
Beyond Average: Toward Sophisticated Sensing with
Queries

Joseph M. Hellerstein
�����

, Wei Hong
�
, Samuel Madden

�
, and Kyle Stanek

�
�

UC Berkeley�
jmh,madden � @cs.berkeley.edu, kyles@uclink.berkeley.edu�

Intel Research, Berkeley
whong@intel-research.net

Abstract. High-level query languages are an attractive interface for sensor networks,
potentially relieving application programmers from the burdens of distributed, embed-
ded programming. In research to date, however, the proposed applications of such inter-
faces have been limited to simple data collection and aggregation schemes. In this pa-
per, we present initial results that extend the TinyDB sensornet query engine to support
more sophisticated data analyses, focusing on three applications: topographic mapping,
wavelet-based compression, and vehicle tracking. We use these examples to motivate
the feasibility of implementing sophisticated sensing applications in a query-based sys-
tem, and present some initial results and research questions raised by this agenda.

1 Introduction
Sensor networks present daunting challenges to potential application developers. Sensornet
programming mixes the complexities of both distributed and embedded systems design, and
these are often amplified by unreliable network connections and extremely limited physical
resources. Moreover, many sensor network applications are expected to run unattended for
months at a time.

These challenges have motivated research into higher-level programming interfaces and
execution environments, which try to relieve programmers from many of the burdens of dis-
tributed and embedded programming (e.g. [13, 24]). In our own work, we have designed a
framework called TAG [17] for sensornet data aggregation via an SQL-like language. More
recently we have implemented the TAG framework in a system called TinyDB [18] that runs
in networks of TinyOS-based Berkeley motes [11].

We have received initial feedback indicating that TinyDB’s SQL-based interface is very
attractive to a number of users interested in distributed sensing. However, we have also heard
concerns about apparent limits to the functionality of simple SQL queries. This feedback
resulted in part from our early work, which performed fairly traditional SQL queries for
relatively simple tasks: periodically collecting raw readings, and computing simple summa-
rizations like averages and counts.

In this paper, we present a status report on our efforts to do deploy more complex sens-
ing tasks in TinyDB. Our intention is both to illustrate TinyDB’s potential as a vehicle for
complex sensing algorithms, and to highlight some of the unique features and constraints of
embedding these sensing algorithms in an extensible, declarative query framework.

In the paper we review and extend the TAG framework [17], and show how it can be
used to implement three sensing applications that are relatively distant from vanilla database
queries:

1. Distributed Mapping: One commonly cited [4] application for sensor networks is to pro-
duce contour maps based on sensor readings. We present simple topographic extensions
to the declarative query interface of TAG that allow it to efficiently build maps of sensor-
value distributions in space. Our approach is based on finding isobars: contiguous regions
with approximately the same sensor value. We show how such maps can be built using
very small amounts of RAM and radio bandwidth, remaining useful in the face of signifi-
cant amounts of missing information (e.g. dropped data or regions without sensor nodes.)
Results from an initial simulation are included.

2. Multiresolution Compression and Summarization: Traditional SQL supports only simple
aggregates for summarizing data distributions. We develop a more sophisticated wavelet-
based aggregation scheme for compressing and summarizing a set of readings. Our tech-
nique also has the ability to produce results of increasing resolution over time. We de-
scribe a hierarchical wavelet encoding scheme that integrates naturally into the standard
TAG framework, and is tuned to low-function devices like Berkeley motes. We also dis-
cuss a number of open research questions that arise in this context.

3. Vehicle Tracking: Several research papers have investigated distributed sensornet algo-
rithms that track moving objects [2]. We show how a declarative, event-based query
infrastructure can serve as a framework for such algorithms, and discuss how the TAG
approach can be extended to allow sensor nodes to remain idle unless vehicles are near
to them. This is work in progress: we have yet to instantiate this infrastructure with a
sophisticated tracking algorithm, but hope that this framework will seed future efforts
to combine intelligent tracking with the other ad-hoc query facilities afforded by a full-
function sensornet query process like TinyDB.

The remainder of this paper is organized as follows: Section 2 summarizes the TAG approach
to in-network aggregation, which we extend in the remaining sections of the paper. Section
3 discusses some new language features we have added since the publication of TAG[17],
which enable our tracking scenario. Section 4 discusses the distributed mapping problem;
Section 5 discusses techniques for compressing and summarizing; and Section 6 discusses
vehicle tracking. Finally, Section 7 discusses related work and Section 8 concludes with some
discussion of future work.

2 Background
In this section, we describe the declarative, SQL-like language we have developed for query-
ing sensor networks. We also describe the processing of queries in a sensor network, with a
focus on aggregation queries.

2.1 A Query Language for Sensor Networks
TAG [17] presented a simple query language for sensor networks, which we have imple-
mented in TinyDB [18]. We present a basic overview of the scheme here. In TinyDB, queries
are posed at a powered basestation, typically a PC, where they are parsed into a simple binary
representation, which is then flooded to sensors in the network.

As the query is flooded through the network, sensors organize into a routing tree that
allows the basestation to collect query results. The flooding works as follows: the basestation
injects a query request at the root sensor, which broadcasts the query on its radio; all child
nodes that hear the query process it and re-broadcast it on to their children, and so on, until
the entire network has heard the query3.

3 Schemes to prune the query flooding process are presented in [16].

Each request contains a hop-count (or level), indicating the distance from the broadcaster
to the root. To determine their own level, nodes pick a parent node that is (by definition) one
level closer to the root than they are. This parent will be responsible for forwarding the node’s
query results (and its children’s results, recursively) to the basestation. Also note that each
node may have several possible choices of parent; for the purposes of our discussion here, we
assume that a single parent is chosen uniformly and at random from the available parents. In
practice, more sophisticated schemes can be used for parent selection, but this issue will not
impact our discussion here.

