
Declarative Routing:
Extensible Routing with Declarative Queries

Boon Thau Loo∗ Joseph M. Hellerstein∗† Ion Stoica∗ Raghu Ramakrishnanδ

∗UC Berkeley †Intel Research δUniversity of Wisconsin-Madison
{boonloo, jmh, istoica}@cs.berkeley.edu raghu@cs.wisc.edu

ABSTRACT
The Internet’s core routing infrastructure, while arguably ro-
bust and efficient, has proven to be difficult to evolve to ac-
commodate the needs of new applications. Prior research on
this problem has included new hard-coded routing protocols
on the one hand, and fully extensible Active Networks on the
other. In this paper, we explore a new point in this design
space that aims to strike a better balance between the exten-
sibility and robustness of a routing infrastructure. The basic
idea of our solution, which we call declarative routing, is to
express routing protocols using a database query language.
We show that our query language is a natural fit for routing,
and can express a variety of well-known routing protocols in
a compact and clean fashion. We discuss the security of our
proposal in terms of its computational expressive power and
language design. Via simulation, and deployment on Plan-
etLab, we demonstrate that our system imposes no funda-
mental limits relative to traditional protocols, is amenable to
query optimizations, and can sustain long-lived routes under
network churn and congestion.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design

General Terms
Design, Languages, Security

Keywords
Extensible routing, Declarative queries, Routing languages

1. INTRODUCTION
Designing routing protocols is a difficult process. This

is not only because of the distributed nature and scale of
the networks, but also because of the need to balance the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’05, August 21–26, 2005, Philadelphia, Pennsylvania, USA.
Copyright 2005 ACM 1-59593-009-4/05/0008 ...$5.00.

extensibility and flexibility of these protocols on one hand,
and their robustness and efficiency on the other hand. One
need look no further than the Internet for an illustration
of these hard tradeoffs. Today’s Internet routing protocols,
while arguably robust and efficient, are hard to change to ac-
commodate the needs of new applications such as improved
resilience and higher throughput. Upgrading even a single
router is hard [16]. Getting a distributed routing protocol
implemented correctly is even harder. And in order to change
or upgrade a deployed routing protocol today, one must get
access to each router to modify its software. This process is
made even more tedious and error prone by the use of con-
ventional programming languages.

Several solutions have been proposed to address the lack
of flexibility and extensibility in Internet routing. Overlay
networks allow third parties to replace Internet routing with
new, “from-scratch” implementations of routing functionality
that run at the application layer. However, overlay networks
simply move the problem from the network to the applica-
tion layer where third parties have control: implementing or
updating an overlay routing protocol still requires a complete
protocol design and implementation, and requires access to
the overlay nodes. A radically different approach, Active
Networks [14], allows one to deploy new routing functionality
without the need to have direct access to routers. However,
due to the general programming models proposed for Active
Networks, they present difficulties in both router performance
and the security and reliability of the resulting infrastructure.

In this paper, we explore a new point in this design space
that aims to strike a better balance between the extensibility
and the robustness of a routing infrastructure. Our solution,
which we call declarative routing, can be viewed as an appli-
cation of database techniques to the domain of networking.
It is based on the observation that recursive query languages
studied in the deductive database literature [5, 23] are a nat-
ural fit for expressing routing protocols. Deductive database
query languages focus on identifying recursive relationships
among nodes of a graph, and are well suited for expressing
paths among nodes in a network.

With declarative routing, a routing protocol is implemented
by writing a simple query in a declarative query language like
Datalog, which is then executed in a distributed fashion at
some or all of the nodes. Declarative routing can be viewed as
a restrictive instantiation of Active Networks for the control
plane, which aims to balance the concerns of expressiveness,
performance and security, properties which are needed for an
extensible routing infrastructure to succeed. Next, we discuss
how declarative routing satisfies these properties:

Expressiveness: As we will show in Section 3, Datalog
queries can express a variety of well-known routing proto-
cols (e.g., distance vector, path vector, dynamic source rout-
ing, link state, multicast) in a compact and clean fashion,
typically in a handful of lines of program code. Moreover,
higher-level routing concepts (e.g., QoS constraints) can be
achieved via simple modifications to these queries. Finally,
writing the queries in Datalog illustrates surprising relation-
ships between protocols. In particular, we show that distance
vector and dynamic source routing differ only in a simple,
traditional query optimization decision: the order in which a
query’s predicates are evaluated.

Efficiency: By leveraging well-studied query optimization
techniques (in Section 7), we show (in Section 9) via simula-
tion and implementation that there is no inherent overhead
in expressing standard protocols via a declarative query lan-
guage. In addition, query optimization techniques can lead to
efficient execution, and facilitate work-sharing among queries.

Security: As shown in Section 6, Datalog has several desir-
able security properties. In particular, Datalog is a side-effect
free language, and Datalog queries can be easily “sandboxed”.
Furthermore, the complexity of basic Datalog queries is poly-
nomial in the size of the input [5]. While adding functions to
Datalog alters its theoretical worst-case complexity, powerful
tests for termination on given inputs are available [18].

Declarative routing could evolve to be used in a variety of
ways. One extreme view of the future of routing is that indi-
vidual end-users (or their applications) will explicitly request
routes with particular properties, by submitting route con-
struction queries to the network. The safety and simplicity
of declarative queries would clearly be beneficial in that con-
text. A more incremental view is that an administrator at an
ISP might reconfigure the ISP’s routers by issuing a query to
the network; different queries would allow the administrator
to easily implement various routing policies between differ-
ent nodes or different traffic classes. Even in this managed
scenario, the simplicity and safety of declarative routing has
benefits over the current relatively fragile approaches to up-
grading routers. While this second scenario is arguably the
more realistic one, in this paper, we consider the other ex-
treme in which any node (including end-hosts) can issue a
query. We take this extreme position in order to explore the
limits of our design.

To demonstrate the feasibility of our idea, we have imple-
mented a prototype on top of PIER [2], a distributed rela-
tional query processor. Through a combination of simula-
tions on transit-stub network topologies and experiments on
the PlanetLab [21] testbed, we evaluate the scalability and
efficiency of our system, as well as its ability to sustain long-
lived routes under network churn and congestion.

We do not propose that this work in its current form can
serve as a “drop-in” replacement for existing network infras-
tructures, which have evolved and coagulated over many years
under various constraints. However, if progress is to be made
in deploying new, more flexible infrastructures for network
routing, we believe that a cleaner foundation is needed. Our
work can be viewed as a step in that direction, based on ap-
plying well-studied techniques from the deductive database
literature to the network domain.

The remainder of this paper is organized as follows. First,
we provide an overview of our system model in Section 2. In
Section 3, we introduce the basic concepts of query specifica-
tion and execution, by stepping through a concrete example

using the familiar path vector and distance vector protocols.
Next, we will illustrate the flexibility of our query language
through several examples in Section 5. We then address the
challenges of security (Section 6), query optimization tech-
niques for efficiency (Section 7) and route stability and ro-
bustness (Section 8). Following our evaluation (Section 9)
in simulations and on PlanetLab, we conclude with related
(Section 10) and future work (Section 11).

2. SYSTEM MODEL

Query Processor

Routing Infrastructure Node

Neighbor
Table Updates Query Results

Routing
Infrastructure

Neighbor Table Forwarding Table

Base
Tuples

Result
Tuples

Derived
Tuples

Queries

Figure 1: Basic Components of Routing Infrastructure Node

and Co-located Query Processor.

We model the routing infrastructure as a directed graph,
where each link is associated with a set of parameters (e.g., loss
rate, available bandwidth, delay). The nodes in the routing
infrastructure can either be IP routers or overlay nodes.

In a centralized design such as the Routing Control Plat-
form [15], network information is periodically gathered from
the routing infrastructure, and stored at one or more central
servers. Each query is sent to one or more of these servers,
which process the queries using their internal databases and
set up the forwarding state at the routers in the network.

In this paper, we focus on a fully distributed implemen-
tation to explore the limits of our design. Like traditional
routers, the infrastructure nodes in our model maintain links
to their neighbors, compute routes, and set up the forwarding
state to forward data packets. However, instead of running a
traditional routing protocol, each infrastructure node runs a
general-purpose query processor.

Figure 1 shows the basic components of an infrastructure
node (router) and its co-located query processor. Each router
maintains a typical set of local information including the links
to its neighbors (neighbor table) and the forwarding informa-
tion to route packets (forwarding table). The neighbor table
is periodically updated in response to link failures, new links,
or link metric changes. These updates are performed outside
the query processor using standard mechanisms such as peri-
odic pings. The query processor can read the neighbor table
(either periodically or upon being notified of updates), and
install entries into the forwarding table. In our discussion,
this simple interface is the only interaction required between
the query processor and the router’s core forwarding logic.

Both routing protocols and route requests can be expressed
as declarative queries, and issued either by the routers them-
selves or by third-parties or end-hosts. Upon receiving the
query request, each query processor initiates a distributed ex-

ecution of the query in the network. The results of the query
are used to establish router forwarding state (the forwarding
table in Figure 1), which the routers use for forwarding data
packets. Alternatively, the query results can be sent back to
the party that issued the query, which can use these results
to perform source routing.

