Supporting Fine-Grained Data Lineage in a Database Visualization
Environment

Allison Woodr uff and Michael Stonebraker
Department of EECS
University of California
Berkeley, CA 94720-1776*

Abstract

The lineage of a datum records its processing history.
Because such information can be used to trace the source of
anomalies and errors in processed data sets, it is valuable
to users for a variety of applications including investiga-
tion of anomalies and debugging. Traditional data lineage
approaches rely on metadata. However, metadata does not
scale well to fine-grained lineage, especially in large data
sets. For example, it is not feasible to store all of the in-
formation necessary to trace from a specific floating point
valuein a processed data set to a particular satelliteimage
pixel in a source data set.

In this paper, we propose a novel method to support fine-
grained data lineage. Rather than relying on metadata, our
approach lazily computes lineage using a limited amount
of information about the processing operators and the base
data. Weintroduce the notionsof weak inversion and verifi-
cation. While our system does not perfectly invert the data,
it uses weak inversion and verification to provide a number
of guarantees about the lineageit generates. \e propose a
design for the implementation of weak inversion and verifi-
cationin an object-rel ational database management system.

1. Introduction

Suppose a scientist applies a series of processing steps
to an atmospheric data set and then views the result, a plot
of cyclone tracks, in a database visualization system. The
scienti st sees an anomaly and wantsto identify theinput data
which contributed to the unexpected value. The database
system may be able to trace the lineage of the anomaly at
a coarse level, using metadata. However, tracing from a

*This work was sponsored by NSF under grants IRI-9400773 and IRI-
9411334,

specific cyclone track point in the processed data set to a
particular array element in the source data set isnot feasible
using such an approach; the amount of metadata required
would befar too large.

This type of scenario is common in the computational
sciences. In this paper, we present an approach for deriving
the lineage of adatum dynamically and at afine granularity.
Instead of relying on metadata, our approach combines a
limited amount of knowledge about the processing opera
torswith analysisof thebase data. The approach worksbest
when integrated into a database server using user-defined
functions, but can be implemented outside of a database
environment as well. In this paper, we describe our ap-
proach in terms of abstract properties and then in terms of
implementation.

In generd, the lineage of a datum consists of its en-
tire processing history. This includes its origin (eg., the
identifier of the base data set, the recording instrument, the
instrument’ soperating parameters) aswell asall subsequent
processing steps (algorithms and respective parameters) ap-
plied to it. Many applications of lineage become evident if
one considers processing history as a dataflow graph. For
example, lineageinformation allowstheuser totracetheim-
pact of faulty source dataor buggy programs on derived data
sets. It aso alows the user to investigate the source data
or programs that produced an anomalous data set. Such
investigations may be difficult or impossible without data
lineage: the user may not be familiar with processing steps
which were written by an expert programmer. Further, trac-
ing back throughanumber of processing stepsistediousand
time-consuming, particularly if large data sets are involved.

The perceived importance of data lineage has grown in
step with the increased volume and widened dissemination
of processed data sets. The amount of support for data lin-
eage has grown as well. For example, new scientific data
standards (e.g., the Spatial Data Transfer Standard [9], the
Spatial Archive and Interchange Format [13], and the draft
Content Standard for Digital Spatial Metadata [5]) gener-

ally incorporate some kind of support for lineage. Recent
scientific workflow systems(e.g., GI S databases such as Ge-
olineus [6] and geophysical databases such as BigSur [3])
automate the process of lineagetracking by providing direct
support intheworkflow infrastructure. BigSur, for example,
can supply the entire graph of processing steps by which a
given satellite image was produced, or alist of all images
produced using a given processing step.

Thus far, research and development in data lineage has
assumed that the compl ete history of adatum can and will be
stored as a piece of metadata. A metadata-based approach
to data lineage assumes that relatively coarse-grained in-
formation will suffice. For example, Earth scientists can
easily afford to store, say, 100 bytes of metadata for the
100 6000x6000 raster images they receive in a day. Even
outside of the database field, (e.g., in such areas as datafl ow
program debugging [16]), researchers have assumed that the
spacef/time cost of data tagging will be acceptable.

However, some scientific applications require lineage at
a much finer granularity than previously considered - we
know of applicationsthat require lineage at the level of pix-
elsin images [2]. Imagine a scientist who is debugging
an application that uses a regridded (interpol ated) compos-
ite of many raster images. This user might need to know
which pixels of which origina raster images were used in
the construction of the composite. Because of the nature
of the source data as well as the nature of the image pro-
cessing and regridding algorithms, we may not be able to
normalize much of the data dependency information. Can
we reasonably afford, say, 60 bytes of metadata per pixel?

This paper describes an approach for supporting such
fine-grained data lineage. Our approach uses a limited
amount of information about the processing steps to infer
the necessary lineage information on a lazy basis. In this
way, we avoid computing and storing such information in
advance. Our fine-grained data lineage technique therefore
complements coarse-grained metadata techniques.

In the absence of explicit lineage, the most obviousway
toidentify relevant inputsistoinvert the processing steps. A
function f issaidtobeinvertibleif thereexistssomefunction
£~ such that for each element « input to f, f~1(f(a)) =
a. Unfortunately, only a limited number of functions are
invertible.

We introduce the notion of weak inversion, which ap-
pliesto alarger class of functions. Each function whichis
weakly invertible has a corresponding function f=%. f~¥
attemptsto map from the output of f totheinput of f, butis
not guaranteed to be perfectly accurate. Instead, the accu-
racy of £~ isdescribed by anumber of weaker guarantees.
We also introduce the notion of verification. Verification
functionsrefine the set identified by f~*.

We propose the implementation of weak inversion and
verification as extensions to an object-relationa database

minima . track
AGCM extraction Minima [~ extraction Tracks

(a) Dataflow of cyclone track extraction.
AGCM Minima

‘Time‘ Array ‘

Tracks

‘ Time ‘ Location V\\;igld ‘g\’”'gg ‘ Time ‘ Location ‘Track‘

(b) Schema of cyclonetrack extraction.

e

e

(d) Cyclonetrack plot
(multipletimesteps).

