An Index | mplementation Supporting Fast Recovery
for the POSTGRES Storage System

Mark Sullivan

Michael Olson

Department of Electrical Engineering and Computer Sciences
University of California
Berkeley, California 94720

Abstract

This paper presents two agorithms for maintaining B-
tree index consistency in a DBMS which does not use
write-ahead logging (WAL). One algorithm is similar to
shadow paging, but improves performance by integrating
shadow meta-data with index meta-data. The other algo-
rithm uses a two-phase page reorganization scheme to
reduce the space overhead caused by shadow paging.
Although designed for the POSTGRES storage system,
these agorithms would also be useful in a WAL-based
storage system as support for logical logging. Measure-
ments of a prototype implementation and estimates of the
effect of the algorithms on large trees show that they will
have little impact on data manager performance.

1. Introduction

The POSTGRES storage system uses no-overwrite
techniques to combine support for historical data with
support for transaction management [13]. Instead of
write-ahead log processing, POSTGRES recovers from
failures by faling back to the latest version of its
preserved historical data. Using historical data in place
of a conventiona log gives POSTGRES important avai-
lability and reliability advantages over other database
management systems. Data availability improves
because the DBMS can restart after a failure in seconds.
The database is always consistent without log process-
ing, so restart need only initialize in-memory data struc-
tures. By eliminating log processing, POSTGRES pro-
vides transaction support without special recovery code.
Avoiding complex recovery code increases DBMS relia-
bility.

The origina POSTGRES storage system as
described in [13] treated indices and heap (unkeyed)
relations in the same manner. [13] describes data struc-
tures used to determine which tuples were created by
transactions which never committed. The DBMS ignores
these tuples after a failure. However, because indices
often have higher concurrency requirements than heap

Thiswork is supported by NSF grant M1P-8715235.

relations, most data managers must treat the two dif-
ferently. For high concurrency, POSTGRES indices
must use non-two-phase locks which do not work well
with the original POSTGRES storage system.

A more important problem for index management
is that index data structures include pointers between
disk pages. A single update to the index can change
several pages and the pointer links among them. Failing
after some but not al of the pages have been written to
stable storage leaves the index inconsistent. In a DBMS
which uses a write-ahead log (WAL) protocol for
recovery, the atomicity of index updates is guaranteed by
log processing at recovery time. POSTGRES has no log,
S0 it requires other solutions.

In [10], the DBMS maintains consistency of B-tree
indices by adding extra synchronous disk writes and by
controlling page write order. POSTGRES index
management assumes that synchronous writes to a single
file are unordered for two reasons. First, using several
synchronous writes per page split would significantly
worsen page split performance. Controlling write order
in a single (multi-page) synchronous write is impossible
in UNIX-based operating systems and would worsen the
performance of disk scheduling algorithms even if it
were possible. A second and more important reason not
to depend on write ordering for index management is
that it will not work for some common kinds of indices.
The B'"™-trees used in POSTGRES have several pathsto
any B-tree leaf page. No write order sequence exists that
will leave the data structure consistent during the entire
page split (example in Section 3.5).

This paper presents two general techniques for
maintaining index consistency without using write-ahead
logging. Although we have implemented them only for
B'"-trees, the same techniques can be used for R-trees
[6], extensible hash indices [4], and other B-tree variants
such as B"-trees [3]. In both techniques, the DBMS
detects on first use any inconsistencies in the index
caused by interrupted updates. When an inconsistency in
the index is discovered, consistency is restored by reexe-
cuting incomplete page split or merge operations. Again,

to maintain reliability, the two techniques largely avoid
special case recovery code. The recovery operation for a
page split is nearly the same as the normal page split
operation.

One of the two techniques uses a no-overwrite
strategy which is similar to shadow paging [9]. The
before image of a page to be split is left intact on stable
storage until the two half-pages resulting from the split
have been written out. Although recovery mechanisms
based on shadow paging have been abandoned in com-
mercial systems because of the performance problems
experienced by System R [5], they are a practica
mechanism for managing indices. Shadow paging makes
sequentially ordered pages in the file non-sequential on
the disk. While non-sequential ordering ruins the perfor-
mance of clustered relation scans, it is not an issue for
index files. The shadow paging technique, however, till
has larger space overhead than a normal index.

