Tioga-2: A Direct Manipulation Database Visualization Environment

Alexander Aiken Jolly Chen

Michad Stonebraker

Allison Woodruff

Department of Electrical Engineering and Computer Sciences
University of California, Berkeley*
email: tioga@postgres.berkeley.edu

Abstract

Abstract

This paper reports on user experience with Tioga, a
DBMS-centric visualization tool developed at Berkeley.
Based on this experience, we have designed Tioga2 as
a direct manipulation system that is more powerful and
much easier to program. A detailed design of the revised
system is presented, together with an extensive example of
its application.

1 Introduction

Database system performance—as measured by either
processing speed or the quantity of data that can be
managed—has grown by an order of magnitude in recent
years, making increasingly sophisticated applications fea-
sible on ever-larger data sets. However, database query
languages have changed rel atively littleand are difficult for
non-experts to use. The vast mgjority of database users
are unable to customize applications to their own needs,
let aone develop their own custom applications. Thus, at
present the expanding capabilities of database systems can
be exploited fully only by expert programmers. Making
databases easier to use and program, and thereby more ac-
cessible, is an important issue today and will become more
important as database technol ogy becomes faster, cheaper,
and more powerful [11].

This paper reports on the design of Tioga-2, a new
database visualization environment. We use the term “vi-
sualization environment” rather than “programming envi-
ronment” to emphasize that most programming operations
in Tioga-2 are performed by manipulating graphical repre-
sentations of either programsor data. Tioga-2isbased ona
small set of primitive operations for transforming data and
its visualization. These primitives have been chosen care-
fully to have clear, simple semantics and to be composable.
Thus, Tioga:-2 users can build sophisticated applications—
or modify existing applications—by successive composi-
tion of the primitives. We believethat by providing asmall
set of general “building blocks’, minimum language syn-
tax, and immediate feedback on the effect of incremental
program modifications, Tioga-2 makes it much easier for
database users to devel op database applications.

Tioga-2 has not been designed in avacuum. Previoudly,
we reported on the design and implementation of Tioga, a

*This research was sponsored by NSF under grants IRI-9400773 and
IRI-9411334.

visualization system that is coupled closaly with the POST-
GRES DBMS|[12]. The design of Tioga-2 has been influ-
enced heavily by what we learned from user experiences
with Tioga and a companion commercia product, Illustra
Object-Knowledge, based on the same ideas. In therest of
thisintroduction, we first discuss the problemsand lessons
from Tiogaand then outline our solution to those problems
in Tioga-2.

1.1 Tioga

Tioga adopts the “boxes-and-arrows’ programming
paradigm popularized by AVS[13], Data Explorer [7], and
Khoros [9]. Every box is a user-defined function, which
has been registered with POSTGRES. A programmer con-
structs a Tioga program using a drag and drop editor to
move and connect boxes on the screen.

Every Tiogaprogram has adesignated viewer connected
to the output of a specified box. The viewer provides
the user with a two-dimensional canvas onto which the
programmer places renderable abjects. In addition, the
viewer provides a pan feature whereby the user can “fly
over” thecanvasviewingareasof interest. Furthermore, the
user can zoom into areas of the canvas to see more detail.
Zoom isa powerful construct, asit supportsso-called drill-
down—the ability to change the visual representation of
data. For example, a state map of the United States could
become a county map upon suitable zooming.

Experience with Tioga and Illustra Object-Knowledge
can be summarized as follows:

1. Programmer model

Tiogais based on theideathat an expert programmer
constructsPOSTGRES user-defined functions (boxes)
and that a second programmer uses an editor to “wire
up” visuaizations. In thisway, Tiogaimplements a
“big programmer / little programmer” environment.

It has been sufficiently hard to construct boxes-and-
arrows programs that the little programmer must, in
fact, be a big programmer. The key problem is that
simplifyingthe specification of control logicthrougha
boxes-and-arrows notation does not simplify program-
ming sufficiently. For example, to construct Tioga
applications, the little programmer must understand
locating objects on a canvas and turning objects into
graphical representations. It turnsout that even expert
programmers find these tasks difficult. As a result,
little programmers have not been able to program in
Tiogabecause it is not nearly easy enough to use.

2. Programming environment

Tioga has the familiar notion of building a program,
compiling it, and then running the compiled result.
Novices have difficulty learning how to program ef-
fectively in this paradigm. For example, if nothing
appears on the screen, then there is a “bug” in the
program. Bugs are hard for the programmer to find
because Tioga provides a viewer only for the final re-
sult; it is not possible to place a viewer on any edge
in adiagram to visualize the datathat isflowing aong
that edge.

3. Expressive power

Asaresult of trying to provide asimple programming
model, Tiogaisin somewaysoversimplified. Toselect
only a single example, because every box must be a
user-defined function, abox hasasingleoutput, which
must be of a specific type. This makes it difficult to
implement functionality of the form:

if condition then deliver datato box : else deliver
datato box j

1.2 Tioga-2: Guiding Principles

Based on our experiences, we are redesigning Tioga
completely from scratch, and the result is Tioga-2, de-
scribed in this paper. We begin with the principles that
have guided the redesign.

Much of the problem with the origina Tioga systemis
that there is no way to specify some aspects of avisuaiza
tionexcept viaordinary statement- and expression-oriented
programming. Learning to write procedura codeisahigh
hurdle for many non-programmers, and some visuaiza-
tion aspects—such as writing functionsto position data in
a multi—-dimensiona space—are difficult even for expert
programmers.

