
E�cient Organization of Large Multidimensional Arrays�

Sunita Sarawagi Michael Stonebraker

Computer Science Division

University of California at Berkeley

Abstract

Large multidimensional arrays are widely used in sci-

enti�c and engineering database applications. In this

paper, we present methods of organizing arrays to

make their access on secondary and tertiary memory

devices fast and e�cient. We have developed four

techniques for doing this: (1) storing the array in

multidimensional \chunks" to minimize the number

of blocks fetched, (2) reordering the chunked array to

minimize seek distance between accessed blocks, (3)

maintaining redundant copies of the array, each or-

ganized for a di�erent chunk size and ordering and

(4) partitioning the array onto platters of a tertiary

memory device so as to minimize the number of plat-

ter switches. Our measurements on real data obtained

from global change scientists show that accesses on ar-

rays organized using these techniques are often an or-

der of magnitude faster than on the unoptimized data.

1 Introduction

Scienti�c and engineering applications often utilize
large multidimensional arrays. Earth scientists rou-
tinely process satellite images in the form of large two
and three dimensional arrays [DR91]. Their simu-
lations of atmosphere and ocean climatic conditions
generate large regular arrays of
oating point num-
bers as output [M+92]. For example, typical runs of
the UCLA General Circulation Model (GCM) gen-
erate �ve dimensional arrays of size 5 to 50 Giga-
bytes. Other areas where large arrays are commonly
used include image processing [Wad84], computational
chemistry, structural dynamics and seismology. Be-
cause of the large storage requirements for such ar-
rays, they are usually allocated to tertiary storage de-
vices. Achieving high performance in spite of the non-
uniform access times and the high latency of such stor-
age devices requires good allocation strategies [SD91].

�This research was sponsored by the National Science Foun-

dation under grant IRI-9107455, the Defense Advanced Re-

search Projects Agency under grant T63-92-C-0007, and the

Army Research O�ce under grant 91-G-0183.

The usual method of storing a multidimensional ar-
ray is linear allocation whereby the array is laid out
linearly by a nested traversal of the axes in some prede-
termined order. This strategy, which mimics the way
Fortran stores arrays in main memory, can lead to
disastrous results on a secondary or tertiary memory
device. Because users typically access large arrays in
several di�erent ways, Fortran order will optimize
for one access pattern while making all others very
ine�cient. Optimizing the allocation of the array be-
comes increasingly important as array dimension and
size increases. In this paper, we explore methods
of structuring arrays to reduce latency and improve
speed of data accesses. The strategies we explore are:

� chunking : dividing the array into chunks (multi-
dimensional tiles) that are stored and accessed to-
gether;

� reordering : permuting the dimensions of the
chunked array to reduce average seek distance.

� redundancy : storing redundant copies of the ar-
ray which are organized di�erently to optimize for
di�erent patterns of access; and

� partitioning : allocating an array to platters of a
tertiary memory device to minimize the number of
platter switches.

The above techniques can be used, in combination, to
tune the array's internal structure to an access pattern
obtained from either an end user or from statistical
sampling by a data management system.

Related Work

The use of chunking to organize two dimensional ar-
rays has been discussed in [MC69] and [FP79]. Chunk-
ing in the context of image processing has been used to
build tiled virtual memory systems [Wad84] [RCM80].
Whereas those systems deal only with two dimensional
arrays and assume magnetic disk as the storage de-
vice, our interest is in multidimensional arrays with
both magnetic disk and tertiary memory as storage
devices. A more theoretical approach to organizing

multidimensional arrays is presented in [Ros75]. Sim-
iliar work based on mapping a multidimensional space
on to a one dimensional space is discussed is [Jag90].
Their approach organizes data without regard to ac-
cess pattern, whereas our work considers access pat-
terns to optimize layout.