The second technique, page reorganization, elim-
inates that space overhead, but performs poorly when the
same index page splits many times during the same tran-
saction. The page reorganization scheme ensures that
keys moved from one page to another in a split are
always available on either the source or destination page.
A hybrid between the two algorithms could preserve the
best features of each. Using shadow paging near the leaf
pages where splits are most common would improve
split performance; using page reorganization nearer the
root would reduce space overhead.

The index management techniques used in
POSTGRES can even improve the performance and reli-
ability of a conventional WAL DBM S which useslogica
logging to record index updates. B-tree index implemen-
tations often require physica logging of the keys
involved in page splits or merges in order to maintain
consistency (e.g. [11]). Combining logical logging and
the POSTGRES shadow paging or page reorganization
indices would make the write-ahead log more compact
and prevent B-tree keys corrupted by software errors
from propagating into the log.

This paper is divided into five parts. The first and
second list assumptions and describe the new index
management techniques. A third section discusses the
implications of the technique for logical logging in a
WAL storage system. The fourth and fifth sections model
and measure performance impact.

2. Assumptions

As in [8], we assume that no duplicate keys are
stored in indices. In POSTGRES, duplicate keys are
turned into <value, object id> keys which are
guaranteed to be unique before they are entered into the
index.

In POSTGRES, all pages touched by a transaction
must be written to stable storage before the transaction

commits. For the purposes of this paper, when the
DBMS syncs its pages, all modified pages are written to
disk. They are written to disk in an order chosen by the
operating system, not the DBMS. When a crash occurs
during a sync operation, any subset of the synced pages
may have been written to disk. We assume that single-
page disk writes are atomic. The sync system call is
assumed either to block the DBMS or to notify the
DBMS when al the page writes have been completed.
The sync operation corresponds to the support for write
ordering provided by the UNIX operating system.

To make the index recoverable without log pro-
cessing, the DBMS must ensure that currently valid keys
are visible and invalid keys are invisible to index lookup
operations. The POSTGRES storage system can detect
and ignore records pointed to by invalid keys, so
recovery only needs to ensure that valid keys are not lost.

In POSTGRES indices, there are two possible
sources of inconsistencies. inter-page and intra-page
inconsistencies. Inter-page inconsistencies occur when a
pointer to page B is stored in page A. A failure could
occur after A has been written to stable storage but
before B has been. An intra-page inconsistency happens
if a page is written to stable storage while the DBMS is
adding a key to the page. This can happen easily in
POSTGRES if two transactions insert keys into the same
page. If the first commits and forces the page to be writ-
ten to stable storage while the second is in the middle of
an insert, the page on stable storage will be inconsistent.
After a crash, the DBMS must be able to detect that the
page isinconsistent and repair it.

3. Support for POSTGRES Indices

3.1. Traditional B-tree Data Structure

In a traditional B-tree [1], each page of the tree
contains an array of <key,data> pairs and a header
which describes space allocation on the page. The order
of the keys on the page is recorded by a line table
(described in [11]). Each entry of the line table contains
an offset to the beginning of a <key, data> pair in the
page. If a new key is added to a page, the line table
entries are reordered, not the <key, data> elements stored
on the page. On an internal page, the data element asso-
ciated with a key is a pointer to a child page. On a leaf
page, the data element associated with a key is a tuple
identifier (TID) — a pointer to a data page and a line table
entry on that page.

Comer [3] describes B-tree data structures in some
detail, so we will not describe the basic page split and
merge operations. Lanin and Shasha [7] show that B-
tree merge operations can be handled using an algorithm
analogous to the page split algorithm. Their observation
about traditional B-trees is also true for the new B-tree
data structures described in this paper, so we will focus

on B-tree splitsin the discussion that follows.

3.2. Sync Tokensand SynchronousWrites

The POSTGRES index management algorithms
use a global sync counter maintained by the DBMS to
remember which pages were written out during a given
sync operation. After every sync operation in which an
index split occurred, the DBMS increments the global
sync counter. A maximum sync counter guaranteed to
be larger than the global sync counter is maintained on
stable storage. If the current global sync counter
approaches the maximum, a new maximum must be
chosen and written to stable storage. After a crash, the
maximum sync counter is used to reinitialize the global
sync counter.

A sync token is the value of the global sync
counter at one point in time. Sync tokens are saved on
index pages to detect inter-page inconsistencies. The
last crash sync token is the initialization value used
when the DBMS recovered from the most recent system
crash. If the DBMS shuts down cleanly, the globa sync
counter and last crash sync token are written to stable
storage.

