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Abstract

We present a query architecture in which join oper-
ators are decomposed into their constituent data struc-
tures (State Modules, or SteMs), and dataflow among these
SteMs is managed adaptively by an eddy routing opera-
tor [2]. Breaking the encapsulation of joins serves two pur-
poses. First, it allows the eddy to observe multiple physical
operations embedded in a join algorithm, allowing for bet-
ter calibration and control of these operations. Second, the
SteM on a relation serves as a shared materialization point,
enabling multiple competing access methods to share re-
sults, which can be leveraged by multiple competing join
algorithms. Our architecture extends prior work signifi-
cantly, allowing continuously adaptive decisions for most
major aspects of traditional query optimization: choice of
access methods and join algorithms, ordering of operators,
and choice of a query spanning tree.

SteMs introduce significant routing flexibility to the eddy,
enabling more opportunities for adaptation, but also intro-
ducing the possibility of incorrect query results. We present
constraints on eddy routing through SteMs that ensure cor-
rectness while preserving a great deal of flexibility. We also
demonstrate the benefits of our architecture via experiments
in the Telegraph dataflow system [26]. We show that even a
simple routing policy allows significant flexibility in adapta-
tion, including novel effects like automatic ““hybridization”
of multiple algorithms for a single join.

1. Introduction

It is often difficult to predict values of the parameters
that govern database query execution. Cardinality estimates
are highly imprecise [25, 3], and competing demands on
memory, system load, and network bandwidth are typically
known only at runtime [19, 32]. In federated and web
database systems, data distributions and rates often cannot
be known in advance [31, 27]. Other environments with
volatile parameters include continuous query systems [17]
and interactive systems [11].

Such uncertainties have led to a focus on adaptive ex-
ecution in many recent query systems, including Tukwila,
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Telegraph, Aurora, and Query Scrambling [14, 26, 4, 29].
Perhaps the most adaptive of these approaches is the eddy
operator [2] of Telegraph, which executes queries by rout-
ing tuples between query modules such as selections and
joins, dynamically reconsidering the ordering of such mod-
ules on a per-tuple basis.

This paper presents an adaptation mechanism that sub-
stantially enhances the power of the eddy, allowing con-
tinuously adaptive decisions for most of the major aspects
of traditional query optimization: not only the ordering of
operators, but also the choice of access methods, join al-
gorithms, and the selection of a spanning tree in the query
graph [13, 16]. Our core idea is to refine the granularity of
query modules, by breaking up join modules and elevating
the data structures typically encapsulated within them into
separate State Modules (SteMs).

The Join is a logical construct in the relational algebra;
join algorithms typically involve multiple physical opera-
tions. The motivation behind splitting joins into SteMs is to
decouple the physical operations that are typically encap-
sulated within join modules. This exposes these physical
operations directly to the eddy, for performance calibration,
fine-grain routing adaptation, and work sharing.

Informally, a SteM s a half-join. It encapsulates a dic-
tionary data structure over tuples from a table, and handles
build (insert) and probe (lookup) requests on that dictionary.
We show that all select-project-join queries can be executed
by routing tuples carefully between access methods on data
sources, SteMs, and selections. Join algorithms are not ex-
plicitly programmed, but are instead captured in the routing
of tuples between SteMs and access methods on the sources.

The breaking of algebraic join encapsulation has two
benefits. First, the eddy can now monitor and control phys-
ical operations that are normally hidden within joins. By
adapting the routing of tuples to the SteMs, the eddy adapts
the order of these physical operations, and thereby the join
algorithm itself. We will see an example in Section 4.2
where this allows the eddy to distinguish between cached
and uncached lookups in a networked index join, resulting
in a simple routing policy with better performance than the
corresponding join algorithm from the literature. In fact, by
appropriate routing the eddy can even simulate hybrid join
algorithms that combine elements of different traditional al-
gorithms. For example, we shall see an experiment in Sec-



tion 4.3 where the eddy “hybridizes” index and hash join
algorithms, gradually converting one into the other during
query execution.

Second, SteMs provide a shared data structure for mate-
rializing and probing the data accessed from a given table,
regardless of the number of access methods or join algo-
rithms involving that table. This sharing is especially useful
for access method adaptation. The choice of access methods
is difficult in federated systems [26, 10, 14], because a given
table may be provided by multiple data sources, and a single
source may support multiple access methods corresponding
to different sets of bind-fields. An eddy can run multiple ac-
cess methods concurrently, and dynamically choose among
them based on observed performance. The use of SteMs
helps avoid redundant work during this competition; all ac-
cess methods on a table build into the same SteM. More-
over, although an eddy routing policy can effectively try out
multiple competing join algorithms, all lookups on a table
probe the same SteM, taking advantage of the shared mate-
rialization.

The flexibility enabled by SteMs comes with a challenge:
arbitrary routing from multiple access methods through
SteMs may not correspond to a valid query execution plan.
Incorrect routing can lead to duplicate results, missing re-
sults, or infinite routing loops. Therefore we develop a set
of constraints on the routing that guarantee correct query ex-
ecution (Section 3), while preserving opportunities for the
flexible kinds of adaptation described above.

1.1. An Example

Consider a join of three tables R, S, and T, with equi-join
predicates between R-S and S—T. Suppose there is a scan
access method on each relation, and an index access method
on T corresponding to the join attributes with S. Figure 1
shows three ways of running this query. Figure 1(a) is a tra-
ditional, statically chosen query plan involving a hash join
and an index join. Figure 1(b) shows the approach of [2]
where an eddy is used to dynamically adapt the join order
by controlling the tuple flow between the joins. Note that
both these approaches make use of only the index access
method on T, and pre-chosen implementations for the RS
and ST joins. Figure 1(c) shows the same query being ex-
ecuted with SteMs. All access methods over data sources
are used simultaneously. Tuples coming into the eddy from
these access methods are not routed to joins, but instead to
SteMs and other access methods. This plan allows use of all
the access methods, and a variety of routing decisions that
correspond to different join algorithms and join orders. We
develop the details of this approach in the body of the paper.

