel time along the arc (perhaps by time of day)
the legal house numbers along the arc

whether it is a one-way street

the presence of stop signs

the road surface

For a geographic area such as the San Francisco Bay area, there are (say) 5 million people, two million
legal addresses, and 200,000 arcs. This data base is clearly tens or hundreds of megabytes, and it will be
difficult to compress it into a main memory structure. Moreover, the data base grows larger if the geograpic
are is expanded or if an off-the road vehicle (such as a tank) is the target vehicle. In this latter case, we
must store a topographic map and not a street map. As such, the application fundamentally has a data base
problem.

In addition, one can solve this application by writing simple heuristic algorithms which might, for
example, first try to find the best route to the nearest expressway interchange. Algorithms with this flavor
are discussed in [PEAR86]. However, it seems more natural to approach the problem using a rule driven
solution. For example, in the Bay Area, all the residents use the following rule periodically:

To get from anywhere in Berkeley to anywhere in San Francisco, get from
the current location to the Bay Bridge, then get from the Bay Bridge to
the destination.

This rule specifies that any good route from Berkeley to san Franscisco must include the Bay Bridge. Most
of us navigate our local geographic areas by making use of hundreds or even thousands of such rules. Lets
suppose that we wish a solution to our application that can make use of the (perhaps) thousands of rules
that could control navigation in an area the size of the San Francisco Bay Area.

We will define arexpert data base applicationas any application such as the onewethat must
interact with a sizeable data base and a sizeable rule base. We turn in the next section to the possible archi-
tectures by which such applications can be supported.

3. ARCHITECTURES FOR EXPERT DATA BASE APPLICATIONS

The first alternative that we could use for expert data base applications has beeroesmedu-

pling and is illustrated in Figure 1. Here, one writes the application by making use of an expert system
shell, such as Prolog, OPS5, KEE, ART, etc. Any application logic, presentation services, and the rules
which control navigation are supported by this subsystem. For our purposes, the expert system shell man-
ages the rule base as indicates in Figure 1. Since expert system shells are programming environments and
not data base systems, they have no capabilities to store the map and legal addresses which our application
requires. Hence, many shells have been extended to support calls on an external data manager. the KEE
Connection [ABAR86] is an example of a product that supports such external DBMS access. Hence, the

Loose Coupling Architecture
Figure 1



data base portion of the application is managed by a second software system. The two subsystems are
loosely coupled in that the shell makes calls on data base services in the same way as any other DBMS
user.

There are several severe disadvantages to this architecture. First, the the rule base is main memory
resident. Hence, if the address space in which the shell resides goes away, then the rule base also disap-
pears. If the application makes any changes to the rules, these would not be preserved unless manual pro-
cedures to save them were utilized. Although this characterisitic is not an issue in our example application,
there are many situations where the rules must be changed dynamically. Moreover, the rule base is not
shared. If one user changes a rule, other concurrent users are not informed of the change.

Another severe disadvantage concetyisamic data. Suppose the shell extracts a fact from the data
base and then subsequently the value of the fact changes. This might happen if the shell performed a com-
plex inference that took considerable time. It might also occur if the cedthe fact in main memory
for the duration of an inference session to obtain faster performance. In either case, the shell is maintaining
a cache of data base objects, and the consistency of the cache must be ensured. The only possible tech-
nigues are to run all data base extractions inside a transaction and then to end the transaction only when the
desired inferences have been completed. This will ensure that the extracted data base objects are locked for
the duration of the inference. This approach will disallow updates to extracted objects until the inference
engine has finished, and may seriously impact performance. On the other hand, the siodllitcardata
manager periodically to obtain the new contents of extracted values. This approach will require the shell to
needlessly run DBMS queries even when the data items in question have not changed. it also may severely
impact performance. Hence, an application where the shell must deal with dynamically changing facts is
sure to be a problem for a loose coupliing architecture.

The second problem area is so-cal@ah-partitionable applications. Suppose the shell must run a
query to fetch the entire fact base before the user’s desired inferences can be completed. In this case, the
size of the shell’s cache may be gigantic and the resulting performance of the application may be poor
because of the sheer size of address space required to hold the cache.

Because of these disadvantages, many DBMS researchers have been investigating ways to integrate a
rule system into a data manager. We will term this apprtighh coupling. Using this architecture, the
DBMS manages both the data base and the rules base. In this case, the rule base is automatically shared
and persistent. Moreover, the DBMS can deal with dynamic data easily by waking up rules only when the
data they require actually changes. Lastly, because a DBMS is tuned to manage very large amounts of data,
there should be no particular problem with non-partitionable data. Hence, in theory, the disadvantages of
loose coupling can be corrected by moving the rule system inside the DBMS. The next section discusses
the two approaches that have been taken in this regard.