There is an dternative way to specify data visuaiza
tions. Even non-programmers intuitively understand how
to specify desired computations* by example’—by manip-
ulating sample data. Instead of writing in a standard pro-
gramming syntax, the programmer beginswith very smple
displays of dataand composes them directly on the screen
to construct elaborate visuadizations. In moving from the
boxes-and-arrows notation of Tiogato thedirect manipula-
tion programming paradigm of Tioga-2, we have identified
a number of principles we believe to be important to a
usable, flexible, and powerful direct manipulation visual-
ization system:

1. Every result of auser action has avalid visua repre-
sentation.

All datatypes constructibleby Tioga-2 programs have
a well-defined screen representation. As such, the
programmer obtainsimmediate visual feedback of the
effect of any change to a Tioga-2 program and can
visually inspect intermediate results. This principle
facilitates debugging activities and solves problem (2)
noted above.

2. Programming isincremental.

Visualizations are constructed incrementally by suc-
cessive compositionof asmall number of simpleprim-
itives. Combined with the ability to visualize results
of incremental changes immediately, we believe that
we can empower the little programmer to construct
Tioga-2 programs.

3. Totheextent possible, programming is specified visu-
ally by direct manipulation of visualized data.

A boxes-and-arrows representation of the user’s pro-
gram is available and must be used for certain oper-
ations. However, considerable programming is done
by direct manipulation of the screen without reference
to thisdata structure.

4. Every operation has a clear, well-specified semantics.

Unlike many previous direct manipulation systems
thereisnoinferenceprocedureto synthesizeaprogram
fromauser’'sexamples[4]. Instead, every Tioga-2 op-
eration has a straightforward, unambiguous meaning
as astep in aprogram.

5. Retain the “big programmer/little programmer”
moded!.

We recognize that there are computations that cannot
be specified in Tioga-2. For example, while Tioga-2
has the equivalent of an if-then-else construct, it does
not have arbitrary recursion. Thus, we expect that big
programmers will construct additional Tioga:-2 boxes
asinthe original Tioga system.

2 TheModd

Beforepresenting the Tioga-2 systemin detail,wedefine
somebasi cterminology and concepts. Thereader may wish
to skim this section on afirst reading.

Tioga-2 programs are represented by dataflow graphs
with boxes and arrows. A boxisaprimitiveprocedurewith
some number of inputs and outputs (see Figure 1a). The
output of one box may be connected to the input of another
box by an edge (also caled an arrow). Box inputs and
outputs are typed and edges connect outputs to inputs of
compatibletypes. Tioga-2 programs have dataflow seman-
tics; when data is present on all of a box’s inputs, the box
can “fire”, producing results on one or more outputs. Exe-
cution islazy, evaluating only what is required to produce
the demanded visualization.

A box input or output may be a scalar value (e.g., a
runtime parameter supplied by the user) or a displayable,
described below. Displayables define visuaizations. Most
Tioga-2 boxes compute displayable outputs from one or
more displayable inputs. Tioga2 has three displayable
types. extended relations, composites, and groups.

Thefirst displayable typeis an extended database rela-
tion R. In Tioga-2, thevisuaization of R isdefined by R's
attributes. We assume an object-relational DBM Sin which
arelation has stored attributes as well as methods defining
additional attributes. For each tuplet of R, location at-
tributes define the position of ¢ on the screen and a display
attribute defines the screen representation of ¢. Tioga-2
visualizationsare constructed “tuple-wise’—the visuaiza-
tion R is the sum of the visualizations of each tuple of
R.

Every visudization has at least the two screen dimen-
sions and a representation for every tuple. Therefore, an
extended relation has at least » and y location attributes,
corresponding to the two screen dimensions, and an at-
tribute display. A relation R may have additional location
attributes; the dimension of R isthenumber of R’slocation
attributes. A relation may also have multiple display at-
tributesdefining alternative representations of the data. We
adopt a uniform notation and write ./ to denote attribute
of tuplet, whether [is a stored or computed attribute. We
stress that the location and display attributes used to define
visualizations are computed attributes and are not stored in
the database.

The second displayable typeis a composite of relations
C' = Composite(Ry, ..., R,,). A composite visudization
isthe overlay of each of the composite's components—the
visualizations are simply superimposed. Thus, compos-
ites provide a way to combine visualizations of different
relationsin the same viewing space.

The third type of displayableis a group of composites
G = Group(C1, . . ., Cn%. A group visualization isthe vi-
sualization of each of the composites C; arranged either
side-by-side, top-to-bottom, or in a tabular fashion accord-
ing to the user’s specification. Groups allow visualizations
of different viewing spaces to be combined.

In summary, there are three kinds of displayable types,
described as follows:

G = Group(Cy,...,Ch)
C = Composite(Ry, ..., Ry)
R = reationswith attributes«, y, display

Many Tioga-2 operations presented in subsequent sec-
tionsare defined only for R or €' inputs. To make program-
ming easier, Tioga-2 extends such operations to work on
“higher” types. For example, the Restrict operation filters
arelation; itisabox that takes an R input and produces an
R output. Given agroup ' input to Restrict, Tioga-2 asks
the user for the composite within the group, and the rela
tion within that composite, to which the Restrict applies.
After applying the Restrict to the selected relation, Tioga
2 reassembl es the composite and the group in the obvious
way. Thisisall donegraphically with point-and-click oper-
ations, so that the user need not be aware explicitly of how
Restrict is overloaded to work on group and composite
displayables.