(c) SLP plot
(singletimestep).

Figure 1. Cyclone track extraction.

management system (DBMS). We assume that users regis-
ter their data processing functionsin the DBM S and that the
DBMS manages the application of these functions. Users
register weak inversion and verification functions in the
DBMS as well. Given a specific datum to invert, an in-
version planner process infers which weak inversion and
verification functions must be invoked, constructs a plan
(function ordering), and then executes the plan by calling
the corresponding sequence of functionswithinthe DBMS.

In theremainder of thissection, we present asample sce-
nario which is used to illustrate our principles throughout
the paper. Section 2 defines our abstract model of weak in-
version and verification. Section 3 describeshow thismodel
can be extended to a database environment and details the
process by which expert users may register weak inversion
and verification functions in an extensible database. Sec-
tion 4 describes the inversion planner. Finaly, Section 5
presents conclusions and future work.

Examplescenario

As a real-world application of our techniques, we con-
sider a scenario for extracting cyclone tracks from atmo-
spheric simulation data, based on[8]. In thissubsection, we
present the processing steps used in thisscenario. Through-
out the paper, toillustrate portions of the model, we discuss
the weak inversion and verification of functionsin this ex-
ample.

Validation of atmospheric simulationsinvolves the com-
parison of model datato observational data. Cyclonetracks
form one type of reference for such comparisons. The cy-
clonetrack extraction process beginswith data generated by
an Atmospheric Genera Circulation Modd (AGCM). Two
functionsare applied to that data. Thefirst function extracts
loca minima in sea level pressure (SLP), each of which
may be the center of acyclone. The second function assigns
these minima to cyclone tracks. In the remainder of this
subsection, we describe in detail the two processing steps
(Figure 18) and the schema of the data (Figure 1b).

The AGCM dataconsistsof aseries of multi-dimensional
arrays, each with a time stamp. Each array is indexed by
location and contains a variety of data about atmospheric
conditionsat agivenlocation, eg., SLPvalue, wind velocity,
and wind direction (see Figure 1c).

A feature extraction algorithm is applied to this data to
locate minima. It is a neighborhood agorithm (described
in more detail in Section 3.1.2) which outputsthe following
data about each minimum (shown in the Minima table in
Figure 1b): time, location, wind velocity, and wind direc-
tion.

Cyclonetrack identification is performed on the Minima
table. The track identification algorithm attemptsto assign
each minimum to the trgectory of some cyclone. To be
assigned to a given track «, the minimum at time¢ must (1)
have a certain proximity to the minimum in track « at the
previous timestep ¢t — 1 or (2) be consistent with the wind
velocity and direction of such a minimum. Some minima
are not in fact cyclone centers and are not assigned to any
cyclonetrack. The output of the cyclonetrack identification
phaseisalist of thetime, location, and track number of the
minimawhich were successfully assigned to tracks.

At this point, the user views the results of the data pro-
cessing (see Figure 1d). They may be puzzled by one of the
cyclone tracks because it does not match their expectations
or agree with the observational data. They would liketo se-
lect the apparently anomal oustrack and see all inputswhich
contributedto it. O

2. Abstract model

We begin with a function f which maps from a domain
D toarange R. Now supposetheexistence of sets S;, € D
and S,y € Rsuchthat f(Sin) = Sout (See Figure2a). We
areinterested in inverting some subset of S,,;. We cal this
subset / (theimageof f).

If fisinvertible, there exists some function /=1 : R —
D suchthat f=1(f(A)) = Aforany A C D. We say that
It = f=YI) = {« € Si,|f(2) € I} istheinverseimage
of I, i.e, the relevant members of S;,, which map onto /
(see Figure 2b).

Because not al functionsareinvertible, we areinterested

n out SII“I out

[] -1
° ° A l ~f -1
° A f
A
'Y A

(b) Inversion of f.
S S fv S S

n out n out

e ".f 'W‘\D I h D

(c) Weak inversion of f. (d) Verification of f.

Figure 2. Weak inversion and verification.

inaweak inversefunction f~% : R — D.} f~%(I) = F~v
is a set of values in the domain D (f~* generates F~%
without reference to S;,,). To find the members of F~%
which actually appear in S;,, we intersect the two sets.
Theresultiscalled 77%,ie, I = S;,, N F~w, [I~¥
approximates I~ (see Figure 2¢?).3

Asan example, suppose f isafunctionwhich maps from
integers to their squares and that 7 isthe singleton set {9}
in S, f~% can conclude without examining any portion
of S;, tha F~* = {3,—3}. If S;, contains 3 but not -3,
I-* = {3}

Because f~% does not find the perfect inverse, it is not
guaranteed that £~ (f(I~1)) = I-1. Similarly, it is not
guaranteed that /—% = I~ Instead, we specify the re-
lationship between /~* (the set which is identified) and
I~ (theset whichisactually of interest) with thefollowing
properties:

e complete: I~ D [~1. I~% iscomplete in that it
containsall itemsof interest. Inthiscase, thereareno
fase negatives, i.e, f~* does not exclude any items
of /=1 from I~v (seeFigure 3a).

e pure. [~ C I~Y [~v ispurein that it contains
only items from /=1, In this case, there are no false
positives,i.e, f~* doesnotincludeany itemsin /—%
which are not in /=1 (see Figure 3b).4

1y—w s, grictly speaking, a relation rather than a function. To avoid
confusion with databaserelations, we refer to f —* asafunction.

2Recall that f—* does not produce I~ directly; rather, I—% results
from the intersection of 7/~ (the output of f—*) and S;, .

3We usethe notation 7~ to describe the set of inputs which mapsonto
I evenif f isnotinvertibleand no f—1 exists.

