
Induced Churn as Shelter from Routing-Table Poisoning

Tyson Condie, Varun Kacholia, Sriram Sankararaman, Joseph M. Hellerstein, Petros Maniatis
UC Berkeley and Intel Research Berkeley

Abstract

Structured overlays are an important and powerful class
of overlay networks that has emerged in recent years. They
are typically targeted at peer-to-peer deployments involving
millions of user-managed machines on the Internet. In this
paper we address routing-table poisoning attacks against
structured overlays, in which adversaries attempt to inter-
cept traffic and control the system by convincing other nodes
to use compromised nodes as their overlay network neigh-
bors. In keeping with the fully-decentralized goals of struc-
tured overlay design, we propose a defense mechanism that
makes minimal use of centralized infrastructure. Our ap-
proach, induced churn, utilizes periodic routing-table re-
sets, unpredictable identifier changes, and a rate limit on
routing-table updates. Induced churn leaves adversaries at
the mercy of chance: they have little opportunity to strate-
gize their positions in the overlay, and cannot entrench
themselves in any position that they do acquire. We im-
plement induced churn in Maelstrom, an extension to the
broadly used Bamboo distributed hash table. Our Mael-
strom experiments over a simulated network demonstrate
robust routing with very modest costs in bandwidth and la-
tency, at levels of adversarial activity where unprotected
overlays are rendered almost completely useless.

1. Introduction

In recent years, the systems and networking communi-
ties have devoted significant attention to techniques for co-
ordinating large numbers – millions – of computers in a de-
centralized fashion. Originally motivated by peer-to-peer
filesharing applications, this research demonstrated mas-
sively distributed systems whose funding, provisioning, and
management are decentralized across numerous parties with
little shared trust. More recently, this design philosophy
has been applied to a host of applications including con-
tent distribution networks [13], geographic location ser-
vices [17], file systems [10], monitoring systems [4], docu-
ment archives [31], and distributed query processing [19].

Central to any of these systems is the notion of an over-

lay network: a coordination mechanism for nodes running
a distributed application to track each other, and to route
messages among themselves. Such large, open systems face
constant churn, the arrival and departure of nodes, as some
fail, hardware is replaced, connectivity changes, or software
is upgraded. Much design and engineering are devoted to
maintaining performance while tolerating churn.

A particular class of overlays, structured overlays such
as Chord [30] and Pastry [25], presents a hash table abstrac-
tion on top of a population of networked computers. Each
participating node in the overlay has an ID from a large
identifier space, and is responsible for handling messages
addressed to an extent of the identifier space around its own
ID. In order to route messages in the overlay, every node
maintains a routing table of “links.” The set of nodes and
links in the system forms a structured network graph, over
which ID lookups can be routed to the responsible node ef-
ficiently, even as the network churns. When used to store
data, structured overlays are often called distributed hash
tables (DHTs), though many structured overlay applications
do not require storage.

An adversary who can subvert overlay routing can mod-
ify the overlay’s behavior and hurt applications: for exam-
ple, she can convince a correct (i.e., “good”) node to redi-
rect an outgoing link to her, thereby poisoning its routing
table. All lookups routed via that link will end up in the ad-
versary’s control; she can forward them or respond to them
as she wishes. This has been called routing-table poison-
ing or an eclipse attack in the literature. Once an adver-
sary poisons a good node’s routing table, she can amplify
that poisoning by intercepting the good node’s maintenance
traffic, and convincing the node to update its routing table
to include additional compromised neighbors (Section 2.2).

Previous Proposals: Previous defenses against eclipse
attacks have typically involved the use of a trusted third
party that regulates indirectly how nodes partition the ID
space, for example, by authoritatively assigning IDs to
nodes [7]. The intuition is that if the adversary’s node IDs
are chosen uniformly at random by an uncompromised au-
thority, then even the adversary receives responsibility of
an ID space share that is proportional to the number of her
nodes. She can therefore affect the system only in propor-

tion to her presence. Centralized, globally trusted certifica-
tion authorities can be burdensome and difficult to adminis-
ter [11], especially when multiple, mutually distrusting ad-
ministrative domains are involved. However, they can offer
relief from rampant adversarial activity such as the use of
forged, throwaway identities (also known as Sybil identi-
ties [12]).

Note that defenses against Sybil attacks do not miti-
gate the threat of amplification once a compromised node
is chosen as a neighbor. This risk has become more impor-
tant in recent, highly optimized structured overlays, which
make aggressive use of routing-table updates not only to
address churn in the network, but also for performance op-
timizations such as latency minimization over lookup paths
through the graph [14, 23].

Our Contribution: In this paper1 we ask two questions.
First, can there be an effective defense against route poison-
ing attacks with a simpler, less trusted, centralized compo-
nent that is easy to audit and replicate? Second, can there
be a practical, implementable defense against eclipse at-
tacks that addresses the performance optimizations used in
recent structured overlays? We present techniques that an-
swer both questions in the affirmative.

Specifically, we propose the use of induced churn as a
defense against eclipse attacks, unconventionally casting
churn as a tool rather than a scourge. Induced churn con-
sists of three techniques: periodic reset of routing tables to
less efficient but more attack-resistant ones, forced unpre-
dictable identifier changes, and rate limitation on routing-
table updates. We argue that by never allowing the overlay
to quiesce, we rob the adversary of the opportunity to plan
ahead on node positioning prior to an attack, and of her abil-
ity to entrench herself, amplifying her position over time.
We show that for a typical, well-tuned structured overlay
we reduce routing-table poisoning by an order of magni-
tude and increase the probability of successful lookups by as
much as a factor of 5, while incurring a maintenance over-
head of under 1 KBps at each node, low enough even for
home users over dial-up connections. Induced churn is ap-
plicable to any overlay application that requires node orga-
nization without persistent storage (e.g., for query process-
ing, multicast, or network monitoring); however for storage
applications where churn imposes data migration, induced
churn might be less appropriate (see Section 5).

In Section 2 we present relevant background on struc-
tured overlays, routing threats against them, and some pre-
viously proposed solutions that form the basis for our de-
fenses. Section 3 presents the design of our induced churn
defense against eclipse attacks. We evaluate our design in

1An extended version of this paper can be found as a technical re-
port [9]. In that version, we undertake a preliminary analysis of induced
churn, modeling a simple adversary strategy. Further analysis is the subject
of our future work.

Section 4, with experimental results on Maelstrom, a proto-
type implementation of induced churn as an extension of the
Bamboo structured overlay [23]. Our evaluation measures
the improved security of the system as well as the perfor-
mance hit caused by routing-table reset, unpredictable iden-
tifier changes, and rate-limited routing-table updates. Fur-
ther we explore extensions, possible limitations, and big-
picture implications of this work in Section 5. Finally, we
conclude with related work and our future research agenda.

2. Background

As background, we present a brief primer on structured
overlay networks. We then discuss the class of attacks that
concern us, and previously-proposed defenses, before intro-
ducing induced churn in Section 3.

2.1. Structured Overlay Networks

An overlay network is a virtual network implemented
on top of an established underlying network of routers; in
our discussion we will focus on Internet overlays. Appli-
cations running at participant machines communicate along
the edges of the overlay network using unicast transport ser-
vices provided by the underlying network – in our case, by
IP. Therefore, a message over an edge of the overlay may
traverse many edges (IP router links) in the underlying net-
work. The algorithms for choosing overlay edges differ
among overlay designs.

A structured overlay builds its topology according to a
particular model graph structure such as a hypercube, a
torus, a de Bruijn graph, etc. To facilitate this construc-
tion, overlay nodes take identifiers from a large ID space I ,
which is typically the range of a cryptographic hash func-
tion (e.g., SHA-1), and is chosen to be sufficiently large
(e.g., 160 bits or more) to minimize name collisions. Over-
lay nodes take random IDs from I . Then the canonical
model graph structure chosen for the overlay is embedded
in the ID space and mapped to the existing overlay nodes.

To effect this mapping, responsibility for ID space ranges
is partitioned among the nodes in the overlay at all times. In
our discussion we will assume that each node is responsible
for the IDs that are nearest to it in I (Figure 1); other par-
titioning schemes are used in the literature, but the choice
has no impact on our techniques below.

API: The interface to the structured overlay consists of
a single lookup(id) call. In response, the overlay must
locate the IP address of the node currently responsible for
ID id, typically by routing a message to that destination.

Topology and Routing: The overlay’s network topol-
ogy – the mapping of the model graph structure to overlay
nodes and links – is captured via the routing table main-
tained at each participant node. For concreteness, we use

�

�

�

�

�����

	
���

��
��

����

���������

�

�
����

����

�

Figure 1. An example ID space for a structured
overlay, represented as a ring. The nodes
maintaining the overlay are represented as
white circles on the ring; for example, com-
puter A is represented as the circle with ID
h(A) = F893A. Dashed ovals represent the “re-
sponsibility” of every node, in terms of the
ID range it manages. In this example, every
node manages the range of IDs that are nu-
merically closest to its own identifier.