3.3. Technique One: Shadow Page I ndices

In POSTGRES shadow B-trees, every key on an
internal page contains a pointer to the current and previ-
ous version of the child page associated with the key.
Instead of an array of <key, childPtr> pairs on the page,
the shadow B-tree page is an array of
<key, childPtr, prevPtr> triples (see Figure 1). The previ-
ous page associated with a key is a page containing the
key value which is guaranteed to be on stable storage. If
the childPtr is ever found to be inconsistent, the prev
page is used to build a new child page.

When splitting a B-tree page, P, two new pages
are dlocated - call them P, and P,. Half of the keys
from P are copied to P, and half to P,,. During the split,
the keys on P are neither modified nor overwritten.
When P, and P, are initialized, the value of the global
sync counter is recorded in a syncToken field in each
page's header.

After the split, P's parent page, A, must be
updated. Page A initially contains akey K1 which points
to P. The traditional B-tree split algorithm calls for a
new key, K2, containing a pointer to Py, to be added to
A. In the shadow paging agorithm, A is updated in the
following manner:

(1) The new key K2 is alocated on A. K2's
childPtr field contains the page number of page Py,.

(2) If P's sync token is different from the current
global sync counter, P must have been written to stable
storage aready. In this case, the prevPtrs for both K2
and K1 are set to point to P, and P is added to an in-

memory to-be-freed list. After the next sync operation,
P will be added to the index fredlist.

(3) If P’s sync token is the same as the current glo-
bal sync counter, the prevPtr for K1 must be reused since
P isnot yet on stable storage. K1's prevPtr isassigned to
K2's, and P is freed immediately. This situation only
occurs if two splits occur at the same key between sync
operations.

(4) K2 isinserted into the page A’'sline table.

(5) Key K1 is modified so that its childPtr field
contains the page number of P, instead of P.

If adding K2 to the page A causes A to split, the
same algorithm is followed unless A is the B-tree root
page. If the root page splits, a new root page is created
containing two <key, data> pairs pointing to the two
halves of the old root. The first page of the index is a
meta-data page containing a pointer to the current root of
the tree. Like internal page keys, the root pointer must
contain a previous and current page pointer.

In order to prevent an intra-page inconsistency, we
must be careful when adding K2 to the line table. The
line table entries are intra-page pointers — offsets within
the page — which point to key values. The line table is
ordered, so the line table entry following K1's offset is
selected to hold K2's offset. The line table is extended
by first copying the last entry in the line table one ele-
ment beyond the line table, then incrementing the nKeys
field of the page header. Next, al of the line table
entries between K1's and the last one are copied one
entry to the right of their current position. Finally, K2's
offset issaved in the entry after K1's.

3.3.1. Detecting Inconsistenciesin the Index

A crash during a B-tree update can cause an incon-
sistency only if the parent, A, is written to stable storage
before the crash, but not the child. In that case, A points
to an uninitialized page or a page that has been reused. If
A was not written, then the new child page is inaccessi-
ble, but the parent-child link is consistent.

When descending from A to P, the DBMS deter-
mines from A the minimum and maximum key values
that should be on P before stepping from A to P. At P,
the minimum and maximum key values actually present

VP ke

K1 prev ﬁ P
=/ Paa K1 e
Before After

Figure 1. Shadowing Page Split

on the page are compared to the expected key range. If
the key ranges are the same, the parent-child link is con-
sistent and the search can continue. If the key ranges
differ or if the page is zeroed, the DBMS has detected an
inter-page inconsistency. Intra-page inconsistencies are
detected when two adjacent entries in the line table con-
tain the same offset value.

3.3.2. Repairing Inconsistenciesin the Index

As soon as a broken inter-page pointer link is
discovered, the DBMS must redo the interrupted page
split operation. The prevPtr shows the page that existed
before the split. To reinitiaize the out-of-date child
page, the DBMS uses the keys on the parent page to
determine the range of keys that were on the missing
page. These keys are copied directly to the child page
from the page pointed to by prevPtr. The sync token on
the child page is initialized to the current global sync
counter. After the child page has been reinitialized, the
B-tree search can continue.