4Complete and pure are related to the traditional information retrieval
metrics recall (the fraction of relevant documents which are retrieved)
and precision (the fraction of documents which are retrieved which are
relevant) [4]. Specifically, complete represents perfect recall and pure
represents perfect precision.

in out in out
—f-p f »
I TR | E’" £ |
T "
(a) Complete. (b) Pure.

Figure 3. Properties of weak and verified in-
verses.

Note that if F~* isboth complete and pure, =% = [~1,
ie, frY(I)isi—L

In general, we use the term closeness to describe the
rel ati onship betweentheweak inverseand / ~*. Notethat not
all sets with a given property are equivalent. For example,
if two weak inverses A and B are complete, with | 4| <
|B|, A iscloser because it contains fewer irrelevant items
and therefore more closely approximatesthe actual inverse.
Similarly, if twonon-equa weak inversesare pure, thelarger
oneiscloser because it containsmore relevant items (again,
more closaly approximating the actual inverse).®

We next observe that, because there exist functions that
cannot be inverted without reference to the input values,
not al functions have useful f~%s (a useful f~* outputs
F~v #+ D). Therefore, weintroduceaverification function,
f~Y,whichhasaccesstothevaluesin S;,. f™ : Rx D —
D takes /=% and [asinput and outputsaset /-v C [~%
(seeFigure2d). I~? canbedescribed by the same properties
as /=%, i.e, I~Y can be complete or pure. In addition, f~*
can require that the input set /—* be complete or pure. We
term such restrictions apply conditions.

Our basic notation is summarized in Figure 4. Addition-
aly, when necessary for our discussion, we use accents to
distinguish particular functions or images, eg., f, f,and f.

3. Concrete mode

This section appliesthe concepts of the abstract model to
our environment. Weak inversion and verification are being
implemented inthe Tiogadatabase visualizer [11][1]. Tioga
adopts the boxes-and-arrows programming paradigm popu-
larized by AVS [14], Data Explorer [7], and Khoros [10].
Every box is a user-defined function and arrows represent
the flow of data between these functions. Certain boxes are
database browserswhich visualize data and display it to the
user. Tiogafunctions are written by expert users and regis-

5A possible general formulation of closenessinvolvesa unit-cost simi-
larity metric: |A N 77 — |A\T7Y| < |B N I~Y — |B\I~Y. However,
for the rest of this paper, we only consider the case in which we compare
two pure or two complete sets.

tered in POSTGRES, an object-relational DBMS[12]. We
are extending this registration mechanism so that the expert
user can register weak inversion and verification functions.

In this section, we show how the set entities of the ab-
stract model presented in Section 2 map onto database tuples
and attributes. The fact that tuples have multiple attributes
complicates the definition and application of the weak in-
version and verification functions; we extend our model to
address thisissue. We then extend our model to alow the
weak inversion and verification of portions of attributes,
eg., an eement in an array. Next, we extend the model
from the inversion of single functions to the inversion of
arbitrary dataflow graphs. Finally, we present the procedure
theexpert followsto register weak inversion and verification
functionsin POSTGRES.

3.1. Extending the abstract model to a database
environment

Each function in Tiogatakes asinput sometable 7;,, and
yieldsas output sometable7,,;. Thesetablescorrespondto
theinput and output sets S;,, and .S,,; of our abstract model.
In this subsection, we discuss the inversion of attributes as
well astheinversion of elements within complex attributes.

3.1.1 Attributes

We begin with the image 7 which is to be weakly inverted.
I in genera consists of a set of tuples, i.e, arestriction of
T,.:- Inour discussion, we consider that I consists of a
singletuple. However, it isastraightforward generalization
to consider images which contain multipletuples or are the
result of applying arestrictionto 7.

We have chosen to support weak inversion and verifi-
cation at attribute-level granularity. This has two primary
advantages over tuple-level granularity. First, the user is
only required to provide weak inversion and verification
functionsfor attributesin which they areinterested or which
they understand. Second, it allows more precise inversion.

Theinverseimage I ~* consistsof thetuplesin7},, which
contain attributeswhich affected /. Thereisaseparate weak
inversion and verification process for each attribute within
Tout- Therefore, f~% for atupleiscomprised of anumber of
functions f*...f;*. Each 7 weakly inverts a specific
atribute £ of 7,,; (see Figure 53). We define [as the
projectionof 7 on k. F* = f " (I)) describes a subset
of the domain which might have contributed to I,. 7" is
a Boolean expression containing restrictionson 7;,,. 1. “
istheresult of .~ applied to 7;,. 1™ may be complete
or pure with respect to /,,. Additionally, 7" may possess
a user-defined property with respect to I, .

Similarly, f~v for atuple is comprised of a number of
functionsf; “...f; V. Each f " takestwoinputsand verifies

‘ H Relationship to other sets | Description ‘ Definitions ‘
f fi:D—=R Function applied to S;,, toyield S,y .
S; Sin €D Input set.
Sout || Sour € R Output set. Sout = f(Sin)
I ICSut CR Portion of S,,,; being queried (the image).
71 I-'cs,CcD Inverse image of 1.
/I fY“:R—=D Wesak inversion function of f.
F-v || F-vCD Filter on Sj,,. F~v = (1)
v I CS;,CD Weak inverse of 1. Y =5,nNnF"Y
v ff":RxD—D Verification function of f.
v IV CI=* CS;, CD | Theveifiedinverseof I. I=v = (1, I7v)

Figure 4. Definitions.

a specific attribute & of 7,,;. Thefirst input to an f_ " is
I;.. The second input is the weak inverse 7/, . The user
may register requirements (apply conditions) for the weak
inverse, i.e, an f,_ " may requirethat aninput /, * possessa
specific property or propertieswith respect to /.. The output
of an f " is 1", I,”" can be described by the properties
we have previoudly defined.

The expert user writes and registers each f,* and f,~"
individually. The user may register zero or moreweak inver-
sion or verification functionsfor each attribute. If the user
does not provide a weak inversion or verification function
for a given attribute, the system provides a trivial default
function (discussed below). Multipleweak inversion or ver-
ification functions for a given attribute may be desirable
when different weak inversion or verification functions for
an attribute have different properties. For example, one can
imagineregisteringone f,~* whichiscomplete but not pure
and another which is pure but not complete.

