
Approximate Data Collection in Sensor Networks using
Probabilistic Models

David Chu† Amol Deshpande§ Joseph M. Hellerstein†‡ Wei Hong‡

†UC Berkeley §University of Maryland ‡ Intel Research Berkeley

Abstract
Wireless sensor networks are proving to be use-
ful in a variety of settings. A core challenge in
these networks is to minimize energy consumption.
Prior database research has proposed to achieve this
by pushing data-reducing operators like aggregation
and selection down into the network. This approach
has proven unpopular with early adopters of sensor
network technology, who typically want to extract
complete “dumps” of the sensor readings, i.e., to
run “SELECT *” queries. Unfortunately, because
these queries do no data reduction, they consume
significant energy in current sensornet query pro-
cessors.
In this paper we attack the “SELECT *” problem
for sensor networks. We propose a robust approx-
imate technique called Ken that uses replicated dy-
namic probabilistic models to minimize communi-
cation from sensor nodes to the network’s PC base
station. In addition to data collection, we show that
Ken is well suited to anomaly- and event-detection
applications.
A key challenge in this work is to intelligently ex-
ploit spatial correlations across sensor nodes with-
out imposing undue sensor-to-sensor communica-
tion burdens to maintain the models. Using traces
from two real-world sensor network deployments,
we demonstrate that relatively simple models can
provide significant communication (and hence en-
ergy) savings without undue sacrifice in result qual-
ity or frequency. Choosing optimally among even
our simple models is NP-hard, but our experiments
show that a greedy heuristic performs nearly as well
as an exhaustive algorithm.

1 Introduction
Sensor networks open up new opportunities to observe and
interact with the physical world around us. They enable us
to gather data that was until now difficult, expensive, or even
impossible to collect. The Sonoma Redwoods sensor net-
work project is a representative deployment [28]. Consisting
of 72 Mica2dot motes [5] placed throughout two giant red-
wood trees in a grove in Sonoma County, CA, the network

enabled biologists at UC Berkeley to access detailed readings
of temperature, humidity, and Photo-synthetically Active Ra-
diation (PAR) from many different positions under the large
redwood canopies. This data was never before available to
the plant biology community. With this information, new
dynamic tree respiration and growth models are being for-
mulated, with practical implications for both environmental
management and timber cultivation.

While sensor networks can provide revolutionary new
data sources for a variety of applications, it is challenging to
extract this data from a sensor network because of the limited
battery resources on each sensor device. In practice, sensor
network deployments make sense only if they can run unat-
tended for many months or even years. Scientists do not want
to climb redwood trees to replace batteries very often, and
even conveniently placed sensors like home smoke detectors
need to have a long lifetime to achieve practical viability.
Hence any sensor network technology has to be stingy in
its energy consumption. Among the various tasks performed
by a wireless sensor node, radio transmissions are by far the
most expensive in terms of energy consumption. On a typ-
ical sensor node, the Telos mote, message transmission and
receipt expend an order of magnitude more energy than CPU
computations over an equivalent length of time [21]. Poor en-
ergy consumption can be dramatic in practice: for example, a
software bug in the original Sonoma Redwoods deployment
caused a third of the nodes to constantly keep their radios
active; they exhausted their batteries in only a few days.

One way to significantly reduce communication cost in
sensor networks is to perform in-network aggregation (e.g.,
AVG and MIN) [19, 11] or data reduction via wavelets or dis-
tributed regression [22, 12]. However, these techniques do
not provide the fine data granularity desired by many sensor
network users. For example, the biologists in the Sonoma
Redwoods project would like to receive as much detailed
data from the sensor network as possible, so that they can
try various physical models and test various hypotheses over
the data. Even though the Sonoma Redwoods deployment
was based on TinyDB [20], a sensor network query proces-
sor capable of in-network aggregation and filtering, the bi-
ologists were only willing to issue the “SELECT * FREQ
f” query, where the modifier FREQ f indicates the query
should repeat at the given frequency. The notion that the
network is condensing away detail is unattractive to them in

their exploratory research, so they favor transmitting more
detailed data, even at the expense of a lowered frequency.
Based on our first-hand experiences with early sensor net-
work deployments, this line of reasoning appears to be quite
common.

In this paper we address the problem of providing timely,
efficient support for approximate, bounded-loss data collec-
tion in sensor networks – i.e., for “SELECT * FREQ f
WITHIN ±ε” queries. For many sensornet applications, the
granularity provided by such approximate data collection is
more than sufficient, especially considering that the sensing
devices themselves are rarely 100% accurate in measuring
the underlying physical properties. We exploit the fact that
physical environments frequently exhibit predictable stable
states and strong attribute correlations that can assist us in
inferring the state of a sensor from its past and its surround-
ings. For example, outdoor temperatures typically follow
consistent diurnal and seasonal patterns, and at any moment
in time, are unlikely to vary greatly within a local region.
1.1 Proposed Approach

Our approach, Ken1, is based on a form of compression us-
ing replicated dynamic probabilistic models. The basic idea
is to maintain a pair of dynamic probabilistic models over
the sensor network attributes, with one copy distributed in
the sensor network and the other at a PC base station. At
every time instance (i.e., with a frequency f), the base sta-
tion simply computes the expected values of the sensornet
attributes according to the model2 and uses it as the answer to
the “SELECT * FREQ f” query. This requires no commu-
nication. The sensor nodes always possess the ground truth,
and whenever they sense anomalous data – i.e., data that was
not predicted by the model within the required error bound –
they proactively route the data back toward the base station.
As data is routed toward the base station, spatial correlations
among the reported data are used to further lower communi-
cation. Using these techniques, all user-visible readings are
guaranteed to be within a fixed error bound from the mea-
sured readings, even though very few readings are communi-
cated to the base station. Figure 1 summarizes this idea.

An attractive feature of the Ken architecture is that it nat-
urally accommodates applications that are based on event
reporting or anomaly detection; these include fire-alert-and-
response [16] and vehicle tracking [26]. In these scenarios,
the sample rate is typically quite high, but the communica-
tion rate should remain quite low under most circumstances.
The model reflects the expected “normal” state of the envi-
ronment being monitored; anomalies result in reports being
pushed to the base station for urgent handling by infrastruc-
ture logic. In addition to naturally supporting these applica-
tions, Ken enhances them with additional functionality: the
ability to support interactive query results with well-bounded
approximate answers. In essence, approximate data collec-
tion and event detection become isomorphic.

1ken 1: range of perception, understanding, or knowledge
2: name of a tiny model

2In reality, this computation for time t can only be done at time t + ∆
because of the latency of communicating the data from the sensor devices to
the base station.

sink (base station)source (sensor network)

model update information

Dynamic
Probabilistic

model
p(X) kept in

sync

Dynamic
Probabilistic

model
p(X)

Figure 1: Ken Overview: A pair of dynamic probabilistic
models, one at the base station, and one distributed in the sen-
sor network, are maintained over X, the sensornet attributes.
Information is communicated from the sensornet to the base
station only if the predictions are not within bounds.

A key technical challenge in our work is the degree to
which we can exploit spatial correlations among distributed
sensor nodes. A rich model of the spatial correlations can
significantly improve compression of the data communicated
to the base station. On the other hand, sophisticated mod-
els may require significant communication among the sen-
sor nodes themselves for coordination and in-network model
maintenance. We explore tradeoffs in this regard, consider-
ing in particular how the distributed model maintenance is
mapped onto the communication topology of a sensor net-
work. We focus on a natural class of distributed models
based on spatial partitions of the network. Even within this
class of models, choosing the optimum partitioning is NP-
hard. We present both a dynamic programming algorithm
and a greedy heuristic for partitioning, and demonstrate ex-
perimentally that the heuristic performs effectively on real-
world network traces.

1.2 Overview of the Paper

In the remainder of the paper we present the design and eval-
uation of Ken, with the following contributions:

• We present the Ken architecture, which uses repli-
cated dynamic probabilistic models to provide cheap
SELECT * queries with bounded-loss guarantees (Sec-
tion 3). This subsumes prior work as discussed in Sec-
tion 2 [23, 15, 14] by taking advantage of predictions
across both time and space.

• We investigate temporal and spatial correlations and
their interplay with the network topology, and formu-
late the model selection problem for one natural family
of models, Disjoint Cliques. After showing this model
selection problem to be NP-hard, we present both ex-
haustive and heuristic approaches (Section 4).

• We evaluate Ken’s performance on several real-world
sensor network datasets and find substantial support for
its use relative to previous schemes (Section 5).

• Finally, we discuss a number of extensions to the Ken
approach including richer models, probabilistic error
bounds, and mechanisms for handling network dynam-
ics (Section 6).

2 Related Work
There is a large body of work on data collection from sensor
networks. Directed diffusion [13] is a general purpose data
collection mechanism that uses a data-centric approach to
choose how to disseminate queries and gather data. Cougar
and TinyDB [33, 20] provide declarative interfaces to acquir-
ing data from sensor networks. None of this work, however,
considers the problem of efficient, approximate data collec-
tion. More recently, the BBQ system [8] proposes using
probabilistic modeling techniques to optimize data acquisi-
tion for sensor network queries. BBQ’s approach is “pull-
based”, using correlation models to satisfy queries with a
minimum of data acquisition. By contrast, Ken is “push-
based”, acquiring data at a steady rate and proactively report-
ing anomalies to the base station. A key weakness of BBQ’s
pull-based approach is that it is not well-suited for anomaly-
or event-detection, whereas Ken is designed to capture any
such variations. These two techniques are geared toward dif-
ferent application domains, and are largely complementary.
We are currently exploring ways to combine them in one uni-
fied framework.