Displayable types are transated into screen output by
viewer boxes. If an n-dimensional relation R is the input
to a viewer, then the viewer has an n 4+ 1-dimensiona
position specifying the location of the viewer for each of
the n dimensions and the elevation. The user controls
the position by panning in the n viewing dimensions and
by zooming, which changes the el evation, moving the user
“closer to” or “further from” thedata. A viewer displaysthe
z and y dimensionsof R onthe 2-D canvas; the remaining
n — 2 dimensionsare available asdiders. If R haslocation
atributes«, y, 11, . . ., l,_2 each tuplet of R isrendered by
drawing ¢.display at position {(t.x,t.y,t.01, ..., t.l,_2) In
n-gpace. Because a visualization space may be larger than
the canvas, the viewer filters tuplesto the ranges specified
by the diders for dimensions s, . . ., [, _», filterstuplesto
the visible area on the screen for dimensions x and y, and
then rendersthe tuples’ display attributeto the screen.

3 User Interface

The Tioga-2 user interface contains several main win-
dows. All may be visible on the screen or iconified. There
is a single user interface both for building and for using
programs, but a user browsing a previously constructed vi-
sualization will not require all of the windowsavailable. A
screen dump of the interface is shown in Figure 1a. The
user interface windowsare: a programwindow, containing
a boxes-and-arrows representation of a Tioga-2 program,
a canvas window for each viewer in the current program,
and a menu bar containing the pull-down menus to invoke
primitive operations.

A canvas window shows data visiblein aviewer at the
current position. In addition, each canvas window includes:
arear view mirror, zero or more dider bars, an elevation
map, and an elevation control (a dashed line through the
elevation map).

The menu bar includes menus of all operations, tables,
and boxes available, an undo button to undo thelast opera-
tion performed, and a help button.

A Tioga-2 program is constructed incrementally by ap-
plying program editing operations to the program window
(thereby modifying the boxes-and-arrows diagram) and
rendering and/or drill down operations to a canvas window
(thereby making modificationsviadirect manipulation). At
any stagein the construction of aprogram the current result
isdisplayed on al non-iconified canvases.

Since a canvas may be much larger than the available
screen real estate, we alow the user to change theviewer’s
position, altering the area visiblein the viewer. Scroll bars
control panning in the screen dimensions » and y; canvas
dider bars control panning in any remaining dimensions.
The elevation control allowsthe user to drill down into data
displayed on the screen. Elevation maps are an interface
for programming drill down (Section 6).

4 Program and Data Management

Operations

This section discusses the operations available in the
programwindow and Tioga-2' sdatabase operations. These
operations alow the incrementa construction of a boxes-
and-arrows program specifying data the user wishesto vi-
sualize. Operations for constructing visualizations them-
selves are discussed beginning in Section 5.

We use the following example to illustrate Tioga-2 pro-
gramming. An agricultural speciaist wishesto construct a
visualization of temperature and precipitation data for var-
ioussitesin Louisiana The datais stored in two relations:
Sations, which contains a tuple describing each weather
station, and Observations, which contains all observations
(eg., date, time, conditions) from all stations. The data
covers all of North America and contains a great deal of
information besides temperature and precipitation.

As afirst step toward constructing a temperature and
precipitationvisuaization for Louisiana, the user limitsthe
Sationsrelation to the stations of interest. For every rela
tionknown to the Tioga-2 system thereisabox of the same
name that takes no inputs and produces as output the tuples
of the relation. Beginning with the Stations box, the user
incrementally adds boxes to perform standard database op-
erations such as restricting the data to tuples satisfying a
predicate (e.g., stationsin Louisiana) and projecting out un-

Operations Tables Boxes

Undo | Help

STATIONS
a

=]
City State Station-ID Latitude Longitude Altitude

Mevandria 14 ESB-3 3140 9230 M —

foroe I M3 RS -G M

Mo Ocleans 1n MSEL 2.9 9025 9

Tafapette 1A IFT-4 3020 <9198 13 :

[Shreveport 1A SEV-2 34T 0382 M ol N
lake Charles I ICB-1 3.2 -2 10

!Baton Rouge 1A BIR-3 305 <115 A , e

= T = Elevation Map

Operations Tables Boxes Undo | Help
T
| E—
set_attribute_y
-
-
add_attribute_altitude
u
-
add_attribute_circle
-
-
add_attribute_name
=
L]
combine_display
]
/
N I
o
Shreveport Monroe
Rear View Mirror
e
Altitude
. T,
Alexandria £
* C x
Franklinton EE
L]
Baton Rouge
* oy
Lafayette
* o
Lake Charles New Orleans
L]
Morgan Ci
o .
Buras
i CAIY AS
| [Elevation Map

Operations Tables Boxes

(a) Weather stationsin Louisiana

Undo | Help

Operations Tables Boxes

(b) A visualization of weather station locations.

Undo | Help

-

add_attribute_altitude

[—
U]

r—

| —
add_attribute_nane
]

add_attribute_circle

-
1 b combine_display

=

L]
w
-
louisiana set_range
- i

u

add_attribute_name

) |

L]
combine_display
]

-
ada_attribute_wormhole

Al =

Rear View Mirror

R
e+

i CANVAS

] Elevation Map

Rear View Mirror

o]
| s |

TEmH

MONTH

CANVAS

I Elevation Map

(c) Overlaid displays with restricted ranges.