Althoughtheweak and verified inverses consist of entire
tuplesin 7T;,, , the user may wish to know which attributesin
T;,, arerelatedto somespecificattributein7,,,; . (Weassume
the existence of aninterface throughwhichthe user specifies
the attribute(s) in 7, of interest.) Such information can be
inferred using the registration tables which are described in
Section 3.2 and presented to the user.

Wesak and verified inverses of the same attribute may be
combined. Further, the weak and verified inverses of differ-
ent attributesin theimage can be combined to find the weak
and verified inverses of theentireimage. The resulting weak
and verified inverses of the entireimage can be described as
having a given property or properties. In Section 4 we dis-
cuss methods of combining weak and verified inverses and
the properties which result from these combinations. We
assume that a small amount of bookkeeping is done during
the combination of weak and verified inversesto preservein-

formation about which attributesin 7;,, arerelated to which
atributesin 7,,;.

Asan additional complication, attributesin animage may
be the result of either aggregate or scalar functions. Asan
example of an aggregate function, if an attributea in T, is
the maximum value of someattributein7;,,, f, isaggregate.
However, if an attribute e in T, is derived from valuesin
exactly one tuple in 7;,, f, is scalar. In Section 4, we
discuss the different combination methods which pertain to
these two types of functions.

Example of weak inversion and verification of an at-
tribute

We now returnto our cyclone extraction scenario. InFig-
ure 1b, we can writeatrivia weak inversion functionfor the
timefield in Minima. Specificaly, if I7;.,. consists of the
singlevaluet (recallingthat we are assuming for purposes of
thisdiscussionthat / isasingletonset), 7 . is“sel ect
* from AGCM where AGCCM Tinme = t”. O

3.1.2 Complex Attributes and Elements

We have assumed above that / consists of simple attributes
within tuples in 7,,;. However, POSTGRES supports a
variety of complex attributes, eg., arrays, tuple types (in
which an attribute may be broken down into a number of
other attributes), and user-defined types (which can only
be manipulated using the methods defined for the type).
Observe that any attribute, whether simple or complex, can
be weakly inverted and verified within the model described
in Section 3.1.1.

We define an element to be a member contained in a
complex attribute, eg., a cell within an array or an attribute
inaninstance of atupletype. Theuser may wishto query an
element within a complex attributein 7. For example, a

n out

n out

. T
n out
—
f —W’/- Ex Ia
E -4//: *
EX'W -K |a-v

(b) Weak inversion of an element £ in attributea.

Figure 5. Weak inversion of multiple levels.

scientist may wish to invert aspecific pixel within asatellite
image. In this subsection, we extend our definition of weak
inversion and verification functions to operate on elements
withincomplex attributes.® Therefore, the user may register
an f* for any dimension & in an array. Similarly, the user
may register an f,_* for any attribute & of atupletype. In
either case, appropriate f,”“s may also be registered. (Note
that each element of a complex attribute may in turn be a
complex attribute. Therefore, weak inversion and verifica
tion functions may exist for an element within an element.)
We assume the existence of some interface through which
the user can specify some el ement which they wishtoinvert.

For example, suppose there exist tables 7;,, and T,
each containing an attribute of the array type. Now imagine
that I is an element within a specific array attribute « and
that we wish to invert dimension « in a. Weak inversion
and verification functionsare applied toidentify /¥ in 7, .

6We do not currently support these operations for subparts of arbitrary
user-defined types which by nature do not have accessors known to the
database.

Then, £ “sare applied to each member of 7 ?.” Theresult
is E;v (see Figure5b).8

Wesak inversion and verification functionsarenot required
to return values at the same level as their arguments. (We
use the term level to describe the degree of containment
of an attribute or element. The top (first) level consists
of the attributes in a given table, the second level consists
of the attributes or dimensions contained by the top level,
etc.). For example, the weak inversion of an element might
yield asimple attribute. Similarly, the weak inversion of an
attribute might yield an element.

Example of weak inversion and verification in the pres-
ence of complex attributes

Supposewe wishtoidentify theinverse of aspecific min-
imum 7 in Minimain our cyclone track extraction scenario.
Thelocation attribute MinimaLocationisdirectly related to
the location index of the array in AGCM.Array. Recall that
the function which extracts minima from AGCM.Array is
a neighborhood agorithm. Minimaat alocation (z, y) are
identified if they meet one of two criteria:

1. All immediate neighborsof (x, y) have a higher SLP
than SLP(z, y).

2. The average SLP of the 5x5 neighborhood centered
a (x, y) (but exclusive of (z, y)) is higher than SLP

(z,).

Therefore, the classification of / as a minimum may
have resulted either from values of its immediate neigh-
borsor from values of the 5x5 neighborhood surroundingit.
Sincethereisno way to distingui sh between these two cases
without examining the valuesin the AGCM table, the weak
inversion of Iy ,cqti0n returnsall cellsin the 5x5 neighbor-
hood centered a /7 ,cqti0n- Thisweak inverse is complete
but not pure. The verification function has an apply condi-
tion which specifies that the weak inverse must be complete
(it must be able to examine the entire 5x5 neighborhood).

Theverification function examinesthecontentsof the5x5
neighborhood and determines which criteriaapplied. If the
first applied, the verified inverse consists of the immediate
neighborhood. If the second applied, the verified inverse
consists of the 5x5 neighborhood. 1n both cases, the verified
inverse is both complete and pure with respect to Iz ocation -
O

3.1.3 Dataflow Graphs

Thus far, the model has not addressed multiple inputs or
outputsto functions. However, a general dataflow graph is

"The specific processis discussed in more detail in Section 4.2 below.

8We use I and E in this example to distinguish between the attribute
and the element within the attribute. However, in general, we still consider
theoutputof an /= (f, ") tobe I ™ (I,”").