If the root page is split and the new version of the
root is lost, the prevChild page is copied directly to the
child page. If no root page existed before the failure (i.e.
all keys inserted into the tree were lost), the root has no
prevChild page and isinitialized to an empty page.

The DBMS repairs an intra-page inconsistency by
deleting the duplicate entry. The DBMS copies line
table entries |eft until the duplicate is the last entry in the
line table, then, decrements nKeys in the page header.

3.3.3. Free Space Management

During normal operation, pages freed from an
index are kept on an in-memory freelist associated with
that index. Because the freelist is in volatile storage, it
does not survive system failures and must eventualy be
regenerated after afailure. In a UNIX-based file system,
anew page may always be allocated, when the freelist is
empty, by extending the index file.

POSTGRES heap relations require a garbage col-
lector as part of the storage system’s archiving feature
[13]. Adding index freelist regeneration to its current
archiving tasks does not make garbage collection much
more expensive. If the DBMS is shutdown cleanly, the
current index freelist should be written to disk. When the
DBMS is restarted, the freelist on disk must be deleted
before any of the pages on the list are reallocated. Oth-
erwise, a crash will cause the old freelist to be valid
again and allow the pages to be allocated twice.

For shadow indices, the key range associated with
each page in the freelist must be stored in the freelist
along with the page number. Key ranges are used to
detect inconsistencies that occur when the child page was
not written to disk. If the same page were reallocated for
the same key range, there would be no way to tell if the

new version of the page were lost in a crash.

3.4. Technique Two: Page Reorganization I ndices

The B-tree modifications described above add four
bytes to each key on an internal page (for a prevPtr). If
keys are small, the extra four bytes will reduce B-tree
fanout and increase the height of the tree. Increasing the
height of the tree increases the average cost of data
access.

The page reorganization algorithm reduces this
loss of fanout by eliminating the prevPtr from the
<key, data> pairs in a B-tree page. In this agorithm,
however, splitting page P does not reclaim space on the
page immediately. During the split, the DBMS copies
half the keys on P to a new page and reorganizes P
according to the algorithm described below (see Figure
2). After reorganization, P’'s origina keys are intact on
the page. Once a sync operation successfully writes the
reorganized P and its new peer to stable storage, the
space on page P containing the duplicated keys is
reclaimed. If the DBMS fails after P is written to stable
storage but before P’'s new peer is, no keys are lost. The
reorganized page P can still be used for recovery.

The page reorganization algorithm adds the fields
prevNKeys and newPage to the page header. If the
prevNKeys field on a page is non-zero, the page till
contains backup keys to be used in recovery. If prevN-
Keys is zero, the page is safe for update. Below, we
describe a split of page P into P, and P,. P, isthe reor-
ganized page. P, is the page that will contain the new
key that caused the split. Note that P, may be either the
left or the right child after the split. The newPage
pointer in the reorganized page (P,) points to Py;
newPage in Py, isnil.

A split of page P proceeds as follows:

(1) Two new pages are alocated. P, is alocated
in memory only; it is not backed up on the disk. Py is
allocated normally.

Before

Header
Py

K2 v K4 2
K1 K3

Figure 2: Page Split For Page Reorganization

(2) Half of P's keys are copied to P, and half to
Py, just asin anormal split. The prevNKeys field on Py
is initidlized to zero. On Py, it is initialized with the
number of keys on the original page P.

(3) The keys from P, are now copied to the free
space area of P,. These keys are not allocated on the
page, just copied into the page’s free space region. A
line table for the keys is set up just beyond the line table
for P,. P, is guaranteed to have space enough for P,’s
keys and line table because al of this information was
stored on the original page P.

(4) The sync tokens of P, and P, are initiaized
using the global sync counter.

(5) P, isremapped (in the in-memory buffer pool
meta-data) to P’ s location on disk.

(6) The new key whose insertion caused the splitis
added to P,. P’s parent page is now updated to reflect
the split.

If the next sync fails, one of five inconsistencies
can occur:

(8) only P, iswritten to disk (replacing P),

(b) only P, and Py, are written (P, isinaccessible),
(c) only the parent and P, are written,

(d) only the parent and P,, are written,

(e) only the parent iswritten.

If only P, iswritten, the tree is not inconsistent (but page
P, islost).

