Brief Announcement: Prefix Hash Tree

Sriram Ramabhadran -

Joseph M. Hellerstein

ABSTRACT

This paper describes the Prefix Hash Tree, a distributed
data structure that enables range queries over Distributed
Hash Tables.

Categories and Subject Descriptors

C.2.4 [Comp. Communication Networks]: Distributed
Systems — distributed applications; E.1 [Data Structures]:
distributed data structures

General Terms

Algorithms, Design, Performance

Keywords

distributed hash tables, data structures, range queries

1. PREFIX HASH TREE

The explosive growth but primitive design of peer-to-peer
file-sharing applications such as Gnutella inspired the re-
search community to invent Distributed Hash Tables [1].
While the DHT has enjoyed some success as a building block
for Internet-scale applications, it is seriously deficient in
one regard — it only directly supports exact match queries.
However, range queries, asking for all objects with values in
a certain range, are more difficult to implement over a DHT.
This is because most DHT designs use hashing to distribute
keys uniformly, and therefore cannot rely on any structural
properties of the keyspace, such as an ordering among keys.
This paper proposes the Prefix Hash Tree (henceforth abbre-
viated as PHT), a trie-like data structure that addresses this
limitation. A key advantage of the PHT is that unlike some
other recent proposals [2] [3], it is particularly suitable for
implementation over a DHT, relying only on the canonical
put (key,value) and get(key) hashtable operations.

In essence, the PHT data structure is a binary trie built
over the data set being indexed '. Each node of the trie is
labeled with a prefix that is defined recusively: given a node
with label [, its left and right nodes are labeled with [0 and
{1 respectively, with the root labeled with the domain being
indexed. Leaf nodes store data; a data item K is stored
at the unique leaf node whose label is a prefix of K. A
node stores upto B items; when this threshold is exceeded,

*email sriram@cs.ucsd.edu
!For simplicity, it is assumed that the domain being indexed
is {0,1}7, i.e., binary strings of length D.

Copyright is held by the author/owner.
PODC’04, July 25-28, St.Johns, Newfoundland, Canada.
ACM 1-58113-802-4/04/0007.

Sylvia Ratnasamy

Scott Shenker

the node is split into its two children, and its data items
are partitioned between its children. Conversely, when the
number of data items at two sibling nodes falls below B,
they are merged, and their data items are transferred to
the parent. Finally, leaf nodes are threaded; each leaf node
maintains pointers to the leaf nodes on its left and right.

As described thus far, the PHT is a fairly routine binary
trie. The novelty of the PHT lies in how this logical trie is
distributed among the peers in the network. This is achieved
by hashing the prefix labels of PHT nodes over the DHT
identifier space, i.e., a node with label [is assigned to the
peer responsible for HASH(l) in the DHT. This hash-based
assignment implies that given a prefix label, it is possible
to locate the corresponding PHT node via a single DHT
lookup. This ”direct access” property results in the PHT
having several desirable features.

The main operation on the PHT is lookup, i.e., given a
data item K , locating the leaf node whose label is a prefix
of K. Since there are D + 1 distinct prefixes of K, the
naive method is to perform a linear scan of these D + 1
nodes until the required leaf node is located. However, the
direct access property of the PHT allows this to be improved
upon by performing binary search on prefix lengths, which
reduces the number of DHT lookups required from D + 1
to about log D. Insertion or delection of data items involve
a single PHT lookup, followed by splitting or merging of
leaf nodes, if necessary. Range queries involve a single PHT
lookup, followed by a sideways traversal of all leaf nodes
whose prefixes overlap with the query.

To conclude, some of the important advantages of the
PHT are summarized below. The PHT is efficient; lookups
are doubly logarithmic in the size of the domain. It is load-
balanced; nodes store only upto B data items, and binary
search removes the need for lookups to go through the up-
per levels of the trie. It is fault-resilient; a leaf node can
always be located in D + 1 DHT lookups, independent of
the failure of other nodes. Finally, the PHT is built entirely
on top of the DHT lookup interface, and does not assume
knowledge of nor require changes to the DHT topology or
routing behavior, thus allowing it to run over any DHT.

2. REFERENCES

[1] S. Ratnasamy, P. Francis, M. Handley, R. Karp and S. Shenker,
A Scalable Content Addressable Network, In ACM SIGCOMM
2001.

[2] M. Ruhl and D. Karger, Simple and Efficient Load Balancing
Algorithms for Peer-to-Peer Systems, In ACM SPAA 2004.

[3] J. Aspnes and G. Shah, Skip Graphs, In ACM-SIAM SODA
2003.

[4] P. Yalagandula and J. Browne, UT CS Tech.Report TR-04-18.