There has been much work in database literature on re-
mote updates of continuously changing data values that is
closely related to the problem we study here. Approximate
data replication [23] is a query-driven replica maintenance
scheme where users specify custom precision requirements
along with their queries. These requirements are then used
to either pro-actively “pull” just enough data from the re-
mote sources, or to install filters at the remote sources so
that they “push” the minimal amount of data to satisfy the
precision requirements. Similarly, Jain et al [14] propose re-
ducing the amount of data communicated in distributed data
streams enviroment by using Kalman Filters. We will revisit
these two techniques in the next section. Several works re-
cast approximate caching under a narrow range of models.
Lazaridis and Mehrotra [15] employ piecewise constant ap-
proximation schemes that provide data compression and pre-
diction. Piecewise constant approximation, like approximate
caching, offers a narrow range of predictive capabilities.

Location management in moving objects databases is an-
other closely related area of research [31]. Updating the
server every time a moving object changes its location is pro-
hibitively expensive, and in most cases, not very useful. In-
stead [31], among others, suggest keeping track of trajecto-
ries of moving objects, and only sending updates to the server
if the moving object changes the trajectory, or doesn’t behave
according to the trajectory. In essence, this work (along with
the work mentioned above) utilizes the temporal correlations
in the data. In Ken, we present an approach that can utilize
both the temporal and the spatial correlations (that are typi-
cally stronger in sensor networks) in the data; we expect our
techniques to be useful in application domains such as loca-
tion management as well.

Storing the interval-valued data that comes out of an ap-
proximation scheme such as ours is also a well-studied prob-
lem in database literature (e.g., Cheng et al [2]). This work is
complementary to ours as our focus is on efficiently gather-
ing such interval-valued information from sensor networks.

Modeling patterns and correlations in the data, and us-
ing them to reduce data transmission rates has been a cen-
tral theme in the data compression literature [25]. The best-
known (though not necessarily the most practical) lossless
text compression algorithms of this sort (e.g., Prediction
by Partial Matching (PPM) [3]) combine arithmetic encod-
ing [30] with Markov Models to achieve very high compres-
sion rates. Even though the approach we take is abstractly
similar, the distributed nature of data acquisition in the envi-
ronments we consider raises interesting issues not considered
in this previous work.

Distributed source coding is another related area of work,
addressing the problem of losslessly compressing correlated
sources that are not co-located and cannot communicate with
each other to minimize their joint description costs. Slepian
and Wolf [27, 32], in a celebrated result, show that it is still
possible to compress the data at a combined rate equal to the
joint entropy of the correlated sources. This result is however
non-constructive, and constructive techniques are known for
a few, very specific distributions. Moreover, these techniques
typically require precise and perfect knowledge of the corre-
lations between the attributes, and will return wrong answers
(without warning) if this condition is not satisfied. In our
work, the bounded-loss approximation guarantees are main-
tained irrespective of whether the correlation model is known
accurately.

Data summarization schemes, used heavily for selectiv-
ity estimation and approximate query answering in database
systems [24, 29, 6] are unable to provide guarantees on indi-
vidual samples (with the exception of recent work on proba-
bilistic wavelets [10]). Also, they encounter nontrivial over-
heads when mapped onto a distributed setting. For example,
although wavelets [29] can be used for compactly summariz-
ing data distributions, it is unclear how they might efficiently
map onto distributed nodes [12].

3 Ken Architecture
We will begin by formalizing the problem that Ken attempts
to solve, and discuss how replicated dynamic probabilistic
models can be used to solve this problem. We then provide
a detailed description of the Ken architecture, and formulate
the model selection problem.

Problem Definition: We are given (a) a sensor network (also
called source) that continuously monitors a set of distributed
attributes X, and generates a data value xt at every time in-
stance t3, and (b) a PC base station (sink) that requires an
ε-loss approximation, X̂t, of the true data values at all times,
i.e., ∀i, t, |xt

i − X̂t
i | < ε. Design a data collection protocol

3The time instances at which data is acquired depends on the application-
specified frequency of data collection.

source data producer; sensor network
sink data consumer; base station (also node 0)
Xi An attribute being sensed by the network.

In many cases, we will use Xi to also de-
note the sensor node that is sensing that
attribute.

Xt
i Random variable denoting the attribute

Xi at time t

X̂t
i Expected value of the variable Xt

i accord-
ing to the current state of model

xt
i Observed value of Xt

i

X Set of all attributes
X̂t,xt Vector equivalents of the above terms,

e.g., xt = 〈xt
1, . . . , x

t
n〉.

ε The accuracy bound. At all times, Ken
satisfies: ∀t|xt

i − X̂t
i | ≤ ε

p(Xt
1, . . . , X

t
n) pdf over the attributes at time t

N Set of all sensor nodes
ot observations communicated to the sink

(and incorporated in the model through
the conditioning process) at time t

comm : N ×
N → R

pair-wise communication costs

Table 1: Terminology and notation used in the paper

that optimally achieves this by utilizing known temporal and
spatial correlations in the sensornet attributes.

3.1 Replicated Dynamic Probabilistic Models

The basic premise behind Ken is simple: both source and sink
maintain a dynamic probabilistic model of how data evolves,
and these models are always kept in sync (Figure 1). The
sink uses the data value(s) predicted by the model as the ap-
proximation to the true data, and the source, who knows the
predicted value by virtue of running a copy of the model,
makes sure that the predicted data values satisfy the required
bounded-loss approximation guarantees, by communicating
some information to the consumer as required.
Example 3.1 One very simple prediction model assumes
that the data value remains constant over time:

X̂t+1 = X̂t (i .e., X̂t+1
i = X̂t

i , ∀i)

In that case, the predicted value according to the model is
same as the predicted value at the last time instant. The
source, by virtue of “running” a copy of the model, knows
the value that the sink uses, and sends an update to the sink
if the accuracy bound is not satisfied. Since this model is
naturally distributed, each sensor node can decide and if re-
quired, send such an update independently of the other sen-
sor nodes.

Example 3.2 Because of the strong temporal correlations
present in sensor data, a better model would be a linear pre-
diction model:

X̂i
t+1

= αiX̂i
t
+ βi

where αi and βi are constants, and X̂i
t

denotes the approxi-
mation computed at time t (Table 1 summarizes the notation
we use in this paper). In that case, the source at time t checks
whether X̂i

t+1
computed in this manner is sufficiently close

to xt+1
i it observes, and sends an update to the sink if it is not.

The best-known lossless text compression algorithms essen-
tially use generalizations of this basic idea [1]. This is also
similar to the approach taken by Jain et al [14] in applying
Kalman Filters to distributed streams.

The second model, though an improvement over the first
model, only utilizes the temporal correlations, and ignores
the spatial correlations across sensors that tend to be very
strong in many sensornet deployments. To unify treat-
ment of both kinds of correlations, we let the the prediction
model used by Ken be a dynamic probabilistic model that
can be used to compute a probability density function (pdf),
p(Xt

1, X
t
2, . . . , X

t
n), over the possible assignments of values

to the variables Xi, i = 1, . . . , n at time t. For simplicity, we
restrict our presentation to Markovian models, where given
the values of all attributes at time t, the values of attributes at
time t + 1 are independent of those for any time earlier than
t. This assumption leads to a very simple model for repre-
senting such a dynamic system consisting of:
• A probability distribution function (pdf) for the initial

state of the system, p(Xt=0
1 , . . . , Xt=0

n), and

• A transition model, p(Xt+1
1 , . . . , Xt+1

n | Xt
1, . . . , X

t
n),

that can be used to compute the pdf for time t + 1 from
the pdf at time t.

As noted before, the sink uses the expected values of the
variables according to the pdf computed at time t as the ap-
proximation to the true variable values. However, depend-
ing on the approximation errors and the specified accuracy
bounds, the source may need to communicate some infor-
mation to the sink that is incorporated in the model so that
the accuracy bounds are met. For the Markovian dynamic
models, this information takes the form of observed variables
values, Xt

i = xt
i, at time t, and the process by which this in-

formation is incorporated in the model is by conditioning.
If we denote by ot, the observations reported to the sink at
time t, the pdf at time t + 1 can be computed given all the
observations communicated to the sink till time t:

p(Xt+1
1 , . . . , Xt+1

n | o1...t) =∫
p(Xt+1

1 , . . . , Xt+1
n | Xt

1, . . . , X
t
n)

p(Xt
1, . . . , X

t
n | o1...t)dXt

1 . . . dXt
n.

Example 3.3 Figure 2 shows an example of this process for
a system with two variables, X1, and X2, where the data
evolution is modeled using a 2-dimensional linear Gaus-
sian. Figure 2 (i) denotes the model at time t, p(Xt

1, X
t
2),

with expected values X̂t
1, and X̂t

1 respectively. When tran-
sitioning to the next time instance, t + 1, both the source
and the sink use the transition model p(Xt+1

1 , Xt+1
2 |Xt

1, X
t
2)

to obtain a model p(Xt+1
1 , Xt+1

2) over the two variables at
time t + 1, with expected values X̂t+1

1 , X̂t+1
2 (Figure 2(ii)).

10

15

20

10

15

20
0

0.05

0.1

0.15

0.2

0.25

X1X2

p

10

15

20

10

15

20
0

0.05

0.1

0.15

0.2

0.25

X1X2

p

10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

X2

p

Figure 15: Ken Architecture. Figure also depicts the steps performed by the source and the sink at time t + 1.

1. Compute X̂t+1
i , i = 1, . . . , n using the model.

2. If ∃ i such that |X̂t+1
i −Xt+1

i | > ε, then:
2.1. Let info be the minimum information needed to update

the model s.t. the predictions are sufficiently accurate.
2.2 Send info to the sink .
2.3 Update model using info.

1. If received info from source , update model using info.
2. Compute X̂t+1

i using the (possibly updated) model.
3. Use X̂t+1

i as approximation to the true data at time t + 1.

X̂t
1 X̂t

2 X̂t+1
1 X̂t+1

2 Xt+1
1 Xt+1

2 Xt
1 Xt

2

Model over {Xt
1, X

t
2} with

expected values {X̂t
1, X̂

t
2}.

Transition to
time t + 1

Model over {Xt+1
1 , Xt+1

2 } with expected
values {X̂t+1

1 , X̂t+1
2 } not accurate:

|X̂t+1
1 −Xt+1

1 | > ε, |X̂t+1
2 −Xt+1

2 | > ε.