In cases (a) and (b), the tree becomes consistent by
regenerating P (assigning prevNKeys to nKeys reallo-
cates the duplicate keys). In case (c), Py is regenerated
by copying the duplicate keys saved on P,. In case (d),
P, is regenerated by removing the keys that are
represented on P,. In case (€), the split is repeated to
generate both P, and Py,.

Every time a key is added to or deleted from a
page, the DBMS must check whether or not free space
on the page can be reclaimed. If the prevNKeys fidd is
zero, there are no extra keys stored in free space. Other-
wise, the sync token on the page must be checked. There
are three cases:

(2) If the sync token is the same as the global sync
counter, no sync operation has occurred since the page
was initialized, so the duplicate keys on the page are still
required for recovery. The DBMS must block for a sync
operation before the key can be added to the page.

(2) If the sync token is greater than or equal to the
last crash sync token but different from the global sync
counter, the new key can be added normally. A sync
operation has definitely committed P, and P,, and the
keys on P, will no longer be needed for recovery.

(3) If the page sync token is less than the last
crash sync token, we cannot immediately tell if the split

was committed successfully. The DBMS has crashed
since this page was written. |f the page's sibling from
the last split was lost in the crash, the backup keys on
this page are still needed for recovery.

In the last case, the newPage pointer is used to find
the sibling. If the sibling exists and has the same sync
token as the current page (or a larger one), the sibling
does not need to be recovered; the parent and both halves
of page P made it to stable storage after the split. If the
sibling is zero or has an older sync token, the sibling is
out of date and must be recovered. After a new key is
inserted, the prevNKeys field should be zeroed so we do
not check for inconsistencies until the next page split.

3.5. Secondary Pathsto L eaf Pages: B'™-tree

In B'""™tree indices, the performance of indexed
scans is improved with a doubly-linked peer pointer
chain between leaf pages with consecutive keys. The
peer pointers allow scans to move from leaf page to leaf
page without reading additional internal pages. Key
inserts till traverse the path from root to leaf. When a
page is split, the left neighbor (or right and left, in the
shadow page algorithm) of the page must be re-linked so
that the peer pointer path is consistent.

B'"-trees have more complicated failure modes
than simple B-trees. There are two paths to any given
leaf page; a key on the leaf page may be reached by
either the peer pointer or the root-to-leaf path. Tech-
niques like those described above could be used to
correct inter-page inconsistencies in either path, but, in
the worst-case failure mode, the two paths could become
inconsistent with one another. For example, in Figure 3,
the root-to-leaf path contains the post-split version of a
given page (in bold), while the old peer pointer path con-
tains the pre-split version of the page.

Even this worst-case failure does not actually cor-
rupt the index unless a key is added to or deleted from
one of the duplicate pages created by the failure. The
transaction whose incomplete split created the duplicate
paths did not commit (otherwise both paths would have
been successfully written to disk). Until the first
insert/del ete after the failure, the duplicate pages contain
the same set of valid keys.

Figure 3: Worst-Case Inconsistent B'™-Tree

3.5.1. Detecting Inconsistenciesin the Index

During a B'"™-tree scan, the peer pointer path is
checked for inter-page inconsistencies. Unfortunately,
the key ranges used to detect inconsistencies in the root-
to-leaf path cannot be used for the peer pointer path. On
the peer pointer path, a page does not know its peer’s
range and cannot record it accurately unless each page is
also updated when its peer splits.

To detect inconsistent peer pointer paths, we use
two additional sync token fields which must be included
in the page header — one associated with each peer
pointer. If P1 and P2 are peer pages, P1's pointer to P2
and P2's pointer to P1 must have the same sync token
associated with them. When the peer pointers are recon-
ciled during the split, the sync tokens for the peer
pointers on the neighbor pages must be reset also.

Comparing two peers sync tokens during path
traversal will detect any inconsistency in the path. If a
link is broken by a crash during update, the sync tokens
on adjacent pages will not agree. An inconsistent link is
repaired by following the root-to-leaf path to the correct
peer. If the root-to-leaf path is broken, it is repaired
using one of the repair algorithms described above.

Even sync tokens do not detect the existence of
two completely separate pointer paths as occurs in Figure
3. In this case, the peer pointer path is internaly con-
sistent (and the sync tokens match), but the peer pointer
path is not consistent with the root-to-leaf path. When-
ever akey isinserted into a page P, we must ensure that
Pislinked into the most recent peer pointer path.