During query execution, intermediate data generated by a
query processor is stored locally, and can be sent to neighbor-
ing query processors for further processing. To keep with the
database terminology, we refer to the local information that
the node reads as base tuples, and the generated intermediate
data as derived tuples. Tuples are organized in tables. The
base tuple we use frequently in our examples is the link tuple:

link(source, destination, . . .). A link tuple corresponds
to a copy of an entry in the neighbor table, and represents
an edge from the node itself (source) to one of its neighbors
(destination). The other fields, “. . .”, represent link metrics
(delay, loss rate and bandwidth). Each tuple is stored at the
address indicated by the underlined address field. Thus, in
the case of a link tuple, source represents the address of the
node storing the neighbor table. Each link tuple is uniquely
identified by its source and destination pair (the unique key).

An example of a derived tuple is the path tuple:

path(source, destination, pathVector, cost). A path
tuple indicates that destination is reachable from source along
the path in pathVector, where cost is the aggregate sum of
all link costs along the path. Each path tuple is uniquely
identified by its pathVector.

In addition, some of the derived tuples generated by the
query processor also form part of the query answer as result
tuples as specified by the query. In Sections 3 and 5 we will
see examples of result tuples path, nextHop and bestPath.

Each query is accompanied by a specification of the lifetime
(duration) of the protocol/route. During the lifetime of a
query, neighbor table updates are made available to the query
processor, and these updates trigger the recomputation of
some of the existing derived and result tuples. In the next
section, we step through a concrete example of how a query
can be specified and executed within this execution model.

3. THE BASICS
We will start with a query that expresses the transitive clo-

sure of the link table, which can be used to compute network
reachability. We will show how this query can be expressed
in Datalog, describe the generation of a query plan for this
query, and finally show the execution of the query plan on
a distributed query engine. We illustrate the connection be-
tween recursive queries and routing protocols by showing that
the execution of this query resembles the well-known path
vector and distance vector routing protocols.

3.1 Datalog Program Syntax
Datalog is similar to Prolog [13], but hews closer to the

spirit of declarative queries, exposing no imperative control.
A Datalog program consist of a set of declarative rules. Since
these programs are commonly called “recursive queries” in
the database literature, we will use the term “query” when
we refer to a Datalog program. A Datalog rule has the form
<head> :- <body>, where the body is a list of predicates over
constants and variables, and the head defines a set of tuples
derived by variable assignments satisfying the body’s predi-
cates. The rules can refer to each other in a cyclic fashion

to express recursion. The order in which the rules are pre-
sented is immaterial. The commas separating the predicates
in a rule are logical conjuncts (AND), and the order in which
predicates appear has no semantic significance.

Following Prolog-like conventions [23], names for tuples,
predicates, function symbols and constants begin with a lower-
case letter, while variable names begin with an upper-case
letter. Most implementations of Datalog enhance it with a
limited set of function calls (which start with “f ” in our syn-
tax), including boolean predicates, arithmetic computations
and simple list manipulation (e.g., the f concatPath function
in our first example). Presented with a program, a Datalog
system will find all possible assignments of tuples to unbound
variables that satisfy the rules in the query.

3.2 First Datalog Example
Our first example, the Network-Reachability query, takes as

input link tuples, and computes the set of all paths encoded
in path tuples. In all our examples, S, D, C and P abbreviate
the source, destination, cost and pathVector fields respectively
for both the link and path tuples. As before, the address
fields indicating the network storage location of the tuples
are underlined. We begin our discussion by looking only at
the part of the query written in bold text, ignoring the rest of
the text for a moment.

NR1: path(S,D,P,C) :- link(S,D,C),

. P = f concatPath(link(S,D,C), nil).

NR2: path(S,D,P,C) :- link(S,Z,C1), path(Z,D,P2,C2),

. C = C1 + C2,

. P = f concatPath(link(S,Z,C1),P2).

Query: path(S,D,P,C).

Rule NR1 produces one-hop paths from existing link tu-
ples, storing them at the source node. Rule NR2 recursively
produces path tuples of increasing cost by matching the desti-
nation fields of existing links to the source fields of previously
computed paths. The rule Query specifies the output of inter-
est (i.e. result tuples), which are the path tuples stored at the
source node. The matching is expressed using the two “Z”
fields in link(S, Z, C1) and path(Z, D, P2, C2) in rule NR2.
Intuitively, rule NR2 says that if there is a link from node S
to node Z, and there is a path from node Z to node D, then
there is a path from node S to node D via Z.

The query does not impose any restriction on either source
or destination as both S and D are unbound variables. Hence,
the query computes the full transitive closure consisting of the
paths between all pairs of reachable nodes. If the query is only
interested in the paths from a given node b to every other node
in the network, the query would be path(b, D, P, C), with the
source field bound to constant b.

We now focus on the remaining portions of rules NR1 and
NR2. The expression P = f concatPath(L, P1) is a predicate
function that is satisfied if P is assigned to the path vector
produced from prepending link L to the existing path vector
P1. With these additions, rules NR1 and NR2 also compute
the total path costs, and the path vectors.

The above query will not terminate due to the generation of
path tuples with cycles. To prevent computing paths with cy-
cles, we can add an extra predicate f inPath(P2, S) = false

to rule NR2, where the function f inPath(P, S) returns true
if node S is in the path vector P.

3.3 Query Plan Generation
To execute a query, we first need to generate a query plan.

A query plan is a dataflow diagram consisting of relational
operators that are connected by arrows indicating the flow of
tuples during the query execution. Figure 2 shows a query
plan for the Datalog query discussed in the previous section.
The query plan is formulated based on Datalog’s semi-näıve
fixpoint evaluation [8] mechanism which ensures that each
rule does not redundantly generate the same tuple twice.

Rule NR1 is implemented by simply renaming existing link
tuples to path tuples. This is shown by the rightward arrow at
the bottom of the figure from link(S, D, C) to path(S, D, P, C).

(link.S, path.D, f_concatPath(link(S,Z,C),
path.P), link.C+path.C) as path(S,D,P,C)

path(S,D,P,C)

link.D=path.S

path.S

link(S,D,C)

link.D

Figure 2: Query Plan for the Network-Reachability Query.

Rule NR2 requires a relational join ./) operator to match
the destination fields of link tuples (link.D) with the source
fields of existing path tuples (path.S). For each pair of link
and path tuples that matches, the join operator produces a
new path tuple that is the concatenation of the original path
and link tuples. The projection π operator takes as input the
output of the join and a list of fields, extracts these fields from
the join’s output, and optionally renames them. This ensures
that only the required path fields specified in the query are
generated as path tuples. Unlike most textbook query plans,
this dataflow forms a cycle, which captures the recursive use
of the path rule definition in the query.

The clouds represent the forwarding of tuples from one net-
work node to another, and are labeled with the destination
node. The first cloud (link.D) ships link tuples to the neigh-
bor nodes indicated by their destination address fields, in or-
der to join with matching path tuples stored by their source
address fields. The second cloud (path.S) ships new path tu-
ples computed from the join back to their neighboring source
nodes for further processing.

3.4 Query Plan Execution
Next, we focus on the distributed execution of a routing

query. To simplify the exposition, we will temporarily ignore
the mechanism for initially disseminating the Datalog query
to the network nodes; we return to this issue in Section 3.5.

Upon receipt of the Datalog query, each node creates the
query plan shown in Figure 2 and starts executing the plan
for the duration of the query. When the query plan is ex-
ecuted, the flow of tuples in the network enables nodes to
exchange the routing information necessary to compute the
queried paths. Figure 3 shows the tuples that are generated
during the execution of the query plan in Figure 2 for a sim-
ple network consisting of five nodes. p(S, D, P, C) abbreviates
path(S, D, P, C). Link costs in our example are set to 1, and
hence path cost is equal to the number of hops. l′(S, D, C)
refers to link tuples that are sent by node S and cached at
destination node D. We show only the new path tuples (in
bold) generated at each iteration.

For clarity, we describe the communication in stages, where

1st Iteration

c

d

e

p(a,b,[a,b],1)
p(a,c,[a,c],1)

p(c,d,[c,d],1)

p(d,e,[d,e],1),

b

l’(b,d,1)
l’(c,d,1)

a

l’(a,c,1)

2nd Iteration

l’(b,d,1),
l’(c,d,1)

l’(a,c,1)

p(a,d,[a,b,d],2),
p(a,d,[a,c,d],2)

p(c,e,[c,d,e],2)c

d

e

b

a

l’(a,b,1) l’(a,b,1)
p(b,d,[b,d],1) p(b,e,[b,d,e],2)

Figure 3: Nodes in the network are running the query plan

in Figure 2. The dashed lines represent the control plane

(along which tuples are sent), while the full lines represent

the data plane (along which data packets are forwarded).

each stage or iteration represents a “round of communica-
tion”, in which all nodes exchange tuples from the previous
iteration. The rounds of communication is a simplification of
actual query execution: since dataflow is fully asynchronous,
tuples for the next round can be generated as soon as tuples
from the previous round are computed. Each iteration repre-
sents the traversal of a “cloud” in Figure 2. The first iteration
derives single-hop path tuples from the first rule of the query.
It does this by traversing the link.D cloud, which ships link
tuples to the address in their destination field, where they are
cached for the duration of the query (denoted by l′(S, D, C) in
Figure 3)1. Since the query has no recursion on the link table,
all subsequent iterations involve the other cloud (path.S).