Communicate value
Xt+1

1 = x to the sink

Updated model p(Xt+1
1 , Xt+1

2 |Xt+1
1 = x)

with expected values {X̂ ′t+1

1 , X̂ ′t+1

2 } is
sufficiently accurate.

References
[1] T. Bell, I. H. Witten, and J. G. Cleary. Modeling for text compression.

ACM Comput. Surv., 21(4):557–591, 1989.
[2] X. Boyen and D. Koller. Inference for complex stochastic processes.

In UAI, 1998.
[3] R. Cheng, D. Kalashnikov, and S. Prabhakar. Evaluating probabilistic

queries over imprecise data. In SIGMOD, pages 551–562. ACM Press,
2003.

[4] A. Deshpande, C. Guestrin, S. Madden, J. Hellerstein, and W. Hong.
Model-driven data acquisition in sensor networks. In VLDB, 2004.

[5] P. Dutta, M. Grimmer, A. Arora, and D. Culler. Design of a wire-
less sensor network platform for detecting rare, random and ephemeral
events. In IPSN SPOTS, 2005.

[6] M. Garofalakis and P. Gibbons. Probabilistic wavelet synopses. In
SIGMOD, 2002.

[7] C. Guestrin, P. Bodik, T. R., P. Mark, and S. Madden. Distributed
regression: an efficient framework for modeling sensor network data.
In IPSN, 2004.

[8] M. H. Hansen and B. Yu. Model selection and the principle of mini-
mum description length. Journal of the American Statistical Associa-
tion, 96(454):746–774, 2001.

[9] J. Hellerstein and W. Wang. Optimization of in-network data reduction.
In DMSN, 2002.

[10] A. Jain, E. Chang, and Y.-F. Wang. Adaptive stream resource manage-
ment using Kalman Filters. In SIGMOD, 2004.

[11] S. Kim, R. Fonsea, and D. Culler. Reliable transfer on wireless sensor
networks. In SECON, 2004.

[12] I. Lazaridis and S. Mehrotra. Capturing sensor-generated time series
with quality guarantees. In ICDE, 2003.

[13] S. Madden. Intel lab data, 2003. http://berkeley.intel-
research.net/labdata.

[14] S. Madden, M. Franklin, J. Hellerstein, and W. Hong. The design of an
acquisitional query processor for sensor networks. In SIGMOD, 2003.

[15] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. Tag: a tiny
aggregation service for ad-hoc sensor networks. SIGOPS Oper. Syst.
Rev., 36(SI):131–146, 2002.

[16] Moteiv. Telos Revb datasheet, December 2004.
http://www.moteiv.com/pr/2004-12-09-telosb.php.

[17] S. Nath, P. B. Gibbons, S. Seshan, and Z. R. Anderson. Synopsis dif-
fusion for robust aggregation in sensor networks. In SenSys ’04: Pro-
ceedings of the 2nd international conference on Embedded networked
sensor systems, pages 250–262. ACM Press, 2004.

[18] C. Olston, B. Loo, and J. Widom. Adaptive precision setting for cached
approximate values. In SIGMOD, 2001.

[19] M. Paskin and C. Guestrin. Robust probabilistic inference in distributed
systems. In UAI, 2004.

[20] N. project. Waking up Big Brother, 2001. NEST project demo.
[21] K. Sayood. Introduction to data compression. Morgan Kaufmann Pub-

lishers Inc., 1996.
[22] C. Sharp, S. Schaffert, A. Woo, N. Sastry, C. Karlof, S. Sastry, and

D. Culler. Design and implementation of a sensor network system for
vehicle tracking and autonomous interception. In Second European
Workshop on Wireless Sensor Networks, 2005.

[23] G. Tolle. Sonoma redwoods data, 2005.
http://www.cs.berkeley.edu/ get/sonoma.

[24] A. Woo, T. Tong, and D. Culler. Taming the underlying challenges of
reliable multhop routing in sensor networks. In SENSYS, 2003.

1. Compute X̂t+1
i , i = 1, . . . , n using the model.

2. If ∃ i such that |X̂t+1
i −Xt+1

i | > ε, then:
2.1. Let info be the minimum information needed to update

the model s.t. the predictions are sufficiently accurate.
2.2 Send info to the sink .
2.3 Update model using info.

1. If received info from source , update model using info.
2. Compute X̂t+1

i using the (possibly updated) model.
3. Use X̂t+1

i as approximation to the true data at time t + 1.

X̂t
1 X̂t

2 X̂t+1
1 X̂t+1

2 Xt+1
1 Xt+1

2 Xt
1 Xt

2

Model over {Xt
1, X

t
2} with

expected values {X̂t
1, X̂

t
2}.

Transition to
time t + 1

Model over {Xt+1
1 , Xt+1

2 } with expected
values {X̂t+1

1 , X̂t+1
2 } not accurate:

|X̂t+1
1 −Xt+1

1 | > ε, |X̂t+1
2 −Xt+1

2 | > ε.

Communicate value
Xt+1

1 = x to the sink

Updated model p(Xt+1
1 , Xt+1

2 |Xt+1
1 = x)

with expected values {X̂ ′t+1

1 , X̂ ′t+1

2 } is
sufficiently accurate.

References
[1] T. Bell, I. H. Witten, and J. G. Cleary. Modeling for text compression.

ACM Comput. Surv., 21(4):557–591, 1989.
[2] X. Boyen and D. Koller. Inference for complex stochastic processes.

In UAI, 1998.
[3] R. Cheng, D. Kalashnikov, and S. Prabhakar. Evaluating probabilistic

queries over imprecise data. In SIGMOD, pages 551–562. ACM Press,
2003.

[4] A. Deshpande, C. Guestrin, S. Madden, J. Hellerstein, and W. Hong.
Model-driven data acquisition in sensor networks. In VLDB, 2004.

[5] P. Dutta, M. Grimmer, A. Arora, and D. Culler. Design of a wire-
less sensor network platform for detecting rare, random and ephemeral
events. In IPSN SPOTS, 2005.

[6] M. Garofalakis and P. Gibbons. Probabilistic wavelet synopses. In
SIGMOD, 2002.

[7] C. Guestrin, P. Bodik, T. R., P. Mark, and S. Madden. Distributed
regression: an efficient framework for modeling sensor network data.
In IPSN, 2004.

[8] M. H. Hansen and B. Yu. Model selection and the principle of mini-
mum description length. Journal of the American Statistical Associa-
tion, 96(454):746–774, 2001.

[9] J. Hellerstein and W. Wang. Optimization of in-network data reduction.
In DMSN, 2002.

[10] A. Jain, E. Chang, and Y.-F. Wang. Adaptive stream resource manage-
ment using Kalman Filters. In SIGMOD, 2004.

[11] S. Kim, R. Fonsea, and D. Culler. Reliable transfer on wireless sensor
networks. In SECON, 2004.

[12] I. Lazaridis and S. Mehrotra. Capturing sensor-generated time series
with quality guarantees. In ICDE, 2003.

[13] S. Madden. Intel lab data, 2003. http://berkeley.intel-
research.net/labdata.

[14] S. Madden, M. Franklin, J. Hellerstein, and W. Hong. The design of an
acquisitional query processor for sensor networks. In SIGMOD, 2003.

[15] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. Tag: a tiny
aggregation service for ad-hoc sensor networks. SIGOPS Oper. Syst.
Rev., 36(SI):131–146, 2002.

[16] Moteiv. Telos Revb datasheet, December 2004.
http://www.moteiv.com/pr/2004-12-09-telosb.php.

[17] S. Nath, P. B. Gibbons, S. Seshan, and Z. R. Anderson. Synopsis dif-
fusion for robust aggregation in sensor networks. In SenSys ’04: Pro-
ceedings of the 2nd international conference on Embedded networked
sensor systems, pages 250–262. ACM Press, 2004.

[18] C. Olston, B. Loo, and J. Widom. Adaptive precision setting for cached
approximate values. In SIGMOD, 2001.

[19] M. Paskin and C. Guestrin. Robust probabilistic inference in distributed
systems. In UAI, 2004.

[20] N. project. Waking up Big Brother, 2001. NEST project demo.
[21] K. Sayood. Introduction to data compression. Morgan Kaufmann Pub-

lishers Inc., 1996.
[22] C. Sharp, S. Schaffert, A. Woo, N. Sastry, C. Karlof, S. Sastry, and

D. Culler. Design and implementation of a sensor network system for
vehicle tracking and autonomous interception. In Second European
Workshop on Wireless Sensor Networks, 2005.

[23] G. Tolle. Sonoma redwoods data, 2005.
http://www.cs.berkeley.edu/ get/sonoma.

[24] A. Woo, T. Tong, and D. Culler. Taming the underlying challenges of
reliable multhop routing in sensor networks. In SENSYS, 2003.

the Markovian nature of the probabilistic models we use pro-
vides us with another, more systematic, approach to dealing
with this problem. We observe that, in such models the future
is independent of the past given the present, and we can use
this to control the inconsistencies in the reported data. As an
example, periodic heartbeats can be used to “re-synchronize”
models even in presence of arbitrary message losses, leading
to temporary and transient inconsistencies.

7 Conclusions
Database query processing ideas can play an important role
in sensor networks. However, our experience with early
adopters of sensornet query engines shows that their typical
workloads are not well-served by the energy optimizations
developed in the early-phase research. Our work here on Ken
revisits the design of sensornet query processing in the light
of a standard practical workload, “SELECT *” data collec-
tion queries. It also applies to another standard workload,
anomaly detection, in a natural and efficient way.

Ken, like other work in recent years (e.g., BBQ [10] and
Jain, et al. [17]), focuses on using probabilistic models to
provide approximate answers efficiently. This is a rich area
for database research in general, and is particularly well
suited to sensor networks, since sensor data is by nature noisy
and uncertain, but often drawn from fairly smooth distribu-
tions [8]. Ken and BBQ present two complementary points
in the design space for approximate sensornet queries us-
ing probabilistic models; further research in this area is war-
ranted to map out the space and understand the applicability
of various designs to different problems.