When inserting a key into page P, the DBMS first
checks that P’s split token is greater than the last crash
sync token. If so, we know the page is part of a con-
sistent peer pointer path. The path only becomes incon-
sistent during a system failure. Otherwise, the DBMS
must follow the peer pointer path in both directions from
the leaf page targeted for insert. The search stopswhen a
page with a different sync token is discovered (page sync
token not peer pointer sync token). If the peer pointer
path is consistent until this point, the leaf page inserted
into is reachable along the peer pointer path. Once thisis
done, we can mark the page to avoid rechecking on sub-
sequent insertions.

3.6. Concurrency Control

The POSTGRES B-tree implementation uses a
concurrency control algorithm based on Lehman-Yao
[8]. In Lehman-Y ao, readers and writers must descend
the tree from root to leaf to find the page containing a
given key. Writers ascend again as splits or deletes pro-
pagate up from the leaf. When descending, locks are not
coupled; readers always release one lock before acquir-
ing the next. When ascending, locks are coupled; the
lock on a child page is released only after the correct
parent page is acquired. As pointed out in [7], this

algorithm is deadlock-free, since lock coupling is only
used when traversing the tree in one direction.

Lehman-Yao relies on the fact that the lower-
valued keys of a split page remain on the original page.
Since this is not true in shadow B-trees, we add a
newPage pointer to the B-tree page header. The
newPage pointer on the original pageis set to point to the
new left page. Whenever a process visits a page with a
non-nil newPage pointer, it traverses the link to the new
page. This is analogous to the horizontal movement
required in Lenman-Yao if the datum of interest was on
the high half of a split page. Asin B'™-tree peer pointer
links, sync tokens are used to detect inter-page incon-
sistencies in the newPage pointer link. In page reorgani-
zation, we follow peer pointers asin Lehman-Y ao.

We introduce a new locking protocol to ensure that
peer pointers are adjusted correctly. The protocol relies
on a new lock called a split lock. Split locks conflict
only with split locks.

If a writer finds that a page must be split, it
releases its write lock, acquires a split lock, and reac-
quires the write lock. It then splitsthe page. Finally, the
write lock is released and peer pointers on neighboring
pages are updated. The split lock is released once the
peer pointers have been updated. Locking out con-
current splits guarantees that we can traverse link
pointers to find neighbors and update their peer pointers.
Deadlocks are impossible since processes acquire the
split lock before the write lock, and acquire only one
such pair in the B-tree at atime.

Concurrent access can make inter-page links tem-
porarily inconsistent, so our algorithm must distinguish
between true errors and false inconsistencies due to a
concurrent update. In order to do this, we traverse a link
a second time if we suspect an error. If the link is
unchanged, the inconsistency is genuine and must be
repaired. A temporary inconsistency between peer
pointers is caused by a split of one of the two siblings.
The splitter will restore consistency before releasing its
write locks, so false inconsistencies are always repaired
before we can traverse the link for the second time.

Finally, we must ensure that the page is no longer
inuse at thetimeit isreallocated. Suppose, for example,
that a reader is descending from parent to child. It is
possible for the reader to save a pointer to a child page,
release the lock on the parent, and lock the child only to
find that another process has split the parent and recycled
the child page.

Our algorithm calls on the reader to pin the buffer
containing the child page in memory before releasing the
parent lock. The alocator knows not to reallocate pages
in buffers with a pin count greater than one. The reader
may unpin the buffer as soon as the child’s lock is
released. In case of page splits, a writer must keep the
buffer pinned until it reascends after the update has

completed. This solution does not add synchronization
overhead since the buffer must be pinned in memory
before use anyway. Lanin and Shasha [7] discuss two
more complex techniques for solving this problem in the
case of pages recycled after the last key is deleted.

4. Conventional Recovery vs. Shadowing

Either of the two techniques discussed in this
paper can be used to support logical logging. In such a
system, logging a record update implicitly logs any
changes to related indices. If the logged change is
undone or redone, any affected index records are deleted
or inserted. Recovery-time insertion of a second key
which points to the same record is detected and
prevented. Since any unsync’'d work can be lost in a
failure, the B-trees must be sync'd periodicaly to incre-
ment sync counters and reduce the amount of work that
must be redone after a failure. A conventional WAL-
based storage manager, on the other hand, uses physical
logging. A page split causes every key moved in the
split to be logged as a delete from the origina page and
an insert in the new sibling page.