(d) A visualization with wormholes.

Figure 1. Four Tioga-2 visualizations.

needed fields (e.g., date of construction). Figure 1a shows
a boxes-and-arrows diagram and canvas. The last box in
Figure lais a viewer, which in this case displays data us-
ing a default two-dimensional table format. The user can
also inspect any of the partial results. If the user discovers
that any step produces unexpected results, he can inspect,
delete, and replace boxes as necessary to fix the program.

For convenience, the operationsin this section are sub-
divided into operations that manipul ate program structure
and database operations.

41 Program Operations

Thisgroup of primitives permitsthe initialization, |oad-
ing, and saving of programs, as well as the deletion, in-
sertion, and connection of boxes into an existing program.
There are aso primitives that provide familiar language
abstractions anal ogous to procedures and macros. The op-
erations are listed in Figure 2; we briefly discuss the most
interesting.

If the user clicks on one or more edges in the current
program, Apply Box gives the user a menu of al boxes
whose inputs match the types of the selected edges. This
is a shorthand way to identify those boxes in the database
that could possibly take the indicated edges as input.

A design principle of Tioga2 is that every operation
preserves a visua representation. Deleting boxes from a
program is dangerous, because inputs of other boxes may
beleft dangling and, therefore, their results unavailablefor
visualization. To preserve the property that “everything
is always visudizable’, arbitrary box deletions are not al-
lowedinTioga-2. A box may deletedif (1) it hasno outputs
connected to other boxes (in which case no box inputs are
left dangling), or (2) it has a singleinput and output of the
same type (in which case the system connects the deleted
box’s predecessor to its successor). A box may aso be
Replaced by another box with compatible types.

A T box simply passes itsinput unchanged to both out-
puts, and allows another box, for example a viewer, to be
connected totheT.

Encapsulate permits the user to define new boxes. The
user specifies a portion of the program to be encapsul ated
by drawing a closed curve around a region of the program.
Edgescut by the curve are theinputsand outputsof the new
box. Thenew box may beused likeany other primitivebox.

Encapsul ated boxes may al so be parameterized to create
something akin to a macro or (more accurately) a higher-
order function. The user draws additional closed areas
within the program region to be encapsulated. These areas
become “holes’—they are not included in the encapsul ated
box, and edges cut by a hole are unconnected. To use an
encapsul ated box with holes, the user must specify abox—
with compatibletypes—that can be plugged into each hole.

4.2 Database Operations

Theprimitivesin thisgroup providedatabase operations,
which are listed in Figure 3. Each operation adds a new
box to the program. The type of the introduced box is
indicated in Figure 3. Note that al input/output types are
R. Asdiscussed in Section 2, these operationsare extended
to apply to composite (C') and group () types as well.

As mentioned above, the Add Table operation adds a
new “source’ box tothecurrent program. Thebox isnamed
for atablein the database and hasasingleoutput edge. The
parameters of many Tioga-2 operations can be specified in

several ways, usually thereis at least one textual and one
graphical method. For example, the user may specify the
table to add to the program by either typing the name or
selecting it from a menu of available relations. Note that
Add Tableisaspecial case of Apply Box with zero inputs.

A Restrict box filters its input, retaining only tuples
that satisfy a restriction predicate. The user is prompted
for the predicate to be applied. A Sample box produces
a random subset of an input relation on its output. Each
input is retained with a user-specified probability. Sample
isuseful for improving interactiveresponse by reducing the
size of data setsto be processed.

The result of applying these operations is to iteratively
build up a boxes-and-arrows program in the program win-
dow. We now turn to the visualization of the result of such
programs.

5 Rendering Operations

The previous section has indicated how a Tioga-2 pro-
gram can be built to retrieve complex computations (re-
[ations) from the database. Now we must deal with two
additional questions:

¢ How aretuples positioned on the canvas?

o How are tuplesrendered as screen pixels?

As discussed in Section 2, these questions are addressed
by location attributes specifying the position of tuplesin
n-gpace and display attributes that specify tuples’ screen
representations. Thissection describeslocationand display
attributes, default displays, and their associated operations.

5.1 Location and Display Attributes

Figure1b showsavisualization of the L ouisianaweather
station data produced by the diagram shown in Figure 1a
Each station in the state is represented by one tuple in the
relation. The visualization shows a circle and the name
of each gtation at its (longitude, latitude) coordinate. To
position representations of tuples on the screen, relations
have location attributes. Every relation must have » and y
location attributesto specify the « and y dimensionsof a 2-
D canvas; inFigure 1b, thex dimensionislongitudeand the
y dimension is latitude. There may be additional location
attributes, which specify dider dimensions. In Figure 1b,
there is a dider dimension Altitude. By setting the range
of altitude values that are visible using the dider, the user
can see any appropriate subset of the stations. Location
attributes are represented by floating point numbers.