1. Compute X̂t+1
i , i = 1, . . . , n using the model.

2. If ∃ i such that |X̂t+1
i −Xt+1

i | > ε, then:
2.1. Let info be the minimum information needed to update

the model s.t. the predictions are sufficiently accurate.
2.2 Send info to the sink.
2.3 Update model using info.

1. If received info from source, update model using info.
2. Compute X̂t+1

i using the (possibly updated) model.
3. Use X̂t+1

i as approximation to the true data at time t + 1.

X̂t
1 X̂t

2 X̂t+1
1 X̂t+1

2 Xt+1
1 Xt+1

2 Xt
1 Xt

2

Model over {Xt
1, X

t
2} with

expected values {X̂t
1, X̂

t
2}.

Transition to
time t + 1

Model over {Xt+1
1 , Xt+1

2 } with expected
values {X̂t+1

1 , X̂t+1
2 } not accurate:

|X̂t+1
1 − xt+1

1 | > ε, |X̂t+1
2 − xt+1

2 | > ε.

Communicate value
Xt+1

1 = xt+1
1 to the sink

Updated model p(Xt+1
1 , Xt+1

2 |Xt+1
1 = xt+1

1)
with expected values {X̂ ′t+1

1 , X̂ ′t+1

2 } is
sufficiently accurate.

References
[1] S. Babu, M. Garofalakis, and R. Rastogi. SPARTAN: A Model-Based

Semantic Compression System for Massive Data Tables. In SIGMOD,
May 2001.

[2] T. Bell, I. H. Witten, and J. G. Cleary. Modeling for text compression.
ACM Comput. Surv., 21(4):557–591, 1989.

[3] R. Cheng, D. Kalashnikov, and S. Prabhakar. Evaluating probabilistic
queries over imprecise data. In SIGMOD, pages 551–562. ACM Press,
2003.

[4] J. G. Cleary and I. Witten. Data compression using adaptive coding
and partial string matching. IEEE Transactions on Communications,
1984.

[5] O. Cooper, A. Edakkunni, M. Franklin, W. Hong, S. Jeffery, S. Krish-
namurthy, F. Reiss, S. Rizvi, and E. Wu. Hifi: A unified architecture
for high fan-in systems. In Proceedings of VLDB, 2004. Demo.

[6] Crossbow, Inc. Wireless sensor networks (mica motes). http://
www.xbow.com/Products/Wireless Sensor Networks.
htm.

[7] A. Deshpande, M. Garofalakis, and R. Rastogi. Independence is Good:
Dependency-Based Histogram Synopses for High-Dimensional Data.
In SIGMOD, May 2001.

[8] A. Deshpande, C. Guestrin, and S. Madden. Using probabilistic mod-
els for data management in acquisitional environments. In CIDR,
2005.

[9] A. Deshpande, C. Guestrin, S. Madden, J. Hellerstein, and W. Hong.
Model-driven data acquisition in sensor networks. In VLDB, 2004.

[10] A. Deshpande, C. Guestrin, S. Madden, J. M. Hellerstein, and
W. Hong. Model-driven data acquisition in sensor networks. In VLDB,
2004.

the Markovian nature of the probabilistic models we use pro-
vides us with another, more systematic, approach to dealing
with this problem. We observe that, in such models the future
is independent of the past given the present, and we can use
this to control the inconsistencies in the reported data. As an
example, periodic heartbeats can be used to “re-synchronize”
models even in presence of arbitrary message losses, leading
to temporary and transient inconsistencies.

7 Conclusions
Database query processing ideas can play an important role
in sensor networks. However, our experience with early
adopters of sensornet query engines shows that their typical
workloads are not well-served by the energy optimizations
developed in the early-phase research. Our work here on Ken
revisits the design of sensornet query processing in the light
of a standard practical workload, “SELECT *” data collec-
tion queries. It also applies to another standard workload,
anomaly detection, in a natural and efficient way.

Ken, like other work in recent years (e.g., BBQ [10] and
Jain, et al. [17]), focuses on using probabilistic models to
provide approximate answers efficiently. This is a rich area
for database research in general, and is particularly well
suited to sensor networks, since sensor data is by nature noisy
and uncertain, but often drawn from fairly smooth distribu-
tions [8]. Ken and BBQ present two complementary points
in the design space for approximate sensornet queries us-
ing probabilistic models; further research in this area is war-
ranted to map out the space and understand the applicability
of various designs to different problems.

1. Compute X̂t+1
i , i = 1, . . . , n using the model.

2. If ∃ i such that |X̂t+1
i −Xt+1

i | > ε, then:
2.1. Let info be the minimum information needed to update

the model s.t. the predictions are sufficiently accurate.
2.2 Send info to the sink.
2.3 Update model using info.

1. If received info from source, update model using info.
2. Compute X̂t+1

i using the (possibly updated) model.
3. Use X̂t+1

i as approximation to the true data at time t + 1.

X̂t
1 X̂t

2 X̂t+1
1 X̂t+1

2 Xt+1
1 Xt+1

2 Xt
1 Xt

2

Model over {Xt
1, X

t
2} with

expected values {X̂t
1, X̂

t
2}.

Transition to
time t + 1

Model over {Xt+1
1 , Xt+1

2 } with expected
values {X̂t+1

1 , X̂t+1
2 } not accurate:

|X̂t+1
1 − xt+1

1 | > ε, |X̂t+1
2 − xt+1

2 | > ε.

Communicate value
Xt+1

1 = xt+1
1 to the sink

Updated model p(Xt+1
1 , Xt+1

2 |Xt+1
1 = xt+1

1)
with expected values {X̂ ′t+1

1 , X̂ ′t+1

2 } is
sufficiently accurate.

References
[1] S. Babu, M. Garofalakis, and R. Rastogi. SPARTAN: A Model-Based

Semantic Compression System for Massive Data Tables. In SIGMOD,
May 2001.

[2] T. Bell, I. H. Witten, and J. G. Cleary. Modeling for text compression.
ACM Comput. Surv., 21(4):557–591, 1989.

[3] R. Cheng, D. Kalashnikov, and S. Prabhakar. Evaluating probabilistic
queries over imprecise data. In SIGMOD, pages 551–562. ACM Press,
2003.

[4] J. G. Cleary and I. Witten. Data compression using adaptive coding
and partial string matching. IEEE Transactions on Communications,
1984.

[5] O. Cooper, A. Edakkunni, M. Franklin, W. Hong, S. Jeffery, S. Krish-
namurthy, F. Reiss, S. Rizvi, and E. Wu. Hifi: A unified architecture
for high fan-in systems. In Proceedings of VLDB, 2004. Demo.

[6] Crossbow, Inc. Wireless sensor networks (mica motes). http://
www.xbow.com/Products/Wireless Sensor Networks.
htm.

[7] A. Deshpande, M. Garofalakis, and R. Rastogi. Independence is Good:
Dependency-Based Histogram Synopses for High-Dimensional Data.
In SIGMOD, May 2001.

[8] A. Deshpande, C. Guestrin, and S. Madden. Using probabilistic mod-
els for data management in acquisitional environments. In CIDR,
2005.

[9] A. Deshpande, C. Guestrin, S. Madden, J. Hellerstein, and W. Hong.
Model-driven data acquisition in sensor networks. In VLDB, 2004.

[10] A. Deshpande, C. Guestrin, S. Madden, J. M. Hellerstein, and
W. Hong. Model-driven data acquisition in sensor networks. In VLDB,
2004.

the Markovian nature of the probabilistic models we use pro-
vides us with another, more systematic, approach to dealing
with this problem. We observe that, in such models the future
is independent of the past given the present, and we can use
this to control the inconsistencies in the reported data. As an
example, periodic heartbeats can be used to “re-synchronize”
models even in presence of arbitrary message losses, leading
to temporary and transient inconsistencies.

7 Conclusions
Database query processing ideas can play an important role
in sensor networks. However, our experience with early
adopters of sensornet query engines shows that their typical
workloads are not well-served by the energy optimizations
developed in the early-phase research. Our work here on Ken
revisits the design of sensornet query processing in the light
of a standard practical workload, “SELECT *” data collec-
tion queries. It also applies to another standard workload,
anomaly detection, in a natural and efficient way.

Ken, like other work in recent years (e.g., BBQ [10] and
Jain, et al. [17]), focuses on using probabilistic models to
provide approximate answers efficiently. This is a rich area
for database research in general, and is particularly well
suited to sensor networks, since sensor data is by nature noisy
and uncertain, but often drawn from fairly smooth distribu-
tions [8]. Ken and BBQ present two complementary points
in the design space for approximate sensornet queries us-
ing probabilistic models; further research in this area is war-
ranted to map out the space and understand the applicability
of various designs to different problems.

1. Compute X̂t+1
i , i = 1, . . . , n using the model.

2. If ∃ i such that |X̂t+1
i −Xt+1

i | > ε, then:
2.1. Let info be the minimum information needed to update

the model s.t. the predictions are sufficiently accurate.
2.2 Send info to the sink.
2.3 Update model using info.

1. If received info from source, update model using info.
2. Compute X̂t+1

i using the (possibly updated) model.
3. Use X̂t+1

i as approximation to the true data at time t + 1.

X̂t
1 X̂t

2 X̂t+1
1 X̂t+1

2 Xt+1
1 Xt+1

2 Xt
1 Xt

2

Model over {Xt
1, X

t
2} with

expected values {X̂t
1, X̂

t
2}.

Transition to
time t + 1

Model over {Xt+1
1 , Xt+1

2 } with expected
values {X̂t+1

1 , X̂t+1
2 } not accurate:

|X̂t+1
1 − xt+1

1 | > ε, |X̂t+1
2 − xt+1

2 | > ε.

Communicate value
Xt+1

1 = xt+1
1 to the sink

Updated model p(Xt+1
1 , Xt+1

2 |Xt+1
1 = xt+1

1)
with expected values {X̂ ′t+1

1 , X̂ ′t+1

2 } is
sufficiently accurate.