Logical logging has some fault tolerance advan-
tages over conventional B-tree management. Little spe-
cia case code is required for recovery. The same insert
and delete operations used for normal execution are also
used for recovery. Specialized recovery code includes
only the code to repeat the incomplete page split after an
inconsistency is detected.

More importantly, because logical logging stores a
high level representation of index operations, it is harder
to propagate damage caused by software errors into the
log. If aninternal index page is corrupted by a software
error, physical logging can copy the corrupted keys into
the log. During recovery, the corrupted keys will be
restored to the index. Logical logging never copies
information from the index into the log. Corruption of an
index page will not be retained after a crash unless the
corrupted page is saved in a checkpoint.

In [12], we compare the shadowing scheme of
System R [5], the more conventional WAL -based B-trees
of ARIES/IM [11], and the shadow index scheme
described here. In addition to non-sequential disk layout,
[11] criticizes shadowing techniques for the limits they
place on concurrency. System R limited concurrency
because it held transaction-duration locks on index
pages. System R aso alowed only one transaction to
abort at a time because of potential deadlocks during
undo. Neither of these are a concern in shadow indices
because of the concurrency algorithms of Section 3.6.

5. Modelling The Effect of Increased Tree Heights

~ One performance concern regarding POSTGRES
B'"™tree indices is that the additional space overhead
they incur will increase the height of the tree, thus

driving up access costs. In order to quantify this cost, we
analyzed growth rates for normal, page reorganization,
and shadow B'"™-trees. The complete analysis appears
in[12].

We discovered that, in practice, the space over-
head for shadow index prevPtrs does not matter very
much. Small trees have few levels of interna pages, so
prevPtr overhead is negligible. Because of the way that
the trees grow, the heights of larger normal and shadow
B'"™_trees will coincide for most index sizes. The sha-
dow trees at these coincident heights will have less free
space on internal pages, but the tree will have the same
height. When index keys are large, fewer keys fit on a
page and less space islost to prevPtr overhead.

Significant differences in shadow and normal tree
depth would arise only if keys were small and if the tree
had many levels. However, even with the worst-case
insertion order, a B'"™-tree of either type storing four-
byte keys would exceed the 2 GByte maximum size of a
UNIX file before it reached five levels.

6. Performance M easur ements

To measure the performance of our shadow and
page reorganization index implementations, we ran two
tests against each type of index. The first test built
indices of three different sizes using four-byte keys.
Keys were added in ascending order so as to give worst-
case split performance. In each test, we measured
elapsed time for each type of index. The second test
retrieved 8,000 random keys from each index created in
the insertion test. Keys were uniformly distributed
throughout the range represented in the index. Measure-
ments were made on a Decstation 5000/200 running
Ultrix 4.0 and POSTGRES.

The times shown in Table 1 are the means of ten
repetitions of each test. In al cases, the standard devia-
tion of the measurements we took was less than 2.5% of
the mean. For each time shown in the table, we show (in
parentheses) the time for the test expressed on a normal-
ized scale, where the time for the same test on the stan-
dard B"™-tree algorithm is defined to be one. Only time
spent in the B'"™¢-tree access method, and in the routines
that it calls, is included in these figures. This includes
time spent doing disk /O, but does not include the cost
of committing transactions. Commit cost will depend on
the logging scheme chosen.

The results clearly show that the shadow algorithm
is within three percent of the cost of ordinary B'™-trees
for insertions. The higher cost is due to the added
expense of verifying inter-page links in traversing the
tree. For reads, the shadow tree percentages are about
three and a half percent worse than ordinary B'™-trees.

Costs for the page reorganization algorithm are
similar. Reads are between three and four percent more
expensive than for the normal tree. Page reorganization

Operation Size of Index in Keys
B-tree Type 10,000 20,000 40,000
Inserts
Normal 12.065s | 24.269s | 51.307 s
(1.000) (1.000) (1.000)
Page Reorg | 12.584s | 25.191s | 53.718 s
(1.043) (1.038) (1.047)
Shadow 12.318s | 24.924s | 52.282s
(1.021) (1.027) (1.019)
8,000 Lookups
Normal 9.122s | 12492s | 19.536s
(1.000) (1.000) (1.000)
Page Reorg 9.441s | 12.879s | 20.259s
(1.035) (1.031) (1.037)
Shadow 9.368s | 12.892s | 20.200s
(1.027) (1.032) (1.034)

Table 1: Insert/L ookup Performance Comparison

insertions, however, are more expensive — between three
and five percent higher than the cost for insertions into
an ordinary B'""™-tree. The main reason for this is that
extra work must be done to order data on old pages dur-
ing splits. As noted elsewhere in this paper, page reor-
ganization is best suited to environments with low inser-
tion rates.