However, it is likely that an embedded rules system will lack certain functions routinely present in
expert system shells. For example some rules system, such as emycin [xxx], allow a user to attach a cer-
tainty factor to each rule. The inference engine is then coded to combine certainty factors together to give
an indication of the strength of the composite inference. Moreover, most expert system shells are capable of
giving explanations for any chain of inferences accomplished. As will be seen in the next section,
few DBMS researchers are contemplating the inclusion of uncertainty or explanations. A user who requires
such capabilities must code them in an expert system shell. In this case we have an exangple of a
operative architecture in which two subsystems, the DBMS and the shell, each have an inference engine
and co-operate to solve the ultimate application. We expect such co-operation to become more prevalent in
the future.

4. TIGHT COUPLING ALTERNATIVES

There are two main thrusts to a DBMS rule system. We illustrate the first approach by an example.
Consider the standard PROLOG program concerning grandparents, e.g:

grandparent (X,Y) := parent (X,Z), parent (Z,Y)
parent (Joe, Sue) ;=
parent (Sam, Bill) :=



parent (Sam, Joe) :=
Clearly, the parent facts can be placed into a PARENT relation
PARENT (older, younger)
in a conventional relational DBMS. The rule defining grandparents can be stated as a relational view, i.e:

range of P, P1 is PARENT
define view grandparent (P.older, P1.younger)
where P.younger = P1.older

Then a query about grandparents, i.e:

retrieve (grandparent.older)
where grandparent.younger = "Sue"

can be processed by the view algorithms in a conventional system to:

range of P, P1 is PARENT
retrieve (P.older)
where P.younger = P1.older and P1.younger = "Sue"

The resulting query can be optimized in the conventional way. Hence, relational views already provide
support for some kinds of rules. However, the first thrust is to generalize the support provided by a DBMS
so more complex rules can be expressed. Consider for example the rule:

ancestor (X,Y) := ancestor (X,Z), parent (Z,Y)

This rule islinearly recursive because the same clause appears on both sides of the rule. In this case, the
view definition which corresponds to the rule is:

define view ancestor (ancestor.older, parent.younger)
where ancestor.younger = parent.older

Hence, the view definition contains a reference to itself and is recursive. A query to this view, i.e
retrieve (ancestor.older) where ancestor.younger = "Sue"

must be translated into the following statements:
retrieve into temp (parent.older) where parent.younger = "Sue"

append * to temp (parent.older) where parent.younger = temp.older

The second statement is an example todasitive closure query, i.e. one that can be expressed by a single
qguery language command with a "*" added to denote that logically the command should be executed over
and over until it ceases to have any effect. There has been a significant amount of work on optimizing tran-
sitive closure queries, i.e. [ROSE86, IOAN87].

More generally, one can express rules that invgleeeral recursion. For example the following
rule defines common ancestors:

common-ancestor (X,Y) := ancestor (Z,X), ancestor (Z,Y)

Here, there is more than one recursive clause on the right side of the definition, and queries about common
ancestors are clearly much more difficult to solve than queries involving tranitive closure. Research on effi-
ciently solving queries involving general recursion has been presented in [BANCS86, 5 more].

The first thrust to rule management within a DBMS is therefore a substantial research effort on linear
and general recursion which is oriented to efficient solution of tbeedinds of rules. The second thrust
is oriented to non-recursive rules and is illustrated by the standard EMP relation:

EMP (name, salary, manager, age, desk)

The first four fields are conventional data, and we turn to focus on the last field, desk. Most companies
have elaborate rules on who is allowed to have what kinds of desks. Hence, this field is largely determined
by a collection of rules, typically written down in a company personnel manual or even stored in a key



employee’s head. Consequently, if we simply store the desk column as ordinary data, we will not capture
the rules that restrict admissible values. Rather, we would like to store a collection of rules that determine
desk values.