References
[1] S. Babu, M. Garofalakis, and R. Rastogi. SPARTAN: A Model-Based

Semantic Compression System for Massive Data Tables. In SIGMOD,
May 2001.

[2] T. Bell, I. H. Witten, and J. G. Cleary. Modeling for text compression.
ACM Comput. Surv., 21(4):557–591, 1989.

[3] R. Cheng, D. Kalashnikov, and S. Prabhakar. Evaluating probabilistic
queries over imprecise data. In SIGMOD, pages 551–562. ACM Press,
2003.

[4] J. G. Cleary and I. Witten. Data compression using adaptive coding
and partial string matching. IEEE Transactions on Communications,
1984.

[5] O. Cooper, A. Edakkunni, M. Franklin, W. Hong, S. Jeffery, S. Krish-
namurthy, F. Reiss, S. Rizvi, and E. Wu. Hifi: A unified architecture
for high fan-in systems. In Proceedings of VLDB, 2004. Demo.

[6] Crossbow, Inc. Wireless sensor networks (mica motes). http://
www.xbow.com/Products/Wireless Sensor Networks.
htm.

[7] A. Deshpande, M. Garofalakis, and R. Rastogi. Independence is Good:
Dependency-Based Histogram Synopses for High-Dimensional Data.
In SIGMOD, May 2001.

[8] A. Deshpande, C. Guestrin, and S. Madden. Using probabilistic mod-
els for data management in acquisitional environments. In CIDR,
2005.

[9] A. Deshpande, C. Guestrin, S. Madden, J. Hellerstein, and W. Hong.
Model-driven data acquisition in sensor networks. In VLDB, 2004.

[10] A. Deshpande, C. Guestrin, S. Madden, J. M. Hellerstein, and
W. Hong. Model-driven data acquisition in sensor networks. In VLDB,
2004.

(i) (ii) (iii)

Figure 2: Ken in action

Now, the source checks whether these expected values (that
will be used as the approximation to the true values by the
sink) are sufficiently accurate. If yes, no data needs to be
transmitted to the sink. On the other hand, if the predic-
tions are not accurate (as shown in the example), the source
communicates a subset of the values (in this example, the
observed value of Xt+1

1) to the sink, and both the source
and sink update the model using this information to obtain
p(Xt+1

1 , Xt+1
2 |Xt+1

1 = x). The expected values of the vari-
ables will now satisfy the required accuracy guarantees.

Note that even though both variables violated the accu-
racy guarantees, because of the strong spatial correlations
between them, the value of only one of them was needed to
be communicated to the sink.

3.2 Ken Normal Operation

In Ken, the source performs the following steps (Figure 1) at
time t:

1. Using the transition model, compute the probability dis-
tribution function p = p(Xt+1

1 , . . . , Xt+1
n) over at-

tributes Xt+1
i , i = 1, . . . , n. As discussed above, this

pdf depends on all observations that have been commu-
nicated to the sink so far; other values are ignored since
they did not change the model at the sink.

2. Compute the expected values of the attributes according
to the pdf:

X̂t+1
i =

∫
Xt+1

i p(Xt+1
1 , . . . , Xt+1

n)dXt+1
1 . . . dXt+1

n

3. If the expected values are sufficiently accurate, i.e.,
|X̂t+1

i − xt+1
i | < ε,∀i = 1, . . . , n, then stop. There

is no need to send anything to the sink.

4. Otherwise:
(a) Find the smallest subset of attributes such that
conditioning on it makes the predictions accurate. In
other words, find the smallest Y = {Xi1 , . . . , Xik

}
such that the expected values according to the pdf:

pY = p(Xt+1
1 , . . . , Xt+1

n |Xt+1
i1

= xt+1
i1

. . . Xt+1
ik

= xt+1
ik

)

satisfy the accuracy guarantees. Note that the set of

all attributes (Y = {X1, . . . , Xn}) always satisfies this
condition.
(b) Send the values of attributes in X to the sink.

Most of the work during the normal operation of the Ken
system is done by the source. The steps followed by the sink
are as follows:

1. Use the transition model to compute p =
p(Xt+1

1 , . . . , Xt+1
n) (identical to Step 1 above).

2. If the sink received from the source values of attributes
in X = {Xi1 , . . . , Xik

}, then condition p using these
values as described in Step 4 (a) above.

3. Compute the expected values of the attributes Xt+1
i ,

and use them as the approximation to the true values.

3.3 Ken: Choosing the Prediction Model

The model used for prediction in Ken is clearly a central
piece of the system. Regardless of the model, the correctness
of data collection is never compromised, i.e., the accuracy
guarantees at the sink are always maintained. However, the
effectiveness of Ken in reducing the data transmission rates is
highly dependent on the model chosen. This would suggest
choosing a sophisticated and complex model that captures all
the correlations and the patterns in the data. Unfortunately,
because of the distributed nature in which data is generated
in a sensor network, this is not always wise, and in fact, com-
plex models can sometimes result in higher overall commu-
nication costs than relatively unsophisticated models such as
the one used in Example 3.1 above. This is because in or-
der to perform the steps outlined in Section 3.2, nodes may
need to communicate with each other to bring correlated data
together in one place, and this communication can be very
significant.

The total communication cost incurred during the normal
operation of Ken consists of two components:

• intra-source: cost incurred in the process of collecting
together the data generated at each time step to check if
the predictions are accurate (source operation, Step 3).

• source-sink: cost incurred while sending a set of values
to the sink (source operation, Step 4(b)).

Consider using a multi-dimensional model over all at-
tributes of the sensor network that incorporates all spatial and
temporal correlations (Figure 3(i)). As shown in previous
work [8], such models work extremely well in sensor net-
works and can be used for probabilistic querying with great
benefits. But if we were to use such a model in Ken , the cost
of checking whether the prediction is accurate (intra-source
cost) becomes prohibitively high. Such a model will require
collecting values of all attributes at one location at each time
step, and the cost of doing so will most likely dwarf any sav-
ings in source-sink communication that might result. On the
other extreme is the approach of using a set of one-variable
models, one for each attribute. In that case, we can distribute
the task of checking whether predictions are accurate to the
sensor nodes that generate those attributes, and hence, the
intra-source cost will be 0. But, such a model will not be
able to reap the benefits of spatial correlations in the data,
which tend to be much stronger than temporal correlations in
many cases.

This leads us to pose one of the key challenges in perform-
ing approximate data collection with accuracy guarantees:

Given a sensor network that consists of a set of nodes N , a
set of attributes X observed by these nodes, and a communi-
cation topology over these nodes4, find a dynamic probabilis-
tic model M, and a mapping from f : X → N specifying
where attribute predictions should be checked, such that the
total expected communication cost is minimized, where that
cost is the sum of:

1. intra-source : The total communication cost incurred
in sending the value of attribute Xi to f(Xi) at every
time step.

2. source-sink : The total communication cost incurred
while sending a set of values to the sink as required.

Note that our optimization goal does not include the CPU
cost of doing the inference itself, i.e., the cost of checking
whether predictions are accurate, and computing the mini-
mal subset of values to send to the sink. This is because the
communication cost is typically much higher than the com-
putational cost of doing inference. We note that it would be
fairly easy to extend the formulation above, and the algo-
rithms we propose later, to include this cost as well.

A large variety of models can be used in Ken for the pre-
diction purposes.

Example 3.4 Disjoint-Cliques Models: A natural choice
of M to reduce the intra-source cost, but also utilize spa-
tial correlations between attributes, is to partition the sen-
sor attributes in multiple localized clusters, and use a multi-
dimensional model for each of these clusters. We will term
these clusters of attributes cliques5, and the sensor node at
which the inference is done the clique root. Note that the
clique root is not required to be a part of the clique. Fig-
ure 3 (ii) shows an example of this, where the 6 attributes
X1, . . . , X6 are partitioned in two cliques {X1, X2, X3} and

4We assume a static known network topology in the body of the paper;
we revisit this issue in Section 6.

5We use the terminology from the graphical models literature; the clique
attributes don’t, in general, form a clique in the network topology graph.

{X4, X5, X6} with clique roots X2 and X4 respectively. We
will revisit this class of models in detail in Section 4.

Example 3.5 Average Model: Figure 4 shows another pos-
sible class of models which could potentially work very well
if the average of all the variables, X̄ = Σn

i=1Xi

n can pre-
dict the individual values very well. In this case, f : X → N
maps every attribute to the node that produces it, whereasM
consists of n models, Mi, each over two variables Xi, X̄ .
Though this model might seem to incur a very high cost in
computing X̄ and communicating it to all the nodes in the
sensor network, as shown in Figure 4, the computation of X̄
can be done efficiently using in-network aggregation, requir-
ing only O(n) messages in the process. Disseminating X̄ to
the sensor nodes also takes at most O(n) messages. Hypo-
thetically, if the source-sink cost is zero (i.e., X̄ always pre-
dicts Xi within the approximation bounds), this model can
reduce the total communication cost by a factor of O(n) over
the naive approach of communicating all values generated by
the sensor network to the base station.

The latter model illustrates the large range of possible
models that can be used in Ken making the problem of choos-
ing the best model is extremely hard. In general no class of
models will work well for all kinds of sensor networks. An
interesting goal for future work is to build a system that al-
lows different classes of prediction models to be used flexibly
and dynamically; we will revisit the issue in Section 6. How-
ever, many of the sensor networks typically exhibit correla-
tions that are inversely proportional to the distance between
sensors. For example, a sensor network that monitors tem-
perature or humidity exhibits this pattern. Fortunately for us,
the Disjoint-Cliques models naturally exploit precisely this
correlation pattern, and hence, we will focus on this class of
models in the rest of the paper (though we also evaluate per-
formance of the average model in our experimental study).

