
Towards a Crystal Ball for Data Retrieval

Joseph M. Hellerstein

U.C. Berkeley

387 Soda Hall #1776

Berkeley, CA, USA 94720-1776

jmh@cs.berkeley.edu

Abstract
Information Systems { both databases and text-

search programs { are typically architected as \black
boxes": a user submits a request, the system performs
an unknown sequences of operations, and after some
time an answer set is returned. Two trends are con-
spiring to make such architectures undesirable. First,
users of these systems are often quite naive, and un-
sure of what they are doing. Second, the queries sub-
mitted to these systems are taking increasing amounts
of time to complete. These trends together lead to a
frustrating experience for users: they are unsure if
their inputs are appropriate, and the cost of an in-
appropriate input is often a long wait followed by a
useless or misleading result.

In this paper we propose changing the black-box
model to one of a \crystal ball", in which users are
given feedback on their queries as they run, so that
they can predict the utility of their query results, con-
trol the behavior of the queries on the 
y, and better
understand the operation of the system. We highlight
some initial work in this vein, and describe opportu-
nities for similar e�orts in new applications.

1 Introduction
Broad sectors of the population want easy access

to data; the success of the world-wide web has made
this clear. With datasets growing at ever-increasing
rates, it is becoming more di�cult for users to �nd the
data that interests them. One of the basic problems
with existing query facilities { both on the web and in
traditional database systems { is that they are \black
boxes": users submit requests, and after some time
are given responses, with little or no explanation of
how or why the system determined that the response
�t the query.

This is the legacy of years of research into support-
ing \declarative" query languages, in which users de-
scribe what they want, rather than how to get it. The
problem that is emerging with declarative querying is
that either (a) most users can not or will not crisply
describe what they want (as in database systems), or
(b) system designers can not or will not provide an in-
terface in which users can crisply describe what they
want (as in text-search engines). The result of this is
a frustrating interaction in which users must second-
guess the behavior of the system, leading to bizarre
and frustrating modes of interaction.

This frustration with black-box architectures is ex-
acerbated by a general increase in processing time
per operation. Datasets are growing in size, concur-
rency levels are increasing (especially on the web),
and thanks to ever-better user interfaces, the average
query is more and more likely to be non-trivial to eval-
uate. As a result of all these factors, users are often
left waiting for some time before a black box returns
an output. The increasing query response time means
that an iterative interaction with a black-box system
becomes di�cult or untenable.

As a solution to this problem, we propose replacing
black-box systems with newer \crystal-ball" designs,
which allow users to observe and control system be-
havior online, in the middle of processing. Crystal-ball
systems can allow users to predict their query results
before they complete, control the query processing on
the 
y, and better understand the operation of the
system. Such architectures have been proposed for re-
lational aggregation queries [2], and we believe will be
increasingly useful for other relational queries, as well
as for information retrieval and data mining.

2 DBMS vs. IR: Motivation from the

Distinction
Databases and Information Retrieval systems are

philosophically very di�erent. In this section we
demonstrate that their di�erence exposes an impor-
tant issue which drives the need for crystal-ball sys-
tems.

2.1 DBMS: Black Box in the Glass House
Naive users continue to �nd it di�cult to accurately

express ad hoc queries over relational databases, de-
spite the e�orts of projects such as IBM's QBE, or
even more recent popularizers like Microsoft Access.
The problem is not that the query interfaces are im-
precise, but rather that most users are not willing to
invest the e�ort required to understand them even at a
basic level. The result is that users who submit ad hoc
queries are typically unsure if the \semantically cor-
rect" answer they receive means anything, since they
do not fully understand the semantics of their query
to begin with.

2.2 IR: WYGIWIGY Systems
A plausible solution to the complexity of relational

queries is to remove the intellectual burden from the



users, and encode it into software. This is the ap-
proach of the Arti�cial Intelligence community, which
developed the technology behind IR systems. In an
IR system, the stored data is usually complex (e.g.,
documents or images), and users can express queries
in a \natural language" (English, almost without ex-
ception).

IR systems su�er from the opposite problem of
DBMSs. In IR systems, the software can not be sure
of the semantics of the data or a user's query, so the
answer returned to the user depends entirely on the
semantic interpretation which the software gives to
dataset and query.1 These systems may be termed
\What You Get Is What I Give You" (WYGIWIGY)
systems, since the user has minimal control over the
systems' semantic details. An especially frustrating
aspect of WYGIWIGY systems is that their semantic
interpretation techniques are often proprietary, and
even those which are public are di�cult to explain.
The result is that WYGIWIGY systems have to be
used in an iterative black-box fashion: users pose mul-
tiple variations of their query, in the hope of both �nd-
ing (apparently) satisfactory answers, and potentially
(though usually only approximately) learning the sys-
tem's interpretation algorithm.