Array organization is related to the general problem
of data clustering. Most clustering algorithms [JD88]
work on a collection of records that are not structured
in any way. Arrays have a regular structure that fa-
cilitates a di�erent approach to storage organization.
This is also the reason why indexing structures like
grid �les [NHS84] or KDB trees used for indexing mul-
tiattribute data are not relevant to array organization.
For example, consider using the grid �le structure for
organizing a multidimensional array. The array is di-
vided into regular chunks and each chunk is a bucket
of the grid �le. Now, given the index of an array el-
ement that we want to access it is a simple matter
to map the index into the chunk in which it is stored
and one does not need a grid �le to do that. The only
use of the grid �le here is to provide a mapping from
the chunk number to the disk block that holds the
chunk and any �le system can do that. Also, as long
as the dimension of the array remains �xed we do not
need to reorganize the array even when the value of
the array elements changes. So, the question of split-
ting and merging buckets does not arise. Grid �les,
however, will be useful if we want to divide an array
into irregular chunks. In order for this to be useful,
it is necessary to have a more sophisticated model for
collecting access patterns and is not dealt with in this
paper.

The rest of this paper is organized as follows. In
Section 2 we present the di�erent schemes we used
for organizing arrays, namely chunking, reordering, re-
dundancy and partitioning. In Section 3 we describe
our implementation of multidimensional arrays in the
next generation DBMS postgres [SK91]. Section
4 presents simulation of several earth science arrays
used by global change researchers in the Sequoia 2000
project [Sto91] and shows the results of our array or-
ganization schemes on this data. Lastly, we present
future work and conclusions in Section 5.

2 Storage of Arrays

We begin this section by presenting the access pat-
tern model that we use for optimization of array lay-
out. Then, we describe each of our four organization
strategies and sketch an algorithm that can be used
to implement it in a DBMS.

Consider an array of n dimensions. We model

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

Figure 1: An Example Array

each user access request as a n-multidimensional rect-
angle located somewhere within the array. Further-
more, we group user accesses into collections of classes
L1; : : :LK such that each Li contains all rectangles of
a speci�c size (Ai1; : : :Ain) located anywhere within
the array. Lastly, we assume that an access occurs
to some rectangle in the ith class with probability Pi.
Therefore, the access pattern for an array can be de-
scribed by the set:

f(Pi; Ai1; Ai2; : : : ; Ain) : 1 � i � Kg

Figure 1 illustrates an example on a 10� 10 array.
The three shaded rectangles (each accessed with prob-
ability 1

3
) represent access in two classes corresponding

to the following access pattern:
f(2

3
; 3; 4); (1

3
; 5; 3)g

The access pattern can either be provided by an end
user or can be determined by statistically sampling
array accesses in a database management system.

2.1 Chunking

Instead of using Fortran style linear allocation,
we can decompose the array into multidimensional
chunks, each the size of one storage block A block is the
unit of transfer used by the �le system for data move-
ment to and from the storage device. The shape of
the chunk is chosen to minimize the average number of
block fetches for a given access pattern. To illustrate
the signi�cance of chunking we consider the example
shown in Figure 2. Figure 2(a) shows a 3-dimensional
array of size X1=100, X2=2000 and X3=8000 stored
using linear allocation and Figure 2(b) illustrates the
same array stored using a chunked representation. As-
sume the array is stored on a magnetic disk and data
transfer between main memory and disk occurs in 8kB
pages (we assume 8kB = 8000 bytes for this example).

20

20

20

(b)(a)

X

=

20
00

X = 8000
3

X

=
 1

00

2

1
Figure 2: An example of array chunking

Let the access pattern for this array be

f(0:5; 10; 400; 10); (0:5; 20; 5; 400)g:

If the array is stored linearly withX3 as the innermost
axis followed by X2 and then X1, as shown in Figure
2(a), then each disk block will hold just one row of
values along X3. The �rst access fetches a total of
10 � 400 � 1 = 4000 blocks, and the second access
fetches 20 � 5 � 1 = 100 blocks. Hence, this access
pattern fetches an average of 4000� 0:5+ 100� 0:5 =
2050 blocks. Since, the bytes requested can �t in 5
blocks on the average, the amount of data fetched is
410 times the amount of useful data.