The overall cost of using either index management
strategy is likely to be very small for many workloads.
For example, in the Wisconsin benchmark [2],
POSTGRES spends only 3.6 percent of its time in the
indexed access methods. Even 4.7 percent of this — our
worst performance degradation — is smaler than the
measurement error in the benchmark.

7. Summary

The POSTGRES DBMS relies on a no-overwrite
storage system to avoid log processing during recovery.
By avoiding log processing, POSTGRES recovers from
failures quickly and eliminates a great deal of the com-
plex recovery code found in most data managers. Unfor-
tunately, concurrency requirements and inter-page
pointers make the POSTGRES storage system more
worthwhile for heap relations than for indices.

In this paper, we have presented two techniques
for managing indices without using write-ahead log pro-
cessing. Both techniques use redundant information in
index pages to detect inconsistencies caused by system
failures as they are encountered. Inconsistencies are
removed by repeating the interrupted page split or merge
operations. WAL-based data managers could also use
these agorithms to avoid physical logging during page
splits. Measurements and analysis of a prototype imple-
mentation suggest that the algorithms will have little
impact on data manager performance.

Acknowledgements

We would like to thank Mike Stonebraker, Margo
Seltzer, Wei Hong, David Bacon, Jennifer Caetta, Nat
Goodman, and Ethan Munson.

References

[1] R. Bayer, C. McCreight. ‘* Organization and Mainte-
nance of Large Ordered Indexes,”” Acta Informa-
tica, 1(3):173-189, 1972.

[2] D. Bitton, D. DeWitt, C. Turbyfill, **Benchmarking
Database Systems, a Systematic Approach,”” Proc.
Ninth International Conf. on Very Large Data-
bases,, November 1983.

[3] D. Comer. ** The Ubiquitous B-Tree,”” ACM Comput-
ing Surveys, 11(4), 1979.

[4] R. Fagin, J. Nieverrgelt, N. Pippenger, H. Strong,
‘‘Extensible Hashing — A FastAccess Method for
Dynamic Hashing,”” ACM Trans. on Database Sys-
tems, 4(3):315-334, Sept. 1979.

[5] J. Gray, P. McJones, M. Blasgen, B. Lindsay, R.
Lorie, T. Price, F. Putzolu, |. Traiger. ‘‘The
Recovery Manager of the System R Database
Manager,”” Computing Surveys, 13(2):223-242,
June 1981.

[6] A. Guttman. ‘‘R-Trees. A Dynamic Index Structure
for Spatial Searching,’”” Proc. ACM S GMOD
Conference, pages 47-57, 1984.

[7] V. Lanin, D. Shasha. ‘‘A Symmetric Concurrent B-
tree Algorithm,”” Proc. Fall Joint Computer
Conference, pages 380-389, 1986.

[8] P. Lehman, S. Yao. ‘‘Efficient Locking for Con-
current Operations on B-trees,’”” ACM Trans. on
Database Systems, 6(4), December 1981.

[9] R. Lorie, ‘“*Physica Integrity in a Large Segmented
Database,’ ACM Trans. on Database Systems,
2(1):91-104, March 1977.

[10] D. Menasce, O. Landes. ‘* Dynamic Crash Recovery
of Balanced Trees,”” Proc. Symposium on Reliabil-
ity in Distributed Software and Database Systems,
pages 131-137, July 1981.

[11] C. Mohan, F. Levine, ‘**ARIES/IM: An Efficient and
High Concurrency Index Management Method
Using Write Ahead Logging,”” IBM Technical
Report RJ 6846, 19809.

[12] M. Sullivan, M. Olson, ‘*An Index Implementation
Supporting Fast Recovery for the POSTGRES
Storage System,”’ University of California, Berke-
ley Technical Report M91-98, 1991.

[13] M. Stonebraker, ‘‘The POSTGRES Storage Sys
tem,”” Proc. Very Large Data Bases Conference,
pages 289-300, September 1987.