Pastry [25] as an example here. Pastry is relatively easy to
describe, and our implementation in Section 4 was done in
the Bamboo overlay, which uses a Pastry-based topology.

Many structured overlay designs, including those of Pas-
try and Bamboo, begin with a reinforced ring topology, in
which every node maintains links to the participant nodes
whose IDs are closest in I – usually a fixed number of suc-
cessors and predecessors. These are sometimes called the
node’s leaf set. To provide routing efficiency, the ring is
then augmented with a set of neighbors that provide long
“jumps” in I .

The choice of which faraway nodes to link to is
implementation-dependent. In Pastry (and Bamboo) far-
away links are chosen according to a prefix-hypercube
topology and node IDs are represented in terms of digits
in base 2b, where usually b = 4. Hypercube links are stored
in a routing table that is divided into 160/b rows and 2b

columns. For a node with ID γ, the routing-table entry (i, j)
“points to” an ID that shares its leading i digits with γ, has j
as its (i+1)-st digit, and ends in any suffix. To populate that
entry, γ picks such an ID randomly, looks up the responsi-
ble node, and stores its address and ID in the table entry.
There may be many candidate nodes for a table entry (i, j),
particularly for small values of i. For example, in Figure 1,
node F893A could have in entry (0,9) any node responsible
for IDs starting with 9 (e.g., 91188 or 9D0E6). Typically, a
node routes lookup(α) greedily. If among all neighbors,
its own ID is the closest to α, the node responds directly;
otherwise it forwards the lookup to the neighbor or leaf-set

member whose ID is the closest to α.
Dynamics: Since structured overlays are intended for

dynamic environments where nodes come and go frequently
and unpredictably, every node monitors the state of the
nodes to which it links, replacing any that disappear. Con-
sider the example in which Pastry node F893A detects that
node F8389, contained in its routing-table entry (2,3), no
longer responds to pings. Then, node F893A looks for an-
other candidate to fill entry (2,3), by choosing some ran-
dom suffix X and issuing lookup(F83X). Any returned
node responsible for ID F83X can fill the empty entry.

In addition to ensuring the liveness of neighbors, some
structured overlays perform routing-table updates to opti-
mize performance over lookup paths; Bamboo is one exam-
ple. In such designs [14, 23], a node maintains for every
entry in the routing table a number of candidate neighbors.
The node keeps track of any performance metric with re-
gards to those candidates and chooses the best node among
them to link to (e.g., the one with the smallest network la-
tency, or highest uptime, etc.) For example, the Bamboo
node with ID F893A repeatedly looks up IDs with prefix
F83 and includes the discovered nodes to a set of candidates
for routing-table entry (2,3). It picks the closest candidate
in terms of network latency for that entry, but keeps the rest
as backup in case the chosen candidate fails.

2.2. Eclipse Attacks

We shift our attention to attacks on overlay routing. To
begin the discussion, we consider the case in which some
nodes become instantaneously compromised by a single ad-
versary. Clearly the adversary also controls the fate of all
IDs mapped to her nodes. A less obvious but important im-
plication is that “good” (i.e., uncompromised) nodes’ rout-
ing tables now point to some compromised nodes. We de-
fine as the level of poisoning of a good node the fraction of
its routing table occupied by compromised nodes.

Singh et al. [28] formalized a pattern of misbehavior
called an eclipse attack, which consists of the gradual poi-
soning of good nodes’ routing tables with links to a con-
spiracy of adversarial nodes. Note that multi-hop routing in
the overlay allows adversaries to intercept lookups whose
source and destination are both uncompromised. Left
unchecked, the adversary can eventually control most com-
munication between good peers, thereby placing a strangle-
hold on the quality and fate of applications using the over-
lay. The pace at which an adversary is able to increase her
control depends on the number of attack vectors available.

Amplification: In addition to intercepting application
lookups, the adversary can intercept lookups used by the
overlay to choose neighbors; she can thus influence good
nodes’ neighbor selection, amplifying her ability to inter-
cept subsequent traffic. In the Pastry example, when node

�����

�����

��	
�� ���� ��
��

�����

����

���� ��
���

Figure 2. The victim sends a “Ping” mes-
sage to adversary node “Bad 2,” which relays
the message over a low-latency link to “Bad
1,” which finally returns a spoofed-source
“Pong” message to the victim, pretending to
be “Bad 2.” Whereas the correct round-trip
IP latency from the victim to “Bad 2” would
have been 200 ms, it is presented as 130 ms.
Such latency “savings” – which can be ob-
tained through unpublished routes (e.g., with
RON [1]) – give the adversary a significant
advantage in optimized routing.

F893A updates the routing-table entry (2,3), it looks up
F83X . If the path of the a lookup passes through a com-
promised node, the adversary can intercept the request and
respond to it as if she controlled F83X , returning one of her
nodes with the nearest ID. This behavior pattern causes a
feedback cycle, whose result is an increase in good nodes’
level of poisoning with most update requests they make.

To make matters worse, optimized structured overlays
offer further attack vectors to the adversary, since they be-
stow upon routing tables more “degrees of freedom.” There,
a node selects the optimal node for each routing-table entry
according to measurements it performs between itself and
the candidate nodes. If such measurements can be biased
by the adversary, then she can cause a victim node to give
preferential treatment to her nodes. For example, an adver-
sary with good network connectivity can use her resources
to exhibit unnaturally low network latency, as shown in Fig-
ure 2.

Simple Defenses: The presence of adversarial nodes is
inevitable in any practical open system. In a structured over-
lay, these nodes control the fate of the IDs for which they are
responsible. To mitigate the ability of the adversary to in-
tercept traffic destined for other IDs, Castro et al. proposed
redundant routing [7]: the sender sends its lookup to all of
its leaf-set neighbors, who forward each duplicate lookup
to the destination independently, in largely distinct paths.
This approach trades bandwidth for a higher likelihood of
message delivery, and can be worthwhile for a small sub-
set of critical traffic. We will use it later for routing-table
maintenance lookups, for example.

With respect to optimized overlays, the same work sug-

gests the use of failure detectors for routing. One such fail-
ure detector depends on the uniform distribution of identi-
fiers over the node population, implemented via a central
identifier certification authority. When the failure detector
points out that a lookup response is suspicious, then a con-
strained, unoptimized routing table is used as fallback to
resend the same lookup request [7]. Constrained routing ta-
bles limit the choice of nodes for each routing-table entry to
one candidate. In the Pastry example, entry (0,9) in the con-
strained routing table of node F893A points to a single ID:
the one numerically closest to 9X for a fixed suffix X that
the node chooses. Contrast this to regular Pastry routing ta-
bles, where any suffix X , a full 16-th of the ID space, would
be admissible instead. As long as a node can locate the cor-
rect candidate for an entry – perhaps via redundant lookups
– it can ensure that its constrained routing-table poisoning
is similar to the adversary-controlled fraction of the node
population. By maintaining both routing tables – one opti-
mized but easily corruptible, and one slow but more robust
– we can get good performance and secure routing. In the
induced churn design, described next, we utilize this idea
of dual routing tables, though in a slightly different manner
that does not require failure detectors.

3. Design

Our contribution in this work arises out of the observa-
tion that, regardless of fallback routing, poisoning in op-
timized routing tables increases over time. Our goal is to
ensure that the average poisoning of good nodes’ routing
tables remains low over time. To accomplish this, our pro-
posal retains the idea of maintaining both constrained and
optimized routing tables [7], but with a twist. Instead of
using a failure detector to decide when to use each table
for regular lookups, we impose a periodic reset of the opti-
mized routing table to the contents of the constrained one,
always using the optimized routing table for lookups. Op-
timization starts anew after reset, but the adversary must
poison good routing tables again to maintain her foothold.
Intuitively, we seek to induce the poisoning behavior illus-
trated in Figure 3. Assuming resets bring the optimized
routing table back to its baseline level of poisoning, the
more frequent the resets, the lower the poisoning averaged
over time.

Periodic reset can be helpful only if poisoning in the opti-
mized routing tables slowly increases over time; in Figure 3,
the slope of the “sawtooth” must be low. In practice that is
not always the case, since “eager” update algorithms may
optimize routing tables fast, and preference to nearby nodes
(in the network) can be adversarially biased to converge al-
ways towards greater poisoning. To keep the slope low, we
propose the rate limitation of routing-table updates, since
updates constitute the primary vector over which poisoning

 0

 0.2

 0.4

 0.6

 0.8

 1

Po
iso

ni
ng

Time

No reset

Time

Reset once

Instantaneous
Average

Time

Reset twice

Figure 3. A graphical representation of routing-table reset, with increasing frequency from left to
right graphs.

increase is effected. Instead of getting updates as fast as
possible, we get them at a fixed rate that does not change as
network conditions or the size of the overlay change. Con-
vergence to optimal connectivity may be delayed as a result
of this update rate limitation. With it, however, even a pow-
erful adversary is prevented from bringing her resources to
bear to their fullest extent, reduced instead to the extent ad-
missible by our rate limits.