Tioga-2 requires that every relation have a least one
display attribute. A display attributeis a list of primitive
drawable objects. Intuitively, a viewer renders a tuple by
simply painting each drawableinitsdisplay attributeonthe
screen. InFigurelb, thedisplay attributeisalist containing
the text of the name of the station and a circle. There
may be additional display attributes to provide alternative
visualizations of the data

The primitive drawables include: point, line, rectangle,
circle, polygon, text, and viewer. Each primitive drawable
hasan offset, acolor, and astyle. The offset givesaposition
relativeto thelocation attributes of thetuple; thus, multiple
drawables need not be stacked directly one atop the other.
InFigurelb, thenameispositioned below thecircle. Of the

Operation

Effect

New Program
Add Program
L oad Program

Erase the program canvas.
Add a named program to the program canvas.
Shorthand for New Program followed by Add Program.

SaveProgram | Save thecurrent program in the database.

Apply Box see discussion

Delete Box see discussion

Replace Box Replace one box by a different box with compatible types.
T Add a T-node to a designated edge.

Encapsulate see discussion

Figure 2: Operations that mani pul ate the boxes-and-arrows diagram.

Operation | Box Type Effect

Add Table | # — R Add the box producing a specified relation as output.

Proj ect R— R Standard database projection; user is prompted for fields.

Restrict R— R Filter arelation to tuples satisfying a predicate.

Sample R—R Randomly sample arelation.

Join R x R' — R"” | Standard join of two relations; user is prompted for join predicate.

Figure 3: Operations on relations.

primitives listed above, al but viewers are standard primi-
tivesfor graphicshardware. Viewersare used to implement
wormholes (Section 6). The list of primitive drawablesis
preliminary and more may be added in the future.

In Tioga-2, every relation is augmented with location
and display attributes. Actually computing the values of
these attributes should be avoided except where necessary.
As discussed in Section 2, display and location attributes,
along with any other “extra’ attributes, are specified by
functions of the base tuple.

5.2 Defaults

To guarantee that boxes produce relations with initial
valid displays, Tioga-2 provides default location and dis-
play attributes. There is a default display for each atomic
type (i.e., each type of acolumn of arelation). The default
display for a relation renders each field in the tuple, side
by side, using the default display for each column type to
produce a screen representation. The default space hastwo
dimensions. the z-location is 0 and the y-location is the
sequence number of the tuple. Typicaly, the default at-
tributes define a display consisting of a sequence of tuples
in ASCII. Themajor relational DBM Svendors al have so-
caled terminal monitors, which produce a display of this
form for the result of any possible query.

Just asthe user may incrementally modify the data man-
agement operationsto change the data to be visualized, so
may the user incrementally modify the location and dis-
play attributes of a relation to change the visuaization.
Initialy, every Add Table operation introduces a box that
produces a relation with the default display and location.
The user may then incrementally modify the defaults, or re-
placethem atogether, by adding boxesto thediagram or by
manipulating data on the canvas. In Figure 1b, the default
viewer of Figure 1a has been changed by modifying loca
tion functions (to associate (longitude,latitude) with (z, y)
canvas coordinates) and the display function (changed to
the combination of station name and acircle).

5.3 Operations

In the remainder of this section we discuss the opera-
tionsfor modifyinglocation and display attributeslisted in
Figure 4. Most of these operations apply to al attributes,
not just location or display attributes.

Theuser may add new attributes, including new location
and display attributes. Adding a location attribute adds
a new dimension to the visuaization. Adding a display
attribute creates an alternative visualization of the data
Add Attribute prompts for the type and definition of the
new attribute; the definition may depend only on other
attributes of the relation. Set Attribute changes the type
and definition of an existing attribute.

In both Add and Set Attribute, an attribute’s definition
may be given in a genera query language. However, the
preferred method is to begin with a very simple definition
(e.g., acopy of another field, or asingle primitivedrawabl e)
and then refine it using the other operations.

Swap Attributes is handy for interchanging two di-
mensions (two location attributes), thereby “rotating” the
canvas, or interchanging the display attribute with one of
the aternative displays, thereby changing the visualization
of the data

Scale and Trandate Attribute are defined only for
numeric fields. These operations are convenient short-
hands for more complex Set Attribute commands. Scale
and Trandate are useful for changing location attributes,
thereby scaling or trandl ating dimensionsof avisualization.

Combine Display is the mechanism for combining
primitive drawables to form more complex displays. The
user positionsthedisplayson top of oneanother graphically
to establish the relative position; aternatively, an explicit
offset of one display to the other can be entered. The com-
bined display becomes a new display attribute. The user
may combine any of the display attributes of the relation.
In Figure 1b, acircle display has been combined with atext
display showing the name of the station.

Operation Box Type | Effect
Add Attribute R— R
RemoveAttribute | R — R’
Set Attribute R— R
Swap Attributes R— R
Scale Attribute R— R
TrandateAttribute | R — R’
CombineDisplays | R — R’

Add an attributeto arelation; user is prompted for definition.
Remove an attribute; cannot remove attributes «, y, or display.
Change the value of an existing attribute.

Interchange two attributes of the same type.

Multiply numerica attribute by a number.

Add a number to anumerical attribute.

Combine two display attributes.

Figure 4: Location and display operations.

Operation | Box Type
SetRange | R — R
Overlay Composite(Ry, . . ., R,) x Composite(Ry, 1, - . ., Rm) — Composite(Ry, . . ., Rm)
Shuffle Composite(Rl, e Ri—l, Ri, Ri-l-la .) — Composite(Ri, R]_, e Ri—l, Ri-l-la .)
Figure5: Primitivesfor drill down.
6 Drill Down at higher elevations. This display shows only a circle at

Drill down allows users to see more details in data of
interest. Therearetwo distinct, useful notionsof drill down.
The first provides a more refined view of the same datain
the same visualization space (e.g., switching from a state
to a county map). The second alows movement between
one space and a different, but semantically related, space
(eg., after finding a weather station, switch to look at its
temperature/precipitation data).