Queries in TinyDB have the following basic structure:
SELECT ��������� , ���	����
 , ...
FROM sensors
WHERE �������	� [AND | OR] ������
 ...
GROUP BY ������������	����� , �����	����������
 , ...
SAMPLE PERIOD �

The SELECT clause lists the fields (or attributes) to retrieve from the sensors; ��������� specifies
a transform on a single field. Each transform may be a simple arithmetic expression, such as
light + 10, or an aggregate function, which specifies a way in which readings should be
combined across nodes or over time (aggregation is discussed in more detail in the following
section.) As in standard SQL, aggregates and non-aggregates may not appear together in the
SELECT clause unless the non-aggregate fields also appear in the GROUP BY clause.

The FROM clause specifies the table from which data will be retrieved; in the language
presented in [17], there is only one table, sensors, which contains one attribute for each
of the types of sensors available to the devices in the network (e.g. light, acceleration, or
temperature). Each device has a small catalog which it uses to determine which attributes are
locally available; the catalog also includes cost information and other metadata associated
with accessing the attribute, and a pointer to a function that allows TinyDB to retrieve the
value of the attribute.

The (optional) WHERE clause filters out readings that do not satisfy the boolean com-
bination of predicates. Predicates in TinyDB are currently restricted to simple boolean and
arithmetic operations over a single attribute, such as light / 10 25.

The (optional) GROUP BY clause is used in conjunction with aggregate expressions.
It specifies a partitioning of the input records before aggregation, with aggregates in the
SELECT clause being computed on each partition. In the absence of a GROUP BY aggre-
gates are computed over the entire set of sensors; a GROUP BY partitions the sensors into
groups whose group expressions each have the same value. For example, the query fragment:

SELECT roomNumber, AVG(light)
GROUP BY roomNumber
...

partitions sensors into groups according to the value of the roomNumber attribute, and com-
putes the average light reading within each group.

Finally, the SAMPLE PERIOD clause specifies the time between successive samples or
epochs. Each node samples its sensors once per epoch and applies its query processing oper-
ators to that sensor.

2.2 Aggregation in Sensor Networks

Given this basic description of the query language, we now discuss how TinyDB processes
queries, focusing on how aggregate queries are handled.

Structure of Aggregates Recall that an aggregation expression may be specified in the
SELECT clause of a query. In standard SQL, that expression contains one of a few basic
aggregation functions: MIN, MAX, AVERAGE, COUNT, or SUM. As in TAG, TinyDB provides
an extensible mechanism for registering new aggregates, derived from literature on extensible
database languages. In TinyDB, aggregates are implemented via three functions: a merging
function � , an initializer � , and an evaluator, � . In general, � has the following structure:�������
	�����������������
where � � and ��� are multi-valued partial state records (PSRs), computed over one or
more sensor values, representing the intermediate state of the aggregation processing based
on those values. ��� is the partial-state record resulting from the application of function �
to � � and ��� . For example, if � is the merging function for AVERAGE, each partial
state record will consist of a pair of values: SUM and COUNT, and � is specified as follows,
given two state records ��� ���! � and ��� �"�! � :	���$# � �&% � ���!�$# � �'% � ���(�)�*# ��+ # � �&% �,+ % � �
The initializer � is needed to specify how to instantiate a state record for a single sensor
value; for an AVERAGE over a sensor value of � , the initializer �.- ��/ returns the tuple �
� �10 . Finally, the evaluator � takes a partial state record and computes the actual value of
the aggregate. For AVERAGE, the evaluator �2-&�3� �! 4/ simply returns �65 .

Processing Aggregate Queries Aggregate queries produce one result per group per epoch.
Once a query has been disseminated as described above, each leaf node in the routing tree
produces a single tuple of sensor readings each epoch, applies the initialization function to
the approriate column, and forwards the initialized result to its parent. On the next epoch,
the parent merges its own PSR from the previous epoch with PSRs from its children in the
previous epoch, and forwards that result on to its parent. Results propagate up the tree, epoch-
by-epoch, until a complete PSR from 7 epochs ago arrives at the root of the routing tree
(where 7 is the depth of the tree). Depending on the sample period, there may be enough
time in each epoch to send aggregates up multiple levels of the routing tree; see TAG[17] for
more information. Once a result has arrived at the root, the basestation applies the evaluation
function to it to produce a complete aggregate record and outputs the result to the user.

GROUP BY queries are processed in a similar way. When a partial state record is ini-
tialized, it is tagged with a unique group ID. Parents combine readings if they come from
the same group, and propagate a separate PSR for each group they heard about during the
previous epoch (even if they did not contribute to one or more of the groups.) Thus, at the
root, one state record arrives for each of the 8 groups, and the evaluation function is applied
8 times.

Temporal Aggregates All the aggregates that we described above aggregate sensor values
sampled from multiple nodes at the same epoch. We have extended this framework to support
temporal aggregates which aggregate sensors values across multiple consecutive epochs from
the same or different nodes. Temporal aggregates typically take two extra arguments: window
size and sliding distance. Window size specifies the number of consecutive epochs the tem-
poral aggregate operates on, and the sliding distance specifies the number of epochs to skip
over for the next window of samples. One frequently used temporal aggregates in TinyDB is
the running average aggregate winavg(window size, sliding dist, arg). It is
typically used to reduce noise in sensor signals. For example, winavg(10, 1, light)
computes the 10-sample running average of light sensor readings. It accumulates light read-
ings from 10 consecutive epochs, averages them, then replaces the oldest value in the average

window with the latest light sensor reading and keeps on computing averages over the win-
dow of samples. In addition to winavg, TinyDB also supports similar temporal aggregates
such as winmin, winmax, winsum, etc. More sophisticated custom temporal aggregates
such as one that computes the trajectory of a moving vehicle can be developed using the
same extensible aggregate framework described above.

In TinyDB, by default all aggregates operate over sensor values from the entire network.
GROUP BY nodeid must be specified to limit temporal aggregates to operate on values
from individual nodes only.

3 New Language Features

The query language described above provides a foundation for many kinds of simple moni-
toring queries. However, as sensor networks become more autonomous, the language needs
to move beyond passive querying: rather than simply monitoring the environment and relay-
ing results, the sensors will need to detect and initiate automatic responses to nearby events.
Furthermore, sensor networks will need to collect and store information locally, since it is
not always possible or advantageous to get data out of the network to a powered, storage-rich
PC. We introduce two extensions to our query language to handle these situations.