The last component of our contribution concerns pre-
dictability. If the adversary knows how optimized rout-
ing tables reset over time, then she can conduct her attacks
against content right before a reset occurs. Furthermore, she
can improve the deployment of her nodes (which identifiers
they have and which routing table they poison) using knowl-
edge of how good nodes’ routing tables evolve with every
reset. We deprive the adversary of this source of knowledge
with an unpredictable ID assignment. At every reset, ev-
ery node picks a new random ID and positions itself to a
different part of the topology, enforcing the same behavior
on nodes in its own routing tables. If good nodes “move”
continuously, the adversary cannot attack them in the same
way after every routing-table reset; if all nodes, including
adversarial ones, must change their identifiers periodically
(or face disconnection from good nodes), then the adversary
cannot hold on to or improve upon advantageous positions
in the overlay.

We next describe a design that implements this basic in-
tuition in structured overlays. Our design is generic and can
be applied to any specific structured overlay. In Section 4
we describe a particular implementation of induced churn
for Bamboo [23]. At a high level, our design consists of
a common source of randomness to reduce the predictabil-
ity of the underlying overlay (Section 3.1), functionality for
computing and validating fresh identifiers using this source
of randomness (Section 3.2), machinery for effecting and
enforcing churn (Section 3.3), and a mechanism for limit-
ing the rate of routing-table updates (Section 3.4). In Sec-
tion 3.5, we present some extensions and optimizations to
this basic design.

3.1. Timed Randomness Service

Our design relies on a timed randomness service. Peri-
odically – on the order of seconds – this service generates a
fresh random number, which it places into a signed random-
ness certificate of the form [Timestep, Random]. The ser-
vice returns the current or any recent randomness certificate
to anyone who asks, via some simple transport mechanism,
e.g., over HTTP.

This is a relatively simple service and can be imple-
mented in a variety of ways. A straightforward implementa-
tion would be centralized, requiring little more than a well-
managed but lightweight web server, with minimal storage
and a processor only strong enough to produce a signed ran-
dom number every few seconds or so. It requires that all
nodes have the server’s public key; this key may be dis-
tributed with the overlay software bundle, or via a network
discovery protocol like DHCP or DNS. Here we assume
that the randomness server is available, uncompromised,
and reachable with low latency from all nodes. These goals
may be difficult to realize. However, the reader should note
that the timed randomness service is light weight, easy to
audit, and amenable to replication. The ease of replication
in particular alleviates the risk of DDoS attacks on the ran-
domness service. In this paper we do not discuss the details
of implementing a fully decentralized randomness server al-
though we do explore alternative designs in Section 5, and
discuss the complexity-accountability trade-off for such a
service.

3.2. Random Unpredictable Identifiers

In this section we discuss the details of node identifier
generation, and how it is done in an unpredictable fash-
ion. It is typical for an overlay node to set its identifier by
hashing its IP address (e.g., Chord [30]). We augment this
construction with a fresh, random nonce. To join the over-
lay, or whenever it must reset its identifier, a node obtains
the appropriate random number from the randomness ser-

vice. It then computes its new identifier by hashing its ad-
dress and that number: newID = hash(Random‖IPAddress).
Given the same random number, other nodes will be sub-
sequently able to validate the computation of this ID from
the node’s IP address. These validations replace the vali-
dation of centrally issued ID certificates, in a certification
authority-based design.

The choice of the appropriate random number – that is,
the timestep to be requested from the randomness server –
is dependent on the frequency with which identifiers must
be reset. We call the time between identifier changes in our
induced churn scheme an epoch, and express the length of
the epoch in terms of timesteps of the randomness service;
we will explore the tuning of the epoch length in Section 4.
By convention, the “beginning” of an epoch is the timestep
of the randomness service that is an integer multiple of the
epoch length. In other words, at timestep t, current overlay
IDs must be computed using the random number issued by
the randomness server at timestep t− (t mod k), where k is
the number of timesteps in an epoch. In Section 3.5.1 we
refine this convention further.

3.3. Induced Churn

Every node in our design maintains two kinds of rout-
ing state: an Optimized Routing Table (OptRT) and a Con-
strained Routing Table (ConsRT). The node uses its Op-
tRT for all application lookup requests and maintenance re-
quests for the OptRT itself. The node uses the ConsRT for
all lookup requests that assist others to join the overlay, ei-
ther initially or after the end of an epoch, and to maintain
the ConsRT itself. Lookups over the ConsRT are performed
redundantly to increase the chances that they reach their in-
tended destinations .

At the end of its epoch (i.e., every k timesteps of the ran-
domness service), a node obtains the random number for
its next epoch from the service and uses it to compute its
next identifier (Section 3.2). It then joins the overlay with
that new identifier; its join – a lookup for the new identi-
fier – is routed redundantly over the ConsRT of the nodes in
the overlay. When the (re)joining node has acquired a new
ConsRT, it resets its OptRT to the new ConsRT and aban-
dons its old identifier. It then begins optimizing its OptRT
anew, until the end of the epoch.

Nodes evict from both routing tables those entries con-
taining stale identifiers. An identifier is stale if the random
number used to compute it is too old, that is, k or more
timesteps earlier than the current randomness server’s time.
In this sense, nodes enforce a maximum lifetime of one
epoch length on the nodes contained in their routing tables.

3.4. Update Rate Limitation

We impose a limit on the rate at which updates are ap-
plied to a node’s routing tables in order to slow down the
proliferation of malicious entries. When first joining the
overlay or after churning, a node starts a periodic update
timer. Whenever that timer expires, the node issues an up-
date request for each of its routing tables to obtain up-to-
date candidates for some randomly chosen table entries. As
described in Section 2.2, for the ConsRT the new candidate
node is found via a redundant lookup, and is accepted into
the entry if its identifier is numerically closer to the entry’s
target than the existing link. For the OptRT, the candidate
node is found via a single-path lookup, and is accepted if
the entry was empty before, or if the candidate’s measure-
ments on the optimized network metric are better than all
other known candidates for the same entry.

Updates to both routing tables must be rate limited, but
update rates need not be the same for both tables, though
our prototype does use the same rate. Nodes set the pe-
riod of the update timer according to a trade-off between
system adaptability and desired routing security; more fre-
quent updates improve responsiveness to highly dynamic
environments at the expense of security and possible con-
gestion [23], whereas less frequent updates are cheaper, fa-
cilitate defense against eclipse attacks, but hinder respon-
siveness to topology change.

Update rate limitation should apply to single-entry up-
dates; for some structured overlay update mechanisms that
update entire groups of entries in one go, further refinement
is required. For such “bundled” updates, we randomly drop
some of the update contents. We thus shield the recipient
group of entries in the target routing table from being com-
pletely poisoned in one fell swoop due to an unfortunate
choice of lookup path. Instead, to poison many routing-
table entries, a node must make many unfortunate update
choices.

3.5. Optimizations

Up to this point, we have presented a simple design.
In this section we complicate it slightly to introduce two
important optimizations that allow induced churn in prac-
tice, without undue sacrifices in performance. The resulting
pseudocode appears in Figure 4.

3.5.1. Staggered Churn

If all nodes in the system churn every k-th timestep, then the
system will likely be very unstable and heavily loaded right
around the global churn time. It will also move from less
poisoned to more poisoned states uniformly, making it easy
for the adversary to pick when to attack. We now describe

function staggeredChurn()
1: LeafSet← LeafSetnext
2: OptRT← ConsRTnext
3: ConsRT ← ConsRTnext
4: ConsRTnext← LeafSetnext← null
5: if LeafSet = null then
6: Rejoin network anew
7: Call staggeredChurn() in time epochLength
8: Call precomputeNeighbors() in time epochLength−δ

function precomputeNeighbors()
1: peer← lookup(myNextID)
2: LeafSetnext← null
3: tmpLeafSet← peer.getLeafSet()
4: for all p ∈ tmpLeafSet do
5: if nextChurnTime < expireTime(p) then
6: LeafSetnext.add(p)
7: Populate ConsRTnext for identifier myNextID
8: for all p ∈ ConsRTnext do
9: if nextChurnTime < expireTime(p) then

10: Remove p from ConsRTnext

Figure 4. Pseudocode for the staggered churn and routing-table precomputation algorithms.

how to stagger induced churn by partitioning the population
into G churn groups, each churning at a different timestep.