Two mechanisms provide drill down in Tioga-2. First,
the user can specify that additional detail about screen ob-
jects becomes available as the user zooms in. Second, we
have a notion of wormholes, by which a user can move
from one canvas to another canvas.

6.1 Additional Detail
The first form of drill down is defined as operations on
relations R and composites C'. There are three operations:

e Set Range
This operation specifies the maximum and minimum
elevationsat which arelation’sdisplay isdefined. Out-
side of thisrange, the relation contributes nothing to
the canvas.

e Overlay

Two composites may be overlaid. The relative posi-
tion of one overlay to another may be given either by
an explicit n-dimensiona offset, or by dragging one
canvas over the other. If the component displays are
defined with different elevation ranges, then it is pos-
sible to program drill down by having the displayable
at the lower elevation provide a speciaization of the
displayable at the higher elevation.

e Shuffle
It may be desirable to change the drawing order of the
relations within a composite. The Shuffle command
moves arelation to the “top” of the drawing order.

Figurelcillustratesoverlay and setting ranges. Weather
stations are now shown together with a map of Louisiang;
thisis achieved by overlaying themap (derived fromarela
tion of lines defining the map) with the result of Figure 1b.
In addition, a third display is overlaid to give less detail

the station’slocation. The programmer has set the ranges
of the two weather station displays so that station names
disappear a high elevations, where they would be illegi-
ble. The range of the Lousiana map is all elevations (the
default).

Thereisasmall difficulty withthe overlay in Figure 1c.
The visuaization of the state map of Louisiana has no Al-
titude dimension, and such a dimension makes no sense
for a flat map. However, the composite has an Altitude
dider; how are changes in Altitude to be interpreted for
the Louisiana map? If the user attempts to overlay rela
tions with different dimensions, Tioga-2 warns about the
mismatch. If the user wishes, the underlying relations are
trested asinvariant inthe“extra’ dimensions. Thisachieves
the desired effect in Figure 1c: the user can change the Al-
titude dlider to see different subsets of the stations, but the
Louisianamap remainsin place for reference.

The elevation map is a bar-chart display of the max-
imum/minimum elevations and drawing order of dl ee-
ments of a composite on the current canvas (see Figure 1c).
The elevation map can be manipulated directly by the user
to adjust therangesand drawing order of overlaid relations.
For a group displayable, a viewer shows an elevation map
for only onemember of thegroup at atime. Inthiscase, the
user can explicitly cycle through al of the el evation maps.

6.2 Wormholes

It isoften desirable to associate objectsin onevisualiza-
tion space directly with objectsin a different visualization
space. A wormhole is a viewer onto another canvas, i.e.,
what isvisibleinsideawormholeis apoint on another can-
vas from some el evation. Figure 1d shows an example ap-
plication of wormholes. Upon zooming into an individual
station s, awormhole appears (achieved by a combination
of modifying display functions and overlaying and setting
ranges) that takes the user to a canvas displaying tempera-
ture datafor each station as afunction of time. The user is
initially positioned viewing the datafor station s.

Providing wormholes is technically straightforward.
Viewers are primitive drawabl e objects; thus, Tioga-2 pro-
grams may produce displays containing viewers (worm-
holes). A viewer drawable requires several parameters,

including the size for the viewer, a destination canvas, the
elevation from which the canvas is viewed, and the initial
location; the user defines these values as part of the display
attribute. Aswith any drawables, wormholes can be over-
laid with other drawables. In Figure 1d, the axes |abels are
theresult of overlaying text at an offset from the wormhole
(for brevity, these boxes are not shown).

When a user zooms in on a wormhole and reaches zero
elevation he passes through the wormhole and moves from
the original canvas to the destination canvas. Needless to
say, the user can pan and zoom on this second carvas, as
well as move to athird canvas. After changing canvases
several times, thereisa definite possibility the user will get
lost. For thisreason, weintroducethe notion of arear view
mirror.

6.3 Rear View Mirrors

For each canvas, we introduce an additional window
called arear view mirror. Thiswindow shows the* bottom
side’ of the canvas through which the user last moved.
Hence, immediately after going through a wormhole, the
user is looking down at a new canvas from some specific
elevation and is a negative ground level for the canvas he
just left. Asthe user descends toward the new canvas, the
distance from the previous canvas increases. In Figure 1d,
the rear view mirror shows that the user came through the
wormholeat New Orleansin Figure 1c.

Every Tioga2 displayable has a minimum and maxi-
mum elevation. If both are positive, then the viewer only
shows objectson thetop sideof thecanvas. If theminimum
and maximum el evations are both negative, then the viewer
places objects only on the underside of the canvas, and they
are visible only in the rear view mirror after the user pro-
ceeds through a wormhole. If the minimum elevation is
negative and the maximum is positive, then the objects can
be seen on both sides of the canvas. Thus, the programmer
can create overlays in such away that the top side and the
underside of the canvas both have meaning. Oneisvisible
from above in the viewer window and oneis visible from
below in the rear view mirror.