3.1 Events

Events provide a mechanism for initiating data collection in response to some external stim-
ulus. Events are generated explicitly, either by another query, by software in the operating
system, or by specialized hardware on the node that triggers the operating system. Consider
the following query for monitoring the occupancy of bird nests:

ON EVENT bird-detect(loc):
SELECT AVG(light), AVG(temp)
FROM sensors AS s
WHERE dist(s.loc, event.loc) < 10m
SAMPLE INTERVAL 2 s FOR 30 s

When a bird is detected in a nest (e.g. via a pressure switch in the nest), this query is executed
to collect the average light and temperature level from sensors near the nest, and send these
results to the root of a network. (Alternatively, the results could be stored locally at the detect-
ing node, using the storage point mechanism described in the next section.) The semantics of
this query are as follows: when a bird-detect event occurs, the query is issued from the
detecting node and the average light and temperature are collected from nearby nodes (those
nodes that are 10 or less meters from the collecting node) every 2 seconds for 30 seconds.

3.2 Storage Points

Storage points accumulate a small buffer of data that may be referenced in other queries.
Consider, as an example:

CREATE
STORAGE POINT recentlight SIZE 5s
AS (SELECT nodeid, light
FROM sensors
SAMPLE INTERVAL 1s)

This STORAGE POINT command provides a shared global location to store a streaming
view of recent data, similar to materialized views in conventional databases. Note that this
data structure is accessible for read or write from any node in the network; its exact location
within the network is not fixed – that is, it can be moved as an optimization. Typically, these
storage points are partitioned by nodeid, so that each sensor stores its own values locally.

The specific example here stores the previous five seconds worth of light readings (taken once
per second) from all of the nodes in the network.

In this paper, we use storage points as a mechanism for storage and offline delivery of
query results. Queries that select all of the results from a storage point, or that compute an
aggregate of a storage point, are allowed; consider, for example:

SELECT MAX(light)
FROM recentLight

This query selects the maximum light reading from the recentLight storage point defined
above. The storage point is continually updated; this query returns the maximum of the values
at the time the query is posed.

4 Isobar Mapping
In this section, we explore the problem of building a topographic (contour) map of a space
populated by sensors. Such maps provide an important way to visualize sensor fields, and
have applications in a variety of biological and environmental monitoring scenarios [4]. We
show how TinyDB’s aggregation framework can be leveraged to build such maps. Conceptu-
ally, the problem is similar to that of computing a GROUP BY over both space and quantized
sensor readings – that is, our algorithms partition sensors into isobars that are contiguous in
space and approximately equal in sensor value. Using in-network aggregation, the storage
and communication costs for producing a topographic map are substantially less than the
cost of collecting individual sensor readings and building the map centrally. We discuss three
algorithms for map-building: a centralized, naive approach, an exact, in-network approach,
and an approximate, lossy approach. Figure 1 illustrates the general process of aggregation to
build a topological map: each sensor builds a small representation of its local area, and sends
that map to its parent, where it is combined with the maps from neighbors and ancestors and
eventually becomes part of a complete map of the space at the root of the tree.

To support topographic operations on sensors, we require
A

C

B

E

E

Fig. 1. Aggregation of con-
tours as data flows up a rout-
ing tree.

a few (very) simple geometric operators and primitives. To de-
termine adjacency in our maps, we impose a rectangular grid
onto the sensors, and assign every sensor into a cell in that
grid. Our goal is to construct isobars, which are orthogonal
polygons with holes; we need basic operations to determine if
two such polygons overlap and to find their union. Such op-
erations can be performed on any polygon in 8������,- 86/ time
(where n is the number of edges in the polygon) using the
Leonov-Nitkin algorithm [15]. There are a number of free li-
braries which implement such functionality [14].

We begin with a discussion of the three algorithms, as-
suming that every cell in the grid is occupied. We reserve a
discussion of mapping sparse grids for Section 4.4.

4.1 Naive Algorithm

In the naive algorithm, we run an aggregate-free query in the network, e.g.:
SELECT xloc, yloc, attr
FROM sensors
SAMPLE PERIOD 1s

This query returns the location and attribute value of all of the sensors in the network; these
results are combined via code outside the network to produce a map. We implemented this

(a) Lossless Isobars (b) Lossy Isobars (c) Missing Information

Fig. 2. Screenshots of a visualization of isobars imposed on a grid of sensors. Each cell represents a
sensor, the intensity of the background color indicates sensor value, and black lines frame isobars. (a)
shows the isobars as computed by the in-network and naive algorithms. (b) shows a lossy approximation
of isobars, where each approximate polygon is the bounding box of original polygon with 4 maximally
sized “cuts”. (c) shows a visualization of a topological map with incomplete information about all of
the squares. Black circles indicate nodes whose value was missing and was inferred by the algorithm.

approach in a simulation and visualization, as shown in figure Figure 2(a). In this first simula-
tion, sensors were arranged in a grid, and could communicate losslessly with their immediate
neighbors. The isobars were aggregated by the node at the center of the network. The network
consisted of 400 nodes in a depth 10 routing tree. In the screenshot, the saturation of each
grid cell indicates the sensor value, and the thick black lines show isobars.

4.2 In-Network Algorithm
In the in-network approach, we define an aggregate, called contour-map where each partial
state record is a set of isobars, and each isobar is a container polygon (with holes, possibly)
and an attribute value, which is the same for all sensors in the isobar. The structure of an
isobar query is thus:

SELECT contour-map(xloc,yloc,floor(attr/ �))
FROM sensors

where
�

defines the width (in attribute-space) of each of the isobars. We can then define the
three aggregation functions, � , � , and � , as follows:

– � : The initialization function takes an xloc, yloc, and attr, and generates as a par-
tial state record the singleton set containing an isobar with the specified attr value and
a container polygon corresponding to the grid cell in which the sensor lies.