We now discuss the POSTGRES rule system which allows such rules in a natural way. POSTGRES
supports a query language, POSTQUEL, which borrows heavily from its predecessor, QUEL. Its main
extensions are in the areas of user defined operators and functions, and facilities to deal with time and
inheritance. The rule system uses this query language in an integral way. Specifically, any POSTQUEL
command can be turned intawe by prepending it with a keyword. Currently, we support the keywords,
always, neverandonetime. For example, the following command sets the desk of Mike to that of Joe:

replace EMP (desk = E.desk)
using E in EMP
where EMP.name = "Mike" and E.name = "Joe"

At the time the command is run, this will make the appropriate update to Mike’s desk. To turn this com-
mand into a rule, one can prepend this command with the keyword always, i.e.:

always replace EMP (desk = E.desk)
using E in EMP
where EMP.name = "Mike" and E.name = "Joe"

The semantics of this revisied command is that it should appear to be continuously running. In fact, the
implementation of this command follows one of two plans.

First, at the time that Joe receives a new desk, POSTGRES will awaken this command and propagate
the change to Mike. We call thearly evaluation. Hence, the command is awakened whenever any data
item which it reads is modified. On the other hand, the second strategy for rule evaluation is to do nothing
at the time that Joe receives a new desk. Rather, one waits until somebody requests the desk of Mike. At
this time, rather than giving the person a stored value, POSTGRES runs a modified version of rule to fetch
the actual data item from Joe’s record. We term this strdéég\evaluation. The intent in POSTGRES is
to automatically choose between early and late evaluation on a rule by rule basis.

Of course collections of rules can interact. For example, suppose there is a second rule which sets
the desk of Joe to be that of Sam:

always replace EMP (desk = E.desk)
using E in EMP
where EMP.name = "Joe" and E.name = "Sam"

If both rules are evaluated early, thefoavard chaining control flow will result because when Sam gets a
new desk, the second rule will fire which will in turn fire the first rule. On the other hand, late evaluation
corresponds tbackward chaining because a request for Mike's desk will cause a request for Joe’s desk
which in turn will cause a request for Sam’s desk. As a result, POSTGRES is automatically choosing
between backward and forward chaining control flows.

Two other points about the rule system are noteworthy. First, it is permissable to have conflicting
rules. For example, one might have a rule that all employees over 35 get a wood desk, i.e:

always replace EMP (desk = "wood")
where EMP.age >= 35

In the case that Mike or Joe is over 35 but Sam is not, then this rule will give both employees a different
desk than the previous rules. POSTGRES deals with this situation by allowing a user to gpeaiftya
for each rule and then enforces the one with higher priority if a conflict occurs.

Lastly, if a user specifies rules that would cause the rule system to loop, e.qg:

replace EMP (salary = 1.1 * E.salary)
using E in EMP
where EMP.name = "Mike" and E.name = "Joe"



replace EMP (salary = 1.1 * E.salary)
using E in EMP
where EMP.name = "Joe" and E.name = "Mike"

Here Joe’s salary is 10 percent more than Mike’s which in turn is 10 percent more than Joe’s. POSTGRES
would ordinarily go into an infinite loop if either early or late evaluation was selected. However, POST-
GRES simply remembers a stack of the previous rule activations. It examines the stack on rule activation
and notices if a previously invoked rule is being awakened in the same state. If so, it aborts the current
transaction to break the infinite loop.

This strategy breaks all infinite loops as well as some additional non-looping situations. For exam-
ple, if one adds an extra clause to each of togextles of the form:

and EMP.salary < 5000

then the rules will terminate after a finite number of iterations. However, POSTGRES will fail to recognize
this fact and abort the requester of a salary (late evaluation) or the updater of a salary (early evaluation).

A complete set of rules for desk allocation culd be written in POSTGRES and might be:

always replace EMP (desk = "steel")
where EMP.age >= 35

always replace EMP (desk = "wood")
where EMP.age < 35

These are examples of theneral ruleswhich indicate that employees under 35 get a wood desk while
those over 35 receive a steel desk. However, there are invagied#ptionsto the general rules. Suppose

that Bill is a younger employee who should receive a wood desk while Sam is an older employee who
refuses to sit at a wood desk. Lastly, suppose that Joe has been allowed to have the same kind of desk as
Sam and Mike the same desk as Joe. These exceptions would be expressed as:

always replace EMP (desk = "wood")
where EMP.name = "Bill"

always replace EMP (desk = "steel")
where EMP.name = "Sam"

always replace EMP (desk = E.desk)
using E in EMP

where EMP.name = "Joe"

and E.name = "Sam"

always replace EMP (desk = E.desk)
using E in EMP
where EMP.name = "Mike"
and E.name = "Joe"
Consider a query to the EMP relation, i.e:
retrieve (EMP.desk) where EMP.name = "Joe"

Although 6 rules can conceivably yield the answer to this query, we require the fifth rule to be applied.
This will yield a new query:

retrieve (EMP.desk) where EMP.name = "Sam"

Again 6 rules might apply but we require the fourth rule which will yield "steel" as the desired answer to
the query.