We define churn groups according to nodes’ IP ad-
dresses, for example, by setting a node’s group number to
(hash(IPPrefix) mod G). IPPrefix is an appropriately sized
prefix of the node’s IP address, e.g., 24 bits, long enough
to ensure a reasonably uniform group size distribution, but
short enough to prevent the adversary from changing her
nodes’ churn groups by fiddling with the highly spoofable
low-order bits of IP addresses.

In order to stagger churn, we must make minor mod-
ifications to the identifier mechanisms described in Sec-
tion 3.2. The randomness server timestep when a node
must switch identifiers is no longer the same for all nodes,
but is offset by the group number. A node in group
g ∈ [0,G), must switch identifiers at all timesteps t where
t mod k = gk/G. At timestep t, current, non-stale identi-
fiers of group g must use the random number of timestep
(t− ((t−gk/G) mod k)).

A related implication of staggered churn is that differ-
ent entries in routing tables become stale at different times,
and are verifiable with different random certificates from
the server. To simplify management of identifier expiration
without overloading the randomness server, nodes piggy-
back the related randomness certificate with any transfer of
node identifiers during maintenance or other identifier ex-
changes. For the same reasons, nodes cache randomness
certificates for as long as they have related node identifiers
in their routing state. With these small optimizations, a node
need contact the randomness server directly only once every
epoch to obtain the random number it needs before churn-
ing; it can also use that opportunity to synchronize its clock
to that of the server at timestep granularity. Since we expect
timesteps to last a few seconds, even high Internet round-
trip times would allow fairly good time synchronization of
nodes with the randomness service for the duration of an
epoch.

3.5.2. Routing State Precomputation

In the basic design of Section 3.3, a node joins the overlay
with its new identifier at the beginning of each epoch. While
a node is joining, it is unavailable for handling lookups.
To reduce the impact of this regular occurrence, we allow
nodes to precompute their next routing state. When the
epoch boundary arrives, the node can immediately switch
its leaf set, ConsRT, and OptRT to the precomputed rout-
ing state, making for a smooth transition. If the node has
been unable to precompute its new routing state on time,
it joins with the new identifier as before. This optimiza-
tion requires that a node know its next identifier ahead
of time. To allow this, we shift the mapping from ran-
domness service timesteps to epochs: the random nonce
for group g’s current epoch at timestep t is that issued at
Tg = (t − k− ((t − gk/G) mod k)); the random nonce for
group g’s next epoch is Tg + k.

With routing state precomputation, at any given time a
node maintains a total of three routing tables: a Constrained
Routing Table (ConsRT), an Optimized Routing Table (Op-
tRT), and a speculative Constrained Routing Table for the
next epoch (ConsRTnext). A node populates ConsRTnext
using its current ConsRT, by going through the motions of
a join operation with its next identifier, without actually
changing any other node’s routing tables: it looks up its
next identifier in the overlay to discover what its leaf set
and ConsRT would be for that next identifier. This discov-
ery is different for every structured overlay design. In Bam-
boo, for example, the node forwarding the newcomer’s join
lookup at every hop sends the newcomer its routing-table
row used to forward the lookup [23]. During precompu-
tation, routing-table entries that will be stale by the time
the node actually churns are excluded. The precomputed
ConsRTnext is maintained using periodic updates, just as
the current ConsRT is (see Section 3.3). The careful reader
will notice that pruning nodes with IDs that expire prior
to an induced churn point prefers nodes in groups imme-
diately following the churning node’s group. To reduce this

bias, nodes precompute the ConsRTnext late in the current
epoch. In the Figure 4 pseudocode, this translates to making
δ (last line of staggeredChurn()) as small as possible.

Precomputation gives the adversary advance knowledge
of where good nodes will be one epoch into the future. This
is an important concern, making it undesirable to provide
greater levels of precomputation. However, recall from Sec-
tion 3.4 that the adversary can only take advantage of a lim-
ited number of updates per epoch due to rate limitation. For
our single-epoch precomputation, the adversary must de-
cide whether to use her update budget to attack the current
epoch’s OptRT, or to place her nodes so as to attack next
epoch’s OptRT more effectively. Fortunately, even though
she knows where her nodes will be in the next epoch, just
as good nodes do, she is still limited to using an identifier
for the duration of a single epoch only, making such prede-
ployment of assets limited in its utility.

3.6. Design Alternatives

In this section we talk about the alternative designs
for our defenses, namely Forced Unpredictable Identifier
Change and Periodic Resets.

3.6.1. Alternatives for Forced Unpredictable Identifier
Change

Our design choice for forced unpredictable identifier change
places the responsibility of keeping time and producing un-
predictability to a centralized randomness server. This is a
reduction in central responsibility, compared to the alterna-
tive of having a certification authority registering entities,
controlling the rate at which identifiers are issued, dealing
with revocation, etc. An intermediate design point between
the two would be to control identifier unpredictability over
entire groups of peers (according to some grouping), reduc-
ing the state maintained at the server from the granularity of
individual addresses to that of groups. In contrast to Mael-
strom, this approach is cheaper in terms of resources, but
gives more responsibility to the server, who can now bias
group assignments.

Going in the opposite direction from our design choice
towards less centralized responsibility, we could distribute
the task of controlling unpredictability, for instance by us-
ing variants of shared coin flipping schemes, such as that
described by Cachin et al. [5]. The randomness server could
thus be distributed over all peers or a set of servers enjoying
partial trust among the peer population. This, for instance,
could be a task for the set of bootstrapping servers that most
overlays rely on.

Finally, an attractive fully distributed design we are con-
sidering for future work would help an individual peer to
ensure that identifiers of peers it communicates with are de-
termined in a manner unpredictable to them and fresh within

a time frame that the peer itself can track alone. The basic
idea is to run an unpredictable logical clock per peer. At ev-
ery timestep, each peer broadcasts the random value of its
clock to its neighbors. A peer receiving clock values from
its neighbors hashes them together (e.g., in a Merkle hash
tree) and combines the result with its own previous clock
value to produce a value for the next timestep. A peer’s
identity is cryptographically dependent on the value of its
local logical clock.

To prove to a neighbor that its identifier is relatively fresh
and until recently unpredictable, a peer traces a backward
path from the clock value that influenced its new identifier
to a clock value issued by this new neighbor some time in
the past; this path follows backwards a sequence of hashes
and logical clock value broadcasts, e.g., tracing a path from
the new neighbor to the peer’s old position in the overlay.
Since the neighbor remembers when it issued its own clock
values (for a short period in the past), it can estimate for
how long the peer has known its new identifier. This is a
simplified instance of the coordination required for a dis-
tributed secure time stamping service [20]. We are planning
to explore the overheads and potential benefits of such an
aggressively decentralized approach under heavy churn.

3.6.2. Alternatives for Periodic Reset

We considered several alternatives for performing the peri-
odic resets that trigger induced churn, including proximity-
metric randomization, gang evictions, and selfish routing-
table churn. Proximity-metric randomization introduces er-
ror in the measurement of the proximity metric used for
routing optimization. For the example of point-to-point la-
tency as the metric, we could randomize several low-order
bits of the measured latency per discovered peer. Though
coarse-grained differentiation among potential links is still
available, finer-grained comparisons of links change unpre-
dictably, causing proximity neighbor selection not to con-
verge always to the strictly closest neighbor but, instead, to
pick at random from a larger set of otherwise nearby neigh-
bors. This approach seemed awkward as it in effect tries to
modify the proximity machinery specific to Bamboo, while
our solution is cleaner and applicable to any structured over-
lay.

Gang evictions would allow the peers currently occupy-
ing a neighborhood of the logical overlay space collectively
to decide the order of peer evictions and to monitor joins.
However, achieving consensus on evictions in a highly de-
centralized, untrusted environment can be tricky and com-
putationally expensive, making this approach undesirable.

Selfish routing-table churning follows the similar philos-
ophy of evicting entries from a peer’s routing table when
those entries have exceeded a maximum lifetime. However,
an identifier is not evicted from all routing tables of correct

peers at the same time. As a result, though similar to our
eventual design, this technique might lead to a continuous
state of routing inconsistencies [18].

4. Evaluation

We evaluate induced churn against the goals of our sys-
tem: defense against eclipse attacks with acceptable perfor-
mance. First we describe Maelstrom, our prototype imple-
mentation of induced churn built on top of Bamboo. Then
we measure and compare the resistance of Maelstrom to
poisoning, as well as its overhead.

Implementation: We have built Maelstrom as a secure
extension to Bamboo, a fine-tuned, real structured overlay.
Maelstrom is a secure router package, consisting of about
5,000 lines of Java source code.