In the 2nd iteration, the link tuples are joined with existing
one-hop path tuples to produce two-hop path tuples. These
tuples are then sent back to the source nodes (the path.S

cloud) and three-hop path tuples are computed. Once the
query reaches a node, the node takes up to k iterations to
converge to a steady state, where k is the diameter of the net-
work. Including the initial query dissemination which takes
up to k iterations to reach the node furthest from the query
node, the total time taken for the query to converge is pro-
portional to 2k. To illustrate further, we step through the
communication necessary for the computing the path tuple
p(a, d, [a, c, d], 2) for node a:

1st iteration: Node a ships l(a, c, 1) to c (via the link.D

cloud running at node a). It is stored as l′(a, c, 1) at node c
for the duration of the query.

2nd iteration: Node c receives l′(a, c, 1) and performs the
join of l′(a, c, 1) and p(c, d, [c, d], 1) to produce the new path
tuple
p(a, d, [a, c, d], 2). This new tuple is sent back to node a (the
path.S cloud running at node c).

3.5 Query Dissemination
Queries can be disseminated to nodes in a variety of ways.

In static scenarios, the query may be “baked in” to another
artifact – e.g., router firmware or peer-to-peer application
software. More flexibly, the query could be disseminated upon
initial declaration. It may be sufficient to perform dissemina-
tion via flooding, particularly if the query will be long-lived,
amortizing the cost of the initial flood. As an optimization,

1As an optional optimization for undirected graphs, the operation
of shipping link tuples can be avoided by adding an extra rule
link(S,D,C) :- link(D,S,C).

instead of flooding the query in the network, we can instead
“piggy-back” dissemination onto query execution: the query
can be embedded into the first data tuple sent to each neigh-
boring node as part of the query computation. The piggy-
back mechanism has the advantage that nodes that are not
involved in the query computation will not receive the query.
These scenarios arise in some of the examples in Section 5
below, such as creating paths that avoid certain nodes.

3.6 Path Vector or Distance Vector Protocol
The computation of the above query resembles the compu-

tation of the routing table in a path vector or distance vector
protocol. The computation starts with the source comput-
ing its initial reachable set (which consists of all neighbors
of the source) and shipping it to all its neighbors. In turn,
each neighbor updates the reachable set with its own neigh-
borhood set, and then forwards the resulting reachable set to
its own neighbors. With minor modifications to our previous
query (modifications in bold), the following Distance-Vector
query expresses the distance vector computation:

DV1: path(S,D,D,C) :- link(S,D,C).

DV2: path(S,D,Z,C) :- link(S,Z,C1),

. path(Z,D,W,C2), C = C1 + C2.

DV3: shortestCost(S,D,min<C>) :- path(S,D,Z,C).

DV4: nextHop(S,D,Z,C) :- path(S,D,Z,C),

. shortestCost(S,D,C).

Query: nextHop(S,D,Z,C).

Aggregate constructs are represented as functions with ar-
guments within angle brackets (<>). DV1 and DV2 are mod-
ified from the original rules NR1 and NR2 to ensure that the
path tuple maintains only the next hop on the path, rather
than the entire path vector itself2. DV3 and DV4 are added
to set up routing state in the network: nextHop(S,D,Z,C) is
stored at node S, where Z is the next hop on the shortest path
to node D. The main difference between this query and the
actual distance vector computation is that rather than send-
ing individual path tuples between neighbors, the traditional
distance vector method batches together a vector of costs for
all neighbors.

By making a modification to rule DV2 and adding rule
DV5, we can apply the well-known split-horizon with poison
reverse [20] fix to the count-to-infinity problem:

#include(DV1,DV3,DV4)

DV2: path(S,D,Z,C) :- link(S,Z,C1),

. path(Z,D,W,C2), C = C1 + C2, W 6= S.

DV5: path(S,D,Z,∞) :- link(S,Z,C1), path(Z,D,S,C2).

Query: nextHop(S,D,Z,C).

#include is a macro used to include earlier rules. Rule
DV2 expresses that if node Z learns about the path to D
from node S, then node Z does not report this path back to
to S. Rule DV5 expresses that if node Z receives a path tuple
with destination D from node S, then node Z will send a path
with destination D and infinite cost to node S. This ensures
that node S will not eventually use Z to get to D.

4. CHALLENGES
We have identified four challenges that need to be addressed

in justifying the feasibility of declarative routing:

2The W field in DV2 represents the next-hop to node D from in-
termediate node Z, and can be ignored by node S in computing its
next hop to node D.

Expressiveness: How expressive and flexible is the Datalog
language in expressing various routing policies? What are the
limitations of this language?

Security: Is Datalog safe enough to execute queries issued
by untrusted third-parties?

Efficiency: Can Datalog queries be executed efficiently in a
distributed system? The answer to this question hinges on
two sub-questions. The first is about raw performance: can
plan generation techniques be adapted or developed to enable
Datalog queries to perform well in a large network system?
The second is about the feasibility of exploiting our extensible
framework: given that we allow many routing queries to be
issued concurrently, can we significantly reduce the redundant
work performed by these concurrent queries?

Stability and Robustness: Given that the network is dy-
namic, how can we efficiently maintain the robustness and
accuracy of long term routes?

We address these challenges in the next four sections.

5. EXPRESSIVENESS
To highlight the expressiveness of Datalog, we provide sev-

eral examples of useful routing protocols expressed as queries.
Our examples range from well-known routing protocols (dis-
tance vector, dynamic source routing, multicast, etc.) to
higher-level routing concepts such as QoS constraints. This
is by no means intended to be an exhaustive coverage of the
possibilities of our proposal. Our main goal here is to illus-
trate the natural connection between recursive queries and
network routing, and to highlight the flexibility, ease of pro-
gramming, and ease of reuse afforded by a query language.
We demonstrate that routing protocols can be expressed in
a few Datalog rules, and additional protocols can be created
by simple modifications (in bold) to previous examples.

5.1 Best-Path Routing
We start from the base rules NR1 and NR2 used in our first

Network-Reachability example from Section 3. That example
computes all-pairs paths. In practice, a more common query
would compute all-pairs shortest paths. By modifying NR2
and adding rules BPR1 and BPR2, the following Best-Path
query generalizes the all-pairs shortest paths computation,
and computes the best paths for any path metric C:

#include(NR1)

NR2: path(S,D,P,C) :- link(S,Z,C1),

. path(Z,D,P2,C2), C = f compute(C1,C2),

. P = f concatPath(link(S,Z,C1),P2),

BPR1: bestPathCost(S,D,AGG<C>) :- path(S,D,P,C).

BPR2: bestPath(S,D,P,C) :- bestPathCost(S,D,C),

. path(S,D,P,C).

Query: bestPath(S,D,P,C).

We have left the aggregation function (AGG) unspecified.
By changing AGG and the function f compute used for com-
puting the path cost C, the Best-Path query can generate
best paths based on any metric including link latency, avail-
able bandwidth and node load. For example, if the query
is used for computing the shortest paths, f sum is the ap-
propriate replacement for f compute in rule BPR1, and min

is the replacement for AGG. The resulting bestPath tuples
are stored at the source nodes, and are used by end-hosts to
perform source routing.

The two added rules BPR1 and BPR2 do not result in extra
messages being sent beyond those generated by rules NR1 and

NR2. This is because path tuples computed by rules NR1 and
NR2 are stored at the source nodes, and bestPathCost and
bestPath tuples are generated locally at those nodes. Instead
of computing the best path between any two nodes, this query
can be easily modified to compute all paths, any path or the
Best-k paths between any two nodes.

Similar to the Network-Reachability example, we can add
an extra predicate f inPath(P2, S) = false to rule NR2 to
avoiding computing best paths with cycles. We can further
extend the rules from the Best-Path query by including con-
straints that enforce a QoS requirement specified by end-
hosts. For example, we can restrict the set of paths to those
with costs below a loss or latency threshold k by adding an
extra constraint C<k to the rules NR1 and NR2.

5.2 Policy-Based Routing
Our previous example illustrates a typical network-wide

routing policy. In some cases we may want to restrict the
scope of routing, e.g., by precluding paths that involve “un-
desirable” nodes. An example would be finding a path among
nodes in an overlay network such as PlanetLab that avoids
nodes belonging to untruthful or flaky ISPs. Such policy con-
straints can be simply expressed by adding an additional rule:

#include(NR1, NR2)

PBR1: permitPath(S,D,P,C) :- path(S,D,P,C),

. excludeNode(S,W), f inPath(P, W) = false.

Query: permitPath(S,D,P,C).

In this query, we introduce an additional table excludeNode,
where excludeNode(S, W) is a tuple that represents the fact
that node S does not carry any traffic for node W. This table
is stored at each node S.

If BPR1 and BPR2 are included as rules, we can gener-
ate bestPath tuples that meet the above policy. Other policy
based decisions include ignoring the paths reported by se-
lected nodes or insisting that some paths have to pass through
(or avoid) one or multiple pre-determined set of nodes.

5.3 Dynamic Source Routing
All of our previous examples use what is called right recur-

sion, since the recursive use of path in the rule (NR2, DV2)
appears to the right of the matching link. The query se-
mantics do not change if we flip the order of path and link

in the body of these rules, but the execution strategy does
change. In fact, using left recursion as follows, we implement
the Dynamic Source Routing (DSR) protocol [17]:

#include(NR1)

DSR1: path(S,D,P,C) :- path(S,Z,P1,C1), link(Z,D,C2),

. P = f concatPath(P1, link(Z,D,C2)),

. C = C1 + C2.

Query: path(S,D,P,C).