This rule set is characterized by three properties:



1) Because there are exceptions, the rule set is fundamentally inconsistent. Hence, a mechanism must be
found to deal with this situation.

2) There are a substantial number of rules, and none of them are recursive.

3) The key performance measure of queries which involve employee desks will be to efficiently decide
which rule (or rules) must be "fired". Although many ruteight apply, fewactually apply.

We will term rule systems with these three propertiesadanerules.

Having talked to a considerable number of DBMS users, we have observed the following characteris-
tics. Nearly everybody has mundane rules (such as the definition of desks). In addition some people have
linearly recursive rules (such as the definition of ancestors). The most common example is parts explosion
gueries which occur frequently. There are probably a few people who have more complex general recursive
gueries. However, we have yet to meet such a person. Consequently, our feeling is that research effort
should be proportional to the needs of real users. Hence, we would like to see more effort on mundane
rules sets and less effort on general recursion.

Moreover, the vendors of commercial systems will clearly be oriented toward mundane rules because
that will result in the broadest applicability of system constructs.

5. TECHNIQUES FOR RULE FIRING

We believe that the key to efficiency in DBMS supported mundane rule systems is firing only those
rules which actually apply. There seem three approaches which can be exploited:

theorem proving
indexing
flags

We discuss each in turn.
When a query is entered, e.g:
retrieve (EMP.desk) where EMP.name = "Joe"

the DBMS can provide tneorem prover which will provide the following service. For each rule, R, with
qualification Q(R), the theorem prover will ascertain if:

(EMP.name = "Joe") intersect Q(R) is empty

Any such rule can be immediately discarded. The rules which cannot be discarded are fired. Hence, the
focus could be on efficently building such a theorem prover, and research along these lines is discussed in
[SCHM86]. We are not optimistic that this approach will work well. First, a theorem prover will sequence
over all rules involving desks to deal with theoabquery. If there are 1000 such rules, then a sequential
evaluation of them will be a major bottleneck. Second, it may well be just as efficient to "fire" the rule to
see if it applies rather than trying toopethat it doesn’t. Moreover, in the case of the desk rules, it will be
necessary to retrieve the age of Joe in order to ascertain which general rule applies. In this case, the theo-
rem prover will require extra information from the data base to do its job, thereby degrading performance.

The second approach is to index the predicates in the rules. The general idea is to build a data struc-
ture which will store for each rule, R, the qualification Q(R). Then, when a user query is given to the sys-
tem, the qualification is entered into the index and in the process the rules whose qualification overlaps the
one from the user will be found. Such an index is inherently multidimensional and might be a generaliza-
tion of R-trees [GUTM84]. In addition RETE networks [FORG83] are a kind of indexing system long used
in forward chaining expert system shells. Perhaps a variant on this approach could be adapted for data base
use.

The final approach is to use a approach based on flags. The basic idea is to actually run the qualifica-
tion from the rule through the execution system of the DBMS, and havarlt all the data items which
the rule accesses or intends to update. #aglscan be subsequnetly used to assist in determining which



rules to fire. In the case of the desk example, the various rules would set flags on the desk data item for
employees that they intend to specify a value for and also on the names or ages of employees which are the
data items they read.

Subsequently, if a user wishes to read the desk data item of any particular employee, the run time sys-
tem can notice the flags that are set on that data item, and wake up only those rules. This will provide very
fine granularity discrimination of rule activation. A proposal along these lines is presented in [STON87],
and an analytic model comparing the performance of a flag system to an indexing system is contained in
[STONSS].

Our experience with a flag implementation is that itedsy complex. Perhaps it is overly complex.
Hence, the complexity taxes the designers and implementors, and this makes us uneasy about the ultimate
viability of this approach. On the other hand, we have not seen a predicate indexing scheme that has suffi-
cient generality to allow all the predicates that a rule system requires. For example, it is not, in our opinion,
reasonable to restrict predicates in rules to just those which involve a single relation. Lastly, theorem prov-
ing techniques do not appear very promising either. Hence, we feel that a major contribution can be made
by a new idea, and we would encourage researchers to look in this area.