A natura use of the rear view mirror isto illuminatethe
wormhol es back to the canvas from which the user came to
thiscanvas. Inthisway, the user can “find theway home” if
heislost. Assuch, therear view mirror isageneralization
of the notion of “back” in a hypertext system.

7 Additional Operations

This section discusses the remaining Tioga-2 features
(with the exception of updates, which we omit for lack of
space). Javing constrains two viewers to move together.
Magnifying glasses provide hierarchical viewers (viewers
within viewers). As discussed below, magnifying glasses
are quite different from wormholes. Sitch and replicate
produce group displays. Slaving and magnifying glasses
are operations on viewers, while gtitch and replicate are
operationson displayables.

7.1 Saving

Two viewers may be daved together, in which case the
system maintainsthe rel ative offset between the two view-
ers. Whenaviewerisdeleted, al of itssaving rel ationships
are also deleted. Slaving is only defined for two viewers
with the same dimensions.

7.2 Magnifying Glasses

A user may createamagnifying glassby placing aviewer
insideanother viewer. Typically, auser placesacopy of the
current viewer insideitself and then zoomsthe inner viewer
to magnify what isin the outer viewer. Magnifying glasses
must have the same dimension as their containing viewer.
The inner and outer viewers may be daved; magnifying
glasses may aso be deleted.

A simpletechnique for correlating temperature and pre-
cipitation uses a magnifying glass in Figure 6a. The user
beginswith atemperaturevs. timedisplay. The underlying
relation that is being visualized has more information—
in particular, the precipitation data—that is not being uti-
lized. An aternative display attribute shows precipitation
vs. time (the boxes defining the precipitation display are
not shown). By creating a magnifying glass using this al-
ternative display, the user sees the precipitation data for
points underneath the magnifying glass. In Figure 6a, the
magnifying glass is realized by making the precipitation
display the display attribute (done by the Swap Attribute
box) and then viewing the result.

7.3 Stitch

Any number of composites can be stitched to form a
group displayable. Groups can be displayed side-by-side,
arranged vertically, or laid out in atabular fashion. If the
user performs a window operation on one of the group
members, such as moving the window on the screen or
iconifying it, then the same operation is performed on the
other members. Zooming and panning is defined for each
of the constituent displays. That is, there is a separate
focus for all components, as well as separate «, y, dider,
and zoom dimensions. Components may be slaved.

In Figure 6b, a display showing temperature vs. timeis
gtitched to a display showing precipitation vs. time. The
precipitation display is slaved to the temperature display,
so that whenever the user changes the date range under
temperature, the precipitation display changes to display
the same date range.

7.4 Replicate

A relation can be replicated by specifying a partition.
Replicated displaysfor each partition are stitched together
into agroup. The user must specify the areato be given to
each display and the initial point of focus.

The partitioning predicate is specified by giving a col-
lection of predicates in the underlying query language or
an enumerated type. For example, the specification may
be that replication is tabular, with predicates sal ary <
5000 and sal ary > 5000 in the horizontal dimension
and the enumerated typedepar t ment inthe vertica di-
mension.

InFigure6¢, aviewer showing temperaturevs. timeand
precipitation vs. time has been replicated to show records
for years prior to 1990 and after 1990 separately. This
example motivates the need for the operator overloading
discussed in Section 2. Because Replicate partitions a
relation, it takes an R as input and produces multiple R’s
asoutput. However, in thisexample thedisplay isa G type
(agroup of two displays). Thus, before the replication can
be performed, the user must specify the relation. When the
user selects Replicate, the system promptsthe user for the
group component on which the replication isto be done.

Operations Tables Boxes Undo | Help

Operations Tables Boxes Undo | Help

o
LR
2 =

5
4

[E—
swap_attribute.
-

V]
= 1
100
[]
New Orleans
80
| | Rear View Mirror
. L
1 H
i H
|l
40 B 1
T A
¥ T
B I
E a
§
20 N P [
0
JAN FEE MAR APR MAY JUN IUL AUG SEP C |- ||| o iormme
- Elevation Map

d
| [
[]
® New Orleans
. Rear View Mirror
[N J— =

TR g

=

CANYAS

D PR SAAR AT WAV TN YL ADG A 00Y NV 30 IAN PR WA AP WAV XN TIL LG 8 €

= Elevation Map

(a) Using amagnifying glass.

Operations Tables Boxes Undo | Help

Y

replicate_year<1390
L]

£
| R
& = X
. . Rear View Mirror
' AN IR MAR AL MAY A AT Al E ' LN TEL MAL AP MAY KM DL AKEE T
E
= I B H = ‘é‘
= =
MimH
T
» a ¥
R
- - E
: / .
. — CANVAS
Ty T S S WY 3 DAt
Il - i - Elevation Map

(c) A replicated viewer.

(b) An example of stitched viewers.

Figure 6: Viewer operations.

8 Reated Work

While devel oping browsers for exploring datais arela
tively new research area, theliteratureisalready substantial.
This section surveys a cross-section of related work.

As discussed in Section 1, Tioga2 retains the boxes-
and-arrows notation for programs originally developed for
dataflow languages and popularized for visudization by
AVS [13], Data Explorer [7], and Khoros [9]. These sys-
tems are similar to Tioga in their reliance on simplifying
programming by using dataflow graphs. Thus, these sys-
tems share Tioga's basic problem that boxes-and-arrows
notation alone does not simplify programming sufficiently
for novice programmers (see Section 1.1). Weaves is an-
other boxes-and-arrows system [3]. Weaves are intended
to support visual programming, so the boxes-and-arrows
program is itself the only visualization of interest. An ex-
tension of weaves supportslimited drill down [5].