– � : The merging function combines two sets of isobars, � � and � � into a new isobar set, ��� ,
where each element of � � is a disjoint polygon that is the union of one or more polygons
from � � and � � . This new set may have several non-contiguous isobars with the same
attribute value. Conversely, merging can cause such disjoint isobars in � � to be joined
when an isobar from � � connects them (and vice-versa.) Figure 3 shows an example of
this happening as two isobar sets are merged together.

– � : The evaluation function generates a topographic map of contiguous isobars, each la-
beled with their attribute value.

4.3 Lossy Algorithm

The lossy algorithm works similarly to the in-network algorithm, except that the number of
vertices � used to define the bounding polygon of each isobar is limited by a parameter of the

I
1

I
2 I

3

Fig. 3. Two isobar sets, � � (with two elements) and � � (with one element) being merged into a new
isobar set, ��� (also with one element).

aggregate. This reduces the communication cost of the approach, but makes it possible for
isobars to overlap, as they will no longer perfectly trace out the edges of the contours.

In the lossy algorithm, � is the same as in the in-network case. For � , we compute � � as
above, but we do not use it as the partial state record. Instead, for the containing polygon � in
each set of � � , we compute a bounding box, � , and then take from � a number of maximally
sized rectangular “cuts” that do not overlap � . We continue taking cuts until either � contains
� vertices, or the next cut produces a polygon with more than � vertices. We omit the details
of how we compute maximal cuts; because our polygons are orthogonal, this can be done
via a scan of the vertices of � . We use these cut-bounding-boxes as approximations of the
containing polygons in the isobars of the PSRs resulting from our merge function. Figure 4
shows a containing polygon approximated by a bounding rectangle with a single cut.

In the lossy evaluation function � , one or more

I
3

PSR

Fig. 4. A lossy approximation of a
containing polygon (� �) as a bound-
ing box with a single cut (PSR).

isobars in the final aggregate state record may over-
lap, and so some policy is needed to choose which
isobar to assign to a particular cell. We use a sim-
ple “containment” principle: if one isobar completely
contains another, we assume the true value of the cell
is that specified by the innermost isobar. When the
containment principle does not apply, we assign grid
cells to the nearest isobar (in terms of number of grid
cells), breaking ties randomly.

We simulated this lossy algorithm for the same
sensor value distribution as was shown in Figure 2(a), using a maximum of 4 “cuts” per
isobar. The results are shown in Figure 2(b); notice that the shape of the isobars is preserved.

We compared the total amount of data transmitted by our simulation of the lossy, in-
network, and naive algorithms for the isobars shown in Figure 2(a) and 2(b), and found that
the naive algorithms algorithm used a factor of four more communication than the lossy
algorithm and about 40% more communication than the in-network algorithm.

4.4 Sparse Grids

Finally, we consider the case of sparse grids, where sensors do not exist at every cell in the
grid. In sparse grids, the lossy algorithm described above can be used to infer an isobar for
missing points. Since the merging function no longer tracks exact contours but uses bounding
boxes, cells without sensors will often end up as a part of an isobar. Cells that aren’t assigned
an isobar as a part of merging can be assigned using the nearest-isobar method described in
the lossy algorithm.

A similar situation arises in dense topologies with network loss, when some sensor values
are not be reported during a particular epoch. We implemented this sparse grid approach

and used it to visualize isobars with a high-loss radio model, where the probability that two
sensors can communicate with each other falls off with the distance between the sensors. For
adjacent sensors, loss rates are about 5%; for sensors that are three cells away (the maximum
communication range), loss rates are about 20%. The result is shown in Figure 2(c), with
black circles on the nodes whose values were lost during the epoch being visualized. Notice
that, despite the large number of losses, the shape of the isobars is largely preserved.

5 Wavelet Histograms via Hierarchical Aggregation

SQL’s built-in aggregates provide some basic statistical information about the distribution of
a set of readings. But in many cases it is useful to get a richer representation of the distribu-
tion, e.g. a histogram. In the sensornet environment, we would like to have a multiresolution
histogram, which can optionally provide additional resolution of “buckets” at the expense of
additional communication. To that end, we explore using wavelet histograms, since wavelets
are one of the best-known and most effective multiresolution coding techniques.

In this section, we sketch a TAG aggregate function for encoding a set of readings in a
sensor network using Haar wavelets, the simplest and most widely-used wavelet encoding4.
Our discussion here focuses on wavelet histograms [20], which capture information about the
statistical distribution of sensor values, without placing significance on any ordering of the
values. We drop coefficients with low absolute values (“threshholding”) to keep the commu-
nication costs down, but always retain the value of coefficient 0; in Haar wavelets, the 0th
coefficient represents the average of the values, and hence is often of interest to users.

Our wavelet compression setting here is somewhat unique. First, recall that aggregates in
TinyDB are computed incrementally as data is passed up the network communication tree.
Hence we will be computing wavelets piecewise, combining pairs of wavelets as we go,
without access to the complete underlying set of values. Second, our processors do not have
floating-point arithmetic and are generally rather slow, so we will use integer wavelets [1], do
as much as possible in place to minimize copies, and devise techniques to process wavelets
without the need to decompress/recompress. Finally, since we are constrained in both memory
and bandwidth, we will be dropping low coefficients, and using a sparse array representation
for the coefficients we keep.

The core of our logic is in the merging function � , which takes the PSRs from two subtrees
(which are themselves wavelets) and combines them into a new PSR (another wavelet). Our
wavelet PSR will be a sparse array represented by ������� short integers. In order to maintain
wavelet properties, � must be a power of 2 (���	� in our current implementation.) The
first �
� values capture the non-zero elements of the sparse array: � array offsets, and
� data values of the coefficients at those offsets. The next short integer is the count,
which tracks the number of actual sensor readings rolled up into this wavelet. One additional
short, called loglen, represents the ���� � of the number of array entries in the (possibly
zero-padded) wavelet.

The merging function considers 4 cases for merging two state records, r1 and r25

1. r1.count � r2.count ��� : In this case, we do not compress, but simply store
all the values. We concatenate the values from r2.data to the end of r1.data, and

4 In the interest of brevity, we do not overview wavelets here; the interested reader is referred to [23]
for a good practical overview of wavelets, or to [20] for a simple introduction to Haar wavelets.