The primary component in the Bamboo system is the
Router, which maintains a leaf set and OptRT. During nor-
mal operation, a Bamboo node performs periodic probes for
maintaining the routing table. Bamboo uses 2 algorithms
for maintaining the OptRT: global tuning and local tuning.
The global tuning algorithm looks up a random identifier in
the ID space. The returned responsible node B is added to
the routing table if it fits in an empty slot or is closer in terms
of IP latency than the existing slot occupant. Local tuning at
node A periodically requests a random routing-table row R
from a node B chosen at random in A’s routing table. A in-
serts into its routing table the entries of R if they fill empty
slots or improve latencies to those slots. Maelstrom rate-
limits these periodic updates (Section 3.4).

Maelstrom maintains two routing tables in addition to
Bamboo’s OptRT: ConsRT and ConsRTnext along with the
next leaf set, whose updates it also rate-limits. Furthermore,
Maelstrom shields entire row updates during local tuning.
Because higher rows of a routing table admit greater varia-
tion in node candidates (Section 2.1) since they accept node
identifiers with longer “free” suffixes, row shielding drops
higher-row entries more aggressively. Maelstrom accepts a
maximum of RowNumber/2+1 random entries per update
(i.e., 1 entry for row 0, 2 for row 1, etc.).

Experimental Setup: To evaluate Maelstrom, we an-
swer two questions. First, what does Maelstrom buy us in
practice in the face of attacks? Second, what is its over-
head? We focus on 5 metrics: routing-table poisoning, the
fraction of malicious entries in a routing table; routing suc-
cess, the probability that a lookup will evade adversarial in-
terception and reach its destination; the maintenance band-
width overhead in terms of bytes sent; average network la-
tency for overlay lookups; and, the average hop count of
overlay lookups. Routing-table poisoning and routing suc-
cess measure the poisoning resistance of Maelstrom, while
bandwidth overhead, latency, and hop count measure the
costs of its resistance. Ideally, we wish to show that our de-

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 10 20 30 40 50 60

CR
T

Po
iso

ni
ng

 (%
)

Time (min)
 0 5 10 15 20 25 30

Malicious Presence (%)

No Redundancy
Redundancy=16

Baseline

Figure 5. ConsRT poisoning without redun-
dant routing and with 16-path redundancy.
(a) Time graph of ConsRT poisoning for 15%
malicious presence. (b) Steady-state Con-
sRT poisoning for different malicious pres-
ence levels.

fenses keep the poisoning of optimized routing tables to the
fraction of adversarial nodes in the population. Since we
cannot distinguish between good and bad nodes, this base-
line poisoning is unavoidable.

Our performance measurements compare Maelstrom to
Bamboo in the absence of malicious nodes. Since our
routing-table maintenance is periodic, rather than reactive,
the associated overheads do not change when malicious
nodes are introduced in the system. Poisoning resistance
measurements evaluate Maelstrom under attack.

We evaluate our design using an algorithmic simulator,
and a full implementation on an emulated network. The al-
gorithmic simulator is round-based (a round is a timestep
of the randomness server), models all the features of Bam-
boo with induced churn, but elides communication asyn-
chrony and network congestion. In each round, every node
performs maintenance operations such as eviction of its
stale routing-table entries, periodic update lookups when
its timers expire, and induced churn when its epoch ends.
At this level of abstraction, we can experiment with larger
node populations (up to 50,000 nodes). Our full Maelstrom
implementation on top of Bamboo runs on an emulated net-
work that models network conditions faithfully, but elides
network congestion. We use this more detailed experimen-
tal platform to validate the results from the algorithmic sim-
ulator (albeit for smaller populations of 500 nodes) and to
evaluate the performance of Maelstrom.

For both systems, we use a network topology based on
the extended King data set [15], a commonly used realistic
topology of a wide variety of Internet hosts. We use the
default values [23] for Bamboo system parameters: the leaf-
set size is 32 with a leaf-set update interval of 10 sec; the
OptRT is updated every 30 sec and keep-alive pings are sent
to all neighbors every 30 sec. In terms of Maelstrom, nodes
form G = 256 churn groups. For all experiments, we set the

randomness service timestep duration to be T/G, where T
is the epoch length.

The threat model implemented in our attack simulations
is structured around a set of colluding malicious nodes con-
spiring to maximize the routing-table poisoning in the entire
population. Malicious nodes hijack all routing state update
messages that arrive at them or pass through them, respond-
ing with references to nodes from their malicious collective.
We give the adversary full knowledge of every good node’s
routing state, to approximate an adversary that has used traf-
fic analysis to infer such state. As a result, the adversary can
give responses to lookups that will have the greatest impact
on a given victim’s routing table. Furthermore, when faced
with multiple node candidates for an entry, good nodes al-
ways choose the adversary’s candidate, to approximate an
adversary who can successfully fool victims about its net-
work measurements (Section 2.2). We discuss our choice of
threat model, as well as alternative weaker models in Sec-
tion 5.

4.1. Routing state poisoning

To evaluate Maelstrom’s resistance to poisoning, we first
study the resistance to poisoning of the ConsRT under in-
duced churn, since the ConsRT forms the baseline of the
“sawtooth” behavior we hope to instill in the system (Fig-
ure 3). Then we evaluate the ability of the OptRT to resist
poisoning and to perform successful lookups.

We use the algorithmic simulator with 50,000 nodes un-
der attack. Figure 5(a) shows ConsRT poisoning vs. time
with 15% malicious nodes in the population. Figure 5(b)
shows the steady-state ConsRT poisoning for varying frac-
tions of malicious presence in the population. Both graphs
show experiments with and without 16-way redundant rout-
ing. We see that poisoning remains closer to the fraction of
malicious population with redundancy; e.g., with 15% mali-
cious population, steady-state poisoning hovers around 16%
with 16-way redundancy, and around 20% without. This is
not surprising, since greater redundancy ensures a higher
probability of successful lookup routing, which means a
greater likelihood that a node updating its ConsRT will re-
ceive a response from the correct node it is probing.

We now turn to the OptRT itself, measuring its poison-
ing levels as a function of malicious presence and epoch
length. We use the same experimental setup as above, with
50,000 nodes out of which 15% are malicious. Figures 6(a),
(b), and (d) show the average OptRT poisoning with time
for nodes belonging to a single churn group in Maelstrom,
for epoch lengths of 8, 16, and 32 minutes. We isolate a
single churn group to show how poisoning levels are af-
fected by non-staggered induced churn. Dips in the graph
indicate the group’s epoch boundaries, where nodes in the
churn group reset their OptRT to their ConsRTnext (Sec-

 0

 0.2

 0.4

 0.6

 0.8

 1

252015105

PR
T

Po
iso

ni
ng

Malicious presence (%)

(a)

8 min
16 min
32 min

Bamboo

 0

 0.2

 0.4

 0.6

 0.8

 1

252015105

Pr
ob

. o
f S

uc
ce

ss
fu

l R
ou

tin
g

Malicious presence (%)

(b)

Bamboo: No redun.
Bamboo: Redun. 16

Maelstrom: No redun.
Maelstrom: Redun. 16

Figure 7. OptRT security characteristics vs.
malicious presence in the population. (a)
Routing-table poisoning for different Mael-
strom epoch lengths and for Bamboo. (b)
Probability of successful lookup delivery for
different redundancy levels for Bamboo and
Maelstrom.

tion 3). Longer epoch lengths allow the OptRT poisoning to
increase. This matches well the intuition illustrated in Fig-
ure 3. In contrast, Bamboo (Figure 6(e)) poisoning contin-
uously increases until a high saturation point around 80%,
more than 5 times the baseline malicious presence of 15%.

To separate out the benefits obtained through row shield-
ing alone, we plot in Figure 6(c) one instance of the time
graphs (for 16-min epochs) without row shielding. The
slope of the “sawtooth” pattern in this figure matches Bam-
boo more closely, and is certainly steeper than the equiva-
lent scenario with row shielding, in Figure 6(b).

Figure 7(a) supplies a broader view of the system’s
behavior, over varying malicious presence in the popula-
tion, looking at the average OptRT poisoning over all good
nodes (not just a single churn group as above). Bamboo
yields great poisoning amplification to the adversary, espe-
cially at low malicious fractions, while Maelstrom main-
tains poisoning close to the baseline. Specifically, for up to
5% malicious nodes, Bamboo suffers from between 6 and
46 times greater poisoning than Maelstrom, depending on
epoch length. As above, the level of poisoning in Maelstrom
grows as the epoch length increases, since the adversary can
then increase her foothold in the good nodes’ routing tables
for longer time periods.