‘ Information H Type

name of f" string

name of f string

nature of f; aggregate or scalar

image type type of attribute or dimension & within 75, being verified

inverse image types

types of attributes or dimensionswithin 7;,, which appear in 1,”"

properties of output I,”*

complete and/or pure and/or user-defined

apply conditionsfor 7,

complete and/or pure and/or user-defined

Figure 6. Information to register for verification functions.

aDAG. We address thisissue by restructuring the datafl ow
graphinto groupsof functionswith oneinput and one output.
We invert these groups separately. We then combine the
results of theinversions.

More specifically, we define a chain in a dataflow graph
to be a linear sequence of functions from an input to an
output. Each functioninthechainiscalled astep. An arbi-
trary dataflow graph may be broken down into a number of
such chains. Each chainisinverted separately (the specific
process for inverting achainis discussed in Section 4). The
results of the inversions of each chain are unioned to find
the inversion of the entire dataflow graph.

3.2. Registration procedure

The expert user must register severa pieces of informa
tion about weak inversion and verification functions. This
information is used by the inversion planner described in
Section 4 to infer which functions should be used for weak
inversion and verification.

The user begins by identifying the name of the function
which will perform the weak inversion or verification. The
user next identifies the function f which is being weakly
inverted and verified. The user also specifies whether the
attribute being inverted results from an aggregate or scalar
function, i.e, f; isdescribed as aggregate or scalar.

The user must also register information which alows
the inversion planner to infer which weak inversion and
verification functions apply to agiven attribute. Therefore,
for each inversionfunction, theuser specifiesthetypesof the
relevant attributes (or dimensions) in the image and in the
inverseimage. Theinversion planner searches for attributes
(ordimensions) inT;,, and T%,,; which match these specified
types.®

9Thistyping systemmay lead to ambiguities, e.g., if two attributes of the
sametypeappear in T}, and theregistered informationfor f doesnot permit
ustoinfer which function produceswhich ettribute. Inan aternativedesign,
the user might specify the precise names of the attributes in the image and

Finally, the user enters information about the properties
of the sets output by the weak inversion and verification
functions. Note that if a property is specified for an output
Set, itisguaranteed to betrue. However, if it isnot specified,
it might or might not pertain. The information the expert
user enterstoregister an £, issummarizedin Figure6 (with
the exception of apply conditions, identical information is
registered for an f,*).

As mentioned in Section 3.1.1, in addition to the f,”"'s
or f,~"s registered by the user, every attribute or element
resultingfrom every function hasadefault f,”* and adefault
fr". The default f,* outputs a filter consisting of no
restrictions, i.e,, I, = T;,. The default I, " istherefore
guaranteed to be complete, but it is not guaranteed to be
pure or to possess any user-defined properties. The default
J. " outputs /.. Therefore, the default 7,7 has precisely
the same properties as the 1,7 it takes as input. Note that
if both defaultsare used, 7, = I7" = T;,.

User-defined propertiesare registered in aseparate mech-
anism in which the user specifies the name of the property
and the combination ruleswhich apply toit (either complete
or pure rules as described in Section 4.1).

4. Inversion planner

Theinversion planner isresponsiblefor devisingaplanto
weakly invert and verify theimage sel ected by theuser. The
result of the execution of this plan must match the user’s
specification of properties as closely as possible (eg., the
user may specify that they wish the verified inverse image
to be complete or pure). The plan specifies which weak
inversion and verification functionswill be applied to which
tablesin what order.

inverseimage. However, such a design limits the degree to which weak
inversion and verification functions may be easily reused, forcing the user
to explicitly register weak inversion and verification functions for every
attribute which isto be inverted.

In this section, we discuss how properties of weak and
verified inverses can be preserved during the combination of
weak inversion and verification functions. We then present
the al gorithmtheinversion planner followsto invert achain.

We make several simplifying assumptions. In [15] we
consider further optimizations which may be made if these
assumptions are rel axed.

o We assume dl tables (including intermediate results)
are materialized.

¢ We assume there is a per-tuple cost of applying an
" oran f~" (as opposed to a fixed or per-byte
cost).

o Weassumethat the planner istryingto find the cl osest
possible verified inverse.

o We assume that the desired properties as specified by
the user are the same for al verified inverses in a
chain.

4.1. Preservation of properties

We have aready discussed several properties of sets
(complete, pure, user-defined). Some combinations of sets
preserve such properties and some do not. We begin our
discussion of the preservation of properties by detailing in-
version of a single function (simple attributes and complex
attributes). Next, wediscussinversion of multiplefunctions.

41.1 Preservation of propertiesduring theinversion of
simpleattributes

This subsection covers two primary types of combinations.
First, for agiven dimension &, 7;”“s or I,""'s may be com-
bined to improve the closeness of theinversion of k.1° Sec-
ond, to this point, we have only considered weak inversion
and verification of attributesin the image. However, after
all individua attributes have been fully inverted, a higher-
level combination may aso be performed. Specifically, the
results of the inversion of multiple attributes may be com-
bined to assemble theinverse of an entiretuple. (Similarly,
the results of the inversion of multiple dimensions within a
complex attribute may be combined to assemble theinverse
of thecomplex attribute.) Inthelatter part of thissubsection,
we describe how such combinations may be advantageous.
We begin by considering the case in which 7,,,; contains
exactly oneattribute, y. Recall that multipleweak inversion
functions f,”* may be registered for asingle attribute (i.e,
the inversion planner may have the choice of several weak
inversion functions). We have aready observed that it is

101 general, we use the term dimension to refer to either an attribute
whichis being weakly inverted and verified or adimension within an array
which is being weakly inverted or verified.

desirable to have different weak inversion functions which
have different properties. However, it is also desirable to
have multipleweak inversion functionswith the same prop-
erty to increase the closeness of the weak inversion. There
are two interesting cases. First, suppose we have two weak
inversion functions, each of which returns a pure set (call
them A and B).X! If A # B, theunionof A and B yields
adtrictly larger pure set (the larger a pure set, the more ac-
curate it is). Second, if the weak inversion functionsyield
compl ete sets, the intersection of A and B yields a strictly
smaller complete set (the smaller a complete set, the more
accurateitis). Observethat these rulesof combination apply
whether f, isscaar or aggregate.

