
Predicate Migration:
Optimizing Queries with Expensive Predicates

Joseph M. Hellerstein� Michael Stonebraker

Computer Science Division, EECS Department

University of California, Berkeley, CA 94720

joey@cs.wisc.edu, mike@postgres.berkeley.edu

Abstract. The traditional focus of relational query optimization
schemes has been on the choice of join methods and join orders. Re-
strictions have typically been handled in query optimizers by “predicate
pushdown” rules, which apply restrictions in some random order be-
fore as many joins as possible. These rules work under the assumption
that restriction is essentially a zero-time operation. However, today’s
extensible and object-oriented database systems allow users to define
time-consuming functions, which may be used in a query’s restriction
and join predicates. Furthermore, SQL has long supported subquery
predicates, which may be arbitrarily time-consuming to check. Thus re-
strictions should not be considered zero-time operations, and the model
of query optimization must be enhanced.

In this paper we develop a theory for moving expensive predicates
in a query plan so that the total cost of the plan — including the costs
of both joins and restrictions — is minimal. We present an algorithm
to implement the theory, as well as results of our implementation in
POSTGRES. Our experience with the newly enhanced POSTGRES
query optimizer demonstrates that correctly optimizing queries with
expensive predicates often produces plans that are orders of magni-
tude faster than plans generated by a traditional query optimizer. The
additional complexity of considering expensive predicates during opti-
mization is found to be manageably small.

1 Introduction

Traditional relational database (RDBMS) literature on query
optimization stresses the significance of choosing an efficient
order of joins in a query plan. The placement of the other
standard relational operators (selection and projection) in the
plan has typically been handled by “pushdown” rules (see e.g.,
[Ull89]), which state that restrictions and projections should
be pushed down the query plan tree as far as possible. These
rules place no importance on the ordering of projections and
restrictions once they have been pushed below joins.

The rationale behind these pushdown rules is that the rela-
tional restriction and projection operators take essentially no
time to carry out, and reduce subsequent join costs. In today’s

�Current address: Computer Sciences Department, University of
Wisconsin, Madison, WI 53706. This material is based upon work
supported under a National Science Foundation Graduate Fellowship.

systems, however, restriction can no longer be considered to
be a zero-time operation. Extensible database systems such as
POSTGRES [SR86] and Starburst [HCL+90], as well as vari-
ous Object-Oriented DBMSs (e.g., [MS87], [WLH90], [D+90],
[ONT92], etc.) allow users to implement predicate functions
in a general-purpose programming language such as C or C++.
These functions can be arbitrarily complex, potentially requiring
access to large amounts of data, and extremely complex process-
ing. Thus it is unwise to choose a random order of application for
restrictions on such predicates, and it may not even be optimal
to push them down a query plan tree. Therefore the traditional
model of query optimization does not produce optimal plans for
today’s queries, and as we shall see, the plans that traditional
optimizers generate can be many orders of magnitude slower
than a truly optimal plan.

To illustrate the significance of ordering restriction predicates,
consider the following example:

Example 1.

/* Find all maps from week 17 showing more than
1% snow cover. Channel 4 contains images
from the frequency range that interests us. */

retrieve (maps.name)
where maps.week = 17 and maps.channel = 4
and coverage(maps.picture) > 1

In this example, the function coverage is a complex im-
age analysis function that may take many thousands of in-
structions to compute. It should be quite clear that the
query will run faster if the restrictions maps.week = 17
and maps.channel = 4 are applied before the restriction
coverage(maps.picture) > 1, since doing so minimizes
the number of calls to coverage.

While restriction ordering such as this is important, correctly
ordering restrictions within a table-access is not sufficient to
solve the general problem of where to place predicates in a
query execution plan. Consider the following example:

Example 2.

/* Find all channel 4 maps from weeks starting
in June that show more than 1% snow cover.
Information about each week is kept in the
weeks table, requiring a join. */

retrieve (maps.name)
where maps.week = weeks.number
and weeks.month = "June"
and maps.channel = 4
and coverage(maps.picture) > 1

Traditionally, a DBMS would execute this query by applying
all the single-table restrictions in the where clause before per-
forming the join of maps and weeks, since early restriction
can lower the complexity of join processing. However in this
example the cost of evaluating the expensive restriction predi-
cate may outweigh the benefit gained by doing restriction be-
fore join. In other words, this may be a case where “pred-
icate pushdown” is precisely the wrong technique. What is
needed here is “predicate pullup”, namely postponing the re-
striction coverage(maps.picture) > 1 until after comput-
ing the join of maps and weeks.