Figure 7(b) shows the actual probability that a lookup
over the OptRT will reach its destination – as opposed to be-
ing intercepted and abused by the adversary – for an epoch
length of 16 mins. Maelstrom does better than Bamboo in
all cases. The difference is more pronounced for low ma-
licious presence; as malicious presence increases, even if
poisoning does not increase from its baseline, it can hinder
lookups due to their multi-hop nature.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

Ro
ut

in
g

Ta
bl

e
Po

iso
ni

ng

Time (min)

(a) 8 min epoch

 0 10 20 30 40 50 60
Time (min)

(b) 16 min epoch

 0 10 20 30 40 50 60
Time (min)

(c) 16 min epoch
no shielding

 0 10 20 30 40 50 60
Time (min)

(d) 32 min epoch

 0 10 20 30 40 50 60
Time (min)

(e) Bamboo

Figure 6. Routing-table poisoning vs. Time for 15% malicious fraction.

 0

 100

 200

 300

 400

 500

Bamb.643216842

La
te

nc
y

(m
se

c)

Epoch Length (mins)

(a)

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

Bamb.643216842

Ba
nd

wi
dt

h
(b

yt
es

/s
ec

)

Epoch Length (mins)

(b)

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

Bamb.643216842

Ba
nd

wi
dt

h
(b

yt
es

/s
ec

)

Epoch Length (mins)

(c)

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

Bamb.643216842

Ba
nd

wi
dt

h
(b

yt
es

/s
ec

)

Epoch Length (mins)

(d)

 0
 5

 10
 15
 20
 25
 30
 35
 40

Bamb.643216842

Av
er

ag
e

Ne
ig

hb
or

s

Epoch Length (mins)

(e)

Figure 8. Performance measurements as a function of epoch length, compared to Bamboo. (a)
Lookup latency from algorithmic simulator (50,000 nodes); (b) & (c) Maintenance bandwidth from
the algorithmic simulator, 50,000 and 500 nodes respectively; (d) Maintenance bandwidth from the
implementation (500 nodes); and (e) Average number of neighbors per node from the implementation
(500 nodes).

To separate out the contributions of induced churn from
redundant routing, Figure 7(b) also plots successful lookups
when they are performed redundantly over the OptRT as
well. At 16-way redundancy, Bamboo success drops rapidly
as malicious presence tops 5%, whereas Maelstrom man-
ages nicely, staying barely below 100% success for low ma-
licious presence and achieving over 80% success even when
malicious presence reaches 25%. This reinforces our earlier
point: without periodic resets of the optimized routing ta-
ble, even redundancy cannot save lookups from adversarial
tampering.

4.2. Performance

In this section we measure the performance overhead of
induced churn on Maelstrom. We conduct the experiments
in the absence of attacks, since Maelstrom is a proactive
system that does not change mode of operation in reaction
to attack evidence.

Figure 8 collects performance measurements for 3-hour
(simulated time) runs of Maelstrom and Bamboo in algo-
rithmic simulation and on an emulated network. Figure 8(a)
shows the average network latency for successful lookups
in a simulated population of 50,000 nodes. Latency in-
creases as epoch length decreases, since routing state op-
timizations have less time to complete before a table reset.
Bamboo completes those optimizations and consequently
exhibits the best (lowest) latency.

Figures 8(b), (c), and (d) compare per-node aver-
age maintenance bandwidth under simulation with 50,000
nodes, 500 nodes, and on an emulated network of 500
nodes respectively. Measurements include bandwidth in-
curred by maintaining, pinging for liveness, and updating
three routing tables in Maelstrom, rather than the single
routing table in Bamboo. Larger populations fill up nodes’
routing tables more, so the per-node bandwidth overhead
due to periodic node pings and routing-table updates in-
creases. Furthermore, shorter epoch lengths incur more fre-
quent repopulations of ConsRTnext from scratch, increas-
ing bandwidth consumption. The trends in simulation and
on emulation are similar. However, the algorithmic simula-
tor tends to overestimate maintenance costs slightly, since
it does not model optimizations such as suppressing live-
ness pings when other traffic is observed, which are present
in the actual implementation. Nevertheless, even for short
epochs and large populations, Maelstrom’s bandwidth re-
quirements are well below the tolerance of even home users
behind dial-up modems.

Figure 8(e) shows the average number of neighbors for
different epoch lengths on the full implementation at the
end of the 3-hour experiment. This graph also demonstrates
how induced churn can cut neighbor discovery short, as well
as poisoning, which can potentially increase latencies but

moderates bandwidth increases.
We conclude by examining the randomness server. If

every node in a churn group contacts the server individ-
ually, the server’s access link must sustain a stream of
(Population/EpochLength) certificates. 50,000 nodes with
a 2-minute epoch would incur a total of about 0.5 Mbps for
1-KByte randomness certificates, which is trivial for even
moderate services. All requests concern the same few cer-
tificates at any time, served from main memory, so the load
of about 400 requests per second is well below typical limits
of off-the-shelf web servers. Furthermore, in practice nodes
in a churn group can disseminate a randomness certificate
amongst themselves, reducing both overheads on the server
even more. Finally, with 256 churn groups, the server must
compute two new certificates per second; even with 2048-
bit signing keys, this is well within the capabilities of com-
modity processors.

5. Discussion

We now turn to the challenges facing Maelstrom on its
path from research prototype to real-world deployment.

5.1. The Randomness Service

Our design includes a source of trusted, timed random-
ness to ensure the unpredictability of node identifiers. This
source of randomness could also help with load balancing,
topology formation, leader election, auctions, etc. Mael-
strom implements this functionality as a central, globally
trusted service. Compared to other approaches to the prob-
lem of secure routing that rely on certification authorities,
a central randomness server is simpler to implement, to
prove correct, and to audit; however, the randomness ser-
vice makes the overlay more reliant on service availability,
since it effectively “clocks” overlay progress. Furthermore,
centralized components of either type can raise trust and
reliability concerns. In the context of the Maelstrom ran-
domness service, we can alleviate some of these concerns
via accountability, replication, and redundancy.

First, to make the service more accountable, we can pro-
vide its users with assurances that issued random numbers
are unpredictable to all parties within given bounds. Users
could periodically perturb the service pseudo-random num-
ber generator by submitting to it new seeds that are incorpo-
rated in subsequent number generation. Similar techniques
have been used in verifiable secret sharing [21], to ensure
that no participant in the protocol can bias collectively com-
puted random numbers.

Second, replication can improve availability, e.g., for
times when a randomness server is unreachable by certain
clients. Replicas of the randomness server need only share
a secret seed for their pseudo-random functions, and be

loosely time-synchronized. Both requirements are easy to
meet, especially compared to the burden of replicating the
more complex central live identity certification authorities,
whose state changes and must be propagated to replicas as
identities are issued or revoked.

Third, redundancy can narrow the need for global trust.
With redundancy, there are multiple, independent random-
ness servers, each distributing its own separate randomness
source. Overlay nodes compute their IDs by hashing to-
gether random numbers from all or many servers. Verifiers
can validate IDs computed from those sources of random-
ness that they trust, ignoring others; as long as at least one
randomness server it trusts has been used in an ID com-
putation, a validator can accept that overlay ID. Such ap-
proaches have been used before for highly available time
stamping services [2].

In future work, we hope to combine all three techniques
with timeline entanglement [20] to distribute the functional-
ity of the randomness service completely, when absolutely
no shared servers can be tolerated.

5.2. Adversary Bestiary

Our adversary model is comprised of a conspiracy of ma-
licious nodes that collude to poison the routing tables of all
the good nodes in the overlay. Although an “attack every-
one” threat model is an important one, there are other more
directed threat models that may also be interesting, which
we only briefly mention due to space limitations. Instead
of everyone, the adversary could attack a particular key (to
cripple a resource) or a particular node (to cripple a service
operator), as a destination (to intercept incoming requests)
or as a source of traffic (to produce spam or to hijack nor-
mal responses). Though more limited in scope, such attacks
could allow a weaker adversary to concentrate her resources
on a specific target.

One aspect of the adversary that we have not included
in our analysis and design is her capacity for increasing
her presence in the system, for example via Sybil identities,
which are forged or otherwise spoofed identities. By impos-
ing a 3-way handshake on every IP-level session, we ensure
that a node’s IP address is a legitimate one, or one that the
node can spoof easily (e.g., within a /24 network). The use
of a 3-way handshake, however, only restricts a node to as-
suming an IP address that it can spoof easily. In Maelstrom,
we have explored the enforcement of IP address diversity,
by which nodes limit the number of representatives from
each such easy-to-spoof address set in their routing tables.
Diversity enforcement successfully thwarts spoofing adver-
saries from amplifying their poisoning potential. However
it also penalizes overlay participants from large organiza-
tions (e.g., student computers at a large university); while
an overlay can accommodate nodes from such non-diverse

address spaces, it cannot reach its fully optimized connec-
tivity, which would be possible with a uniform address dis-
tribution.