Rule NR1 produces new one-hop paths from existing link
tuples as before. Rule DSR2 matches the destination fields of
newly computed path tuples with the source fields of link tu-
ples. This requires newly computed path tuples be shipped by
their destination fields to find matching links, hence ensuring
that each source node will recursively follow the links along
all reachable paths. Here, the function f concatPath(P, L)
returns a new path vector with L appended to P. These rules
can also be used in combination with BPR1 and BPR2 to gen-
erate the best paths. By adding two extra rules not shown
here, we can also express the logic for sending each path on
the reverse path from the destination to the source node.

5.4 Link State
To further illustrate the flexibility of our approach, we

consider a link-state protocol that moves route information
around the network very differently from the best-path vari-
ants. The following Link-State query expresses the flooding
of links to all nodes in the network:

LS1: floodLink(S,S,D,C,S) :- link(S,D,C)

LS2: floodLink(M,S,D,C,N) :- link(N,M,C1),

. floodLink(N,S,D,C,W), M 6= W.

Query: floodLink(M,S,D,C,N)

floodLink(M, S, D, C, N) is a tuple storing information about
link(S,D,C). This tuple is flooded in the network starting from
source node S. During the flooding process, node M is the
current node it is flooded to, while node N is the node that
forwarded this tuple to node M.

Rule LS1 generates a floodLink tuple for every link at
each node. Rule LS2 states that each node N that receives a
floodLink tuple recursively forwards the tuple to all neigh-
bors M except the node W that it received the tuple from.
Datalog tables are set-valued, meaning that duplicate tuples
are not considered for computation twice. This ensures that
no similar floodLink tuple is forwarded twice.

Once all the links are available at each node, a local version
of the Best-Path query in Section 5.1 is then executed locally
using the floodLink tuples to generate all the best paths.

5.5 Multicast
The examples we have given so far support protocols for

unicast routing. Here, we demonstrate a more complex ex-
ample, using Datalog to construct a multicast dissemination
tree from a designated root node to multiple destination nodes
that “subscribe” to the multicast group. The following Source-
Specific-Multicast query sets up such a forwarding tree rooted
at a source node a for group gid:

#include(NR1,NR2,BPR1,BPR2)

M1: joinMessage(I,N,P,S,G) :- joinGroup(N,S,G),

. bestPath(N,M,P,C),

. I = f head(P1), P = f tail(P1)

M2: joinMessage(I,J,P,S,G) :- joinMessage(J,K,P1,S,G),

. I = f head(P1),P = f tail(P1),

. f isEmpty(P1) = false.

M3: forwardState(I,J,S,G) :- joinMessage(I,J,P,S,G).

Query: joinGroup(N,a,gid)

For simplicity of exposition, this query utilizes the Best-
Path query (rules NR1, NR2, BPR1 and BPR2) to compute
the all-pairs best paths. We will discuss query optimization
techniques to reduce the communication overhead for small
multicast groups in Section 7.2.

Each destination node n joins the group gid with source a
by issuing the query joinGroup(n, a, gid). This results in the
generation of the following derived tuples:

joinMessage(nodeID, prevNodeID, pathVector, source,
gid). This tuple stores the multicast join message for group
gid. It is sent by every destination node along its best path to
the source address of the group. At each intermediate node
with address nodeID, we keep track of prevNodeID, which is
the address of the node that forwarded this tuple. pathVector
is the remaining path that this message needs to traverse in
order to reach the source node.

forwardState(nodeID, forwardNodeID, source, gid).
This tuple represents source-specific state of the multicast
dissemination tree at each intermediate node with address

nodeID. If a message from source of multicast group gid is
received at nodeID, it is forwarded to forwardNodeID.

Rules M1 and M2 create the joinMessage tuple at each
participating destination node N, and forward this tuple along
the best path to the source node S. Upon receiving a
joinMessage tuple, rule M3 allows each intermediate node I
to set up the forwarding state using the forwardState(I, J, S, G)
tuple. The predicate function f head(P) returns the next
node in the path vector P, and f tail(P) returns the path
vector P with the first node removed. f isEmpty(P) returns
true if P is empty.

Instead of a source-specific tree, with minor modifications,
we can construct core-based trees [9]. Here, each participating
node sends a join message to a designated core node to build
a shared tree rooted at the core. Messages are then unicast
to the core, which disseminates it using the shared tree.

6. SECURITY ISSUES
Security is a key concern with any extensible system [24,

11]. In the network domain, this concern is best illustrated
by Active Networks [14] which, at the extreme, allow routers
to download and execute arbitrary code.

Our approach essentially proposes Datalog as a Domain
Specific Language (DSL) [27] for programming the control
plane of a network. DSLs typically provide security benefits
by having restricted expressibility. Datalog is attractive in
this respect, both because of its strong theoretical founda-
tions, and its practical aspects. Queries written in the core3

Datalog language have polynomial time and space complexi-
ties in the size of the input [5]. This property provides a nat-
ural bound on the resource consumption of Datalog queries.

However, many implementations of Datalog (including our
own) augment the core language with various functions. Ex-
ample of such functions are boolean predicates, arithmetic
functions, and string or list manipulation logic (e.g.,

f concatPath, f inPath, f isEmpty, f head and f tail). With
the addition of arbitrary functions, the time complexity of a
Datalog program is no longer polynomial.

Fortunately, several powerful static tests have been devel-
oped to check for the termination of an augmented Data-
log query on a given input [18]. In a nutshell, these tests
identify recursive definitions in the query rules, and check
whether these definitions terminate. Examples of recursive
definitions that terminate are ones that evaluate monoton-
ically increasing/decreasing predicates whose values are up-
per/lower bounded.

The queries that pass these checks are general enough to ex-
press a large class of routing protocols. Thus, our augmented
Datalog language offers a good balance between expressive-
ness and safety. We note that all queries presented in this
paper pass such termination tests, with the exception of the
original Network-Reachability query in Section 3. This query
has a rule NR2 that recurse infinitely to generate path tuples
of monotonically increasing costs. However, with the addition
of the boolean function f inPath(P2, S) = false to prevent
path cycles, the number of recursive calls are finite and hence
the query is safe.

Datalog is a side-effect-free language which takes a set of
stored tables as input, and produce a set of derived tables.
In addition, the execution of the query is “sandboxed” within

3Such a “core” language does not contain predicates constructed
using function symbols.

the query engine. These properties prevent the query from
accessing arbitrary router state such as in-flight messages,
and the router’s operating system state. As a result, Datalog
eliminates many of the risks usually associated with extensible
systems.

Of course, there are many other security issues beyond the
safety of the Datalog language. Two examples are denial-
of-service attacks and compromised routers. These problems
are orthogonal to network extensibility, and we do not address
them in this paper.

7. OPTIMIZATIONS
In this section, we explore connections between database

query optimization techniques and routing protocols, with a
focus on more efficient and realistic implementations of the
examples above. In addition, we address techniques for work-
sharing among a diverse set of queries, a new challenge that
is not well-studied in either the database or networking liter-
ature.

7.1 Pruning Unnecessary Paths
A näıve execution of queries with aggregates such as Best-

Path and Distance-Vector starts by enumerating all possible
paths, and then selects among the result. This inefficiency
can be avoided with a query optimization technique known
as aggregate selections [25, 22]. Space constraints prevent a
detailed discussion of this optimization, but we illustrate the
idea with an example. In Figure 3, there are two different
paths from node a to node d, but only the shorter of the two
is required when computing shortest paths. By maintaining
a “min-so-far” aggregate value for the current shortest path
cost from node a to its destination nodes, we can selectively
avoid sending path tuples to neighbors if we know they cannot
be involved in the shortest path. In general, aggregate selec-
tions are useful when the running state of a monotonic AGG

function (as in Section 5.1) can be used to prune commu-
nication. In addition, aggregate selections are necessary for
the termination of some queries. For example, without ag-
gregate selections, if paths with cycles are permitted, a query
computing the shortest paths will run forever.

7.2 Subsets of Sources and Destinations
In Sections 5.2 and 5.5 we considered scenarios involving

only a subset of nodes in the network. However, our exam-
ples so far – based on the core Network Reachability query of
Section 3 – require all nodes to participate in the query plan.
This leads to an unnecessary overhead when only a subset of
nodes participate in the query as sources and/or destinations.
Next, we discuss two techniques that alleviate this problem:
magic sets rewrite and left-right recursion rewrite.

Magic Sets Rewrite: Consider the multicast construction
in Section 5.5. Even when only a small number of nodes
participate in the multicast group, the query will still compute
the best paths between all pairs. To limit query computation
to the relevant portion of the network, we use a query rewrite
technique, called magic sets rewriting [10]. For example, if
nodes b and c are the only nodes issuing the path query, the
rewritten example is as follows:

MRR1: magicSources(D) :- magicSources(S), link(S,D,C).

MRR2: path(S,D,P,C) :- magicSources(S), link(S,D,C),

. P = f concatPath(link(S,D,C), nil).

MRR3: path(S,D,P,C) :- magicSources(S), link(S,Z,C1),

. path(Z,D,P2,C2), C = C1 + C2,

. P = f concatPath(link(S,Z,C1),P2).

MRR4: magicSources(b).

MRR5: magicSources(c).

Query: path(S,D,P,C).

The changes to rules NR1 and NR2 are represented in bold.
Intuitively, the set of magicSources facts is used as a “filter” in
the rules defining paths. After the rewrite, only nodes reach-
able from b and c participate in this query – the computation
is restricted to just the relevant nodes in the network. The
query can be further optimized by combining the common
sub-rules at the beginning of MRR1, MRR2 and MRR3.