Suppose we divide the array into 8kB chunks. The
shape of each chunk is a (20, 20, 20) cube as shown in
Figure 2(b). For the same access pattern, the number
of blocks fetched is 1� 20� 1 for the �rst access and
1 � 1 � 20 for the second access, assuming that the
start of the access rectangle aligns perfectly with the
start of a chunk. The average number of blocks fetched
is 20 � 0:5 + 20 � 0:5 = 20 as compared to 2050 for
the unchunked array. Thus, chunking results in more
than a factor of 100 reduction in the number of blocks
fetched. In order to realize these improvements, we
need a way to optimize the shape of a chunk.

We now present a formal de�nition of the problem.
Given an n-dimensional array [X1; X2 : : :Xn] where
Xi is the length of the i-th axis of the array, block
size C and an access pattern f(Pi; Ai1; Ai2; : : : ; Ain) :
1 � i � Kg, the objective is to �nd the shape of
the chunk into which the array should be decomposed
such that the average number of blocks fetched is min-
imized. The shape of the chunk is speci�ed by a tuple
(c1; c2; : : : ; cn) where ci is the length of the ith axis
of the multidimensional chunk. The size of the chunk

puts the following additional constraints on each ci:

nY
i=1

ci � C

The average number of blocks fetched for a speci�ed
access pattern and chunk shape is given by:

KX
i=1

0
@ nY
j=1

�
Aij

cj

�1
APi (1)

The goal is to choose the chunk shape, satisfying the
constraints, that minimizes (1).

The presence of the ceiling function in (1) makes a
closed form solution di�cult. One can always �nd the
optimal solution by exhaustive search of all possible
shapes that satisfy the size constraint. In this case,
the number of shapes generated is exponential in the
dimensionality of the array. Various techniques can be
used to prune the search space. For example:

� Instead of considering all possible shapes, we only
generate the ones which are maximal. A shape is
maximal when increasing the length of any one of
the sides of the shapes will violate the size con-
straint. For example, if C = 15 and n = 2, then
shape (5,3) is maximal whereas (4,3) and (5,2) are
not.

� Instead of considering all possible shapes, we �rst
generate an approximate solution by only consid-
ering shapes for which the length of each side is a
power of 2. This solution is then re�ned by con-
sidering the shapes that are in the \neighborhood"
of this shape. The neighborhood consists of sides
varying between double and half of the correspond-
ing side in the approximate solution.

2.2 Reordering

Once the array is chunked, we require a good method
of laying out the chunks on disk. The natural way is to
lay out the chunks by traversing the chunked array in
the axis order. Hence, di�erent axes order will result
in di�erent chunk layout. The time to fetch the blocks
for a requested rectangle can be reduced by choosing
the right axis order. We now derive a simple formula
for �nding a good ordering of the array axes so that
the average seek distance to retrieve an average rect-
angle in the access pattern reduces. We assume that
the blocks of the array are laid out contiguously on
disk and a cylinder is totally occupied before alloca-
tion of data on the next cylinder. The analysis below
is relevant only if the disk is used exclusively for re-
trievals on the array data.

Consider an n dimensional array [X1; X2 : : :Xn] di-
vided into chunks of shape [c1; c2 : : : cn].

Lemma 1 The number of tracks to seek on disk for

an access request (y1; y2 : : : yn) is at least

(z1 � 1)(d2d3 : : :dn) + : : :+ (zn�1 � 1)dn + zn

B
(2)

where zi = dyi=cie, di = Xi=ci (assuming ci divides

Xi exactly) and B is the number of blocks per cylinder

on the disk.

Proof. Transform all indices to a new coordi-
nate system where chunk [c1; c2; : : : cn] is the ba-
sis element. In the new coordinate system the
array dimension is [X1=c1; X2=c2; : : :Xn=cn] which
is equal to [d1; d2; : : :dn] and the access request
is (dy1=c1e; dy2=c2e; : : : dyn=cne) which is equal to
(z1; z2; : : : zn). We now have an array [d1; d2; : : :dn]
with an access request (z1; z2; : : : zn) on it. If the ar-
ray is laid out linearly in the axis order 1; 2; : : :n, with
n as the innermost axis, the number of blocks between
the start block and the end block of the access rect-
angle is given by the numerator of (2). If each disk
cylinder holds B blocks, the number of cylinders over
which these blocks will span is given by (2).