1.2. Background

The setting for this work is Telegraph, an adap-
tive dataflow system for querying streams of networked

data [26]. An early application of Telegraph was Feder-
ated Facts and Figures (FFF), a query system to combine
data from diverse and distributed data sources. These in-
clude not only relational databases but also websites pro-
viding services and data backed by databases (the so-called
“Deep Web”). Among the factors that we discussed earlier,
our interest in adaptive query execution is motivated by two
unpredictable properties in FFF:

Volatility of distributed data sources: Since Web sources
are autonomously maintained, their speeds and availability
are hard to estimate at optimization time, and could vary
during query execution.

Volatility of user interests during online query process-
ing: Since users often specify queries in an iterative, ex-
ploratory fashion, FFF uses an online performance met-
ric [11, 22] and gives out partial results during query ex-
ecution. As the user sees these partial results, their interests
in different parts of the result may change.

1.3. Outline of the paper

In the rest of the paper, we develop the SteM mecha-
nism, and show how it helps in an environment like FFF
(for a more elaborate presentation, please see [21]). We be-
gin with a description of the modules in our architecture
(Section 2), and then describe how arbitrary select-project-
join queries can be executed correctly using these modules
(Section 3). Next, we present an experimental study that il-
lustrates the various kinds of adaptations allowed by SteMs,
and the performance benefits we get under an online query
processing metric (Section 4). We discuss related work in
Section 5, and conclude with a discussion of other implica-
tions of SteMs and directions for future work (Section 6).

2. Mechanics of Query Execution with SteM s

In this section, we first describe the modules in our archi-
tecture, including the State Modules (SteMs), and discuss
how they are instantiated for an arbitrary query. We then il-
lustrate a simple but important example of these modules in
use: an n-ary version of the symmetric hash join operator.

2.1. Eddy, State, Access, and Selection Modules

Our architecture uses four kinds of modules: (1) selec-
tion modules that correspond to query predicates, (2) ac-
cess modules that correspond to access methods over data
sources, (3) State Modules (SteMs) that encapsulate data
structures used in traditional join algorithms, and finally
(4) an eddy module that routes tuples between the other
modules®. Each module runs asynchronously in a separate
thread, though this asynchrony can also be achieved in a

1We assume that projections are done by each module as early as possi-
ble, and that Group By, Aggregation, and complex SELECT-list expressions
are implemented above the eddy, before results are output to the user.
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Figure 1. A three table join performed in three ways. The eddy continually routes tuples between modules, which run as
concurrent threads. Indexes are represented by triangles, and shown encapsulated within index join as suggested in [2].
SteMs are shown as sideways triangles ( to signify that they are half-joins).

single-threaded implementation [24]. We now describe the
module functionality in detail. Simplified pseudo-code is
given in Table 1. We start with some definitions.

Definition 1 (Base-table Component, Span) Consider a
tuple ¢ belonging to the join of k base-tables Ty, T, . . ., T}.
The projections of {¢t} on the columns from each of
these base-tables form relations with a single row each.
Each of these rows are called the base-table components,
tr,try,--.,tr,, of . We denote ¢ by (tr,,tr,,. .., t1,),
and say that ¢ spans the tables Ty, T5, . . ., Tk.

Definition 2 (Singleton tuple) A singleton tuple is one that
contains a single base-table component.

2.1.1 Eddy Module

The eddy’s role is to continuously route tuples among the
rest of the modules, according to a routing policy. When a
module other than the eddy processes a tuple ¢, it can gener-
ate other tuples and send them back to the eddy, for further
routing. It can also optionally return (or bounce back) ¢ to
the eddy if ¢ requires additional processing. A tuple is re-
moved from the eddy’s dataflow and sent to the output if it
spans all base tables and is verified to pass all predicates.
The eddy terminates the query when there are no tuples in
the dataflow, and each module has finished processing all
the tuples sent to it.

Each tuple also carries some state with it, called its Tu-
pleState, to track the work it has done in furthering query
progress. The exact structure of TupleState depends on the
routing policy. However, as a bare minimum, the TupleState
must contain (a) the tables spanned by the tuple, and (b)
the predicates that the tuple has passed (our implementation
uses a bitmap, like the done bits of [2]). The former denotes
the type of the tuple, and the latter is used by the eddy to
decide when the tuple is ready for output. In fact, this state
alone suffices for all but one special class of cyclic queries;
we will discuss that exception in Section 3.4.

2.1.2 Selection Modules (SMs)

Selection modules (SMs) are simple. When a selection
module M receives an input tuple ¢, it returns ¢ to the eddy
if ¢ passes the selection predicate, and removes it from the
dataflow otherwise. To track the progress made by t, if ¢
passes the predicate, M marks this fact in ¢’s TupleState.

2.1.3 Access Modules (AMs)

An Access Module (AM) encapsulates a single access
method over a data source — it can either be a scan, or an
index on some set of columns. Each access method on a
given relation is encapsulated in a separate AM.

A tuple ¢ that is routed to an AM is called a probe tuple,
and corresponds to a request for the AM to output tuples
that “match” the probe tuple — the matches from an AM
on table S are all s € S such that the concatenation of ¢
and s satisfies all query predicates that are defined over the
union of the columns spanned by s and ¢2. As in traditional
database access methods, the output schema of an AM is the
same as that of the data source. In particular, the AM does
not concatenate the probe tuple to its output tuples. Such
concatenation will be performed only by SteMs.

Scans are also treated as AMs, but only accept a special
empty probe tuple we call a seed tuple, and in return, out-
put all tuples in their data source. These are initialized by
passing seed tuples to them at query initialization time.