Now we consider the combination of the weak inverses
of multipledimensions. First, we discussthe case in which
the f,sare scalar. If atuplein /! isrelevant to atuplein
1, it must be relevant to each attribute of 7, i.e, for al &, it
must be a member of Ik‘l. Therefore, ingenerd, if multiple
attributes are scalar, the weak inverses of these should be
intersected to find the weak inverse of the entire tuple (or
if multiple dimensions are contained in a complex attribute,
theintersection of theweak inverses of each dimension finds
the weak inverse of that complex attribute). Details appear
in[15].

Next, we discuss the case in which f; s are aggregate.
Suppose T+ containstwo attributes « and y. In thissitua-
tion, thereis no guarantee that asingletuplein 7;,, must be
relevant to /. For example, suppose = is the maximum of
an atributea in T}, and y isthe maximum of an attribute b
inT;,. Theweak inverses of « and y may be digoint; how-
ever, both are relevant to /. Therefore, al weak inverses
associated with aggregate fi s (whether complete or pure)
should be unioned.

Finally, weconsider the case inwhich some fj,saresca ar
and some are aggregate. All weak inverses associated with
scalar fi sshould beintersected as specified. Then, all weak
inverses associated with aggregate f; s should be unioned.
Asthelast step, both of the resulting sets should be unioned.
Observe that whether we are combining sets within one
attribute or combining sets for multiple attributes, there is
no caseinwhich it is desirable to combine a pure set with a
compl ete set.

In some cases, we may invert a subset of the attributes
in an image (either because the user has specified that only
those attributes are of interest or because interesting weak
inversion and verification functions are not available for all
attributes). Notationally, if a set has certain propertieswith
respect to multiple attributes 1...k in the image, we say that
it has those propertieswith respect to /7 .

M Examplesin this section refer to the combination of I~ *’s. The same
rules apply to #,~*sand I,"“s.

Example of weak inversion and verification of multiple
scalar attributes

Returning to our cyclone track extraction example, con-
sider the weak inversion and verification of an image inthe
Tracks table. We suppose that weak inversion and verifica
tion functions have been registered for the attributes Time
and Location. Observethat fr;me and frocqation are scaar.
Also notethat each of these attributeshastrivia weak inver-
sion and verification functions which yield sets which are
complete and pure with respect to the individua attributes
Time and Location (the values in Minima are identical to
those in Tracks). Therefore, since the forward functions
are scalar, we intersect 7.0 and I;° The result is

Time Location*®

complete and pure with respect to I7ime, Location- O

41.2 Preservation of propertiesduring theinversion of
complex attributes

Recall from Section 3.1.2 that theweak and verified inverses
of an image can exist at multiple levels. In this subsection,
we consider the properties of these different levels in the
weak and verified inverses. First, we discuss the properties
of asinglelevel in the weak and verified inverses. Second,
we discuss the properties of multiplelevelsin the weak and
verified inverses.

In Section 4.2, we present the specific process by which
the weak and verified inverses are identified. For now, it
is sufficient to understand that each level in the weak and
verified inversesis calculated by a set of independent weak
inversion and verification functions. The weak inversion
and verification functions for a single level in the inverse
may invert different levels in the image. For example, one
function may weakly invert an attribute in the image to
tuples in the weak inverse; another function may weakly
invert an element in the image to tuplesin the weak inverse
aswell. In general, the resulting weak or verified inverses
are combined according to the combination rules described
in Section 4.1.1 above.

Since each level in the inverse is computed separately,
each level in the inverse can have different properties with
respect to the various levels in the image. However, the
propertiesof alevel intheinverse affect the propertiesof al
levels below it. Specifically, the wesk or verified inverse of
alower level can only have a given property with respect to
alevel in theimage if al higher levelsin the inverse have
that same property. Thisimplies that levels in the inverse
are computed in a top-down manner, which in turn implies
that each level intheinverseisa subset of the higher levels.

For example, suppose that in Figure 5b, f; v identifies
tuples containing satellite images which contributed to an
aggregate satellite image [, and that the output of £,V is
complete with respect to /,. Now supposethat % iden-
tifies the region of each satellite image which contributed

to £, and that its output £, is pure with respect to F,.
Observe that f* might be applied to a member of /¥
which is not relevant to /,; the resulting £ istherefore
not relevant to /,. Consequently, £ is not pure with
respect to /,, (it would be pureonly if /¥ were pure).

Example of preservation of properties during inversion
of complex attributes

Consider the inversion of an image I in the Minimum
table of the cyclone track extraction example. We perform
thisinversion in two steps.

First, weweakly invert and verify thetoplevel of AGCM.
We assume weak inversion and verification functions are
availablefor Minima. Time and Minima.L ocation. Weapply
weak inversion and verification functionsto identify /7.
(both F7% and f7. _ restrict AGCM.Time). [z s
complete and pure. Applying the weak inversion function
10 17 veation yields a complete set IL‘OCGMOH which consists
of al tuplesin AGCM. Applying the verification functionto
I7¥ .. yieldsacompleteand pureset 17", ... whichalso
consists of dl tuplesin AGCM (the verification function is
ableto verify that thearray in each tuplecontains fLoca”on)
At this point we use our combination rules: we intersect
I7Y and I;" .. tofind averified inverse [~V which s
complete and pure with respect to ITime, Location -

Next, we weakly invert and verify the second level of
AGCM. We use the weak inversion function described in
Section 3.1.2 to generate afilter £7“,,;... We apply this
filter to every member of [~v. The result £;¥ ;. is
complete with respect to ILocamn We then apply the ver-
ification function fLocanon to £7% ..., which yields a
complete and pure set £, .1:,,- Sincethe weak inversion
and verification of both levels is complete and pure, the re-
sult of the second level inversion is complete and pure with

respect to I7ime, Location- O

4.1.3 Preservation of propertiesduring theinversion of
multiplefunctions

In this section, we show how our abstract model general-
izes to chains. We observe that the properties of weak and
verified inverses are transitive.