Lemma 2 Given an access pattern, the value of ex-

pression (2) averaged over all elements of the access

pattern is minimized for the order 1; 2; : : :n (with n as

the innermost axis) if

a1 � 1

d1 � 1
�

a2 � 1

d2 � 1
� : : :

an � 1

dn � 1
; di 6= 1

where aj =
PK

i=1A
0

ijPi; A0

ij = dAij=cje and di =
Xi=ci.

Proof. Substituting ai for zi in (2) gives the expres-
sion to be minimized. We only need to consider the
numerator of this expression. Rewriting it with ai� 1
replaced by xi; 8i we get,

(((: : : (x1d2 + x2)d3 + : : :)di + xi)di+1 + : : :)dj +

xj) : : :+ xn�1)dn + xn: (3)

Interchanging positions of dimensions di and dj (i < j)
gives,

((: : : (x1d2 + x2)d3 + : : :)dj + xj)di+1 + : : :)di +

xi) : : :+ xn�1)dn + xn: (4)

If (3) is minimal then (3) � (4) which is true i�

((xidi+1 + xi+1) : : :)dj + xj � ((xjdi+1 + xi+1)

: : :)di + xi (5)

It can be easily proved by induction that (5) holds if,

xi

di � 1
�

xi+1

di+1 � 1
� : : :

xj

dj � 1
(6)

Extending this for any pair (i; j) such that i < j

and substituting ai � 1 for xi completes the proof for
Lemma (2).

To illustrate the advantage of re-ordering the array
axes reconsider the example in Figure 2(b). Suppose
the number of blocks per cylinder is 60. Then for
the access pattern assumed for Figure 2, the average
number of tracks to seek (from Lemma 1) is 67 for the
array axis order (X1; X2; X3). Using Lemma 2, if we
reorder the axis as (X1; X3; X2) the number of tracks
to seek is reduced to 17.

2.3 Redundancy

Data layout using one chunk size minimizes average
access cost, meaning it is e�cient for some rectangles
but ine�cient for others. We propose maintaining re-
dundant copies of the array which are organized dif-
ferently to optimize for various classes in the access
pattern. Speci�cally, we divide the classes in the ac-
cess pattern into as many partitions as there are pro-
posed copies and optimize each copy for its associated
partition. Hence, the �rst step is to �nd R partitions,
where R is the number of copies, such that the cumu-
lative access time for the queries in the classes of the
access pattern is minimized. We can do this using one
of the following two approaches:

� Use brute force to try all possible partitions and
choose the best. In the worst scenario, the number
of partitions to be considered is exponential in the
number of elements in the access pattern.

� Use vector clustering techniques [LBG80] to group
classes into clusters. We have a starting set of K
classes and wish to divide them into R clusters. Ini-
tially, each class belongs to a di�erent cluster and
we progressively merge pairs of clusters with the
minimal weighted distance between them until R
clusters remain. Algorithms for computing minimal
distance are given in [Equ89].

When a read request arrives for a replicated ar-
ray, the runtime system �rst �nds the replica with the
smallest estimated access cost. The estimated cost is
a weighted sum of the number of block fetches, seek
distance and media switches (in case of tertiary de-
vices). The least cost replica is then used to answer
the query.

2.4 Partitioning

Tertiary memory devices are robo-line storage sys-
tems consisting of a large number of storage media
(tapes or platters) and a few read-write drives. A
robot arm switches the media between the shelves and
drives in typically ten seconds. To improve perfor-
mance the number of media switches required to ac-
cess a requested rectangle should be reduced. The
array should be partitioned such that the parts of the
array accessed together frequently lie on the same me-
dia. We can extend the chunking method to deal with
media switches by:

� making the size of the chunk a platter instead of a
disk block.

� minimizing the number of platter switches instead
of number of page fetches.

Partitioning can be used for minimizing the media
switches for both disk and tape tertiary devices. How-
ever, for tapes the average seek time (45 seconds) is
large compared to the switch time. Hence, minimiz-
ing media switches is less crucial than minimizing seek
time.