2.3 Di�erent Approaches, Common
Problem

These two types of systems represent extremes on
a spectrum of \semantic control". Database systems
place all semantic control and responsibility for queries
in the hands of users, while IR systems embed this
control in the software. These di�erent \Human-
Computer Interfaces" represent a fundamental philo-
sophical distinction between the IR and DB commu-
nities. However, both of these approaches su�er from
the basic problem that expressing queries accurately
is a complex undertaking, and not well-suited to naive
users. This basic problem has stymied the develop-
ment of a natural interface for querying. The IR and
DB communities have chosen di�erent ways to face
the problem: the IR community avoids the problem
by providing no semantic guarantees, while the DB
community ignores the problem by forcing users to ex-
press themselves in a mathematical paradigm. Each
solution has drawbacks, but these can be ameliorated
by a crystal-ball approach in both cases.

3 Beyond the Black Box: Case Studies
In this section, we brie
y examine two techniques

that provide crystal-ball behavior in the context of a
relational database system. These serve as examples
of how converting from a black box to a crystal ball
can bene�t user comprehension and e�ciency.

1Many IR document systems essentially just do keyword-

search: they retrieve documents which contain a subset of the

words in the query expression. Strict keyword-search is like

a limited query language, and such systems have been imple-

mented in DBMSs. However many keyword-based IR document

systems attempt to extract more semantics from a query, using

techniques like thesauri or vector-based approaches, to �nd pos-

sibly relevant documents which do not contain keywords.

3.1 Online Aggregation
Consider the following simple relational query:

Query 2:

SELECT AVG(final_grades) FROM grades

GROUP BY major;

The output of this query in an online aggregation
system can be a set of interfaces, one per output group,
as in Figure 1. For each output group, the user is given
a current estimate of the �nal answer, and a \con�-
dence interval", which says that with x% con�dence,
the current estimate is within an interval of size k

from the �nal answer. A status bar at the bottom of
the screen shows how much processing time remains.
These interfaces expose salient features of the current
state of processing, and predict the �nal outcome in
a statistically accurate fashion. In addition, controls
are provided to stop processing on a group, or to speed
up or slow down the group relative to others. These
interfaces are supported by signi�cant modi�cations
to a relational DBMS, as described in [2]. Key system
themes in this work include a focus on non-blocking al-
gorithms and new striding access methods to support
round-robin fetching from di�erent value groups.

The online feedback and control in this system
are especially bene�cial for OLAP-style data analy-
sis, in which a naive user (who is often an important
decision-maker) wishes to quickly traverse through
large amounts of information. This sort of user makes
high demands on a system, including tolerable accu-
racy and instantaneous (\speed-of-thought") response
time. The crystal-ball approach of online aggregation
helps meet these needs in that it allows the user to get
instantaneous response time at some level of accuracy;
if the user is not satis�ed with the quick estimate he
or she can choose to be more patient. Any compro-
mises in either time or accuracy are placed in the user's
hands on a case-by-case basis, another advantage of a
crystal-ball system.

3.2 Controlling Query Optimization
A notorious black box within a relational DBMS

is the query optimizer. Even experienced MIS pro-
fessionals are typically unaware of how and why op-
timizers make the decisions that they do. Years of
treating the optimizer as a black box can lead to \so-
lutions" which modify the optimizer's input to pro-
duce the desired output. For example, an old trick for
\fooling" an optimizer into choosing the right plan
is to repeat a Boolean Factor in a query in order
to convince the optimizer that a selectivity estima-
tion should be lower (e.g., SELECT * FROM emp WHERE
sal > 100000 AND sal > 100000 may produce the
right plan when a more natural query would not.)
Such inanities arise from the black-box nature of most
query optimizers, and can only be used e�ectively with
signi�cant trial and error. A frustrating side-e�ect of
this solution arises when vendors decide whether or
not to �x the underlying problem. If they �x the prob-
lem, existing users' previous solutions may no longer
produce the desired e�ect. If they do not �x the prob-
lem, new users will be forced to learn the same inane
tricks that old users have employed.



Figure 1: A Speed-Controllable Multi-Group Online Aggregation Interface

Some optimizers now allow user \hints" to provide
a limited form of control, but typically they do not
explain the logic that led to the need for the hints.
Newer academic systems (e.g. Wisconsin's Minibase-
view [6] and Opt++ [3] projects) provide more feed-
back and control, displaying portions of the plan-
space traversed, allowing pruning of the space followed
by di�erential retraversal, and providing a choice of
search strategies. An improvement would be to pro-
vide this control in an online fashion, so that for large
queries users could see and possibly modify the opti-
mization as it takes place. This sort of online feedback
and control will become increasingly important as op-
timizers are forced to resort to randomized or heuristic
search techniques for large queries. This is an exam-
ple of a crystal-ball architecture being useful even for
sophisticated users. For such problems, a crystal-ball
system bears a resemblance to a debugger, but works
at a higher semantic level.