5.3. Utility

Maelstrom offers a trade-off between the performance
costs and the security benefits of the overlay (refer to Fig-
ure 8). The performance cost depends on lookup latency
due to sub-optimal routing, and maintenance bandwidth due
to periodic, unpredictable churn. There can also be associ-
ated application costs if, for example, the overlay is used
as a distributed hash table to store data; then induced churn
incurs a bandwidth cost due to data migration. The epoch
length allows the system to be tuned according to the rela-
tive utility assigned to performance and security by the ap-
plication using the overlay. On one hand, for distributed
file systems and databases the cost of migrating data across
nodes could be high, and induced churn may be inappropri-
ate. On the other hand, for monitoring, query processing,
or content distribution, the cost is considerably lower since
smaller, fewer, or expendable data items are involved, and
high periodic churn can be sustained to provide greater re-
sistance to poisoning.

Along a different axis, for some applications the quality
of the average-case state of good nodes’ routing tables is
less important than avoiding the worst case. For instance,
in a preservation application such as PAST [26], content is
not refreshed by its publisher into the repository. Instead,
it is inserted once and then migrated among replicas as the
system churns. In such an application, arriving ever at a
system state in which all replicas of a given document are
controlled by the adversary is detrimental, since it gives the
adversary the opportunity to tamper with the document per-
manently. Reducing churn then is an absolute goal, since it
reduces the likelihood of ever achieving such a worst-case
state. Induced churn is inappropriate for such applications.
Contrast this to the common case of monitoring, reposi-
tories, and communication overlay applications, which re-
quire clients to refresh stored content periodically. In such
applications, it is more important to reduce the average-
case routing-table poisoning, since this measure determines
whether clients can reach the desired content or not, and
has no bearing on the content’s eventual survival. Induced
churn is appropriate in such settings and, in adversarial en-
vironments, it is indispensable.

5.4. Migrating data

To continue to be useful, Maelstrom must ensure that the
data inserted remain available to clients. An obvious solu-
tion to the problem is to replicate data amongst some set of
nodes (usually a subset of the leaf set called the replica set)

as discussed by Rhea et al [22]. In this case, every put under
a key k would contact the nodes in the replica set and return
success only if the put succeeds on a quorum of the replica
set. Any get would then contact the replica set and read
values from a quorum. By choosing these quora appropri-
ately, we can ensure that applications can retrieve the most
up-to-date data. However, the presence of induced churn
implies that nodes fail periodically. It is quite possible that
all the nodes in the replica set may churn before handing
data over to any of the “nearby” nodes. To handle this case,
we can have each node maintain pointers to its “ancestors”
– the set of nodes that previously owned the keys that the
node currently owns. Any lookup on keys that have a valid
“ancestor” is rerouted to the ancestor. Nodes periodically
synchronize with their ancestors and remove the association
between ancestors and a key for each synchronized key.

5.5. Reliance on IP addresses

A question may arise about the reliance of Maelstrom
for its benefits on current IP addressing. For instance, how
easily would our design carry over to IPv6, given its larger
address space?

Maelstrom relies for its protection against eclipse at-
tacks on there being a hierarchical structure in IP addresses,
whereby higher-order bits are fixed per organization, and
assigned centrally (currently by the IANA), whereas lower-
order bits are assigned to end hosts by the organization it-
self. Such higher-order bits are used to choose churn groups
in a manner that cannot be biased by the adversary. In
that sense, we have termed higher-order bits “unspoofable”
(Section 3.5.1): a malicious end host cannot change those
address bits in traffic it originates and still participate in ar-
bitrary two-way IP exchanges without collusion from the
Internet’s governing agencies. To the extent that this re-
quirement holds with IPv6 addresses, Maelstrom is com-
patible with the newer IP protocol. Note, however, that the
definition of how many high-order address bits make up the
“unspoofable” part of an address would have to adapt to
current addressing policies.

Similarly, Maelstrom may rely on IP address structure to
combat Sybil attackers, that is, adversaries who create many
IP addresses with the low-order address bits within their or-
ganizations, hoping to sway the balance of adversarial pres-
ence in the overlay. As described in Section 5.2, diversity
enforcement may help. Again, the number of high-order
bits that define equivalence classes among nodes for the pur-
poses of diversity enforcement must match the deployment
policies of the current IP protocol. For IPv4, enforcing di-
versity within a routing table among the 24 high-order bits
appears sufficient.

6. Related Work

Security analysis of structured overlays and other peer-
to-peer systems have recently appeared in the literature [12,
29, 32], recognizing routing-table poisoning as a serious
threat. Castro et al. [7] proposed the first comprehensive
solution to the problem in the context of Pastry [25]. Their
proposal relied on a central certification authority issuing
rate-limited ID certificates, on dual routing tables (one for
optimized and one for secure routing), and on routing fail-
ure detectors. Singh et al. [28] extended this work to handle
eclipse attacks in general overlays (structured and unstruc-
tured) by enforcing low in- and out-degree of vertices in
the overlay graph via anonymous auditing. Low in- and
out-degrees mean that malicious nodes cannot insert them-
selves to arbitrarily many good nodes’ routing tables. These
two approaches make heavy use of an ID certification au-
thority. Though perfectly reasonable for instance in enter-
prise environments enjoying wide trust, such powerful and
complex globally trusted components are harder to justify
in more open settings. Maelstrom is inspired by this trail-
blazing work, but seeks to relax the reliance on a powerful
and complex central entity. Compared to an ID certification
authority that verifies “real-world” credentials, issues rate-
limited ID certificates, and monitors and distributes revoca-
tions, our timed randomness service is a simpler component
that can be more easily proved correct, debugged, audited,
and distributed.

Recent work by Awerbuch and Scheideler [3, 27] shares
many of the intuitions behind Maelstrom and even proves
some of them under certain assumptions. The authors’ de-
signs use verifiable secret sharing to allow groups of nodes
to generate random identifiers for newcomers, and to en-
force limited identifier lifetimes. The approach though very
complex and as yet unimplemented to our knowledge, is
proved robust when adversarial nodes and good nodes are
limited in their join and departure rates from the overlay. In
contrast, Maelstrom enforces this rate limitation in the pro-
tocol itself and off-loads the task of random number gener-
ation to a shared service. Furthermore, it concentrates on
extending implemented structured overlays, giving priority
to retaining the optimizations that make these overlays prac-
tical. We have yet to formally prove the robustness of our
techniques, but our simpler design has allowed us to im-
plement them and evaluate them experimentally for some
adversaries.

Our basic techniques have been used before in differ-
ent contexts: rate-limited routing-table updates to ease
load spikes under churn [23], increased unpredictability to
thwart adversarial behavior that relies on predictability [16],
and periodic resets to rejuvenate a degrading system [6, 8].

7. Conclusion

In this work, we have motivated, designed, and ex-
perimentally evaluated induced churn, a defense against
routing-table poisoning in structured overlays. Induced
churn combines periodic routing-table reset, unpredictable
identifiers, and rate-limited updates to protect such overlays
from adversaries who wish to inflate their presence in good
nodes’ routing tables beyond what their presence in the pop-
ulation as a whole would justify. We have demonstrated in-
duced churn by implementing Maelstrom, an extension to a
real distributed hash table in wide use today [23]. We show
that induced churn can thwart adversaries who could other-
wise intercept almost all lookups, even with a very limited
presence. Yet, it retains many of the benefits of optimized
structured overlays, making tunable the trade-off between
resistance to poisoning and efficient routing.

In future work, we hope to understand better the
strengths and limitations of induced churn in realistic adver-
sarial environments through experimentation in real deploy-
ments, and through further analysis. Today, Bamboo forms
the basis for a number of research and production projects
deployed in the wild, including OpenDHT [24], a shared
infrastructure for DHT-based applications. We hope to as-
sist the maintainers of OpenDHT with the deployment of
the Maelstrom extensions, so as to investigate how induced
churn behaves, even when data migration is necessary.

Finally, we believe that the need for common sources
of unpredictability is becoming increasingly important in
loosely coupled distributed systems. We hope to study fur-
ther designs proposed in the literature, or those proposed
here, for a massively replicated or fully-distributed timed
randomness service, hoping to provide a randomness dial
tone that can help safeguard distributed systems in the ever
more dangerous internetworks they occupy.

8. Acknowledgments

We would like to thank Sean Rhea for his invaluable help
in extending Bamboo with the Maelstrom extensions, David
Wagner for his thoughtful comments on earlier versions of
this paper, our shepherd Dan Wallach, and the anonymous
reviewers for their feedback. Tyson Condie and Joe Heller-
stein are partially supported by NSF grants (contract num-
bers 0209108 and 0225660), and by a gift from Microsoft
Corporation.