3 Implementation in postgres

postgres [SK91] is an extended relational database
system being developed at Berkeley. We have built
into postgres a generalized interface for multidimen-
sional arrays. postgres is well-suited for handling
massive amounts of data; it supports large objects that
allow attributes to span multiple pages and it has a
generalized storage structure that supports huge ca-
pacity storage devices as tertiary memory [Ols92].

In our implementation, arrays are �rst class objects.
Therefore any attribute of a class can be declared to
be an array of any base type. The internal represen-
tation of arrays is a variable length structure with the

following �elds:

int array size

int ndim

int array dim

int array lbound

int flags

byte array data

In this structure, array size is the total size of
the array (data and meta-data); ndim is the number
of dimensions of the array; dim and lbound are integer
arrays of size ndim where the array dim stores the size
of each dimension of the array and the array lbound

stores the lower index of each dimension; flags is a
bit mask that stores information about the array type.
The contents of the data �eld depend on the kind of
array stored and are described later.

Our implementation supports a variety of conve-
nient features:

� Array elements can be stored in one of the fol-
lowing two formats depending on the total array
size:

� Store the array on the same page as the rest of
the tuple. postgres tuples cannot span pages,
so the entire array must be smaller than the
page size (currently 8KB). The data �eld in
this case is used to store the array elements
contiguously in their respective internal repre-
sentation

� Store the array as a postgres large object
[Mos92] and keep a pointer to the large object
in the data �eld of the array structure. The
large object interface in postgres provides a
�le-oriented access to data that span multiple
pages. This implies that the only limit on the
size of an array is the maximum object size (�
17 Tbytes).

A bit in the flag �eld of the array structure in-
dicates the format used by an existing array.

� Arrays of both variable and �xed length base
types are supported. If the array base type is
of variable length, the actual data element is pre-
ceded by an integer that is the size of the data
element. For example, the data �eld for an array
of text f\abc", \xy"g will be stored as f3 a b c 2
x y g.

� Any sub-array of an array can be read by speci-
fying the range of indices. For example, an access
to a subarray starting at the �fth array element

benchmark # array size dimension element size storage media
data set 1 182.25 MB [025 135 027 100 05] 4 bytes magnetic disk
data set 2 324.00 MB [050 180 090 020 05] 4 bytes magnetic disk
data set 3 4.255 GB [072 090 038 144 30] 4 bytes tertiary memory
data set 4 4.255 GB [114 360 180 024 06] 4 bytes tertiary memory

Table 1: Benchmarks

and ending at the ninth is posed as:
retrieve (R.a[5:9])

� The values stored in an array can be updated any
time; it is not necessary to �ll the entire array at
creation time. At array creation time the user
can simply specify the dimensions of the array
and initialize it as an empty array. At any later
time, a replace command can be used to assign
values to any part of the array, as shown in the
example below:
append (R.a[4][5] = "fg")
replace (S.a[1:2][3:3] = "f1,3g").
A limitation in the current prototype is that ar-
rays cannot grow in size after creation. As a
consequence, updates on variable length base el-
ements are not supported.

� Operators can be de�ned on arrays, so that ar-
rays of the same base type can be compared for
equality. For example,
retrieve (x = 1) where R.a = S.a

returns 1 only if R.a and S.a are arrays of the
same base type, dimension and have the same val-
ues.

The Postquel query language has been extended to
provide the necessary array interface.

Chunking

At array creation time, the user can specify whether
the array should be chunked. If so, the user can either
specify the access pattern or use the default chunk-
ing provided. The default chunking chooses the size
of each axis of the chunk to be proportional to the
length of corresponding array axis. If the access pat-
tern is provided, the method in Section 2 is used for
�nding the optimal chunk shape. For example, the
Postquel query
append R (a[100][100][50] = "input array

-chunk acc pattern")

creates a 3 dimensional array for which the array el-
ements are obtained from the �le input array. The
-chunk
ag speci�es that the array should be chun-
ked using the access pattern provided in the �le

acc pattern. The format for specifying the access
pattern is as follows:

K

A11 A12 : : : A1n P1
...
AK1 AK2 : : : AKn PK

K is the number of rectangles in the access pattern,
Ai1Ai2 : : :Ain is the shape of the ith rectangle and Pi
(an integer) is the relative frequency of accessing the
ith rectangle.