4 Topics for Future Work

4.1 Online Query Re�nement

A key motivation of a crystal-ball system is to al-
low users to modify their inputs as they are being
processed, without requiring the system to start over
\from scratch". In the context of relational queries,
this may be termed online query re�nement. Such
behavior is possible to a limited extent in the Online
Aggregation system described above, where the STOP
signs can be thought of as \HAVING" clauses that are
added to the query as it runs.

A more powerful online query re�nement system
would allow users to add arbitrary predicates, SE-
LECT expressions, etc. as a query was running, and
the system would make use of the partial results com-
puted so far, changing the processing \just enough" to
accomodate the new query e�ciently. This is some-
what related to ideas from multiple query optimiza-
tion [7] and sample views [5], but uni�es and extends
both ideas.

4.2 Directed Data Mining
\Data Mining" is the inevitable conclusion of the

AI approach to querying. In Data Mining applica-
tions, not only does the system de�ne the semantics,
it actually de�nes the queries. The user simply says
\Go", and the system produces what it believes to be
useful answers.

While this has some interesting applications, the
idea of Data Mining is fundamentally crippled by hav-
ing the crudest possible black-box interface. More-
over, data mining algorithms typically run for hours
in production environments [1]. Interesting \mining"
applications in the future will merge Data Mining with
Decision-Support or \OLAP" queries, mixing the AI
and DB approaches of system-driven and user-driven
discovery. An important aspect of this challenge will
be to \open up" this merged technology; these systems
will execute long-running analysis steps, and users will
need to observe and control this analysis as it runs. At
bottom, Data Mining is a sophisticated form of aggre-
gation, in which large amounts of data are processed
over a long period of time to produce more cohesive
descriptions. The arguments for Online Aggregation
apply even more strongly to Data Mining.

4.3 User Interface Issues
The key to a good crystal ball is that it show exactly

what the user needs to see. The goal is not to expose
the detailed inner workings of the raw algorithms (a
\Lucite Watch" architecture), but rather to display
a useful precis of the running behavior. For exam-
ple, in the Online Aggregation system the user is not
presented with the status of the hash-table used for
grouping, but instead statistical estimators and status
bars. It has been noted that status bars alone improve
a user's perception of the speed of a system [4], so
this is clearly a generic tool that can be used in many
crystal-ball applications. Statistical estimators of �-
nal outcomes are a similar class of relatively generic
tools. Other such tools are clearly needed. In many
cases the tools will need to be designed speci�cally for
the system at hand, but one can imagine developing
a suite of generic status tools as well. Moreover, since



much of the motivation for this work is to improve the
user interface, human-factor studies of crystal-ball in-
terfaces are certainly called for.

5 Conclusion
No long-running system should be a black box.

This rather basic observation opens up a number of
research issues in information systems, both in terms
of system architecture and algorithms, and user in-
terface design. The database research community has
long called for increased focus on user interfaces, but
has been largely reluctant to study user interfaces
in the absence of related algorithmic or architectural
questions. The challenge of building crystal balls will
require uni�ed e�orts in this regard { as the Online
Aggregation work demonstrates, system support for a
crystal-ball interface can require signi�cant research,
since the usability goals of a crystal ball often di�er
from those of a black box. Because of the broad-based
modi�cations required to convert a black box into a
crystal ball, this area should spark interest in the user-
interface, database systems, and information retrieval
communities.

References
[1] Rakesh Agrawal. Personal correspondence, Febru-

ary 1997.

[2] Joseph M. Hellerstein, Peter J. Haas, and He-
len J. Wang. Online Aggregation. In Proc. ACM-
SIGMOD International Conference on Manage-
ment of Data, Tucson, May 1997.

[3] Navin Kabra and David J. DeWitt. Opt++ { An
Object Oriented Im-
plementation for Extensible Database Query Op-
timization. Submitted for publication. See also:
http://www.cs.wisc.edu/ navin/research/opt++.ps,
1996.

[4] B. A. Myers. The Importance of Percent-Done
Progress Indicators for Computer-Human Inter-
faces. In Proceedings SIGCHI '85: Human Factors
in Computing Systems, pages 11{17, April 1985.

[5] Frank Olken. Random Sampling from Databases.
PhD thesis, University of California, Berkeley,
1993.

[6] Raghu
Ramakrishnan. The Minbase Home Page, 1996.
http://www.cs.wisc.edu/coral/minibase/minibase.html.

[7] Timos Sellis. Multiple Query Optimization. ACM
Transactions on Database Systems, 13(1):23{52,
March 1988.