Left-Right Recursion Rewrite: The above rewritten query
may provide little or no savings if the set of destinations is
not constrained. Consider the example in Figure 3, where
nodes b and c are the only source nodes. Even with magic
sets, the computation of paths from these sources will require
the computation of all paths sourced at all nodes reachable
from b and c. To avoid these extra computations, we can
rewrite the query using left recursion. To illustrate, the fol-
lowing Best-Path-Pairs query extends the previous query to
perform (1) left recursion, and (2) magic sets query rewrite
on both sources and destinations to generate best paths from
all magicSources to magicDsts nodes:

BPP1: path(S,D,P,C) :- magicSources(S), link(S,D,C),

. P = f concatPath(link(S,D,C), nil).

BPP2: path(S,D,P,C) :- path(S,Z,P1,C1), link(Z,D,C2),

. C = f compute(C1,C2),

. P = f concatPath(P1, link(Z,D,C2)).

BPP3: pathDst(S,D,P,C) :- magicDsts(D), path(S,D,P,C).

BPP4: bestPathCost(S,D, AGG<C>) :- pathDst(S,D,Z,C).

BPP5: bestPath(S,D,P,C) :- bestPathCost(S,D,C), path(S,D,P,C).

BPP6: magicSources(c).

BPP7: magicDsts(e).

Query: bestPath(S,D,P,C)

The above example computes only the required best path
starting from the source node c to e. Rules BPP1 and BPP2
are used to compute the paths using left recursion starting
from the magicSources nodes. Recall that the rules are left
recursive because the recursive term path appears to the left
of the matching link. As pointed out in Section 5, executing
the query in a left recursive fashion bears close resemblance
to dynamic source routing. Each source node computes new
path tuples by recursively following the links along all reach-
able paths4. Filtering of the required destination nodes is
done by matching magicDsts with the destination addresses
of computed paths (rule BPP3). The best paths are then
computed using rules BPP3 and BPP4, and sent back to the
source nodes. By adding two extra rules not shown here, we
can also express the logic for sending each best path on the
reverse best path from the destination to the source node.

The drawback of this approach is that it does not allow
computations along overlapping paths to be shared. For ex-
ample, if magicSources(b) is added to the query, both nodes
b and c must compute their paths to node e separately. In

4Note that the rules specifies that the computed path tuples are
stored at the destination nodes instead of the source nodes as in the
previous queries. This turns out to be the optimal tuple placement
strategy that minimizes communication overhead for this query.
While the decision on where to store derived facts is currently ex-
plicitly specified via the rules, we plan to explore letting a query
optimizer decide the optimal placement automatically.

contrast, in the previous right-recursive query, both nodes b
and c would be able to obtain that shared information from
node d. In the following subsection, we will discuss a sim-
ple query rewrite for fixing this problem, yet retaining the
benefits of left recursion.

7.3 Multi-Query Sharing
As discussed in the introduction, we are interested in facil-

itating aggressive use of the routing infrastructure, in which
a diverse set of route requests queries is executed concur-
rently in our system. A key requirement for scalability is the
ability to share the query computation among a potentially
large number of queries. A challenge for the query proces-
sor is in detecting sharing opportunities across the diverse set
of queries. Detecting overlaps between Datalog queries (or
database queries in general) is a difficult problem [12], and
beyond the scope of this paper. However, we can leverage
the fact that our routing queries are often simple variants of
graph transitive closure computations. We are currently ex-
ploring the use of a more concise transitive closure language
representation [6] that makes it easier to determine whether
two queries are similar.

We first consider sharing among queries with identical rules,
as might occur in a single-protocol scenario. If all nodes are
running the same query, the optimal strategy is one based on
right-recursion where each node directly utilizes path infor-
mation sent by neighboring nodes. On the other hand, if only
a small subset of nodes are issuing the same query, using left-
recursion achieves lower message overhead as we will see in
Section 9. In general, one would like an optimizer to automat-
ically choose whether to use left or right recursion. This can
be achieved using a query rewrite optimization. For example,
the following Best-Path-Pairs-Share query replaces the origi-
nal left-recursion rule BPP2 from the Best-Path-Pairs query
with two rules BPPS1 and BPPS2:

#include(BPP1,BPP3,BPP4,BPP5)

BPPS1: path(S,D,P,C) :- magicDst(D3), path(S,Z,P1,C1),

. link(Z,D,C2), ¬bestPathCache(Z,D3,P3,C3),

. C = f compute(C1,C2),

. P = f concatPath(P1 , link(Z,D,C2)).

BPPS2: path(S,D,P,C) :- magicDst(D), path(S,Z,P1,C1),

. bestPathCache(Z,D,P2,C2),

. C = f compute(C1,C2),

. P = f concatPath(P1 ,P2).

Query: bestPath(S,D,P,C)

Rule BPPS1 specifies that in the absence of any cached5

bestPath tuple, the original left recursion computation can
be used. If a cached bestPath tuple generated previously is
available, BPPS2 reuses the cached tuple instead. To illus-
trate, we revisit the example network in Figure 3. Consider
the earlier case when two source nodes b and c are computing
best paths to node e. If bestPathCache(d, e, [d, e], 1) is stored
locally at d, it can be used by both nodes b and c using rule
BPPS2. This avoids duplicate traversals of the path d → e

and beyond. On the other hand, if this tuple is not present,
the left recursion rule BPPS1 will be used instead.

Further sharing is achieved if the resulting path tuples are
sent back via the reverse path to the source node to be reused
by other queries. For example, when node a computes its best

5Our example here treats bestPathCache as a base table whose
contents are not explicitly defined in the datalog rules. The logic for
populating the cache is therefore not fully declarative. Addressing
this issue is an intriguing direction for further research.

path to node e, the nodes on the reverse path (b and d) can
cache information on the shortest path (and sub-paths) to
node e, to be reused by subsequent queries.

Next, we consider the other mode of sharing, where queries
have only partial similarity. We focus on the case where the
rules are largely identical, with the exception of differences
in function calls. For example, consider running two vari-
ants of the Best-Path query from Section 5.1, one that com-
putes shortest paths, and another that computes max-flow
paths. We can merge these into a single variant of the Best-
Path query by simply tracking two running cost attributes
(e.g., path length and path capacity) and checking two ag-
gregate selections (e.g., min(path-length), max(capacity)).
The merged query will share all path exploration across the
queries. Aggregate selections continue to be applicable, but
can only prune paths that satisfy both aggregate selections;
pruning is effective when the selections are correlated.

8. STABILITY AND ROBUSTNESS
As discussed in Section 2, each query that is issued is ac-

companied by a specification of the desired lifetime (duration)
of the computed route. During this period, changes in the
network might result in some of the computed routes becom-
ing stale. These can be caused by link failures, or changes in
the link metrics when these metrics are used in route com-
putation. Ideally, the query should rapidly recompute a new
route, especially in the case of link failures.

One solution is to simply recompute the queries from scratch,
either periodically or driven by the party that has issued the
queries. However, recomputing the query from scratch is ex-
pensive, and if done only periodically, the time to react to
failures is a half-period on average. The alternative approach
we employ in this paper is to utilize long-running or contin-
uous queries that incrementally recompute new results based
on changes in the network. To ensure incremental recompu-
tations, all intermediate state of each query is retained in the
query processor until the query is no longer required. This
intermediate state includes any shipped tuples used in join
computation, and any intermediate derived tuples.

As we discussed in Section 2, each router is responsible for
detecting changes to its local information or base tables and
reporting these changes to its local query processor. These
base tuple updates result in the addition of tuples into base
tables, or the replacement of existing base tuples that have
the same unique key as the update tuples. The continuous
queries then utilize these updates and the intermediate state
of the queries to incrementally recompute some of their de-
rived tuples.

To illustrate, consider the Network-Reachability query in
Section 3. Figure 4 shows a simple four node network where
all four nodes are running the Network-Reachability query.
Prior to the failure of node d, we assume that all paths be-
tween all pairs have been computed.

This query is executed at all nodes in the network, but for
simplicity we focus on the tuples generated at nodes a and
c. p(S, D, P, C) abbreviates path(S, D, P, C) and l′(S, D, C)
refers to link tuples that are sent and cached at the destination
nodes. We examine how p(a, d, [a, c, d],∞) is created when
node d fails:

1. When node d fails, neighbor c detects the failure and
generates an updated base tuple l(c, d,∞) locally. This
replaces the previous tuple l(c, d, 1).

0th Iteration

c

d

b

a

l’(a,c,1)
l(c,d,infinity)

1st Iteration

p(c,d,[c,d],infinity),

l’(a,c,1),
l(c,d,infinity)

p(c,d,[c,d],infinity)

p(a,d,[a,c,d],2) p(a,d,[a,c,d],infinity)

c

d

b

a

Figure 4: The figure shows the changes to the intermedi-

ate query states that led to the derivation of p(a, d, [a, c, d],∞)

when node d fails. For simplicity, we only show the states on

nodes a and c necessary to show the derivation.

2. All paths at node c that traverse through d are set to in-
finite costs6. For example, node c generates p(c, d, [c, d],∞).

3. p(c, d, [c, d],∞) is joined locally with l′(a, c, 1) to pro-
duce p(a, d, [a, c, d],∞) which is sent to node a.

The failure is propagated hop-by-hop and in this example,
since we compute the entire path vector and can check for po-
tential cycles as described in Section 3, the time taken for any
update to converge is proportional to the network diameter.