In addition to returning matches, AMs asynchronously
bounce back each probe tuple ¢ to the eddy. Intuitively the
bounce back is required because the probe tuple is needed
later for eventual concatenation with each of its matches.
This is discussed in more detail in Section 3.3.
Asynchronous Indexes and EOTs: As demonstrated
in [8], the throughput of accesses to Web sources can be
improved significantly by sending multiple asynchronous
probes; similar arguments can be made about asynchronous
random disk 1/Os. In this spirit, we assume that all AM

2Some of these predicates will be enforced by the index lookup; the
AM applies the others after the lookup.



[Module]Input tuple] Output tuple(s) |Action

SM t t or nothing

Bounce back ¢ iff it matches predicate

AM t t
matches for ¢

Asynchronously bounce back ¢
Asynchronously return all matches for ¢
EOT Return EOT after all matches have been returned.

SteM build, —
EOT —

probe —

Build build; into the SteM.

Build EOT into the SteM.

build: or nothing | Asynchronously bounce back build; if needed for correctness (Section 3).
Find matches for probe; among tuples in SteM.

concatenated results | Concatenate these matches with probe; and return concatenated results.
probe; or nothing | Asynchronously bounce back probe; if needed for correctness (Section 3).

Table 1. Functionality of the main query processing modules in our architecture.

probes and responses are asynchronous. This asynchrony
complicates issues somewhat, because the system needs
to track when all matches have been returned for a given
probe. We use the dataflow itself to pass this information.
When an AM on a table T has returned all matches to a
probe, it sends an End-Of-Transmission (EOT) tuple encod-
ing the probing predicate (in the case of a scan AM, the
predicate is simply “true”). In the common case of index
lookups using equality predicates, the EOT tuple is a regu-
lar tuple with a special EOT value in all the non-bound fields
(e.9., { 15 John EOT EQT ... ) if the probe tuple binds the
first two fields to 15 and John). For non-equality predicates,
the EOT tuple contains pointers to the predicates, which are
stored in a data structure created during query parsing. The
advantage of encoding EQOTSs as tuples rather than as con-
trol messages is that the EOTSs can be stored in SteMs itself,
alongside standard tuples, as we will see below.

2.1.4 State Modules (SteMs)

A SteM essentially corresponds to half of a traditional join
operator. It stores homogeneous tuples (tuples spanning the
same set of tables) formed during query processing, and
supports insert (build), search (probe), and optionally delete
(eviction) operations. In this paper, we only consider SteMs
over base tables; i.e., all tuples in a SteM are singleton tu-
ples from the same table. As such, all joins on a given base
table can and do use the same SteM for builds and probes
involving that base table. For this purpose, we allow a SteM
to perform searches on arbitrary predicates.

Two kinds of tuples can be routed to a SteM. When a
build tuple ¢ € T is routed to a SteM on T (called SteMr),
t is added to the set of tuples in SteMr, and auxiliary data
structures (such as indexes), if any, are updated accordingly.
An EOT tuple from an AM on T is also routed as a build
tuple to Ste M. When a probe tuple p is routed to Ste M,
SteM returns concatenated matches for it to the eddy.
These concatenated matches are all tuples in {p} X Ste My
that satisfy all query predicates that can be evaluated on the
columnsinpand T

Note that since the SteM is continually being built, it
may not have all the tuples in 77 ({p} X T'). This is tracked

by the presence of EOT tuples. If an EOT tuple in Ste Mt
matches a probe p, then Ste M knows that it definitely con-
tains all matches for a probe p. If not, the SteM might have
to bounce back p so that it can be routed to other modules (to
find the missing matches).2 The logic for when such bounce
backs are needed is determined by the routing constraints,
and will be developed in Section 3.

In our present implementation, we speed up join pred-
icate lookups through indexes. A SteM on a table T has
one main-memory index (hash table or binary tree) on each
column of T' that is involved in a join predicate. These
are all secondary indexes having pointers to the same tu-
ples in memory. We do not focus on disk-resident indexes
in this paper because the datasets we have encountered in
Web sources are typically small enough to fit in main mem-
ory. We defer discussion of multi-table SteMs and disk data
management within SteMs to Section 6.

2.2. Query Planning

The use of an eddy and SteMs obviates the need for
query optimization because there are no a priori decisions
to be made. Unlike in [2], there is no need even for a
“pre-optimizer” that chooses the join implementations,
access methods, and query spanning tree. A query is

instantiated as follows : S
1. Check that the query is valid, i.e., it can be executed

given the bind-field constraints on the data sources (we
use the algorithm from Nail [18]).

2. Create an AM on each access method that can possibly
be used in the query.

3. Create a SM on each predicate in the query.

4. Create a SteM on each base table in the query.

5. Create seed tuples as needed for scans (Section 2.1.3).

As described in the earlier section, only one SteM is
created per data source. This SteM is shared not only
among the join predicates involving that data source, but
also among multiple instances of the source in the FROM
clause, if any exist (e.g., a self-join).

3This assumes that tuples from an AM arrive at the SteM in order; in
the full paper [21], we describe techniques to handle out-of-order arrivals.



Though this paper focuses on execution of a single query,
a SteM can also be used to share work and storage across
concurrent queries. Related work in Telegraph on continu-
ous query processing uses SteMs in this way [17, 5].

2.3. Example: An N-way Symmetric Hash Join

We now give an example of how these modules can be
used to implement an n-way version of the symmetric hash
join (SHJ) [23, 30]. The traditional, binary SHJ is a pipelin-
ing join that works by simultaneously building hash tables
on both its inputs. Each input tuple is first built into a hash
table on that input, and then immediately probed into a hash
table on the other input. Due to its pipelining nature this
operator is well-suited for interactive processing. Though
originally designed as a memory-resident algorithm, it has
subsequently been extended by [14] and [27] to spill to disk
in memory-constrained environments.

There are two ways to extend the SHJ to multi-table
queries. Consider an equi-join R X, S X; T.