References

[1] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris.
Resilient Overlay Networks. In Proceedings of the Eigh-
teenth ACM Symposium on Operating Systems Principles

(SOSP), pages 131–145, Chateau Lake Louise, Banff, AB,
Canada, Oct. 2001.

[2] A. Ansper, A. Buldas, M. Saarepera, and J. Willemson.
Improving the Availability of Time-Stamping Services. In
Proccedings of the 6th Australasian Conference on Infor-
mation and Privacy (ACISP), pages 360–375, Sydney, Aus-
tralia, July 2001.

[3] B. Awerbuch and C. Scheideler. Group Spreading: A pro-
tocol for provably secure distributed name service. In Pro-
ceedings of the 31st International Colloquium on Automata,
Languages, and Programming (ICALP), pages 183–195,
Turku, Finland, July 2004.

[4] A. R. Bharambe, M. Agrawal, and S. Seshan. Mercury:
Supporting Scalable Multi-Attribute Range Queries. In Pro-
ceedings of the Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications
(SIGCOMM), pages 353–366, Portland, OR, USA, Sept.
2004.

[5] C. Cachin, K. Kursawe, and V. Shoup. Random Ora-
cles in Constantinople: Practical Asynchronous Byzantine
Agreement using Cryptography. In Proceedings of the 19th
ACM Symposium on Principles of Distributed Computing
(PODC), pages 123–132, Portland, OR, USA, July 2000.

[6] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and
A. Fox. Microreboot–A Technique for Cheap Recovery.
In Proceedings of the 6th Symposium on Operating Systems
Design and Implementation (OSDI), pages 31–44, San Fran-
cisco, CA, USA, Dec. 2004.

[7] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. S.
Wallach. Secure Routing for Structured Peer-to-Peer Over-
lay Networks. In Proceedings of the 5th Usenix Symposium
on Operating Systems Design and Implementation (OSDI),
pages 299–314, Boston, MA, USA, Dec. 2002.

[8] M. Castro and B. Liskov. Proactive Recovery in a
Byzantine-Fault-Tolerant System. In Proceedings of the 4th
Symposium on Operating Systems Design and Implementa-
tion (OSDI), pages 273–288, San Diego, CA, USA, Oct.
2000.

[9] T. Condie, V. Kacholia, S. Sankararaman, P. Maniatis, and
J. M. Hellerstein. Maelstrom: Churn as shelter. Technical
Report UCB/EECS-2005-11, EECS Department, University
of California, Berkeley, CA, USA, November 10 2005.

[10] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Sto-
ica. Wide-area cooperative storage with CFS. In Pro-
ceedings of the Eighteenth ACM Symposium on Operating
Systems Principles (SOSP), pages 202–215, Chateau Lake
Louise, Banff, AB, Canada, Oct. 2001.

[11] D. Davis. Compliance Defects in Public-Key Cryptogra-
phy. In Proceedings of the 6th USENIX Security Symposium,
pages 171–178, San Jose, CA, USA, July 1996.

[12] J. Douceur. The Sybil Attack. In Proceedings of the 1st
International Workshop on Peer-to-Peer Systems (IPTPS),
pages 251–260, Boston, MA, USA, Mar. 2002.

[13] M. J. Freedman, E. Freudenthal, and D. Mazières. Democ-
ratizing content publication with coral. In Proceedings of
the 1st Symposium on Networked Systems Design and Im-
plementation (NSDI), pages 239–252, San Francisco, CA,
USA, Mar. 2004.

[14] K. Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy,
S. Shenker, and I. Stoica. The Impact of DHT Routing
Geometry on Resilience and Proximity. In Proceedings of
the conference on Applications, technologies, architectures,
and protocols for computer communications (SIGCOMM),
pages 381–394, Karlsruhe, Germany, Aug. 2003.

[15] K. P. Gummadi, S. Saroiu, and S. D. Gribble. King: es-
timating latency between arbitrary internet end hosts. In
Proceedings of the 2nd ACM SIGCOMM Workshop on In-
ternet measurment (IMW), pages 5–18, Marseille, France,
Nov. 2002.

[16] G. S. Kc, A. D. Keromytis, and V. Prevelakis. Countering
code-injection attacks with instruction-set randomization. In
Proceedings of the 10th ACM conference on Computer and
communications security (CCS), pages 272–280, Washing-
ton D.C., USA, Oct. 2003.

[17] A. LaMarca, Y. Chawathe, S. Consolvo, J. Hightower,
I. Smith, J. Scott, T. Sohn, J. Howard, J. Hughes, F. Potter,
J. Tabert, P. Powledge, G. Borriello, and B. Schilit. Place
lab: Device positioning using radio beacons in the wild. In
Proceedings of the International Conference on Pervasive
Computing, pages 116–133, Munich, Germany, May 2005.

[18] D. Liben-Nowell, H. Balakrishnan, and D. Karger. Ob-
servations on the Dynamic Evolution of Peer-to-peer Net-
works. In 1st International Workshop on Peer-to-Peer Sys-
tems (IPTPS), pages 22–33, Cambridge, MA, USA, Mar.
2002.

[19] B. T. Loo, R. Huebsch, J. M. Hellerstein, S. Shenker, and
I. Stoica. Enhancing P2P File-Sharing with an Internet-Scale
Query Processor. In Proceedings of the 30th International
Conference on Very Large Data Bases (VLDB), pages 432–
443, Toronto, ON, Canada, Aug. 2004.

[20] P. Maniatis and M. Baker. Secure History Preservation
Through Timeline Entanglement. In Proceedings of the 11th
USENIX Security Symposium, pages 297–312, San Fran-
cisco, CA, USA, Aug. 2002.

[21] T. P. Pedersen. Non-Interactive and Information-Theoretic
Secure Verifiable Secret Sharing. In J. Feigenbaum, editor,
Advances on Cryptology (CRYPTO), volume 576 of Lecture
Notes in Computer Science, pages 129–140, Aug. 1991.

[22] S. Rhea, Byung-Gon Chun, J. Kubiatowicz, and S. Shenker.
Fixing the Embarrassing Slowness of OpenDHT on Planet-
Lab. In Proceedings of the 2nd Workshop on Real, Large
Distributed Systems (WORLDS), San Francisco, CA, USA,
Dec. 2005.

[23] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Handling
Churn in a DHT. In Proceedings of the Usenix Annual Tech-
nical Conference, pages 127–140, Boston, MA, USA, June
2004.

[24] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy,
S. Shenker, I. Stoica, and H. Yu. OpenDHT: A Public DHT
Service and Its Uses. In Proceedings of the conference
on Applications, technologies, architectures, and protocols
for computer communications (SIGCOMM), pages 73–84,
Philadelphia, PA, USA, Aug. 2005.

[25] A. Rowstron and P. Druschel. Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer sys-
tems. In IFIP/ACM International Conference on Distributed

Systems Platforms (Middleware), pages 329–350, Heidel-
berg, Germany, Nov. 2001.

[26] A. Rowstron and P. Druschel. Storage management and
caching in PAST, a large-scale, persistent peer-to-peer stor-
age utility. In Proceedings of the Eighteenth ACM Sympo-
sium on Operating Systems Principles (SOSP), pages 188–
201, Chateau Lake Louise, Banff, AB, Canada, Oct. 2001.

[27] C. Scheideler. How to spread adversarial nodes? Rotate! In
Proceedings of the thirty-seventh annual ACM symposium
on Theory of computing (STOC), pages 704–713, Baltimore,
MD, USA, May 2005.

[28] A. Singh, M. Castro, P. Druschel, and A. Rowstron. Defend-
ing against Eclipse attacks on overlay networks. In Proceed-
ings of the 11th ACM SIGOPS European Workshop, pages
115–120, Leuven, Belgium, Sept. 2004.

[29] E. Sit and R. Morris. Security Considerations for Peer-to-
Peer Distributed Hash Tables. In Proceedings of the First In-
ternational Peer To Peer Systems Workshop (IPTPS), pages
261–269, Cambridge, MA, USA, Mar. 2002.

[30] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F.
Kaashoek, F. Dabek, and H. Balakrishnan. Chord: a scal-
able peer-to-peer lookup protocol for internet applications.
IEEE/ACM Transactions on Networks, 11(1):17–32, 2003.

[31] J. Stribling, I. G. Councill, J. Li, M. F. Kaashoek, D. R.
Karger, R. Morris, and S. Shenker. OverCite: A Cooper-
ative Digital Research Library. In Proceedings of the 4th
International Workshop on Peer-to-Peer Systems (IPTPS),
pages 69–79, Ithaca, NY, USA, Feb. 2005.

[32] D. Wallach. A Survey of Peer-to-Peer Security Issues. In In-
ternational Symposium on Software Security, Tokyo, Japan,
Nov. 2002.