4 Disjoint-Cliques Models
Disjoint-Cliques models naturally localize and distribute the
in-network computation required by Ken, and may be suit-
able for use in Ken in many different sensornet environments.
In this section, we will address the problem of finding the op-
timal Disjoint-Cliques model. Not surprisingly the problem
is NP-hard, and we will present both exhaustive and heuristic
algorithms for finding good Disjoint-Cliques solutions. We
compare the performance of these algorithms in Section 5.

4.1 Problem Analysis

We will denote a Disjoint-Cliques model as M =
M1(C1), . . . ,Mk(Ck), where k is number of partitions, and
Ci ⊆ X, i ∈ {1, k} is a partitioning of X . In other words we
will be running k separate multi-dimensional models, one for
each clique Ci. Furthermore, we define the data reduction
factor for Ci, mi, to be the expected number of communi-
cated values for Ci. We will address the issue of how to
compute mi in Section 4.4 as the computation depends on
the exact nature of the individual models.

X6

X6

X2X2X4

X2

X1

X3

X5

Base Station

X4,X6
X3

X5

X1

Runs 6-dimensional Model
Over {X1, ..., X6}

Runs 6-dimensional Model
Over {X1, ..., X6}

(i)

X5,X6

X6

X2X2X4

X2

X1

X3

X5

Base Station

X3

X5

X1

Runs 3-dimensional Model
Over {X1, X2, X3}

Runs 3-dimensional Model
Over {X4, X5, X6}

Runs two 3-dimensional Models
Over {X1, X2, X3} and {X4, X5, X6}

Runs two 3-dimensional Models
Over {X1, X2, X3} and {X4, X5, X6}

(ii)

Figure 3: (i) Using a single 6-dimensional model incurs very high data collection cost; (ii) An example Disjoint-Cliques model
with cliques {X1, X2, X3}, and {X4, X5, X6}

X4

X2

X1

X3

Base
Station

X3

X1

X4

(X2+X4)/2

X4

X2

X1

X3

Base
Station

X

X

XX

Compute
X = (X1+X2+X3+X4)/2

X4

X2

X1

X3

Base
Station

1. Run prediction model over X and Xi
2. Send Xi if not prediction not accurate

(i) (ii) (iii)

Figure 4: The Average Model uses the average of all variables to predict each variable: (i) In-network aggregation is used to
compute average efficiently; (ii) average is disseminated back into the network; (iii) Each node decides if it needs to send its
value up to the base station given that average is already known.

Given this, we observe that the expected cost incurred by
the group of sensor nodes Ci is independent of the rest of
sensor network, i.e., the total communication cost of (a) col-
lecting the values of variables in Ci at one node, (b) checking
whether the prediction is accurate, and (c) communicating a
subset of values to the base station as needed, depends only
on the members of Ci and the communication topology of the
network. More precisely, if Croot

i were chosen to be the sen-
sor node at which the data corresponding to Ci is collected,
then:
• intra-source = Σx∈Cicomm(x, Croot

i)

• source-sink = mi × comm(Croot
i , 0)

Moreover, Croot
i itself can be computed simply as:

Croot
i = argmin

root∈X
Σx∈Cicomm(x, root) + mi comm(root, 0)

Note that Croot
i is not required to be in Ci, and we frequently

observe otherwise in our experiments.
This independence between costs of different cliques al-

lows us to effectively develop algorithms for finding effective
Disjoint-Cliques model solutions. The problem of finding the

optimal Disjoint-Cliques model, unfortunately, is NP-hard,
even if an oracle that instantaneously computes the data re-
duction factor for any clique is provided (reduction from min-
imum 3-dimensional assignment).

4.2 Exhaustive Algorithm for finding Optimal Solution

Figure 5 illustrates a dynamic programming based algorithm
that finds the optimal solution for a given instance of the
problem. The algorithm proceeds by finding the optimal
solution for each subset of attributes in a bottom-up fash-
ion, utilizing the principle of optimality to reduce unnec-
essary computation. The complexity of this algorithm is
O(n4n + M2n) (where M is the cost of computing the data
reduction factor for a given clique Ci) which makes it pro-
hibitively expensive except in simplest of sensor networks.

4.3 Greedy Heuristic Algorithm

Figure 6 shows a simplified version of a greedy algorithm
we employed for finding a Disjoint-Cliques model. The al-
gorithm begins by choosing an arbitrary attribute Xx from
the set of all attributes, finds the clique containing Xx that
has the largest per-attribute data reduction factor, and greed-

EXHAUSTIVE(X, comm : N ×N → R)
FOR i := 1 TO |X| DO

FOR EACH C ⊆ X SUCH THAT |C| = i DO
mC ← DATA REDUCTION FACTOR FOR CLIQUE C (SECTION

4.4)
costC ← minrootC∈X { Σx∈Ccomm(x, rootC)

+mC comm(rootC, 0)}
FOR EACH C1 ⊂ C DO

c← cost(C1) + cost(C − C1)

IF c < costC THEN
costC ← c
solutionC ← {C1, C2}

FI
DONE
cost(C)← costC, solution(C)← solutionC

DONE
DONE

Figure 5: A dynamic programming based exhaustive algorithm

ily chooses this clique to be in the final solution. It then re-
moves the attributes contained in this clique, including Xx,
from the set of all attributes, and repeats the procedure till
all attributes are included in some clique in the solution. The
algorithm also avoids computing data reduction factors for
cliques that contain attributes too far from each other in the
sensor network. Because of the high intra-source communi-
cation required to collect such attributes at one location, and
also because spatial correlations tend to be inversely propor-
tional to distance, such cliques are unlikely to be part of the
optimal solution. Finally, we further control the running cost
of this algorithm by restricting the sizes of cliques considered
in the final solution through the parameter k.
Complexity: The complexity of this greedy algorithm is
upper-bounded by O(

(
n
k

)
M) where M is the cost of finding

data reduction factor for a given clique, but is typically much
less than that because we aggressively prune away cliques
that are unlikely to be in the final solution.

4.4 Computing data reduction factors

Given a set of attributes C, the computation of the expected
data reduction factor if using a probabilistic model MC for
predicting these attributes depends on the exact form of the
model used. As an example of how this computation pro-
ceeds, consider a clique of size 1 containing attribute X1, at
time 1, and let X1 be modeled using a linear Gaussian. The
expected data reduction factor for such a clique can be writ-
ten as:

E(data reduction factor) =

1/E(num steps before a prediction error)

where the latter term can be computed as:

E(num steps before a prediction error) =
1× p(X1

1 /∈ [µ1 − ε, µ1 + ε])
+2× p(X1

1 ∈ [µ1 − ε, µ1 + ε] & X2
1 /∈ [µ2 − ε, µ2 + ε])

+3× p(X1
1 ∈ [µ1 − ε, µ1 + ε] & X2

1 ∈ [µ2 − ε, µ2 + ε]
&X3

1 /∈ [µ3 − ε, µ3 − ε]) + 4×

GREEDY-K(X, comm : X×X → R,k)
LET covered← {}, solution← {}
WHILE covered 6= X DO

LET Xx /∈ covered BE AN UNCOVERED ATTRIBUTE CHOSEN AR-
BITRARILY.

LET CX BE THE SET OF ALL CLIQUES C SUCH THAT C ⊆ (X −
covered), Xx ∈ C AND |C| = k.

FOR EACH C ∈ CX
IF C CONTAINS TWO ELEMENTS a AND b SUCH THAT:

comm(a, b) ≥ 1
4
maxu,v∈Xcomm(u, v)

CX ← CX − C

ELSE
COMPUTE mC ← DATA REDUCTION FACTOR FOR CLIQUE C

(SECTION 4.4)
FI

DONE
LET C′ ∈ CX BE THE CLIQUE WITH LARGEST

mC′
|C′|

solution← solution ∪ {C′}, covered← covered ∪ C′

DONE

Figure 6: Our Greedy-k algorithm

where µi denotes the mean of the Gaussian at time i (the
precise values of the means are irrelevant in this expression;
only the variances of the Gaussians matter).

Even for this simplest possible model, there does not exist
a closed form expression for computing the expected data
reduction factor. We instead use the standard approach of
Monte Carlo integration to compute this value numerically.
We omit the details of the process for brevity.

5 Evaluation
In this section, we present an extensive evaluation of Ken
over traces from two real-world sensor network deployments.
Our results demonstrate the effectiveness of Ken in reduc-
ing the communication cost and the energy consumption of
the system without undue sacrifice in result quality or fre-
quency, even with a relatively simple class of models such as
Disjoint-Cliques models. We begin with a discussion of the
experimental setup, the traces we use, and the specific form
of models that we chose for these deployments.

5.1 Experimental setup

We have implemented Ken in Matlab on traditional PC hard-
ware, and we are in the process of implementing the on-
sensor component of Ken. We evaluate Ken’s performance
by using traces from two real-world sensor network deploy-
ments: (1) Lab: A deployment at the Intel Research Lab in
Berkeley [17] consisting of 49 mica2 motes and (2) Garden:
A deployment at the UC Berkeley Botanical Gardens consist-
ing of 11 mica2 motes. We limit our discussion to three of
the attributes sensed by these motes, temperature, humidity
and voltage. Figures 7 and 8 plot several representative days
of temperature and humidity data for both deployments. All
of these fluctuate cyclically (with a period of 24 hours) to a
first approximation. However, we qualitatively observe sev-
eral secondary characteristics, especially in the lab dataset.
For example, the midday temperature rise on the first day
(minutes 400 - 700) is smooth whereas the rise on the third
day (minutes 3100 - 3600) is abrupt and jagged. The garden

0 2000 4000 6000 8000 10000

20

40

60

Hum
idity

 (%
)

0 2000 4000 6000 8000 10000

15

20

25

30

35

Minutes since initial deployment

Tem
per

atu
re (

 o C)

Figure 7: Lab data overview

0 2000 4000 6000 8000 10000
20

40

60

80

100

Hum
idity

 (%
)

0 2000 4000 6000 8000 10000

10

20

30

Minutes since initial deployment

Tem
per

atu
re (

 o C)

Figure 8: Garden data overview

dataset tends to exhibit more consistency. We will see that
these datasets reveal different facets of Ken.