Updates to link costs are handled in a similar fashion, ex-
cept that rather than setting the costs to infinity, they are
recomputed based on the new link costs. The updated paths
may trigger further computation. For example, when the cost
of paths are changed, rules BPR1 and BPR2 of the Best-Path
query will generate alternative best paths accordingly.

9. PERFORMANCE EVALUATION
To evaluate our solution, we have implemented a proto-

type system using PIER [2], a distributed relational query
processor written in Java. Each node runs a PIER query en-
gine, and maintains a neighbor table directly accessible by
the PIER process. We have modified the PIER software to
bypass the use of DHTs [7] and instead use explicit neighbor
tables. A PIER process can contact only the PIER processes
on neighbor nodes. Routing protocols expressed as queries
can be issued directly to any PIER node, which then commu-
nicates with the neighbor PIER nodes to evaluate the queries.

We evaluate the system using a combination of simulations
on transit-stub topologies (Section 9.1), and an actual deploy-
ment on PlanetLab (Section 9.2). Both the simulation and
the actual implementation share the same code base.

Our evaluation suggests that our approach is feasible and
that its expressiveness does not come at the expense of any
significant degradation of scalability or performance. Our
main results can be summarized as follows:

1. When all nodes issuing the same query, we show that the
query execution has similar scalability properties as the
traditional distance vector and path vector protocols.

2. When different set of nodes issuing different queries, the
query optimization and work-sharing techniques are ef-
fective in reducing the communication overhead.

3. Our prototype deployment on PlanetLab shows that our
system is able to react quickly to changes (either RTT
fluctuations or churn) and find alternative paths.

6An additional rule NR3: path(S,D,P,∞) :- link(S,W,C1),
path(S,D,P,C2), f inPath(P, W) = true, C1 = ∞ is required.

9.1 Simulation Settings and Metrics
In our simulations, we run multiple PIER nodes on top of

an event-driven network simulator that simulates bandwidth
and latency bottlenecks. We generate transit-stub topologies
using the GT-ITM topology generator [1]. The transit-stub
topology consists of eight nodes per stub, three stubs per
transit node, and four nodes per transit domain. We increase
the number of nodes in the network by increasing the number
of domains. The latency between transit nodes is set to 50
ms, the latency between a transit and a stub node is 10 ms,
and the latency between any two nodes in the same stub is
2 ms. The capacity of each node is set to 10 Mbps; this is
never a bottleneck in the query execution.

 0

 100

 200

 300

 400

 500

 600

 700

 0 200 400 600 800 1000

D
ia

m
et

er
 (m

s)

Number of Nodes

Figure 5: Network diame-

ter vs Number of nodes.

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

 0 200 400 600 800 1000

C
on

ve
rg

en
ce

 L
at

en
cy

 (s
)

Number of Nodes

Query
PV

Figure 6: Convergence la-

tency vs Number of nodes.

We use five network sizes ranging from 100 to 1000. For
each network size, we average all our experimental results over
five runs. Figure 5 shows the diameter (latency of longest
path) of the network as we increase the number of nodes,
with the standard deviation error bars for each data point.

Our experiments consist of two different workloads. Our
first workload (Section 9.1.1) involves a query that is being ex-
ecuted on all nodes, while our second workload (Section 9.1.2
and Section 9.1.3) involves a subset of nodes executing either
the same or different query. We measure the performance of
query execution using two metrics:

Convergence latency: time taken for the query execution
to generate all the query results.

Per-node communication overhead (or simply commu-
nication overhead): the number of KB transfered on aver-
age per node during the query execution.

9.1.1 All-Pairs Shortest Paths
In our first experiment, we measure the performance of

our system when all nodes are running the same query. We
execute the Best-Path query as described in Section 5.1 to
compute the shortest latency paths between all pairs of nodes.
This query is disseminated from a random node, and each
node that receives the query starts executing the query plan
shown in Figure 2.

In our implementation, we use the aggregate selections op-
timization to avoid sending redundant path tuples (see Sec-
tion 7.1). Each node collects tuples received from neighboring
nodes, applies aggregate selections and computes new path
tuples every 200 ms.

In Figure 6 shows the convergence latency for the Best-
Path query (Query line) as the number of nodes increases.
For validation, we compare the convergence latency against
our own implementation of the path-vector protocol (PV line)
for computing all-pairs shortest paths using the same simula-
tion setup. We make two observations. First, as expected, the

convergence latency for the Best-Path query is proportional
to the network diameter, and converges in the same time
compared to the path vector protocol. Second, the per-node
communication overhead increases linearly with the number
of nodes, as each node needs to compute the shortest path
to every other node in the network. Both observations are
consistent with the scalability properties of the traditional
distance vector and path vector protocols, suggesting that
our approach does not introduce any fundamental overheads.

9.1.2 Source/Destination Queries
Next, we study the effects of query optimization techniques

on lowering the communication overhead when only a subset
of paths are computed. Instead of computing all pairs, our
workload consists of a collection of Best-Path-Pairs queries.
Recall from Section 7.2 that Best-Path-Pairs is an optimized
version of Best-Path, where some of the rules are rewritten
using magic sets and left-right recursion optimization tech-
niques to reduce the communication overhead. Queries are
issued periodically every 15 sec. Each query computes the
shortest path between a pair of nodes, and the result tuple is
sent back on the reverse path to the source.

Figure 7 shows the per-node communication overhead, as
the number of source/destination queries increases. In this
experiment, we use a 200-node network. The All Pairs line
represents our baseline, and shows the communication over-
head for computing all pairs shortest paths. Pair-NoShare
shows the communication overhead for running the Best-Path-
Pairs query with no sharing across queries. When there are
few queries, the communication overhead of Pair-NoShare is
significantly lower than of All Pairs, as the later computes
many paths which were never requested. However, as the
number of queries increases, the communication overhead in-
creases linearly, exceeding All Pairs after 130 queries.

Finally, Pair-Share shows the communication cost of ex-
ecuting the Best-Path-Pairs-Share query discussed in Sec-
tion 7.3, which rewrites some of the rules in Best-Path-Pairs
to facilitate work-sharing. Pair-Share clearly decreases the
communication overhead of Pair-NoShare. As more queries
are issued, the increase in the communication overhead di-
minishes, as each subsequent query has an increased chance
of reusing previously generated results. However, as the num-
ber of queries increases beyond 240, Pair-Share becomes more
expensive than All Pairs.

Figure 8 shows the results from the same experiment as
Figure 7 as the number of source/destination queries increases
to 39, 800 (199×200). The communication overhead for Pair-
Share levels off at 605 KB. Here, we also examine the impact
of limiting the choice of destination nodes on the effectiveness
of sharing. This workload is illustrative of constructing a
multicast tree which requires the shortest paths to a small
set of nodes (see Section 5.5).

We compare Pair-Share against Pair-Share (X% Dst), which
limits the choice of destination nodes to X% of nodes. By lim-
iting the choice of destination nodes to 20% (1%) of nodes,
the communication overhead levels off at 119 KB (6) KB.
This is because the smaller X, the higher the cache hit rate
and the greater the opportunity for work-sharing. In fact, our
experiments show that if fewer than 30% of nodes are chosen
as destinations, executing Best-Path-Pairs-Share incurs lower
message overhead than computing all-pairs shortest paths, ir-
respective of the number of queries.

 0

 50

 100

 150

 200

 250

 300

 350

 0 50 100 150 200 250 300

O
ve

rh
ea

d
P

er
 N

od
e

(K
B

)

Number of Source/Destination Queries

All Pairs
Pair-NoShare

Pair-Share

Figure 7: Average per-node commu-

nication costs for different query exe-

cution strategies (first 300 queries)

 0

 100

 200

 300

 400

 500

 600

 700

 0 5 10 15 20 25 30 35 40

O
ve

rh
ea

d
P

er
 N

od
e

(K
B

)

Number of Source/Destination Queries (x1000)

All Pairs
Pair-Share

Pair-Share (20% Dst)
Pair-Share (1% Dst)

Figure 8: Average per-node commu-

nication costs for different query exe-

cution strategies (39, 800 queries)

 0

 50

 100

 150

 200

 250

 300

 350

 0 50 100 150 200 250 300

O
ve

rh
ea

d
P

er
 N

od
e

(K
B

)

Number of Source/Destination Queries

Pair-NoShare
Pair-Share-Mix

Pair-Share-Mix2
Pair-Share

Figure 9: Average per-node commu-

nication costs for different query ex-

ecution strategies (mixed query work-

load)

9.1.3 Mixed Query Workload
So far, we have focused on query workloads consisting of

identical queries between different source and destination nodes.
In Figure 9, Pair-Share-Mix shows the communication over-
head of running Best-Path-Pairs-Share queries on a mixed
query workload. Each query computes the shortest path be-
tween a given source and destination node when 65% of the
queries use the latency metric, while 5%, 10% and 20% of
the queries use three other link metrics (with randomly gen-
erated values). As expected the communication overhead of
the Pair-Share-Mix scenario lies between the Pair-NoShare
and Pair-Share scenarios. This is because only queries that
compute the same metric are likely to benefit from sharing.

Pair-Share-Mix2 shows the same mixed query workload as
Pair-Share-Mix, with the exception that after 150 queries,
the workload changes to one where all queries are using the
latency metric. Once the workload changes, there are more
work-sharing opportunities. Consequently, the communica-
tion overhead of each additional query for Pair-Share-Mix2 is
reduced compared to Pair-Share-Mix.