5 Note that the choice of ordering r1 before r2 is rather arbitrary: for now, we assume that the network
topology and scheduling determines which input is first, and which is second.

update the offsets and count of r1 accordingly. The loglen variable remains at
the initialization value of � �
� � � .

2. r1.count � � and r2.count � � , but their sum is � : In this case we need
to compress the output. Conceptually, we think of the two input arrays as one array
of length � loglen

� �
, and use the lifting scheme [22] to wavelet-compress the double-

length array in place. We then keep only the top � coefficients by overwritingr1’s data
and offsets fields appropriately. We add r2.count to the value in r1.count, and
increment the r1.loglen variable to reflect the effective doubling of the array.

3. Both inputs have count � : In this case, we need to merge two wavelets.
Our merge technique will assume that both inputs have the same loglen. If one input
has a smaller loglen than the other, we need to zero-pad the smaller to match the larger.
For example, if r1.loglen � r2.loglen, we zero-pad r1 until it is of equal length.
Pseudocode for efficiently doubling a Haar wavelet with 0’s is given in Figure 5.
Once both wavelets have the same loglen, we need to merge r2 into r1 to form a
wavelet with twice as many coefficients. We then run the pseudocode given in Figure 6
to merger2 into r1without decoding and re-encoding. Finally we copy the top � coeffi-
cients of the result into r1.data, update r1’s offsets appropriately, add r2.count
to r1.count, and increment r1.loglen to reflect the doubling of the array.

4. Exactly one input has count larger than � : In this case, we zero-pad the smaller array
to be � entries, and convert it to a wavelet of � coefficients. Then we invoke Case 3.

// for all coefficients i except 0th, bump up offsets carefully
for i from 1 to N-1

offsets[i] += 2ˆ(floor(log_2(offsets[i])));
// keep track of min coefficient, too
if (abs(data[i]) < min) then { min = abs(data[i]); minpos = i; }

// New 1st coefficient is 0 - (old 0th coefficient).
// If it’s in the top N, make room for it in data and offsets arrays
if (abs(data[0]) > min)

move offsets[1] through offsets[minpos-1] one position rightward;
move data[1] through data[minpos-1] one position rightward;
offsets[1] = 1; data[1] = 0 - data[0];

// overall average is halved, reflecting the 0-padding.
data[0] >>= 2; // i.e. data[0] = floor(data[0] / 2);
loglen++; // we doubled the size

Fig. 5. Double a Haar wavelet of � coefficients by zero-padding in place, without decoding/recoding.
The result should have � +�� coefficients; we drop the lowest of these other than the 0th coefficient,
which we always keep in position 0 in the arrays. Note that � ���	��
 � ���� ��� can be computed efficiently
via bit-shifting, and that we use the floor of the average for data[0] in integer wavelets [1].

At the top of the aggregation tree, this technique produces a wavelet that lossily represents
the concatenation of all the readings in the network, along with a large number of padded
0’s. Given the count and loglen variables, a PC at the root of the network can discard
the extraneous 0’s, and perform the appropriate normalization to recreate both the overall
average, and somewhat finer approximations of the densities of values.

Note that the coefficients produced by the recursive application of the merge procedure
are not the top � coefficients of a Haar wavelet on the full array of readings. In particular,
the � � 0 ’st coefficient of one network subtree will be discarded even though it may be much
larger than the top � coefficients of another subtree. The effect of such an error may be spread
across higher-order coefficients as further merges happen. We are investigating heuristics for
improving this situation, including probabilistic updating schemes from [20], rank-merging
techniques based on [5], and coefficient confidence intervals based on [7].

// Double r1 and r2, but bump r2 rightward by an extra factor of 2.
for i from 1 to N-1

r1.offsets[i] += 2ˆ(floor(log_2(r1.offsets[i])));
r2.offsets[i] += 2ˆ(floor(log_2(r2.offsets[i])) + 1);

// merge r1’s {offsets,data} pairs with r2’s, sorted by offset
cursor1 = 1; cursor2 = 1;
for k from 2 to (N*2) - 1

if (cursor1 < N && r1.offsets[cursor1] <= r2.offsets[cursor2])
{ smaller = r1; curs = cursor1; }

else { smaller = r2; curs = cursor2; }
wtmp.offsets[k] = smaller.offsets[curs];
wtmp.data[k] = smaller.data[curs];
curs++;

// 0th coefficient of wtmp is avg of old 0-coefs, 1st is diff
wtmp.offsets[0] = 0; wtmp.offsets[1] = 1;
wtmp.data[0] = floor((r1.data[0] + r2.data[0])/2);
wtmp.data[1] = r1.data[0] - r2.data[0];
// pack top N coefficients of wtmp into first N slots
// of wtmp.data, update wtmp.offsets appropriately,
topN_coeffs(wtmp);
copy N wtmp.{data,offsets} into r1.{data,offsets}
r1.count += r2.count; r1.loglen++;

Fig. 6. Given two Haar wavelets r1 and r2 of � non-zero coefficients, merges them without decod-
ing/recoding. We copy to a temporary wavelet wtmp of size � � , but this logic can also be done in place
by replacing the merge step with a quicksort that spans r1 and r2 and coordinates the data and offset
arrays appropriately.

5.1 MultiResolution Snapshots, Temporal Queries

In the spirit of image coding and online aggregation in databases [9, 10], we might want the
answer to a snapshot query to improve with additional rounds of communication. In order
to achieve this, we can augment the logic above so that at the lowest point in the tree where
the merge function would have dropped coefficients, it sends the second highest set of �
coefficients on round 2. At the top of the tree, the second round of coefficients needs to
be merged into the previous coefficients from right to left in order to spread the updates
correctly. This process can be repeated for additional rounds. In this scheme, the low valued
coefficients can either be stored, or can be recommunicated and recomputed from the base
snapshot readings. Given the relative costs of storage and communication in modern sensor
networks, we expect to store the coefficients – in practice, storage limitations will dictate a
bound on the number of rounds we can support.