Pipelining Binary Joins: Figure 2(i) shows how multiple
binary SHJs can be pipelined to perform an n-way SHJ.
To the best of our knowledge, this is the approach used in
all current literature (e.g., [28]).

n-ary SHJ Operator: Figure 2 (ii) shows how all the SHJs
can be unified into a single operator that uses four hash
indexes: one on R, one on 7', and one on each join column
of S (one of these is a secondary index). When a new R
(T') tuple comes in, it is first built into the corresponding
hash index Hg, (Hr,), and then probed into Hs, (Hg,).
The resulting matches, if any, are then used to probe into
Hy, (Hg,) and the result is output. When a new S tuple
comes in, it is similarly built into Hs, and Hg,. At this
point, we have a choice, corresponding to different join
orders. We can either probe the S tuple into Hg, and
probe Hp, with the resulting matches, or we can probe
into Hy, and then into Hg, .

The initial eddy paper [2] was based on the first approach —
by connecting a set of pipelining binary join modules to an
external eddy module, the ordering of the join modules can
be decided dynamically. In contrast, the SteMs mechanism
is based on the second approach — it essentially places an
eddy within the n-ary SHJ operator, so that the ordering of
the hashtable lookups can be decided dynamically. This is
the core effect of SteMs —to give the eddy access to the data
structures typically stored inside join algorithms. However,
the SteM approach is not implemented as part of the SHJ,
and therefore becomes more generally applicable.

Figure 2 (iii) illustrates the translation from the unified
n-ary SHJ operator to a routing through SteMs. We use
a SteM on each source to encapsulate the hash indexes on
that source, and an eddy to route tuples between the SteMs.
Each tuple is first built into a SteM on its source, and then
immediately routed to the other SteMs. The eddy can dy-

namically adapt the join ordering by changing the way it
routes S tuples after it is built into Ste M.

In addition to different routing opportunities, the n-ary
hash join materializes different state than the traditional
binary-SHJ scheme. Note that the n-way SHJ description
above stores only singleton tuples in hash tables, whereas
the traditional pipeline of binary SHJs materializes interme-
diate result tuples from joins below the root (e.g., tuples in
R X, S). SteMs can in principle support either scheme, or
both, via a SteM to materialize each base-table or interme-
diate relation desired. This represents a tradeoff of perfor-
mance for memory space — less memory is likely to be used
if intermediate result tuples are not stored, but more probes
may need to be made since the same intermediate results
may need to be recomputed multiple times. In this paper
(asin [17, 5]), we choose not to store intermediate tuples in
SteMs. In addition to the space/time tradeoffs, a secondary
advantage of not materializing intermediate results is that
tuple eviction is simplified. Each base-table component is
stored in a single SteM, and so it can be easily evicted by
the SteM if needed. Although not the focus of this paper,
sliding-window queries and queries over unbounded data
streams require tuple eviction, and [17, 5] both use SteMs
with eviction. We are currently investigating a hybrid ap-
proach that partially materializes intermediate results to the
extent of available memory (Section 6).

The n-ary SHJ can be used for any select-project-join
query where all sources have scan access methods. In the
next section, we generalize this simple operator to use other
join algorithms as well as index access methods, and show
how the eddy can dynamically adapt the join algorithms,
access method choices, and spanning tree choices.

3. Executing Arbitrary Select-Project-Join
Querieswith SteMs

Superficially, query execution with SteMs is simple. We
only need to instantiate the AMs, SteMs, and SMs, and
let the eddy route tuples through these operators. Unfor-
tunately, arbitrary routing policies may lead to incorrect
results and non-terminating queries. Since we want the
eddy to adapt the routing dynamically, we now develop con-
straints on the routing policy that will ensure correctness.

The n-ary SHJ operator corresponds to one correct rout-
ing policy. We start by identifying the routing constraints
that are implicit in this operator, and gradually generalize
these constraints to a larger space of execution strategies.
Our presentation is intended to be intuitive and informal;
more rigorous treatment of these issues, as well as proofs of
correctness can be found in the full paper [21].

3.1. Acyclic SPJ queries with a Single Scan AM on
each Table

The n-ary SJH is captured by two rules. The first is that
the SteMs be implemented with hash indexes. The second is
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that the eddy must obey the following routing constraints:

BuildFirst: A singleton tuple from a table 7" must first be
routed to build into Ste M.

SteM BounceBack: A SteM must always bounce back
build tuples (so that they can probe the other SteMs for
matches), and never bounce back probe tuples.

Atomicity: The building of a singleton tuple into a SteM
must be atomically coupled to the probing of that tuple
into the other SteMs.

BoundedRepetition: No tuple must be routed to the same
module more than once.

The first three constraints capture the essence of the n-

ary SHJ, and BoundedRepetition ensures query termination.

Two relaxations of these constraints allow the eddy to adapt

over a much wider space of join algorithms.

Constraint Relaxation to allow other Join Algorithms

Our first relaxation removes the constraint that the SteMs
must be implemented with hash indexes. For example, the
SteM may use a linked list when it holds a small number of
tuples, and switch to a hash-based implementation when the
list size increases. This switch can be made independent of
other modules.

Our next relaxation is to remove the Atomicity con-
straint, and decouple the build and probe operations of each
tuple. This allows the eddy to interleave probes and builds
of tuples in arbitrary ways, and thereby change join algo-
rithms (in Section 3.5, we will relax this further by allow-
ing the build to be completely avoided). Unfortunately, this
build-probe decoupling can cause duplicate query results.
For example, Figure 3 shows four steps ina SHJ. If {71, s1 )
satisfies the join predicate, (r1, s1) is output at both steps 3
and 4 because the builds and probes of r; and s; tuples are
interleaved. To avoid such duplicates, we add a TimeStamp
constraint [20], to form the following set of constraints:

BuildFirst, SteM BounceBack, BoundedRepetition:
These constraints remain unchanged from above.
TimeStamp:

- Each singleton tuple ¢ is assigned a global, mono-
tonically increasing Timestamp 7'S(¢) when it builds
into a SteM. Before building, T'S(t) is defined to be
oo. For other tuples T'S({t1,-..,t,)) is defined to be
max(TS(t1),...,TS(t,)) i.e., the timestamp of its last
arriving base-table component.