9.2 PlanetLab Experiments
To study the performance of our system in more realistic

scenarios, we deploy our prototype on 72 PlanetLab nodes
across three continents. The number of sites chosen for each
experiment range from 30 to 35. These nodes form an overlay
network, where each node hosts a PIER process.

In our experiments, we use the same metrics as before: the
convergence latency, and per-node communication overhead.
In all experiments, we use a single query load: the Best-Path
query which is executed on all nodes and computes the short-
est round-trip-times (RTT) paths for all pairs. We choose the
RTT metric, instead of a more stable metric such as the hop-
count, in order to stress our system under dynamic scenarios.
We experiment with both one-time and continuous queries.
With continuous queries, the link RTTs are periodically up-
dated, and the query recomputes the path incrementally.

9.2.1 Preliminaries
In our experiments, we use three overlay topologies:

Sparse-Random: Each node randomly selects four other
nodes as neighbors. This topology is a good stress case for our
system. The links are usually much longer than in more re-
alistic topologies (where there are more links between nearby
nodes), which negatively affects the query convergence time.

Topology AvgLinkRTT AvgPathRTT
Sparse-Random 88 ms 185 ms
Dense-Random 88 ms 99 ms

Table 1: Average link RTTs (AvgLinkRTT) and short-
est path RTTs (AvgPathRTT) for random topologies
(experiments conducted on 2 − 5 Jan.

Topology AvgLinkRTT AvgPathRTT
Dense-Random 106 ms 120 ms
Dense-UUNET 51 ms 89 ms

Table 2: Average link RTTs (AvgLinkRTT) and short-
est path RTTs (AvgPathRTT) for dense topologies
(experiments conducted on 17 − 19 Jan).

Dense-Random: Same as above with eight neighbors.

Dense-UUNET: This topology is intended to represent a
more realistic topology. Each node has an average degree of 8.
Links between nodes at the same site are selected first. The
remaining links are assigned as follows. We first divide the
nodes based on their location into five coarse regions (North-
America west/central/east, Europe and East Asia), and then
select a mixture of intra-region and inter-region links that
approximates the UUNET topology [4].

All our experiments were conducted during two time peri-
ods. The first set of experiments were conducted on the two
random topologies during 2−5 January, 2005. The second set
of experiments were conducted on the Dense-Random and
Dense-UUNET topologies during 17−19 January, 2005. The
load on PlanetLab during the second period was significantly
higher than during the first period due to the approaching of
conference deadlines. To account for load fluctuations, each
experiment was conducted at least three times, and our ex-
perimental results were averaged across the multiple runs.

Tables 1 and 2 show the average RTTs of links (AvgLinkRTT),
and the RTTs of computed paths (AvgPathRTT) when run-
ning the all-pairs shortest paths query. Since the links of
Sparse-Random and Dense-Random are randomly chosen, the
distribution of the link RTTs, and their average values are the
same. However, notice that the average link RTT increases
from 88 ms to 106 ms during the second set of experiments.

This is due to the heavier load on PlanetLab during the sec-
ond period. As expected, the link RTT values in the case
of Dense-UUNET are lower than Dense-Random, as Dense-
UUNET contains more links between nearby nodes.

We also make two observations regarding the RTTs of the
paths computed by our query. First, dense networks produce
shorter paths due to their higher degree; the AvgPathRTT
of Sparse-Random is twice as large as the AvgPathRTT of
Dense-Random. Second, the AvgPathRTT for Dense-UUNET
is lower compared to Dense-Random. This is because Dense-
UUNET has more links between nearby nodes.

Since Sparse-Random and Dense-Random have long links,
and since the RTTs of long links are more likely to fluctuate,
these topologies will put a greater stress on our system than
the Dense-UUNET topology. As a result, we focus on the two
random topologies in our evaluation.

9.2.2 Query Execution
In this section, we evaluate the performance of a single

query that computes the all-pairs shortest RTT paths on the
two random topologies. The query uses the link RTTs as
measured at the beginning of its execution.

Figure 10 shows the average path RTT (AvgPathRTT) ver-
sus time over the entire query execution period. AvgPathRTT
at a given time t represents the average over the RTT values of
all shortest paths computed by time t. A stable AvgPathRTT
indicates that all shortest paths have been generated. At
the start of query execution, AvgPathRTT increases steadily
as paths are gradually discovered. After 20−30 sec, Avg-
PathRTT starts decreasing as shorter new discovered paths
improve upon previously computed paths. 95% of the short-
est paths are computed within 50 sec for Sparse-Random and
55 sec for Dense-Random. AvgPathRTT stabilizes after 73
sec and 82 sec, respectively.

 0

 50

 100

 150

 200

 250

 300

 350

 0 0.5 1 1.5 2

A
vg

P
at

hR
TT

 (m
s)

Time (min)

Sparse-Random
Dense-Random

Figure 10: AvgPathRTT

during query execution.

 0

 2

 4

 6

 8

 10

 12

 0 0.5 1 1.5 2

B
an

dw
id

th
 P

er
 N

od
e

(K
B

ps
)

Time (min)

Dense-Random
Sparse-Random

Figure 11: Query Band-

width utilization.

Figure 11 shows the per-node communication overhead for
the same experiments. Initially, the per-node communica-
tion overhead increases steadily peaking at 8 KBps, and 11
KBps, respectively. As more shortest paths are discovered,
the communication overhead starts to decrease steadily after
15 sec. The average communication overhead over the entire
query execution period is 2.6 KBps for Sparse-Random, and
4.7 KBps for Dense-Random, respectively. While in the case
of the Dense-Random topology the query has a higher over-
head, it also produces paths with lower RTTs (see Table 1).

9.2.3 Path Adaptation
In this section, we consider the continuous version of the

all-pairs shortest (RTT) paths query. After the initial query
has computed all-pairs shortest paths, we begin to update the
link RTT measurements every five minutes, and incrementally

Topology % Stable Avg Change
Sparse-Random 33 3.8
Dense-Random 22 4.4

Sparse-Random (Smooth) 62 1.2
Dense-Random (Smooth) 42 1.6

Table 3: The computed path stability for random
topologies with and without using RTT smoothing.

recompute new shortest paths as described in Section 8. In
order to avoid ping congestion we spread the measurements
uniformly across each five minute interval.

Figure 12 shows a representative experiment for the Dense-
Random topology over a 50 minute interval during a busy
period on PlanetLab. The AvgPathRTT value (solid line)
follows the fluctuations of AvgLinkRTT (dotted line), which
suggests that our system is able to recompute the shortest
paths quickly as the underlying link RTTs change.

There is an inherent trade-off between quickly reacting to
changes in the link RTTs, and the stability of the paths.
When the query reacts to any changes in the link RTTs, the
computed paths become less stable. This instability is quan-
tified by the first two lines of Table 3, which shows results
for the Sparse-Random and Dense-Random topologies. Only
33% and 22% of all paths remain unchanged after the ini-
tial query execution, and the shortest path between each pair
of nodes changes on average 3.8, and 4.4, respectively. The
denser topology is less stable, as there are more link updates
per unit time.

The per-node communication overheads in steady state for
Sparse-Random and Dense-Random are 586 Bps and 813 Bps,
respectively. Despite the path instabilities, these overhead
numbers represent only 22% and 17% of the overhead in-
curred by executing the complete query from scratch (see
Section 9.2.2). Thus, recomputing the query results incre-
mentally is both more efficient and faster than periodically
reissuing the entire query.

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25 30 35 40 45

R
TT

 (m
s)

Time (min)

AvgPathRTT
AvgLinkRTT

Figure 12: RTTs during

query execution.

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25 30 35 40 45

R
TT

 (m
s)

Time (min)

AvgPathRTT
AvgLinkRTT

Figure 13: RTTs (with

smoothing).

To increase the stability of the computed paths, we use the
classic Jacobson/Karels algorithm [20] to smooth the RTT
values. For each link, we compute the mean deviation of the
estimated RTT, and only send an update to the query proces-
sor if the latest estimated RTT exceeds the last reported by
more than the mean standard deviation. We note that this
estimation algorithm can be easily expressed in Datalog.

As shown in Table 3, smoothing the link RTTs is effective:
the percentage of stable paths doubles, while the number of
changes per path decreases by up to three times. Smoothing

also leads to a reduction of the overhead as fewer paths need
to be recomputed. The average per-node bandwidth utiliza-
tion in steady state for Sparse-Random and Dense-Random
decrease to 175 Bps and 270 Bps, respectively. Finally, Fig-
ure 13 shows another 50 minute experimental run conducted
roughly during the same period as the experiment in Fig-
ure 12 using smoothed RTT values. When using smoothing,
AvgPathRTT is more stable despite similar RTT fluctuations.

9.2.4 Path Robustness under Churn
In this section, we study the performance of the continuous

version of our query under churn. In addition, to our two
metrics (per-node communication overhead and convergence
latency), we add a third metric, recovery time. The recovery
time of a path represents the time it takes the query to com-
pute an alternate path from the moment it has detected the
failure of the path. Note that the recovery time does not in-
clude the time to detect the failure. While detecting a failure
is an important and non-trivial problem, we do not consider
it in this paper.

 0
 20
 40
 60
 80

 100
 120
 140
 160

 0 5 10 15 20 25

A
vg

P
at

hR
TT

 (m
s)

Time (min)

20% Nodes
10% Nodes
5% Nodes

Figure 14: AvgPathRTT

during query execution.