6. OBJECT MANGEMENT IS ESSENTIAL

We have been working with the State of California Department of Water Resources (DWR). This
agency is repsonsible for much of the water delivery and husbandry in the state. They maintain a large col-
lection of data sets on water related matters. Specifically, for a collection of wells in the state, they monitor
the depth to groundwater on a periodic basis. This information is useful for tracking the current amount of
underground storage and rate of undergroud pumping. The U.S. Department of Reclaimation maintains the
same data for a different collection of wells. We have obtained both data sets. ,pp DWR also does "fly
overs" on a periodic basis taking image data. From this raw data they try to infer crop patterns and amount
of land in cultivation.

They also monitor many of the waterways in the state for content of various impurities. A little
known fact about irrigated land (which essentially all of California farmland is) is that salt and other impu-
rities are natually present in stream water. When such water is poured onto fields the salt content gradually
builds until the salinity of the soil renders the land unusable. This problem is addressed by "flooding" the
field periodically, thereby dissolving the salt, and then "draining" the field (typically through underground
drains) into an exit waterway. This drain water is high in salt content and must be disposed of. The prob-
lem with agricultural waste water has attracted substantial attention in the news media, and there are many
stories on the subject in major California newspapers.

Our objective was quite modest. We wished to build a data base containing:

Bureau of Reclaimation data on depth to groundwater
DWR data on depth to groundwater

DWR data on impurities

DWR image data

a U.S.G.S. topographic map

electricity usage

newspaper clippings on agricultural water use

Then we wished to achieve two objectives. The first was to present to an end user a "seamless" view of this
data. This required us to contruct a user view of ttevatata which for any possible plot of land (identi-
fied by an <X,Y> coordinate position) in our study area would have the following information:

depth to groundwater

land use (i.e. crop grown)

salt concentration

selenium concentration

amount of underground pumpage



For example, to infer the depth to groundwater at a particular location, one can use:

the depth to groundwater at neighboring wells

the difference in elevation between the various locations
the confidence in the source of the well measurement
the time of year

The second objective was to build a system that would be able to analyze the newspaper clippings
and rate them on a collection of metrics. For example, one solution to drain water is to purify it and then
put it into the normal system of waterways. We wished to be able to scale each news article on whether it
was in favor of this solution or opposed, and we wished to use a 0-10 scale. Consequently, we wished to
present to the end user a relation with a row for each news article with data items:

date

newspaper
author

score on metric 1

score on metric n

There are several problems which we ran into in trying to implement this application. First, it is nec-
essary to store a topographic map of a portion of the State of California. This requires a system that can
conveniently store polygons, line groups, points, etc. Moreover, many of the polygons have a large number
of sides. Managing such objects tends to be very hard in current relational DBMSs. A system with more
sophisticated object management capabilities would be a definite plus. Second, it is necessary to do queries
of the form:

find me the N closest wells to the point (X,y)

This requires a two dimensional spatial index such as a K-D-B tree [ROBI80], R-tree [GUTM84] or quad-
tree [SAMES84]. No current general puirpose relational systems have such access methods, and it is neces-
sary to use a spcial purpose system with geographic search capabilities or a system that can be extended
with access methods written by a user, e.g. [STON86, LIND87, DEWI87].

Lastly, we tried to use the rules system to fill in values for the missing data in the two relations from
the previous section. However, we encounered difficulties as illustrated by the depth-to-groundwater dis-
cussion which follows. Obviously, we don’t want to have a tuple in the first relation for every conceivable
<x,y> pair in California. Hence, there will be no tuple in the given relation for the point for which the user
is interested in the depth to groundwater. Consequently, there is no data item for the rule system to fill in.
As such, the obvious mechanism is for the user to write a function:

depth-groundwater (x,y)

that takes two arguments. This functions can be defined to POSTGRES and then used in subsequent
gueries. The natural query is:

retrieve (result = depth-groundwater (my-x, my-y))
Hence, user defined functions are a very valuable extension to a data manager.
In summary, object management capabilities such as extendible types, user defined access methods

and user defined functions appear to be important in making expert data base applications successful.

7. REFERENCES

[ESWAT75] Eswaran, K.JA General Purpose Trigger Subsystem and Its Inclusion in a Relational Data
Base System'IBM Research, Report No RJ 1833, San Jose, CA, July 1976.



[GUTT84]

[ROBI81]

Guttman, A."R-Trees: A Dynamic Index Structure for Spatial Searchingfo-
ceedings of the 1984 ACM-SIGMOD International Conference on Management of

Data, Boston, MA, June 1984.

Robinson, J. T;;The K-D-B tree: A Search Structure for Large Multidimensional
Dynamic Indexes”Proceedings of the 1981 ACM-SIGMOD International Confer-
ence on Management of Data, April 1981.

10