For both these deployments, we chose to model the at-
tributes as time-varying multivariate Gaussians (Cf. Figure
2). As demonstrated in previous work on these datasets [8,
9], multivariate Gaussians fit this data quite well, especially
the data from the garden deployment. We estimated the
model parameters using the first 100 hours of data (training
data), and used traces from the next 5000 hours (test data) for
evaluating Ken.

Unless otherwise specified, we used error bounds of
0.5oC for temperature, 2% for humidity and 0.1V for battery
voltage; in other words, the user would like the difference
between the reported value and the actual observed value to
be less than these error bounds at all times.6 Additionally,
the user would like the sensors to sample hourly. We also
experimented with other various sampling rates and bounds,
and observed very similar performance trends.

5.2 Comparison Schemes

We evaluate and compare the following schemes on these
datasets:
• TinyDB [18]: This scheme always reports all sensor

values to the base station. The guarantees provided by
this scheme are the strongest as the data errors are al-
ways zero.

• Approximate Caching [23]: This scheme caches the
last reported reading at the sink and source , and sources
do not report if the cached reading is within the thresh-
old of the current reading. In modeling terms, this
is a degenerate Markov model. We set approximate
caching’s reporting threshold to match that of Ken (e.g.,
0.5oC for temperature).

• Ken with Disjoint-Cliques (DjC) and Average (Avg)
models: We study both the Disjoint-Cliques (DjC)

6These were the bounds deemed acceptable for biological research pur-
poses by our biology collaborators.

TinyDB ApC Avg DjC1 DjC2 DjC3 DjC4 DjC5 DjC6
0

20

40

60

80

100

da
ta

 r
ep

or
te

d
(%

) ApC: Approximate Caching
Avg : Ken w/ Average model
DjCN : Ken w/ Disjoint−Cliques
 model of clique size N

Figure 9: % of data reported under various schemes for the
garden dataset.

TinyDB ApC Avg DjC1 DjC2 DjC3 DjC4 DjC5
0

20

40

60

80

100

da
ta

 r
ep

or
te

d
(%

)
Figure 10: % of data reported under various schemes for the
lab dataset.

models (Section 4) and the Average (Avg) model (Ex-
ample 3.5) within the Ken framework. The Disjoint-
Cliques models permit a finely-tuned study of the im-
pact of spatial correlations via restricting the maximum
possible clique size. Unless otherwise specified, we use
the Greedy-k heuristic algorithm to find the Disjoint-
Cliques model used in Ken; we denote by DjCk the
model found by Greedy-k.

• Single node dual models [14]: This technique is equiv-
alent to Ken with DjC1 (maximum clique size restricted
to one), and hence, the comparison to this technique will
often be implicit.

Also, we choose to permit one data unit per message. This
implies we do not aggregate data as it flows up towards the
root, and data sent is equal to messages sent. This choice
allows us to fairly compare against TinyDB, which likewise
sends one data unit in each message. A count of messages
sent also serves as a fair proxy for energy expended; on typ-
ical sensor network platforms, sending and receiving mes-
sages dominates energy consumption [21].

5.3 Topology independent characteristics

We begin with investigating the effectiveness of these
schemes at reducing the amount of data reported to the
base station, while ignoring any network topology depen-
dent characteristics. In other words, we compare the average
number of data values reported to the base station for these
schemes.

Figure 9 and Figure 10 plot the percentage of nodes re-
ported for the garden data and lab data respectively. These
figures immediately distinguish several facets. First, Ken
and Approximate Caching both achieve significant savings

over TinyDB. This occurs because the user relaxes her error
tolerance in exchange for communications savings. While
the magnitude of these savings will clearly vary with the de-
sired error bounds, the figures indicates that even for a mod-
est bound of 0.5oC, 65% data reduction is readily attainable;
TinyDB pays a hefty premium for exactness.

Second, Average reports at a higher rate than Disjoint-
Cliques with max clique size restricted to 2 (DjC2). Given
that Average also incurs a high fixed aggregation and dissem-
ination cost, we don’t expect Average to outperform DjCk,
k ≥ 2 (though it could conceivably outperform ApC and
DjC1). Hence, we do not consider the Average model further
in this section.

Third, Disjoint-Cliques with a max clique size of 1 (DjC1)
and Approximate Caching miss at comparable rates of about
65% in these datasets. This suggests that capturing and mod-
eling temporal correlations alone may not be sufficient to out-
perform caching. However, we see the definitive advantage
of larger cliques: the data reported falls rapidly as Ken is able
to utilize spatial correlations. Ken often has the opportunity
to select and report those few nodes which serve to strongly
indicate the readings of other nodes. Approximate caching
fundamentally cannot take advantage of spatial correlations,
and as a result, suffers in such environments.

Lastly, we begin to witness several underlying dataset
differences between Lab and Garden: The garden dataset’s
stronger spatial and temporal correlations yield more data re-
duction (21% data reported at cliques of size 5, DjC5) com-
pared to that of Lab’s (36% data reported).

5.4 Topology dependent costs

Next we evaluate the effect of intra-source and source-sink
communication costs on the performance of these schemes.
Recall that for Disjoint-Cliques the intra-source cost consists
of the cost of collecting data values of all clique members at
the clique root, and the source-sink cost consists of the cost
of reporting a (possibly empty) subset of the data values to
the base station (Section 4). The relative importance of these
costs in the total communication cost strongly influences the
cliques chosen for this class of models. It is more worthwhile
to reduce data early in the network if the cost to communicate
to the sink is high. Conversely, the higher (fixed) intra-source
costs may make large cliques unattractive if the cost to com-
municate to the sink is low.

Approaching this evaluation in two phases, we first con-
struct synthetic topologies on the garden dataset. This lets
us quantify the merit of various clique sizes while control-
ling the cost to the base station. Afterward, we study actual
topologies of the lab data.

Through both of these topology studies, we compared the
use of the optimal dynamic programming solution (Section
4.2) with the greedy heuristic (Section 4.3). While the dy-
namic programming’s optimality is appealing, we ultimately
ran most experiments with the greedy heuristic because of its
computing time speedup. Figure 11 shows a comparison of
the two algorithms. The greedy algorithm and the optimal al-
gorithm perform very comparably, with the greedy algorithm
very often within 12% of the optimal.

Figure 11: Comparing Greedy-k and Exhaustive-k for various
k (Exhaustive-k is Exhaustive algorithm restricted to cliques
of size k).

1 2 3 4 5
0

5

10

15

T
ot

al
 m

es
sa

gi
ng

 c
os

t

x2 cost to base

1 2 3 4 5
0

10

20

30

x5 cost to base

1 2 3 4 5
0

20

40

60

x10 cost to base

inter

intra

ApC DjC

ApC DjC

ApC DjC

Figure 12: Total communication cost for the garden dataset
for the various schemes under different network topologies.

Garden Dataset:
The garden dataset contains 11 nodes, with equivalent path
costs between every pair of these 11 nodes. To create varied
topologies, we manipulate the path cost to the base as a mul-
tiple of the path cost between pairs of nodes. By applying
the greedy heuristic algorithm outlined in Section 4.3, we
derive the clique partitions and observe the resulting com-
munication costs. Recall that the greedy heuristic can be
instrumented with a limiting maximum clique size k, effec-
tively limiting the use of spatial correlations. We use this
max clique size to study total messaging costs given artifi-
cial limits. Figure 12 illustrates these costs, decomposed into
intra-source and source-sink costs (pointed at by the “inter”
and “intra” arrows respectively).

As the cost to the base station increases to 5 and 10 times
the cost to communicate within the clique, larger clique sizes
become increasingly attractive. This behavior follows our ex-
pectations, since data reduction is a priority when transmit-
ting data is more expensive. Larger cliques make far fewer
gains when the cost of communicating with the base station
is comparable to the cost of communicating with neighbors.

We begin to see that larger clique sizes (5 nodes) do not
offer limitless gains, even when the source-sink cost is rela-
tively high (Figure 12, right panel). The leveling off of the
messaging cost (e.g. from DjC4 to DjC5) means that the
greedy heuristic is not using larger clique in its solution, even
though the heuristic is permitted to use larger cliques. This
makes sense because nodes distant from one another in the

 1 2 3 4 5
0

5

10

T
ot

al
 m

es
sa

gi
ng

 c
os

t
East nodes

Close to base

 1 2 3 4 5
0

20

40

60

80

Central nodes
Medium from base

 1 2 3 4 5
0

20

40

60

80

100

West nodes
Far from base

inter

intra

ApC DjC

ApC DjC

ApC DjC

Figure 13: Total communication cost for the Lab deployment
partitioned into three node groups, east, central and west.
Note that the three plots have different y-axes.

physical deployment may not have sufficiently strong spatial
correlations incentive to form into a larger clique. In addi-
tion, the increased intra-source costs may start dominating
the source-sink costs.

Lab Dataset:
We next investigate the lab data and its accompanying con-
nectivity data. In this deployment, the network has been in-
strumented such that the base station resides at the east end of
the network. This leads to consider and evaluate three regions
of the network separately: East, Central and West. Since link
quality is roughly proportional to geographic distance, these
regions correspond to excellent (x1.5 cost to base), good (x3
cost to base) and moderate (x6 cost to base) costs to base re-
spectively. Figure 13 plots the total messaging costs resulting
from application of the greedy heuristic (Section 4.3).

We can see that the areas closer to the base station do not
benefit from larger cliques. This follows our previous find-
ings: nodes in this area generally do not experience a net
benefit after accounting for the fixed intra-source costs. On
the other hand, the area further from the base station incur
modest data reduction gains from larger cliques. The diam-
eter of the network is about 6 hops, yet we do not see as
much gain for larger cliques as in the garden data. This is
largely because multivariate Gaussians are not a perfect fit for
this dataset. Human intervention (in particular, turning the
air conditioning on and off) results in this data being much
harder to predict than the garden data.