- When a tuple » probes into a SteM and finds a match
s, the result (r, s) is returned to the eddy iff TS(r) >
TS(s).

The TimeStamp constraint ensures that only the last ar-
riving base-table component of a result tuple will gener-
ate that tuple, by probing into other SteMs to join with
previously-arrived components.

Simulating and Hybridizing Non-Pipelined Join Algo-
rithms

These relaxed constraints allow the eddy to simulate several
join algorithms besides the SHJ. Consider a two table join
of R and S. The following sequence of steps can simulate
many non-pipelining join algorithms:
1. Route all R tuples to build into Ste M g
2. Route all S tuples to build into SteM g
3. Route all S tuples to probe into Ste Mg
4. Route all R tuples to probe into Ste Mg

The SteM implementation decides exactly which join
algorithm will be simulated. E.g., the following “asyn-
chronous” hash index implementation simulates a Grace
Hash Join [7]. While build tuples are routed to SteMg
and SteMg, the SteMs create hash partitions on disk. But
instead of bouncing back these build tuples immediately,
they do so asynchronously, clustered by the hash partition.
Therefore in Step 3, when the bounced-back S tuples probe
SteMpg, SteMg gets very good 1/0 locality. Because of the
TimeStamp constraint, Step 4 does not produce any results.
It can be completely avoided by maintaining in each SteM
the minimum timestamp of all tuples the SteM contains —
the eddy need only route to a SteM the probe tuples with
timestamp greater than this minimum timestamp.



Figure 3. Duplicates arise because of decoupling build
and probe of r1

It is unusual to describe Grace Hash Join in terms of a
routing policy. But the advantage is that the eddy can now
dynamically hybridize between SHJ and Grace Hash Join,
by changing its routing as follows. Rather than do all of
Steps 1 and 2 before Steps 3 and 4, the eddy can dynami-
cally decide to interleave them. Specifically, when a tuple r
is bounced back after building into SteM g, the eddy may
choose to immediately probe r into SteMg. This choice is
based on the level of interactivity desired. For instance, the
eddy can start with frequent probes to give interactive re-
sponses early on, and later degenerate to occasional probes
in order to reduce completion time (with infrequent probes,
more probes for the same partition are clustered together, so
I/0 cost is lesser). The frequent probe phase simulates an
SHJ, and the occasional probe phase is similar to Grace.

An exactly analogous implementation of SteMs with
tournament trees that spill sorted runs to disk will simulate
a Sort-Merge join. The Hybrid-Hash Join [6] is simulated
if the SteMs maintain a full in-memaory hash table on some
of the partitions and bounce back build tuples for these par-
titions ahead of others. The eddy can then route S tuples
from these in-memory partitions to probe into Ste M g even
before all S tuples have been built.

Note that one part of the join logic — choosing whether
the indexes are hash indexes or tournament trees, and the
spilling policies — is captured in the SteMs implementation.
It is up to the SteM implementation to internally adapt this
if needed. But the remaining part, i.e., the interleaving of
builds and probes, is captured in the routing policy, and can
be dynamically adapted by the eddy.

3.2. Competitive AMs

We now expand our class of queries to include those
over tables with more than one AM. Such alternate AMs are
very common for Web sources in Telegraph FFF. Different
websites often provide the same data, and a single website
may support multiple AMs corresponding to different sets
of fields that can be chosen as the lookup key. We address
tables with multiple scan AMs in this section, and discuss
index AMs in the next section.
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Figure 4. R M S query with index AMs on S

Traditional database systems typically pick one AM per
data source at optimization time. We want to be able to run
multiple AMs on a single source in competition with one
another, and let the eddy dynamically choose one AM, or
switch between AMs. For example, if a particular AM stalls
because the underlying source is delayed, the eddy should
be able to use the alternate AMs. In our architecture, this is
quite straightforward to do since all the access methods are
exposed to the eddy. The main problem turns out to be du-
plicates; the same tuple can be generated by different AMs.
However because of the BuildFirst constraint, such dupli-
cates can be easily removed when they build into the SteM
on the source itself. We only need a simple enhancement to
the SteM BounceBack constraint:

SteM BounceBack: A SteMs must bounce back a build
tuple s unless it is a duplicate of another s’ that is already
in SteMs.

Identifying and handling duplicates is not easy, espe-
cially with AMs over different, possibly inconsistent, Web
sources. We currently adopt a set semantics, where a SteM
removes any build tuple that is identical to another tuple al-
ready present in the SteM.

3.3. Index AMs

When a data source has an index AM, we encounter an-
other problem. Figure 4 shows the execution of a simple
two-table join query in this class. Recall that our indexes
are allowed to return matches asynchronously. A tuple r
from R is first built in Ste M g, and then probed into Ste Mg
to see if matches for r have been already cached there. But
unless all matches are already cached, » must be bounced-
back by SteMg, so that it can probe into one of the AMs
on S. The difference from the previous section is that there
is no scan AM on S, so r must probe into an index AM to
seed the generation of its matches.

Subsequently, the index AMs on S will return matches
for r, say s; and ss. These matches will be first built into
SteMg and then probed into SteMg. It is only during this
probe that s; and s, will join with » (and possibly with other



R tuples as well). Thus SteMg’s role is as a rendezvous
buffer [8] to hold pending probe tuples until matches arrive.

Since s; and s, are built into SteMg, subsequent R tu-
ples with the same bind column values as » will find in-
dex matches in SteMg itself. So SteMs will not bounce
back these R tuples (SteMg verifies that it has all relevant
matches by checking its EOT tuples). Thus SteMg’s role is
that of a cache on index lookups into S. In fact, when there
are multiple AMs on a source, they all cooperate in building
the same cache, and the work of probing alternate AMs is
not wasted. This has the effect of reducing the overall cost
of competition.