Multiresolution snapshot queries are complicated when we consider change in the time
dimension. Online aggregation as described in [9] is targeted at traditional databases, where
snapshot semantics are guaranteed via transactional mechanisms. Since online aggregation
requires multiple rounds, it is quite possible that the sensor readings will change before much
data can be propagated to the output.

Continuous queries with time-varying results are supported in TinyDB by buffering the
state of aggregates from multiple epochs within the network, and delivering better estimations
for prior epochs alongside new estimations [17]. However, this increases the storage overhead
in the network by a factor of the depth of the network.

We are exploring ideas for intelligently managing the total storage across both time and
space. The mix of multiresolution results and time-varying data raises a number of questions
with respect to both the encoding (which may be analogous to work on video), and to human-
computer issues and performance metrics. A driving question for performance metrics may be
to consider different possible interfaces for users to specify their desires by fixing resources
in one or both dimensions. Of course, in principle there is some pareto-optimal set of strate-
gies across these dimensions, but naive users are unlikely to be able to reason in that fashion.

One can imagine fairly natural temporal controls like “animation speed” sliders and spatial
controls in terms of visual selection, zoom, or foveation. One can also imagine that the de-
pendency across dimensions could be demonstrated by having adjustments in one dimension
be reflected in the controls of the other dimension. We hope to explore these inter-disciplinary
issues in future work.

6 Vehicle Tracking
In this section, we provide a rough illustration of TinyDB’s support for a vehicle tracking
application, where a fixed field of nodes detects the magnetic field, sound, or vibration of a
vehicle moving through them. We choose the tracking application because it is a represen-
tative Collaborative Signal Processing (CSP) application for sensor networks and because it
demonstrates the relative ease with which such applications can be expressed in TinyDB. As
will become clear, our focus to date has not been on sophisticated algorithms for tracking,
but rather on extending our platform to work reasonably naturally for collaborative signal
processing applications.

Target tracking via a wireless sensor network is a well-researched area [2]. There are
different versions of the tracking problem with varying degrees of complexities. For ease of
illustration, in our discussion we only deal with a very simple version of the tracking problem,
based on the following assumptions and constraints:

– There is only a single target to track.
– The target is detected when the running average of the magnetometer sensor readings go

over a pre-defined threshold.
– The target location at any point in time is reported as the node location with the largest

running average of the sensor reading at that time.
– The application expects to receive a time series of target locations from the sensor net-

work once a target is detected.

We believe that more sophisticated versions of tracking can also be supported in TinyDB,
using more sophisticated signal processing logic for dynamic threshold adjustment, signal
strength based localization, multiple targets, etc.

There are some clear advantages to implementing tracking applications on top of TinyDB.
First, TinyDB’s generic query language is available as a resource, allowing applications to
mix and match existing spatial-temporal aggregates and filters in a query. Applications can
also run multiple queries in the sensor network at the same time, for example one track-
ing query and one network health monitoring query. Second, TinyDB takes care of many
of sensor-network systems programming issues such as multi-hop routing, coordination of
node sleeping, query and event diseminations, etc. Third, by registering tracking subroutines
as user-defined aggregates in TinyDB, they become reusable in other TinyDB queries in a
natural way. Fourth, we are optimistic that TinyDB’s query optimization techniques [17] can
benefit tracking queries. For example, each node can “snoop” the messages from its neigh-
boring nodes and suppress its output if any neighbor has detected a stronger sensor signal.

We will describe below two implementations of the tracking application in TinyDB with
increasing levels of query complexity for better energy efficiency. We describe these imple-
mentations in TinyDB’s SQL-like query language6. In all the TinyDB SQL statements, ��� �
is a TinyDB attribute for the magnetometer reading,

� ��� � is an attribute that returns the cur-
rent timestamp as an integer. We assume the sensor nodes are time synchronized within 1

6 Some of the language features used in this section are not available in TinyDB 1.0.

millisecond using protocols like [3]. 8�� 7�� � 7 is a TinyDB attribute for the unique identifier
of each node. We assume the target is detected when the magnetometer reading goes over
a constant value, threshold. � �8 � � � - 0�� � 0 � ��� � / is for the 10-sample running average for
the magnetometer readings. ��� � � - � � � 0"� � � � �"/ is another TinyDB aggregate that returns the
value of ����� � corresponding to the maximum value of � ��� 0 . ��� � � - � � � � � � � 8�� 7 � �72/ is
used in our implementations to find the 8�� 7�� � 7 with the largest average magnetometer read-
ing. As mentioned above, we use this to represent the location of our target and assume that
the basestation is capable of mapping 8�� 7 �1� 7 to some spatial coordinate. � � � � is really a
place holder that can be replaced with much more sophiscated target localization aggregates.
In both implementations, we need to apply � � � � to group of values with the same timestamp.
Values are grouped by

� ��� � 5 0�� to accomodate minor time variations between nodes.

6.1 The Naive Implementation

Figure 7 shows the TinyDB queries that implement our initial tracking application. In this im-
plementation, each sensor node samples the magnetometer every 100 miliseconds and com-
putes the 10-sample running average of the magnetometer readings. If the running average of
magnetometer readings is over the detection threshold, the current time, nodeid and average
value of the magnetometer are inserted into the storage point ����8 8 �8 � � � � ��� .

Recall that storage points in TinyDB provide temporary in-network storage for query
results and facilitate applications to issue nested queries. The second query in Figure 7 is a
query that runs over the storage point ��� 8 8 �8 � � � � ��� every second and computes the target
locations using the � � � � aggregate.

6.2 The Query-Handoff Implementation

The problem with the naive implementation is that all sensor nodes must continuously sample
the magnetometer every 100 milliseconds, and magnetometers typically consume substantial
power per sample. For example, the magnetometer on the Berkeley motes consumes 15mW
of power per sample while the light sensor only consumes 0.9mW per sample. Assuming
the sensor nodes are spread over a wide area, at every point in time, the target can only be
detected by a small number of nodes. Thus, for a large percentage of nodes, the energy spent
sampling the magnetometer is wasted.