Many browsing systems are based on a “paradigm”. A
classic example is the Fisheye interface, which magnifies
data in the center of focus to a greater degree than data
at the periphery [10]. Another example is Magic Lenses,
which provides a set of primitive lenses (windows akin
to our magnifying glasses) that can be placed over data
and over each other to modify a visualization [1]. While
we find paradigms appealing, we suspect a flaw in the
assumption that the space of possible visuaizationscan or
must be greatly restricted in advance.! In our experience,
paradigms serve a class of users well and frustrate users
with other applications. To be generally useful—as Tioga
2 amsto be—it isimportant that users be able to construct
arbitrary ad hoc visualizations of their own, even inventing
their own paradigms if necessary. In short, visuaizations
should be as programmabl e as possible.

A different approach has been taken by the ambitious
Pad project [8]. In Pad, al dataliveson atwo-dimensional
plane. Asin our system, every entity (an object in Pad, a
tuplein Tioga-2) has a position and “knows’ how to draw
itself. Pad also provides facilities for overlay and drill
down that are in some ways richer than the facilities in
Tioga-2. Pad alows a very large class of visuaizationsto
be built. However, Pad is not end-user programmable; it is
designed as atoolkit for expert programmers and provides
atraditional programming interface.

Within the area of browsers for databases, the work of
Krishnamurthy and Zloof on Rendering By Example (RBE)
is closest to our own. In particular, RBE shares our view
on the importance of a system that is both highly pro-
grammable and easy to program [6]. RBE providesamore
declarative programming interface than Tioga-2, but RBE
can construct amuch less general class of visuaizations.

Finally, a database-centric visualization system raises
the issue of how browsing queries are implemented with
tolerableperformance. Thisquestionisbeyond the scopeof
thispaper; theinterested reader isreferred to [2] for related
work on the optimization and efficient implementation of
browsing queries.

9 Conclusions
We are now hard at work implementing Tioga-2 and
expect to have an initial system by the end of the year.

1In fairness, Magic Lenses is not intended strictly as a browsing
paradigm, but as a general user interface paradigm.

We plan to systematically test the implementation on little
programmers to ascertain whether it lives up to its goals.

References

[1] E. Bier, M. Stone, K. Pier, W. Buxton, and T. DeRose.
Toolglass and magic lenses: The see-through interface. In
Proc. of SGGRAPH 1993, pages 73-80, Anaheim, CA,
August 1993.

[2] J. Chen. Optimizing interactive browsing queries. June
1995. Submitted for publication.

[3] P. Cox, M. Gorlick, and R. Razouk. Using weaves for
software construction and analysis. In Proc. of the 13th
International Conference on Software Engineering, pages
23-34, Austin, TX, May 1991.

[4] Allen Cypher. Watch What | Do: Programming by Demon-
stration. MIT Press, Cambridge, MA, 1993.

[5] M. Gorlick and A. Quilici. Visua programming-in-the-
large versus visual programming-in-the-small. In Proc. of
the IEEE Symposiumon Misual Languages, pages 137-144,
St. Louis, MO, October 1994.

[6] R.Krishamurthy and M. Zloof. RBE: Rendering by exam-
ple. In Proc. of the 11th International Conference on Data
Engineeering, pages288-297, Taipei, Taiwan, March 1995.

[7] B.Lucas, G.D. Abram, N.S. Collins, D.A. Epstein, etal. An
architecture for ascientific visualization system. In Proc. of
the IEEE Msualization Conference, pages 10714, Boston,
MA, October 1992.

[8] K. Perlin and D. Fox. Pad: An alternative approach to the
computer interface. In Proc. of SGGRAPH, pages 5764,
Anaheim, CA, August 1993.

[9] J. Rasure and M. Young. An open environment for image
processing software development. In Proc. of the SPIE Sym+
posium on Electronic Image Processing, pages 300-310,
San Jose, CA, February 1992.

[10] M. Sarkar and M. Sarkar. Graphical fisheye views. Com-
munications of the ACM, pages 73-84, December 1994.

[11] M. Stonebraker, R. Agrawal, U. Dayal, E. Neuhold, and
A. Reuter. DBMS research at a crossroads. The Vienna
update. In Proc. of the 19th International Conference on
\ery Large Data Bases, pages 688-692, Dublin, Ireland,
August 1993.

[12] M. Stonebraker, J. Chen, N. Nathan, C. Paxson, and J. Wu.
Tioga: Providing data management support for scientific
visualization applications. In Proc. of the 19th Inter national
Conferenceon Very LargeData Bases, pages25-38, Dublin,
Ireland, August 1993.

[13] C. Upsonet al. The application visualization system. IEEE
Computer Graphics and Applications, 9(4):30-42, July
1989.

[14] A. Woodruff, P. Wisnovsky, C. Taylor, M. Stonebraker,
C. Paxson, J. Chen, and A. Aiken. Zooming and tunneling
in Tioga: Supporting navigationin multidimensional space.
In Proc. of the |[EEE Symposiumon Visual Languages, pages
191-193, St. Louis, MO, October 1994,