When a data source has both scan and index AMs, the
tuple routing determines whether an index join is performed
or a hash join is performed. We will see an experiment in
Section 4.3 where the eddy dynamically adapts its routing
to switch between the two during query execution.

To summarize, the enhanced SteM BounceBack constraint
is as follows:
SteM BounceBack:
e A SteMg must bounce back a build tuple s unless it is
a duplicate of another s’ that was previously in Ste M.
e A SteMg must bounce back a probe tuple r unless S
has a scan AM or Ste Mg already has all matches for r.

3.4. Cyclic Queries

Cyclicity in the query join graph complicates matters
still further. Traditionally, the plan chosen by the query op-
timizer contains join modules only over a spanning tree of
the query join graph. This spanning tree is determined be-
fore query execution, even for prior adaptive query process-
ing schemes like the initial Eddy paper [2]. Static spanning
tree choices hurt in two ways:

e The spanning tree choice is typically made based on se-
lectivities that are hard to estimate for Web sources.This
can lead to arbitrarily sub-optimal execution strategies.

e A static spanning tree choice can also constrain the gen-
eration of partial query results. Consider a three way join
of R, S, T where there are join predicates between each
pair of tables. If we choose R X S X T as the spanning
tree and source S stalls during query execution, the entire
query blocks. If the spanning tree could be changed dy-
namically, RT tuples could be generated. These partial
results with missing values for S columns could be very
valuable in interactive querying environments [22].

The problem with not fixing a spanning tree a priori is
that duplicates can arise even after timestamping. Consider
the following sequence of events in the above 3-way join
query: (1) a tuple ¢ probes into SteMg to find a match
(s, t), (2) (s, t) probes into Ste Mg to find a match (r, s, t),
(3) SteMg bounces back ¢ as per the SteM BounceBack
constraint, (4) ¢ probes into Ste Mg to produce {r, t) which

probes into SteMg to produce (r, s, t) again.*

To avoid such duplicates, we must ensure that previously
bounced-back tuples (like t) cannot probe other SteMs.
ProbeCompletion Constraint: A tuple ¢ that has been
bounced back after probing into a SteM g must not probe
into any other SteM afterwards. The routing policy must
however maintain ¢ in the dataflow, routing it to other mod-
ules, until it has been probed into an AM on S.

Definition 3 (Prior Probers, Probe Completion Tables)
Tuples like ¢ that have been bounced back after probing into
SteMs are called prior probers. The corresponding table S
is called the probe completion table of ¢, and the AMs on S
are called the probe completion AMs of ¢. The identity of
the probe completion table is marked in the TupleState of .

3.5. Relaxing the BuildFirst Constraint

The constraints developed so far guarantee that all select-
project-join queries will be executed correctly. But one of
these constraints, the BuildFirst constraint, is particularly
restrictive and could result in highly inefficient execution
in situations where one of the input tables is much larger
than the others. Suppose that the R table was much larger
than both S and T" tables in the example of Figure 2(iii). In
that case, it might be better to build SteMs on the S and T’
tuples and probe the R tuples directly into these two SteMs,
without building into Ste M g. This is equivalent to building
a temporary index on only one side of the join.

We can enable such optimizations by allowing the eddy
to not build a SteM on a table R as long as there is only
one access method on R and that access method is scan. If
there multiple access methods on R or if there is an index
AM on R, the SteM is required to avoid duplicate results.

Now if an R tuple is bounced back from a SteMsg, it
means that all S matches for this R tuple could not be
found at that time. So this R tuple needs to routed back
to SteMg to find the remaining matches. So we relax the
BoundedRepetition constraint to allow the eddy to route a
given tuple repeatedly to the same module. To ensure that
these repeated probes do not produce duplicates, we as-
sign every R tuple a LastMatchTimeStamp. This is initially
set to 0. Every time the R tuple is routed to SteMg, the
LastM atchTimeStampis updated to the maximum of the
timestamps of all tuples in Ste M.

The constraints we have developed so far are summa-
rized in Table 2. Notice that the SteM BounceBack and
Timestamp rules are implemented internally to the AMs
and SteMs, and the routing policy implementor need not
be aware of them at all.

Theorem 1 (Duplicate Avoidance) If the eddy follows a
routing policy that satisfies the constraints of Table 2, dupli-

“Note that this only happens if there is no scan AM on S, because
otherwise Ste M g does not bounce back the ¢ tuples sent toiit (Section 3.3).



Constraintsto be enforced by Routing Policy Implementor

BoundedRepetition | - No tuple can be routed to a given module more than a finite number of times.

BuildFirst

- A singleton tuple from a table T must first be built into Ste My iff
T has multiple AMs or, T has an index AM

ProbeCompletion

completion AMs.

- A prior prober ¢t must not be routed to any SteM other than that on its probe completion table.
- The eddy can remove a prior prober ¢ from the dataflow only after ¢ has been probed into one of ¢’s probe

Constraints enforced within SteM and AM implementation

SteM BounceBack | - A SteMs must bounce back a build tuple s unless it is a duplicate of another tuple s’ that is already in Ste Ms.
- A SteMs must bounce back a probe tuple » unless

Ste M already contains all matches for r, or

S has a scan AM, and all base-tuple components of » have been cached in other SteMs

TimeStamp

TS(s) > LastMatchT S(r).

- When a tuple r probes into a SteM and finds a match s, the result (r, s) is returned to the eddy iff 7S(r) >

Table 2. Routing constraints that ensure correct query execution

cate versions of a tuple will not arise in the dataflow, except
for singleton tuples that have not yet been built into SteMs.

Theorem 2 (Correctness) If the eddy follows a routing pol-
icy that satisfies the constraints of Table 2, it will not output
any tuple that is not in the query result, and will output all
query result tuples in a finite number of routing steps.

Proofs of these correctness theorems can be found in the full
paper [21].