Ideally, we would like to only start the target tracking query on a node when the target is
near it and stop the query when the target moves away. This means that we need a TinyDB
event to trigger the tracking query. The query-handoff implementation that we are about to
describe requires some special standalone hardware such as a motion detector that detects the
possible presence of the target, interrupts the mote processor, and pulls it out of sleep mode.
�
� ��� � � 7 � � ��� � ��7 is the TinyDB event corresponding to this external interrupt. It is unrealistic

to require this special hardware be installed with every node. However it might be feasible
to only install them on a small number nodes near the possible entry points for the target to
enter the sensor field (e.g. endpoints of a line of sensors along a road). These nodes will be
woken up by the

�
� ��� � � 7 � � ��� � ��7 event and start sampling the magnetometer to determine

the current target locations. At the same time, they also try to predict the possible locations
the target may move to next via a custom aggregate 8 ��� � ����� � � � ��8 and signal a remote event
�
� ��� � � ��� � � � �	��
 �8 � on nodes at these locations to alert them to start sampling their magne-

tometers and tracking the incoming target. Nodes that receive the
�
� � � � � � ����� � �	��
 � 8 � event

will basically do the same. The TinyDB queries for this implementation is shown in Fig-
ure 6.2. We call this the query-handoff implementation because the node hands the tracking
queries off from one set of nodes to another set of nodes following the target movement.

Query handoff is probably the most unique query processing feature required by tracking
applications, and one that at first we expected to provide via low-level network routing in-
frastructure. However, we were pleased to realize that event-based queries and storage points
allow handoff to be expressed reasonably simply at the query language level. This bodes well
for prototyping other application-specific communication patterns as simple queries. An on-
going question in such work will be to decide when these patterns are deserving of a more
efficient, low-level implementation inside of TinyDB.
// Create storage point holding 1
// second worth of running average
// of magnetometer readings with a
// sample period of 100 miliseconds
// and filter the running average with
// the target detection threshold.
CREATE STORAGE POINT running_avg_sp
SIZE 1s AS
(SELECT time,

nodeid,
winavg(10, 1, mag) AS avgmag

FROM sensors
GROUP BY nodeid
HAVING avgmag > threshold
SAMPLE PERIOD 100ms);

// Query the storage point every second
// to compute target location for
// each timestamp.
SELECT time, max2(avgmag, nodeid)
FROM running_avg_sp
GROUP BY time/10
SAMPLE PERIOD 1s;

Fig. 7. Naive Implementation

// Create an empty storage point
CREATE STORAGE POINT running_avg_sp
SIZE 1s (time, nodeid, avgmag);

// When the target is detected, run query to
// compute running average.
ON EVENT target_detected DO
SELECT time, nodeid, winavg(10, 1, mag) AS avgmag
INTO running_avg_sp
FROM sensors group by nodeid
HAVING avgmag > threshold
SAMPLE PERIOD 100ms
UNTIL avgmag <= threshold;

// Query the storage point every
// sec. to compute target location;
// send result to base and signal
// target_approaching to the possible
// places the target may move next.
SELECT time, max2(avgmag, nodeid)
FROM running_avg_sp GROUP BY time/10
SAMPLE PERIOD 1s
OUTPUT ACTION
SIGNAL EVENT target_approaching
WHERE location IN
(SELECT next_location(time, nodeid, avgmag)

FROM running_avg_sp ONCE);

// When target_approaching event is
// signaled, start sampling and
// inserting results into the storage point.
ON EVENT target_approaching DO
SELECT time, nodeid, winavg(8, 1, mag) AS avgmag
INTO running_avg_sp
FROM sensors GROUP BY nodeid
HAVING avgmag > threshold
SAMPLE PERIOD 100ms
UNTIL avgmag <= threshold;

Fig. 8. Handoff Implementation

7 Related Work

Several groups have proposed high-level or declarative interfaces for sensor-networks [24,
17, 13]. There has also been some work on aggregation-like operations in sensor networks,
such as [25, 12, 8]. Neither of these bodies of work specifically addresses any of the more
sophisticated types of agggreates or queries we discuss in this paper.

Building contour maps is a frequently mentioned target application for sensor networks;
see, for example, [4], though, to our knowledge, no one has previously described a viable
algorithm for constructing such maps using sensor networks. There is a large body of work
on building contour maps in the image processing and segmentation literature – see [19]
for an excellent overview of the state of the art in image processing. These computer vision
algorithms are subtantially more sophisticated than those presented here, but assume a global
view where the entire image is at hand.

Wavelets have myriad applications in data compression and analysis; a practical intro-
duction is given in [23]. Wavelet histograms have been proposed for summarizing database
tables in a number of publications, e.g. [20, 7]. In the sensor network environment, a recent
short position paper proposed using wavelets for in-network storage and summarization [6].
This work is related to ours in spirit, but different in focus at both the system architecture
and coding level. It sketches a routing-level approach for relatively power-rich devices, fo-
cused on encoding regularly-gridded, spatial wavelets over timeseries. By contrast, we focus
on highly-constrained devices, and integrate with the multi-purpose TinyDB query execution
framework. We also provide efficient algorithms for hierarchically encoding Haar wavelets,
with a focus on wavelet histograms.

The query handoff implementation for the tracking application in Section 6 is based on
the single-target tracking problem discussed in [2]. The tracking algorithms described in [2]
is implemented on top of UW-API [21] which is a location-centric API for developing col-
laborative signal processing applications in sensor networks. UW-API is implemented on
top of Directed Diffusion [13] focusing on routing of data and operations based on dynam-
ically created geographical regions. While TinyDB can shield application developers from
the complexities of using such a lower level API, it can potentially leverage this work to do
location-based event and query disemination.

Our use of event-based queries to implement query handoff resembles a content-based
routing scheme in some ways, not dissimilar to the basic ideas of Directed Diffusion [13]. Of
course the two schemes represent different design points: TinyDB is a relatively high-level
system intended to shield application writers from network considerations, while Directed
Diffusion is a lower-level multi-hop routing scheme that exposes content-based routing poli-
cies to users. These distinctions of ”high-level” and ”low-level” can become blurry, however,
as illustrated by the routing-like handoff in TinyDB, and the query-like aggregation examples
from Directed Diffusion. There are clearly open questions regarding possible synergies and
tradeoffs between the two approaches in different settings; these merit further investigation.