5.5 Multiple Attributes per Node

Correlations among attributes offer another opportunity to
employ Ken’s model-based compression. For example, a
sensor node’s battery voltage often peaks when the temper-
ature is high. Abstractly, we can think of multiple attributes
per physical node as multiple logical nodes with zero com-
munication cost among them. We then can apply the same
Ken Disjoint-Cliques model here. More significantly, larger
cliques always outperform smaller cliques in this scenario
since the intra-source communication cost is 0. Figure 14
plots Ken’s data reduction savings for a single node with
three attributes: temperature, humidity and voltage. These
are combined in various configurations as shown in the fig-
ure. We can see that while any combination of compression

0

20

40

60

80

1

combinations of modeling temperature,
 humidity and voltage

da
ta

 r
ep

or
te

d
(%

)

no compression
temperature
humidity
voltage
temperature + humidity
temperature + voltage
humidity + voltage

{T,H,V} {V,TH} {H,TV} {T,HV}{}

Figure 14: Compression using correlations among temper-
ature, humidity and voltage in Garden deployment: e.g.,
{V, TH} denotes that temperature and humidity were
modeled as a size-two clique, whereas voltage was com-
pressed as a single-node clique.

far exceeds no compression, utilizing inter-attribute corre-
lations further improves the compression ratio. Ken-based
models incur no cost while providing immediate data reduc-
tion.

6 Extensions
Our approach to approximate data collection in Ken has
many interesting extensions that we plan to explore.

Richer Probabilistic Models: The distributed nature of data
acquisition leads to interesting tradeoffs in model selection
that have not been explored before. We already saw some of
these tradeoffs with Disjoint-Cliques models where simpler
models were preferred over more sophisticated models even
though the latter class of models was a better fit for the data.
We plan to explore other such families of models that lend
themselves to easy localization and distribution, and evaluate
their effectiveness in approximate data collection.

Probabilistic Reporting: Although Ken’s deterministic er-
ror guarantee is desirable in many applications, there are
applications that can accept non-deterministic errors with a
strong probabilistic guarantee in exchange for further reduc-
tion in communication cost. Ken can be easily extended
to do probabilistic reporting, wherein each node determines
whether to report a value to the base station based on a prob-
abilistic function. Our preliminary experiments indicate that
relaxed step functions and logistic functions can be used very
effectively for this purpose.

Application to Caching, Distributed Streams: Approx-
imate caching and distributed streams are two application
domains where our probabilistic modeling-based approach
would extend naturally. For example, instead of storing just
the last cached value at a client [23], we can instead use prob-
abilistic models to predict how the cached value changes, and
thus use patterns in data evolution to reduce the data commu-
nication between a server and a client. Data collection from
distributed streams [4] can also be made significantly more

efficient by using the approach we advocate in this paper.

Dynamic Network Topologies: So far, we have assumed a
static network topology. As we know first-hand, real sen-
sor networks are dynamic and topologies evolve over time.
For Ken to handle network topology changes efficiently, it
requires Ken to interact closely with the underlying network
layer. TinyOS exposes an interface for applications to trigger
network topology updates. We plan to take advantage of this
interface when we implement Ken on TinyOS motes for Ken
to control the network topology updates and incrementally
update its network link costs as they change.

Detection of Node Failures: When the basestation does not
hear from a node for an extended period of time, Ken needs to
be able to distinguish between node failure and the case that
the data is always within the error bound. Ken can make this
distinction based on its knowledge of the expected miss rate
for the node. Once again, use of robust probabilistic model-
ing techniques allows us to take a systematic approach to this
problem.

Robustness to Message Loss: Though it is possible to use
reliability protocols such as end-to-end ack plus retransmis-
sions to eliminate message losses, such protocols incur very
high overheads and may not be suitable in all cases. How-
ever, the Markovian nature of the probabilistic models we
use provides us with another, more systematic, approach to
dealing with this problem. We observe that, in such models
the future is independent of the past given the present, and
we can use this to control the inconsistencies in the reported
data. As an example, periodic heartbeats can be used to “re-
synchronize” models even in presence of arbitrary message
losses, leading to only transient data inconsistencies.

7 Conclusions
Database query processing ideas can play an important role
in sensor networks. However, our experience with early
adopters of sensornet query engines shows that their typical
workloads are not well-served by the energy optimizations
developed in the early-phase research. Our work here on Ken
revisits the design of sensornet query processing in the light
of a standard practical workload, “SELECT *” data collec-
tion queries. It also applies to another standard workload,
anomaly detection, in a natural and efficient way.

Ken, like other work in recent years (e.g., BBQ [8] and
Jain, et al. [14]), focuses on using probabilistic models to
provide approximate answers efficiently. This is a rich area
for database research in general, and is particularly well
suited to sensor networks, since sensor data is by nature noisy
and uncertain, but often drawn from fairly smooth distribu-
tions [7]. Ken and BBQ present two complementary points
in the design space for approximate sensornet queries us-
ing probabilistic models. The advantage of Ken is it assures
the user of the faithfulness of the approximate answer to the
actual sampled value, without assuming model correctness,
while significantly reducing the volume of data transmitted.
This area warrants further research in order to chart the space
and understand the applicability of various designs to differ-
ent problems.

References
[1] T. Bell, I. H. Witten, and J. G. Cleary. Modeling for text compression.

ACM Comput. Surv., 21(4):557–591, 1989.
[2] R. Cheng, D. Kalashnikov, and S. Prabhakar. Evaluating probabilistic

queries over imprecise data. In SIGMOD, 2003.
[3] J. G. Cleary and I. Witten. Data compression using adaptive coding

and partial string matching. IEEE Transactions on Communications,
1984.

[4] O. Cooper, A. Edakkunni, M. Franklin, W. Hong, S. Jeffery, S. Krish-
namurthy, F. Reiss, S. Rizvi, and E. Wu. Hifi: A unified architecture
for high fan-in systems. In Proceedings of VLDB, 2004. Demo.

[5] Crossbow, Inc. Wireless sensor networks (mica motes). http://
www.xbow.com.

[6] A. Deshpande, M. Garofalakis, and R. Rastogi. Independence is Good:
Dependency-Based Histogram Synopses for High-Dimensional Data.
In SIGMOD, May 2001.

[7] A. Deshpande, C. Guestrin, and S. Madden. Using probabilistic mod-
els for data management in acquisitional environments. In CIDR,
2005.

[8] A. Deshpande, C. Guestrin, S. Madden, J. Hellerstein, and W. Hong.
Model-driven data acquisition in sensor networks. In VLDB, 2004.

[9] A. Deshpande, C. Guestrin, S. Madden, and W. Hong. Exploiting
correlated attributes in acquisitional query processing. In ICDE, 2005.

[10] M. Garofalakis and P. Gibbons. Probabilistic wavelet synopses. In
SIGMOD, 2002.

[11] C. Guestrin, P. Bodik, T. R., P. Mark, and S. Madden. Distributed
regression: an efficient framework for modeling sensor network data.
In IPSN, 2004.

[12] J. Hellerstein and W. Wang. Optimization of in-network data reduc-
tion. In DMSN, 2002.

[13] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion: A
scalable and robust communication paradigm for sensor networks. In
Proceedings of ACM MOBICOM, Boston, MA, August 2000.

[14] A. Jain, E. Chang, and Y.-F. Wang. Adaptive stream resource manage-
ment using Kalman Filters. In SIGMOD, 2004.

[15] I. Lazaridis and S. Mehrotra. Capturing sensor-generated time series
with quality guarantees. In ICDE, 2003.

[16] P. Levis and et al. Fire alert-and-response system prototype, 2004.
http://www.cs.berkeley.edu/ pal/cs199.

[17] S. Madden. Intel lab data, 2003. http://berkeley.intel-
research.net/labdata.

[18] S. Madden, M. Franklin, J. Hellerstein, and W. Hong. The design of an
acquisitional query processor for sensor networks. In SIGMOD, 2003.

[19] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. Tag: a tiny
aggregation service for ad-hoc sensor networks. SIGOPS Oper. Syst.
Rev., 36(SI):131–146, 2002.

[20] S. Madden, W. Hong, J. M. Hellerstein, and M. Franklin. TinyDB web
page. http://telegraph.cs.berkeley.edu/tinydb.

[21] Moteiv. Telos Revb datasheet, December 2004.
http://www.moteiv.com/pr/2004-12-09-telosb.php.

[22] S. Nath, P. B. Gibbons, S. Seshan, and Z. R. Anderson. Synopsis
diffusion for robust aggregation in sensor networks. In SenSys, 2004.

[23] C. Olston, B. Loo, and J. Widom. Adaptive precision setting for cached
approximate values. In SIGMOD, 2001.

[24] V. Poosala and Y. E. Ioannidis. “Selectivity Estimation Without the
Attribute Value Independence Assumption”. In VLDB, 1997.

[25] K. Sayood. Introduction to data compression. Morgan Kaufmann
Publishers Inc., 1996.

[26] C. Sharp et al. Design and implementation of a sensor network system
for vehicle tracking and autonomous interception. In Second European
Workshop on Wireless Sensor Networks, 2005.

[27] D. Slepian and J. Wolf. Noiseless coding of correlated information
sources. IEEE Transactions on Information Theory, 19(4), 1973.

[28] G. Tolle. Sonoma redwoods data, 2005.
http://www.cs.berkeley.edu/ get/sonoma.

[29] J. S. Vitter, M. Wang, and B. Iyer. “Data Cube Approximation and
Histograms via Wavelets”. In CIKM, 1998.

[30] I. H. Witten, R. M. Neal, and J. G. Cleary. Arithmetic coding for data
compression. Communications of the ACM, June 1987.

[31] O. Wolfson, S. Chamberlain, S. Dao, and L. Jiang. Location manage-
ment in moving objects databases. In WoSBIS, 1997.

[32] A. D. Wyner and J. Ziv. The rate-distortion function for source coding
with side information at the decoder. IEEE Transactions on Informa-
tion Theory, 1976.

[33] Y. Yao and J. Gehrke. Query processing in sensor networks. In CIDR,
2003.