 80

 85

 90

 95

 100

 105

 6 6.5 7 7.5 8 8.5 9 9.5 10

A
vg

P
at

hR
TT

 (m
s)

Time (min)

20% Nodes
10% Nodes
5% Nodes

Figure 15: Close-up view

of Figure 14.

We conduct our experiments on the Dense-Random and
Dense-UUNET topologies. In all experiments, we use smoothed
link RTT values. We induce churn by alternately injecting fail
and join events every 150 sec. At each fail event, a random
set of nodes (chosen from either 5%, 10% or 20% of the nodes)
experience fail-stop failures. This is followed by a join event
where the previously failed nodes rejoin the network. The fail-
ure of each node will cause neighboring nodes to invalidate
their neighbor entries. This generates link tuples with infi-
nite costs and results in paths being invalidated as described
in Section 8.

Figure 14 shows three experimental runs, for churn events
consisting of 5%, 10% and 20% of all nodes of the Dense-
UUNET topology. Each fail event corresponds to the sharp
rise in AvgPathRTT, as longer routes are computed to avoid
the failed nodes. Conversely, each subsequent join event causes
the drop in AvgPathRTT, as new shorter routes are discov-
ered. The higher the percentage of node failures, the greater
the change in AvgPathRTT induced by a churn event.

Figure 15 shows the same results as Figure 14 over a four
minute interval when a fail event is followed by a join event.
Right after the failures, AvgPathRTT increases sharply as a
large number of paths are invalidated and recomputed. How-
ever, AvgPathRTT decreases steadily as better paths are dis-
covered and stabilizes.

Table 4 shows the breakdown of the recovery times for the
experiments presented in Figure 14. A large fraction of paths
recover almost instantly. The median recovery time is less
than 1 sec, and the average recovery time is 2−2.2 sec. Only
1−3% of paths take more than 10 sec to recover. The average

% Nodes Average (s) % ≥ 10 s Bandwidth
5 2 1 554 Bps
10 2 2 700 Bps
20 2.2 3 870 Bps

Table 4: Breakdown of the average recover time (s)
of each path, the percentage of paths that require at
least 10 s to recover, and average per node bandwidth
(Bps) when there is 5%, 10% and 20% of node failures.

per-node communication overhead ranges from 554 Bps to 870
Bps, depending on the number of nodes participating in the
churn event. In the worst case, the communication overhead
is 18% of that required for recomputing the query.

In the case of the Dense-Random topology, our system
demonstrates recovery times that are only slightly worse than
for the Dense-UUNET topology. The median recovery time
remains below 1 sec, as a large fraction of paths recover al-
most instantaneously. However, we observed that the aver-
age recovery time is higher (3.2−3.6 sec), and there is also an
increase in the percentage of paths (3−6%) whose recovery
time exceeds 10 sec. This increase is caused by the higher
RTT values of the random topology links.

10. RELATED WORK
There have been many recent proposals for increasing the

flexibility of routing in the context of the Internet. Proposed
solutions include enabling end-hosts to choose paths at the AS
level [28], separating routing from the forwarding infrastruc-
ture [19, 15], centralizing some of the routing decisions [15],
and building extensible routers such as XORP [16]. Our pro-
posal is mostly complementary to these efforts. The increased
flexibility provided by a declarative interface can enhance the
usability and programmability of these systems. Our proposal
is also orthogonal to the separation of the control plane and
the data plane. As discussed in Section 2, our system can be
fully centralized, distributed or partially centralized.

Several type-safe languages have been proposed to improve
the security and robustness of Active Networks. Two ex-
amples are PLAN-P [26] and SafetyNet [3]. Compared to
these languages, Datalog is particularly attractive because of
its strong theoretical foundations, the fact that it is a side-
effect-free language sandboxed within a query engine, and its
elegance in expressing routing protocols in a compact way.
Unlike previous proposals, as a declarative query language,
Datalog is also amenable to query optimization techniques
from the database literature. Finally, we use Datalog exclu-
sively for the control plane, and not for the data plane.

11. CONCLUSION
We propose declarative routing, which aims to strike a bet-

ter balance between the extensibility of a routing infrastruc-
ture and its robustness. The basic idea of our solution is to
express routing protocols using recursive query languages de-
veloped for deductive databases. Our solution can be viewed
as an application of database techniques to the domain of net-
working, and is based on the key observation that recursive
queries are a natural fit for expressing routing protocols.

We implemented a prototype system built on top of PIER,
a distributed relational query processor. Using transit-stub

simulations and actual deployment on PlanetLab, we demon-
strate that our system imposes no fundamental limits relative
to traditional protocols, is amenable to query optimizations,
and can efficiently sustain long-lived routes.

As future work, we will further explore the synergies be-
tween query optimization and network routing. We have iden-
tified a few well-known query optimization techniques and
show how they can be used to generate efficient protocols.
While these optimization techniques mimic well-known opti-
mizations for routing protocols, it will be interesting to see
how they can help inform new routing protocol designs. We
intend to explore the use of an automatic query plan genera-
tor that not only optimizes each query individually, but also
applies multi-query optimization techniques to automatically
identify sharing opportunities among different queries.

We also plan to explore other uses of declarative queries
in the network domain. These include a detailed study on
expressing BGP inter-domain routing policies, and specifying
declarative overlay networks.

12. REFERENCES
[1] GT-ITM. http://www.cc.gatech.edu/projects/gtitm/.

[2] PIER. http://pier.cs.berkeley.edu.

[3] SafetyNet. http://www.cogs.susx.ac.uk/projects/safetynet/.

[4] WorldCom’s Global UUNET Internet network.
http://library.mobrien.com/manuals/mprm group/uunet.jpg.

[5] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases.
Addison-Wesley, 1995.

[6] R. Agrawal. Alpha: An Extension of Relational Algebra to
Express a Class of Recursive Queries. In IEEE Transactions on
Software Engineering, volume 14, 1988.

[7] H. Balakrishnan, M. F. Kaashoek, D. Karger, R. Morris, and
I. Stoica. Looking Up Data in P2P Systems. Communications of
the ACM, Vol. 46, No. 2, Feb. 2003.

[8] I. Balbin and K. Ramamohanarao. A Generalization of the
Differential Approach to Recursive Query Evaluation. Journal of
Logic Programming, 4(3):259–262, 1987.

[9] T. Ballardie, P. Francis, and J. Crowcroft. Core Based Trees
(CBT): An Architecture for Scalable Inter-Domain Multicast
Routing. In SIGCOMM, 2003.

[10] C. Beeri and R. Ramakrishnan. On the Power of Magic. In
PODS, 1987.

[11] B. Bershad, S. Savage, P. Pardyak, E. G. Sirer, D. Becker,
M. Fiuczynski, C. Chambers, and S. Eggers. Extensibility, Safety
and Performance in the SPIN Operating System. In SOSP, 1995.

[12] D. Calvanese, G. D. Giacomo, and M. Y. Vardi. Decidable
Containment of Recursive Queries. In ICDT, 2003.

[13] W. F. Clocksin and C. S. Melish. Programming in Prolog.
Springer-Verlag, 1987.

[14] D. Tennenhouse and J. Smith and W. Sincoskie and D.
Wetherall and G. Minden. A Survey of Active Network Research.
In IEEE Communications Magazine, 1997.

[15] N. Feamster, H. Balakrishnan, J. Rexford, A. Shaikh, and
J. van der Merwe. The Case for Separating Routing From
Routers. In FDNA, 2004.

[16] M. Handley, A. Ghosh, P. Radoslavov, O. Hodson, and
E. Kohler. Designing IP Router Software. In NSDI, 2005.

[17] D. B. Johnson and D. A. Maltz. Dynamic Source Routing in Ad
Hoc Wireless Networks. In Mobile Computing, volume 353. 1996.

[18] R. Krishnamurthy, R. Ramakrishnan, and O. Shmueli. A
Framework for Testing Safety and Effective Computability. J.
Comput. Syst. Sci. 52(1), pages 100–124, 1996.

[19] T. V. Lakshman, T. Nandagopal, R. Ramjee, K. Sabnani, and
T. Woo. The SoftRouter Architecture. In HotNets-III, 2004.

[20] L. Peterson and B. Davie. Computer Networks: A Systems
Approach. Morgan-KaufMann, 2003.

[21] PlanetLab. http://www.planet-lab.org/.

[22] R. Ramakrishnan, K. A. Ross, D. Srivastava, and S. Sudarshan.
Efficient Incremental Evaluation of Queries with Aggregation. In
SIGMOD, 1992.

[23] R. Ramakrishnan and J. D. Ullman. A Survey of Research on
Deductive Database Systems. Journal of Logic Programming,
23(2):125–149, 1993.

[24] M. Stonebraker. Inclusion of New Types in Relational Data Base
Systems. In ICDE, 1986.

[25] S. Sudarshan and R. Ramakrishnan. Aggregation and Relevance
in Deductive Databases. In VLDB, 1991.

[26] S. Thibault, C. Consel, and G. Muller. Safe and Efficient Active
Network Programming. In 17th IEEE Symposium on Reliable
Distributed Systems, 1998.

[27] A. van Deursen, P. Klint, and J. Visser. Domain-Specific
Languages: An Annotated Bibliography. SIGPLAN Notices,
35(6), 2000.

[28] X. Yang. NIRA: A New Internet Routing Architecture. In
Proceedings of FDNA-03, 2003.