The input array is organized into chunks and the
chunked array is stored as another large object. Since
the array organization scheme used cannot work in-
place, it is necessary to make a separate copy of the
chunked �le. A bit in the flag �eld is set to indicate
that the array is chunked. The data �eld is arranged
as a structure with the �rst �eld pointing to the newly
created large object and the second �eld storing the
chunk shape.

For automatic generation of the access pattern for
an array we intend to augment postgres with a user
option whereby all read requests to an array will be
monitored and access statistics collected. At a later
time, the user may invoke the chunking algorithm
which will use this collected statistics for the access
pattern.

4 Performance

In this section we present the performance improve-
ment provided by our organization techniques. Our
experiments were done on a DECstation 5000/200
running Ultrix 4.2. Measurements were made on two
di�erent storage devices. The �rst set of results is
for a local 1 GB magnetic disk using the Ultrix �le
system. The block size, C was set to 8 KB, which
is the �le system block size. A second set of results
was taken from data stored on a write-once optical
jukebox [Son89]; the tertiary storage device currently
supported by postgres [Ols92]. The jukebox con-
sists of 50 double sided platters, each of which has

a 3.27 GB capacity per side. At any time a maxi-
mum of two platters can be physically mounted, and
mounting a platter takes about ten seconds. A cus-
tom storage manager transfers data between disk and
tertiary memory in units of 256 KB and hence block
size is 256 KB.

To make our measurements realistic we considered
arrays used by global change scientists in the Sequoia
project [Sto91]. The �rst source of data was ocean
model output from the General Circulation Model
(GCM) simulations done at UCLA [M+92]. The
arrays consist of three-dimensional snapshots of the
ocean (covering the world or a region of it) taken at
regular intervals of time with horizontal grid resolu-
tion varying from 1

3

�

to 1�. For each point in the
three dimensional space there are 5 model variables
namely, temperature, salinity and three velocity com-
ponents along the x, y and z direction in space. Hence
the arrays have �ve dimensions: time, latitude, longi-
tude, depth and the variables. The UCLA scientists
currently store the array by a nested traversal of the
array axes in the order time, latitude, longitude, depth
and variables with time as the outermost axis.

The second data source was atmospheric output
from the UCLA GCM. In this model, the entire earth
(180� latitude by 360� longitude) is divided into reg-
ular grids with resolution varying from 1:25� to 5� for
9 to 57 horizontal layers of the atmosphere. For each
point in the three dimensional grid, a collection of 38
variables are recorded at regularly spaced time steps.
Thus, the output is another �ve dimensional array of
time, elevation, latitude, longitude and an index of
model variables. The UCLA scientists currently store
the array by a nested traversal of the array axes in the
order time, latitude, variables, longitude and elevation
with time as the least rapidly varying dimension.

We selected four benchmark arrays from the two
sources described above as summarized in Table 1.
The third column indicates the number of values along
each of the �ve array dimensions. Data sets 1, 2 and 4
are chosen from the ocean GCM and 3 from the atmo-
sphere GCM. The �rst two benchmarks were studied
on a local magnetic disk and the next two on a sony
jukebox.

For each of the data sets, we obtained a collection
of queries (10 to 20 in number) by consulting UCLA
scientists. Some sample queries ran include:

� making surface plots of some variables over some
portion of the total surface

� �nding the mean or variance of a variable over time
or elevation

� making cross-section plots of some variable over

some region.

To study the performance improvement with the
array organization techniques we performed the fol-
lowing measurements for each of the four data sets:

We �rst determined the optimal chunk shape for
the user provided access pattern using the exhaustive
search method discussed in Section 2.1. The time to
�nd the optimal chunk size for all the four data sets
took less than a minute. We organized the array into
chunks and ran the benchmark queries on the chun-
ked array. The total execution time, CPU time and
the number of blocks fetched for executing the queries
were recorded. Next, we reorganized the chunked ar-
ray using the axis order speci�ed by Lemma 2 and
repeated the measurements using the same query set.
Finally, we made two copies of the array as described
in Section 2.3 and measured performance by execut-
ing each query on the array copy that has the smaller
estimated cost.