For exampl e, consider achain withtwo functions f and f
inwhichthe output of fisinput to f. Supposethat an expert
user has registered functionswhich provide weak inversion
and verification of each of these functions.

Now suppose an end user wishes to find the inverse of
an image in T,,; (see Figure 78). The user would like to
identify the relevant inputsin both 7;,, and fm Ideally, the
system would use f~* to invert theimage and identify /=1
inT;,. Then, it would treat I7YinT;, asanimagein Tout
and finditsinverse 7-1in7},,.

in out in out

SIS K A

(a) Inversion of two functions.

out

¥f -1
—f >W/

(b) Wesak inversion of two functions.

Figure 7. Weak inversion of a chain.

We apply our weak inversion functionsin this situation
as follows (we assume these wesk inversion functions are
complete). We begin by finding a weak inverse in 7}, .*
However, the user wishesto seetherelevant inputsfrom fm
as wdl. Thisis accomplished by using /~* as an image
inT,,;. Recal that the weak inverse can differ from the
actua inverse image. Chaining weak inversion functions
together amplifiesthisinaccuracy. In Figure 7b, we see that
jf—w(l—w) yields a larger (and more inaccurate) set than
F .

Despite this loss of accuracy, we can still make certain
guarantees about the rel ati onship of weak inversestoinverse
images in these situations. The key observationisthat com-
plete and pure are both transitive properties. Specificaly,
if both f=* and f~* are complete, so are their outputs.
In Figure 7h, therefore, both /=% (1=1) and f~* (I~¥) are
complete, though neither is pure.

Example of preservation of properties during inversion
of multiplefunctions

Consider the dataflow diagram in Figure 1a. We saw
in Section 4.1.1 that the weak inversion and verification of
certain attributes in Tracks yields a complete and pure ver-
ified inversein Minima. Similarly, we saw in Section 4.1.2
that the weak inversion and verification of certain attributes
in Minima yields a complete and pure verified inverse in
AGCM. Therefore, the wesk inversion and verification of
an image in Tracks yields complete and pure verified in-
versesin both Minimaand AGCM. O

21t would also be possibleto find afilter or averified inverse and use it
astheimage. Each of these cases has different performance implications,
asdiscussed in[15]. For simplicity, we assume that we are using the weak
inversefor the remainder of this section.

for each step num_stepsto 1
for each left_level 1 to num_left_levels
for each right_level
for each dimension & in 1 to num_attributes
findall f.~”swhich have the desired property
findall £, *swith matching apply conditions
remove the f,~”swhich can’t be satisfied
end;
end;
end;
for each left_level 1 to num_left_levels
for each right_level & in 1 to num_attributes
for each dimension
apply al f,7"'s
apply thefiltersto get the I, *'s
combinethe /,~*s for the dimension
for each right_level
apply dl f;7"s
combinethe /,~”swithin each dimension
end;
combinethe /.~ "s across dimensions
end;
end;

Figure 8. Algorithm for inverting a chain.

4.2. Inversion planner algorithm

In this subsection, we first discuss ordering constraints
for weak inversion and verification. We then present an
algorithm which follows these constraints as well as those
presented in Section 4.1.

We have discussed severa stages of weak inversion and
verification of achain. If wesakly inverting or verifying some
part of the chain impacts the weak inversion or verification
of some other part, we say the former part affects the latter.
For example, consider Figure 7b. If the weak inversion
and verification of f were more accurate, then 7=* would
be more accurate. The improved /=% could be used as
an image input to f~* resulting in a more accurate I,
Therefore, we say that the weak inversion and verification
of f affects the weak inversion and verification of f

There are two critical observations about which parts of
the chain can affect others:

1. Theinversion of astep can affect theinversion of any
step toitsleft (althoughit can not affect theinversion
of stepstoitsright).

2. Within a step, one inversion can affect another inver-
sionwhichyieldsalower level intheinverse (sincethe
lower levelsin the inverse are a subset of the higher
levels). Conversaly, one inversion can not affect an-
other inversionwhichyieldsahigher level intheweak
or verified inverse.

These observations suggest a natural ordering of the in-
Version process.

1. Stepsshould beweakly inverted and verified proceed-
ing from right to | eft.

2. Within a step, each level in the inverse should be
computed (weakly inverted, verified, and combined)
before the levels below it are computed.

Combining the constraints of Section 4.1 (preservation
of properties) and Section 4.2 (ordering) we arrive at the
algorithm presented in Figure 8.

Exampleapplication of algorithm

We have discussed all the weak inversions and verifica-
tions necessary to trace the relevant inputs of the cyclone
track extraction scenario presented in Section 1. Accord-
ing to the algorithm for the inversion planner, the complete
weak inversion and verification of an image 7 in Tracks
would consist of the following steps:

o Weakly invert and verify I, yielding a complete and
pure verified inverse 7~ in Minima (as described in
Sections 3.1.1 and 4.1.1). Specifically, the system
will:

1. Weakly invert and verify the attributes
Tracks.Time and Tracks.Location.

2. Intersect [." and I;" (see Figure 9a™3).

Time Location

o Weakly invert and verify /=" yielding a complete
and verified inverse /=Y in AGCM (as described in
Sections 3.1.2 and 4.1.2). Specifically, the system
will:

3. Weakly invert and verify the attributes Min-
ima.Time and Minima.Location, finding thetop
level of the verified inverse.

4. Intersect [7¥ and [;Y .. . The result is
17% in AGCM. [~? isthe set of the members
of AGCM which are relevant to /™7 (see Fig-

ure 9b).