4. Experimental Results

We now illustrate the kinds of adaptation that SteMs en-
able, through an experimental study. Our focus is on the
online metric of maximizing the rate at which result tuples
are generated, though some of the experiments also demon-
strate the effectiveness of our system for the traditional met-
ric of completion time. All our experiments are based on an
implementation of SteMs in Telegraph [26], and were run
on a lightly loaded machine with dual 666MHz Pentium-1il
processors and 768MB RAM, running Redhat Linux 6.0.
The salient points of our experimental study are:

1. Evenasimple join algorithm like the index join encapsu-
lates multiple physical operations, and this causes a head-
of-line blocking problem. This problem can be avoided by
breaking the join module into SteMs.

2. SteMs allow the eddy to efficiently learn between com-
petitive access methods, while doing almost no redundant
work.

3. SteMs allow the eddy to dynamically choose the join
spanning tree for cyclic queries.

4. SteMs allow the eddy to dynamically switch between an
index join algorithm and a symmetric hash join algorithm
during query execution.

5. With SteMs, the eddy can adaptively choose the way it
reorders tuples in interactive environments.

We use synthetic data sources for our experiments so
that the source properties can be easily controlled. The data

sources that we use are as shown in Table 3.

Due to space constraints, we only report two experiments
here (demonstrating points 1 and 4 above). Please see the
full paper [21] for the complete set of experiments.

4.1. Eddy routing policy

Our implementation uses a routing policy designed to
maximize the value of the partial results output to the
user [22]. The details of this policy are not needed to un-
derstand the advantages of SteMs in our experiments. We
briefly summarize it here for completeness.

When a tuple ¢ with a TupleState 7" is routed to a module
M, the benefit B(t, M) is the value of the partial result that
will be output by M. This benefit depends on the expected
number of matches that M will return and the user’s pref-
erences for the matches®. M also takes an expected time
C(t, M) to process ¢t. To maximize the value to the user
over time, the eddy continually routes so as to maximize
B(t,M)/C(t, M). Clearly it is not feasible to do this op-
timization across all tuples. As discussed in [22], though,
this ratio depends largely on M and the tuplestate T' of t.
So we only optimize at this granularity. To this policy we
add the constraints of Section 3, specialized as follows:
BuildFirst: Singleton tuples are always first built into their

corresponding SteMs, regardless of whether they come
from sources with multiple AMs. This simplifies our im-
plementation, and is inexpensive because Web sources
typically have data sizes much smaller than memory sizes.
SteM BounceBack: In addition to the bounce back cir-
cumstances of Table 2, we set SteMs on tables with in-
dex AMs to also bounce back any probe tuple that sat-
isfies a predicate prioritized by the user. Notice that in
the case where a SteMg has both an index AM and a
scan AM, this bounce back is redundant. But, if the pri-

5Even atuple that does not contain the key columns of the result, and
as such can not be output to the user, is still given a value because it can
subsequently generate partia results by joining with other tuples.



Source | Schema Description

R {key: integer, a: integer}

S {x: integer, y:integer}

w {key:integer}

R is a table with 1000 tuples, and has a scan access method. key is its primary key, and a is a
field with 250 distinct values, randomly assigned.

S has two keys, x and y, and has asynchronous index access methods on both of them. All S
tuples have identical values of x and y.

W has an asynchronous index access method on its primary key key, and a scan access method.

Table 3. Data sources used in our experiments. Index lookups are implemented as sleeps of identical duration.

oritized probes are bounced back, they can subsequently
probe into AMs. This speeds up the entry of matches for
these tuples into the dataflow and thereby the output of
prioritized results to the user.

4.2. Index join improvement through SteMs

We start with an experiment that shows the effect of de-
coupling physical operations within a join. We use the index
join algorithm to show this.

Consider the following query that joins tables R and S.
Q1: SELECT * FROM R, S WHERE R.a = S.X

The join is an equi-join between S.x, a key column of S, and
R.a. Table R has a total of 1000 tuples, with 250 distinct
values of R.a. In a traditional query processor, this query
will be executed using an index join module as shown in
the Figure 5. In contrast, our system will use a SteM on R
and S, a scan AM on R, and an index AM on S (Figure 6).
SteM g holds the pending R probe tuples while AM g pro-
cesses the probes, and Ste Mg caches probe results.

Figure 7(i) plots the number of RS results output over
time in the two schemes. The curve for the plan using the
index join is parabolic, as expected. The cost of probing into
the index join decreases continually over time as the cache
size, and hence the probability of cache hits, increases. In
contrast, the plan using the SteMs takes about the same time
overall, but is almost linear in shape. It rises comparatively
faster in the initial stages of the processing and as such, does
better on our online processing metric.

To understand this behavior, we plot the number of
probes into the remote source S, for the two approaches
(Figure 7(ii)). Notice that these two curves are almost iden-
tical. Thus the lookup caches on S build up at the same rate
in both cases. The difference is that with SteMs, the probes
into the caches happen much more quickly.

In the first approach (without SteMs), every tuple com-
ing out of the scan on R does not immediately probe into the
index join on S. Since all queues between the eddy and the
modules are finite in size, these probes can only happen at
the speed of the index join, which in turn is bottlenecked by
the speed at which the S index can handle R probes. This
is unfortunate, because many of the R tuples may not need
to probe into the S index at all — they may find matches in
the S cache itself. With SteMs, this “head-of-line block-
ing” does not happen, because probes into the cache and
the index have separate queues.
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This experiment illustrates our point that even simple
join operators encapsulate multiple physical operations. In
this example, the index join comprises two operations,
cache lookup and index lookup, that have different perfor-
mance characteristics. These performance characteristics
could also vary with time; e.g., cache lookups may become
expensive if the cache runs out of memory and starts pag-
ing to disk. Therefore it is important to avoid encapsulating
such operations within the join modules.

4.3. Index/Hash join hybridization based on costs

Our next experiment studies the ability of our system
to choose and hybridize among alternative join algorithms
based on their costs. The query that we use for this exper-
iment joins R with the table W that has both an index and
scan access method.