Figure 3 summarizes our measurements in post-

gres for arrays stored on magnetic disk. For data
set 1, chunking results in a 40% reduction in elapsed
time. Reordering results in a further 60% reduction
in elapsed time. Similar improvements are observed
for data set 2. The number of blocks fetched by the
�le system drops even more dramatically with chunk-
ing; there is a factor of 4 and 13 reduction for data
sets 1 and 2 respectively. Since both chunked and
reordered arrays are organized using the same chunk
shape, the number of blocks fetched for the two cases
should theoretically be the same. In practice, a slight
reduction (compare bars 2 and 3 in Figure 3(c)) is
observed because of prefetching in the Ultrix �le sys-
tem. Prefetching works better for a reordered array
since a greater fraction of accesses become sequential
with reordering. 2-level redundancy yields a 27% re-
duction in elapsed time for data set 1 but for data set
2 redundancy does not provide much bene�t.

Figure 4 shows the results of applying various or-
ganization schemes on data sets 3 and 4 stored on the
optical jukebox. Comparison of bars 1 and 2 for data
set 3 shows that queries on the unorganized data takes
5.2 hours to complete compared to 10.2 minutes on
the chunked array. Similarly for data set 4 we observe
a factor of 12 reduction in elapsed time. Reordering
also works well and a 20% and 12% reduction in ac-
cess times is achieved for data set 3 and 4 respectively.
With 2-level redundancy the number of blocks fetched
is lowered by another 60% and the access time by 50%
as compared to the best single copy version for both
data sets.

chunked

reordered

2-redundant

original

Data set 1

200

100

300

T
im

e
 in

 s
ec

on
ds

100

T
im

e
 in

 s
ec

on
ds

50

Data set 1

(a) : Elapsed Time (b) : CPU Time

Data set 2Data set 2 Data set 1

(c) : # Block Fetches

N
um

be
r

of
 b

lo
ck

s
fe

tc
he

d

4000

12000

8000

Data set 2

Figure 3: Performance measurements in postgres

original

default chunking

chunking with

Data set 1

200

100

300

Data set 2

access pattern

E
la

ps
ed

 ti
m

e
 in

 s
ec

on
ds

Figure 5: Performance of default chunking

E�ect of Access Pattern

In all of the optimization strategies discussed, the in-
put access pattern has played a crucial role. To evalu-
ate the role of the access pattern, we measured perfor-
mance on arrays that are chunked without using any
access pattern. Instead, each array is organized using
a default chunk, each side of which is chosen to be
proportional to the side in the original array. Figure
5 shows the di�erence in total execution time between
an array chunked using a perfect access pattern and
an array chunked using the default strategy. From the
�gure it is clear that for both data sets there is at least
a 40% improvement when perfect knowledge of the ac-
cess pattern exists. On the other hand, compared to
the original array the default chunking also shows sig-
ni�cant improvement. Hence even when no knowledge
of the access pattern is available it is a good idea to

do chunking.

5 Conclusion

In this paper, we presented a number of strategies for
optimizing layout of large multidimensional arrays on
secondary and tertiary memory devices. Based on a
suitably captured access pattern, we used chunking
of arrays to reduce the number of blocks fetched and
reordering of array axes to reduce seek distance be-
tween accessed blocks. In cases where it is a�ordable,
we suggested the use of redundancy to organize multi-
ple copies of the same array based on di�erent access
patterns. Very often the size of the array is too large
to be stored in conventional secondary storage media.
In such cases, arrays must be migrated to large capac-
ity tertiary storage devices that are slow and require
di�erent methods of optimization. We suggested par-
titioning as a method to reduce the media switch costs
for such devices.

We extended the postgres database system to
support multidimensional arrays. Our implementa-
tion provides a generalized array interface that al-
lows arrays of arbitrary size and dimension. Moreover,
large array can be chunked (on the user's discretion)
for fast processing of queries on such arrays.