5. Weakly invert the attribute Minima.Location,
finding the second level of the weak inverse.
The result is £7%_,.. . which is complete but
not pure.

6. Verify E7v

Lgcation

yidding £, ..., (see Fig-
ure 9c). E;!

T oation 1S DOth complete and pure
(asdiscussed in Section 4.1.3). O

B3For clarity, in Figure 9, we illustrate only attributes which are in the
weak and verified inverses rather than the entire tuple. As mentioned in
Section 3.1.1, a small amount of bookkeeping is done to facilitate such a
presentation to the user.

5. Conclusions

We have proposed amethod to support fine-grained data
lineage. Rather than relying on metadata, our approach
lazily computes lineage using a limited amount of informa-
tion about the processing steps. This approach incorporates
weak inversion and verification. While the system does not
perfectly invert the data, it providesa number of guarantees
about the lineage it generates on thefly.

We have proposed a design for the implementation
of weak inversion and verification in an object-relational
DBMS. This functionality has a number of interesting ap-
plications. We have discussed how it can help users track
the lineage of specific data.

We are currently exploring severa ways in which weak
inversion and verification can be applied to optimization
problems such as view maintenance, efficient materializa
tion of partial results, and enhanced semantic query opti-
mization [15].

Acknowledgements: Wewould liketo thank Paul Aoki,
Joe Hellerstein, and the anonymous reviewersfor comments
on previousdrafts of thispaper. Wewould also liketo thank
Paul Aoki for valuable discussions of thiswork.

References

[1] A. Aiken,J. Chen, M. Stonebraker, and A. Woodruff. Tioga-
2: A direct manipulation database visualization environment.
In Proc. 12th Int. Conf. on Data Engineering, pages208-17,
New Orleans, LA, Feb. 1996.

[2] E. Bainto, J. Dozier, J. Frew, J. Gray, R. Mechoso, and
S. Miley. Requirements for Sequoia database system. Se-
guoia 2000 technical memorandum, University of California,
Berkeley, CA, Sept. 1993.

[3] P. Brown and M. Stonebraker. BigSur: A system for the
management of Earth sciencedata. In Proc. 21st Int. Conf. on
Very LargeData Bases, pages720-728, Zurich, Switzerland,
Sept. 1995.

[4] C. Cleverdon and M. Keen. Factors Determining the Per-
formance of Indexing Systems. ASLIB Cranfield Research
Project, 1966.

[5] Federal Geographic Data Committee. Content standards for
digital spatial metadata (final draft), June 1994.

[6] D. P Lanter. Design of alineage-based meta-data base for
GIS. Cartography and Geographic Information Systems,
18(4):255-261, 1991.

[7] B.Lucas, G. Abram, N. Callins, D. Epstein, et a. An archi-
tecture for a scientific visualization system. In Proc. 1992
IEEE Msualization Conference, pages 107-114, Boston,
MA, Oct. 1992.

[8] E. Mesrobian, R. Muntz, J. Santos, E. Shek, C. Mechoso,
J. Farrara, and P. Stolorz. Extracting spatio-temporal pat-
terns from geoscience datasets. In Proc. IEEE Workshop

AGCM Minima Tracks
Time | Array Time Location V\V/'gld Ingglgt Time Location | Track
. ‘// Lg/\(’:ation I
v |12:00 | 38N 100W @ 1112:00 | 38N 100W
@ 12:00 T
1200 ¢ — F—T |
(a) Identifyingthe verified inverse of the track extraction.
AGCM Minima Tracks
Time | Array Time Location V\V/'gld Ingglgt Time Location | Track
.« fllzg\(’:ation i
I |12:00 @ | v|12:00 | 38N 100W 1112:00 | 38N 100W
@ - ¥
e
(b) Identifying the top-level verified inverse of the minimaextraction.
AGCM Minima Tracks
Time | Array @ Time Location V\V/'gld Ingglgt Time Location | Track
e —
[|12:00 /- I¥|12:00 | 38N 100W 1112:00 | 38N 100W
v

:: fLocation
6

(c) Identifying the second-level verified inverse of the minima extraction.

Figure 9. Inversion of cyclone track extraction.

[13] Surveys and Resource Mapping Branch, Ministry of Envi-
ronment, Lands and Parks. Spatial archive and interchange
format (SAIF), release 3.1, 1994,

C. Upson, T. Faulhaber, J., D. Kamins, D. Laidlaw,
D. Schlegel, J. Vroom, R. Gurwitz, and A. VanDam. The
application visualization system: A computational environ-

on Visualization and Machine ision, pages 92—103, Seattle,
WA, June 1994.

[9] National Institute of Standards and Technology. Federal
information processing standard (FIPS PUB) 173-1: Spatial
datatransfer standard (SDTS), 1994.

[14]

[10] 3. Rasure and M. Young. An open environment for image ment for scientific visualization. |EEE Computer Graphics
processing softwar(_edevelopment. Ir_] Proc. 1992 SPIE Sym- and Applications, 9(4):3240 JL.J|y 1989 P P
?gzeungn':E;gc'[lrgglzcImageProceﬁsmg, Pages300-310, San [15] A. Woodruff. Supporting fine-grained data lineage in a

T . database visualization environment. Computer Science

[11] M. Stonebraker, J. Chen, N. Nathan, C. Paxson, and J. Wu. Technical Report CSD-97-932, University of California,
Tioga: Providing data management for scientific visualiza- Berkeley, CA, Jan. 1997.
tion applications. In Proc. 19th Int. Conf. on Very LargeData [16] H. Yamana, J. Kohdate, T. Tasue, and Y. Muraoka. An
Bases, pages 25-38, Dublin, Ireland, Aug. 1993. environment for dataflow program development of parallel

[12] M. Stonebraker and G. Kemnitz. The POSTGRES next- processing system-Harray. Systemsand Computer sin Japan,

generation database management system. Communications
of the ACM, 4(10):78-92, Oct. 1991.

22(8):26-38, 1991.