8 Future Work and Conclusions
Many potential users of sensor networks are not computer scientists. In order for these users
to develop new applications on sensor networks, high-level languages and corresponding
execution environments are desirable. We are optimistic that a query-based approach can be
a good general-purpose platform for application development.

The work described here attempts to justify this optimism with some non-trivial appli-
cations outside the realm of traditional SQL queries. In addition to pursuing the work here
further, we also hope to continue this thrust by collaborating with domain experts in the de-
velopment of new applications; this includes both application experts outside computing, and
experts in other aspects of computing including collaborative signal processing and robotics.
Our intent is for TinyDB to serve as an infrastructure that allows these experts to focus on is-
sues within their expertise, leaving problems of data collection and movement in the hands of
TinyDB’s adaptive query engine. As with traditional database systems, we do not necessarily
expect a TinyDB-based implementation to always be as efficient as a hand-coded implemen-
tation, but we hope the ease of use and additional functionality of TinyDB will justify any
modest performance overheads.

Acknowledgments
We thank Kannan Ramchandran and Michael Franklin for helpful discussions.

Bibliography

[1] R. Calderbank, I. Daubechies, W. Sweldens, and B.-L. Yeo. Wavelet transforms that map integers
to integers. Applied and Computational Harmonic Analysis (ACHA), 5(3):332–369, 1998.

[2] Y. H. H. Dan Li, Kerry Wong and A. Sayeed. Detection, classification and tracking of targets in
distributed sensor networks. IEEE Signal Processing Magazine, 19(2), Mar 2002.

[3] J. Elson, L. Girod, and D. Estrin. Fine-grained network time synchronization using reference
broadcasts. In OSDI (to appear), 2002.

[4] D. Estrin. Embedded networked sensing for enviromental monitoring. Keynote, circuits and
systems workshop. Slides available at http://lecs.cs.ucla.edu/ estrin/talks/CAS-JPL-Sept02.ppt.

[5] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for middleware. In PODS,
Santa Barbara, CA, May 2001.

[6] D. Ganesan, D. Estrin, and J. Heidemann. Dimensions: Why do we need a new data handling
architecture for sensor networks? In Proceedings of the First Workshop on Hot Topics In Networks
(HotNets-I), Princeton, New Jersey, Oct. 2002.

[7] M. Garofalakis and P. B. Gibbons. Wavelet synopses with error guarantees. In Proc. ACM SIG-
MOD 2002, pages 476–487, Madison, WI, June 2002.

[8] J. Heidemann, F. Silva, C. Intanagonwiwat, R. Govindan, D. Estrin, and D. Ganesan. Building
efficient wireless sensor networks with low-level naming. In SOSP, October 2001.

[9] J. M. Hellerstein, R. Avnur, A. Chou, C. Hidber, C. Olston, V. Raman, T. Roth, and P. J. Haas.
Interactive data analysis with CONTROL. IEEE Computer, 32(8), August 1999.

[10] J. M. Hellerstein, P. J. Haas, and H. Wang. Online aggregation. In Proceedings of the ACM
SIGMOD, pages 171–182, Tucson, AZ, May 1997.

[11] J. Hill, R. Szewczyk, A. Woo, S. Hollar, and D. C. K. Pister. System architecture directions for
networked sensors. In ASPLOS, November 2000.

[12] C. Intanagonwiwat, D. Estrin, R. Govindan, and J. Heidemann. Impact of network density on data
aggregation in wireless sensor networks. Submitted for Publication, ICDCS-22, November 2001.

[13] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion: A scalable and robust com-
munication paradigm for sensor networks. In MobiCOM, Boston, MA, August 2000.

[14] M. Leonov. Comparison of the algorithms for polygon boolean operations. Web Page:
http://home.attbi.com/ msleonov/pbcomp.html.

[15] M. V. Leonov and A. G. Nitikin. An efficient algorithm for a closed set of boolean
operations on polygonal regions in the plane. Technical report, A.P. Ershov Institute
of Informatics Systems, 1997. Preprint 46 (In Russian.) English translation available at
http://home.attbi.com/ msleonov/pbpaper.html.

[16] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. The design of an acquisitional query
processor for sensor networks. Submitted for publication., 2002.

[17] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. TAG: A Tiny AGgregation Service
for Ad-Hoc Sensor Networks. In OSDI (to appear), 2002.

[18] S. Madden, W. Hong, J. M. Hellerstein, and M. Franklin. TinyDB web page.
http://telegraph.cs.berkeley.edu/tinydb.

[19] J. Malik, S. Belognie, T. Leung, and J. Shi. Contour and texture analysis for image segmentation.
International Journal of Computer Vision, 43(1):7–27, 2001.

[20] Y. Matias, J. S. Vitter, and M. Wang. Wavelet-based histograms for selectivity estimation. In
SIGMOD, pages 448–459, Seattle, Washington, June 1998.

[21] P. Ramanathan, K. Saluja, K.-C. Wang, and T. Clouqueur. UW-API: A Network Routing Appli-
cation Programmer’s Interface. Draft version 1.0, January 2001.

[22] W. Sweldens. The lifting scheme: A construction of second generation wavelets. SIAM J. Math.
Anal., 29(2):511–546, 1997.

[23] W. Sweldens and P. Schröder. Building your own wavelets at home. In Wavelets in Computer
Graphics, pages 15–87. ACM SIGGRAPH Course notes, 1996. http://cm.bell-labs.
com/who/wim/papers/athome.pdf.

[24] Y. Yao and J. Gehrke. The cougar approach to in-network query processing in sensor networks.
In SIGMOD Record, September 2002.

[25] J. Zhao, R. Govindan, and D. Estrin. Computing aggregates for monitoring wireless sensor net-
works. Technical Report 02-773, USC, September 2003.