Q4: SELECT * FROM R, W WHERE R.key = W .key
To ensure that our results are not affected by cache effects,
we use an equijoin between the key columns of R and .
This means that there are two natural ways of joining R
and W: symmetric hash join using scans on R and W, and
index join utilizing the index on W. A third way is for the
eddy to use both access methods on W, with SteMs on R
and W, and choose a hybrid join algorithm.

Figure 8 (i) plots the number of result tuples generated
over time in all these three approaches, during the first few
seconds of the query execution. The index join initially out-
performs the hash join because the W index outputs the ex-
act matching W tuple for each R probe tuple, whereas the
W scan outputs all W tuples in an arbitrary order — only
some of the R probes find matches in the tuples scanned
from W. The symmetric hash join however catches up with
the index join quickly, as the R and W hash tables are filled.
Figure 8 (ii) plots the same graph over entire query execu-
tion period. Overall, the hash join beats the index join hand-
ily because the scan on W is a faster access method than the
index on W,

As we can see, the approach using SteMs tracks the best
of these two approaches. In early stages, it performs much
like the index join by routing most of the R tuples to the W/
index, whereas in the later stages, it routes most of the R
tuples to the SteMy,. The overall completion time of the
hybrid approach is slightly more than that of the hash join,

6Both the hash join curve and the hybrid curve are quadratic until about
59 sec because the R and W tuples are both being scanned in. At this point
the scan from R stops, so the curves becomes linear, with a reduced slope.
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Figure 6. Executing query Q1 with
SteMs

because the eddy keeps sending a small fraction of the R
tuples to probe into the W index throughout the processing
to explore alternative approaches for executing the query.

5 Reated Work

SteMs were developed as a part of the Telegraph
project [26], and build on the eddy tuple routing operator
of [2]. Two recent sub-projects CACQ [17] and PSOUP [5]
use SteMs to share state across queries for continuous query
processing. The work presented here largely pre-dates
CACQ and PSOUP, and is based on one of the authors’
dissertation [20]. While [17] and [5] describe mainly the
state-sharing aspect of SteMs, this paper explains a number
of fundamental issues missing from those papers, including
flexible routing constraints, work sharing, adaptive access
method and join algorithm selection, adaptive spanning tree
selection, handling of asynchronous data sources and dupli-
cate elimination.

There has long been interest in adapting query optimiza-
tion decisions on the fly. Due to space constraints, we only
discuss the most relevant work here — for detailed surveys,
please see [12] or the full paper [21]. Early work on para-

Figure 7. Number of (i) tuples out-
put over time, (i) probes into the S
index, by the SteMs and Index Join
approaches for query Q1
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Figure 8. Number of tuples output
for Q4 using index join, hash join,
and the hybrid approach during: (i)
first 30s, and (ii) first 200s

metric query optimization allows query plans to be chosen
at run time [9]. Recently, [15] and [14] reoptimize queries at
every block in the query plan, and Query Scrambling [29]
reoptimizes when a source is delayed. DEC RDB ran al-
ternative access methods simultaneously for a while before
picking one [1]; aside from not being able to change the
decision once it is made, this also suffers from cache frag-
mentation problems as we describe in [21].

At a per-operator level, the XJoin [27] dynamically
changes its execution strategy to work with previously
scanned tuples during source delays. There has also been
some work on making hash join and sort operators adaptive
to memory fluctuations [19, 32].

We depart from this prior work in two important aspects.
First, we adapt execution at a fine per-tuple granularity. Sec-
ond, while prior work focuses primarily on adapting join
orders, our architecture allows much greater flexibility in
adaptation, including choice of access paths to data sources,
join algorithms, join spanning trees, and join orders.

6 Conclusionsand Future Work

Join operators are an important part of traditional query
processors. They typically encapsulate complex algorithms



that maintain much state about the tables involved in the
join. The routing of a tuple to a join often results in a chain
of physical operations within the join operator.

This paper shows a way of executing queries by routing
tuples not through join operators but instead through State
Modules that encapsulate data structures for holding inter-
mediate query processing state. With this mechanism, most
of the decisions involved in query optimization, including
the ordering of joins and selections, the choice of access
methods on the tables, the choice of join algorithms, and
the choice of join spanning tree are determined by the rout-
ing of tuples, and are thus made dynamically by the eddy.
We have designed a set of restrictions on the eddy’s rout-
ing policy that ensure correct query execution. Our experi-
ments demonstrate that the SteMs mechanism allows pow-
erful adaptation by the eddy in various situations.

We plan to extend this work in several directions. Anim-
portant restriction of this paper is that it does not consider
SteMs that span multiple tables. Though this reduces mem-
ory overheads, it can be inefficient in more traditional query
execution scenarios as it leads to repeated probes that can
be avoided by storing intermediate results. We are currently
investigating extensions of our architecture that allow stor-
ing intermediate results, while retaining the adaptivity that
SteMs provide.

Since SteMs encapsulate the data structures, and com-
municate directly with the eddy, they enable the eddy to
observe and control memory resource utilization across all
modules in the query. The eddy can make memory alloca-
tion decisions in a globally optimal manner, possibly based
on overall memory availability as well as relative frequency
of probes into each SteM. This can be extended to let the
eddy control spilling of tuples to the disk as well. It will
be interesting to see if such adaptive control of spilling
can help the eddy simulate join algorithms such as the
XJoin [27] algorithm that dynamically adapt disk spilling.
In presence of multi-table SteMs, this opens up a new set
of optimization opportunities, where the eddy can dynam-
ically decide whether to materialize intermediate results or
not based on memory availability.

Another important research direction is to formally study
the space of join processing strategies opened up by the de-
coupling of state managementand routing logic. We believe
this will lead to better adaptive routing policies for learn-
ing many kinds of hybrid join strategies, which may be ap-
propriate in particular circumstances but are not common
enough to justify programming new join operators.
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