These optimization techniques were tested for their
e�ectiveness in reducing the enormous access time on
large arrays. Towards this end, we collected data from
real users of large multidimensional arrays. Our mea-
surements based on their usage patterns showed signif-
icant reduction of access times with our optimization
strategies.

chunked

reordered

2-redundant

original

38
92

T
im

e
 in

 s
ec

on
ds

100
T

im
e

 in
 s

ec
on

ds

50

300

600

18
76

0

(a): Elapsed Time (b): CPU Time

16
91

32
5

N
um

be
r

of
 b

lo
ck

s
fe

tc
he

d

(c): # Block Fetches

400

200

17
09

6

35
18

Data set 3 Data set 4 Data set 3 Data set 4 Data set 3 Data set 4

Figure 4: Performance measurements on Tertiary Memory data

References

[DR91] J. Dozier and H.K. Ramapriyan. Planning
for the EOS data and information system.
In Global Environment Change, volume 1.
Springer-Verlag, Berlin, 1991.

[Equ89] William H. Equitz. A new vector quanti-
zation clustering algorithm. IEEE transac-

tions on Accoustics, speech and signal pro-

cessing, 37(10), 1989.

[FP79] P C Fisher and R L Prower. Storage reorga-
nization techniques for matrix computation
in paging environments. Communications of

the ACM, 22(7), 1979.

[Jag90] H V Jagadish. Linear clustering of objects
with multiple attributes. In Proceedings of

the 1990 ACM SIGMOD International Con-

ference on Management of Data, 1990.

[JD88] Anil K. Jain and Richard C. Dubes. Algo-

rithms for Clustering Data. Prentice Hall,
1988.

[LBG80] Yoseph Linde, Andres Buzo, and Robert
Gray. An algorithm for vector quantizer de-
sign. IEEE Transcations on Communica-

tions, 28(1), 1980.

[M+92] C. Mechoso et al. Parallelization and distri-
bution of a coupled atmosphere-ocean gen-
eral circulation model, 1992. sumitted to
Monthly Weather Review, Aug 4 1992.

[MC69] A C McKellar and E G Co�man. Orga-
nizing matrices and matrix operations for
paged virtual memory. Communications of

the ACM, 12(3):153{165, 1969.

[Mos92] Claire Mosher. Postgres Reference Manual,

version 4.0. Electronics Research Labora-
tory, University of California, Berkeley, CA-
94720, 1992. No. UCB/ERL M92/85.

[NHS84] J Nievergelt, H Hinterberger, and K C Sev-
cik. The grid �le: An adaptable symmetric
multikey �le structure. ACM Transactions

on Database systems, 9(1), 1984.

[Ols92] Michael Allen Olson. Extending the POST-
GRES database system to manage tertiary
storage. Master's thesis, University of Cali-
fornia, Berkeley, 1992.

[RCM80] J L Reuss, S K Chang, and B H McCormick.
Picture paging for e�cient image process-
ing. In S K Chang and K S Fu, editors, Pic-
torial Information Systems, pages 228{243.
Spriger-Verlag, 1980.

[Ros75] Arnold L. Rosenberg. Preserving proxim-
ity in arrays. SIAM journal on Computing,
4:443{460, 1975.

[SD91] Michael Stonebraker and Je� Dozier. Large
capacity object servers to support global
change research. Technical Report 91/1,
University of California at Berkeley, 1991.

[SK91] M. R. Stonebraker and Greg Kemnitz. The
POSTGRES next generation database man-
agement system. Communications of the

ACM, 34(10), 1991.

[Son89] Sony Corporation, Japan. Writable Disk

Drive WDD-600 and Writable Disk WDM-

6DL0 Operating Instructions, 1989. 3-751-
047-21(1).

[Sto91] Michael Stonebraker. An overview of the Se-
quoia 2000 project. Technical Report 91/5,
University of California at Berkeley, 1991.

[Wad84] B T Wada. A virtual memory system for
picture processing. Communications of the

ACM, 27:444{454, 1984.