In general it is not clear how joins and restrictions should be in-
terleaved in an optimal execution plan, nor is it clear whether the
migration of restrictions should have an effect on the join orders
and methods used in the plan. This paper describes and proves
the correctness of the Predicate Migration Algorithm, which
produces a minimal-cost query plan for queries with expensive
predicates. Predicate Migration modestly increases query op-
timization time: the additional cost factor is polynomial in the
number of operators in a query plan. This compares favorably to
the exponential join enumeration schemes used by most query
optimizers, and is easily circumvented when optimizing queries
without expensive predicates — if no expensive predicates are
found while parsing the query, the techniques of this paper need
not be invoked. For queries with expensive predicates, the gains
in execution speed should offset the extra optimization time. We
have implemented Predicate Migration in POSTGRES, and have
found that with modest overhead in optimization time, the exe-
cution time of many practical queries can be reduced by orders
of magnitude. This will be illustrated below.

1.1 Application to Existing Systems: SQL and Subqueries

It is important to note that expensive predicate functions do not
exist only in next-generation research prototypes. Current rela-
tional languages, such as the industry standard, SQL [ISO91],
have long supported expensive predicate functions in the guise
of subquery predicates. A subquery predicate is one of the form
“expression operator query”. Evaluating such a predicate re-
quires executing an arbitrary query and scanning its result for
matches — an operation that is arbitrarily expensive, depend-
ing on the complexity and size of the subquery. While some
subquery predicates can be converted into joins (thereby be-
coming subject to traditional join-based optimization strategies)
even sophisticated SQL rewrite systems, such as that of Star-
burst [PHH92], cannot convert all subqueries to joins. When
one is forced to compute a subquery in order to evaluate a
predicate, then the predicate should be treated as an expensive
function. Thus the work presented in this paper is applicable
to the majority of today’s production RDBMSs, which support
SQL.

1.2 Related Work

Stonebraker first raised the issue of expensive predicate op-
timization in the context of the POSTGRES multi-level
store [Sto91]. The questions posed by Stonebraker are directly
addressed in this paper, although we vary slightly in the defini-
tion of cost metrics for expensive functions.

One of the main applications of the system described
in [Sto91] is Project Sequoia 2000 [SD92], a University of Cal-
ifornia project that will manage terabytes of Geographic Infor-

mation System (GIS) data, to support global change researchers.
It is expected that these researchers will be writing queries with
expensive functions to analyze this data. A benchmark of such
queries is presented in [SFGM93].

Ibaraki and Kameda [IK84], Krishnamurthy, Boral and Zan-
iolo [KBZ86], and Swami and Iyer [SI92] have developed and
refined a query optimization scheme that is built on the notion
of rank that we will use below. However, their scheme uses rank
to reorder joins rather than restrictions. Their techniques do not
consider the possibility of expensive restriction predicates, and
only reorder nodes of a single path in a left-deep query plan tree,
while the technique presented below optimizes all paths in an
arbitrary tree. Furthermore, their schemes are a proposal for a
completely new method for query optimization, while ours is an
extension that can be applied to the plans of any query optimizer.
It is possible to fuse the technique we develop in this paper with
those of [IK84, KBZ86, SI92], but we do not focus on that issue
here since their schemes are not widely in use.

The notion of expensive restrictions was considered in the
context of theLDL logic programming system [CGK89]. Their
solution was to model a restriction on relation R as a join be-
tween R and a virtual relation of infinite cardinality containing
the entire logical predicate of the restriction. By modeling re-
strictions as joins, they were able to use a join-based query
optimizer to order all predicates appropriately. Unfortunately,
most traditional DBMS query optimizers have complexity that is
exponential in the number of joins. Thus modelling restrictions
as joins can make query optimization prohibitively expensive
for a large set of queries, including queries on a single relation.
The scheme presented here does not cause traditional optimizers
to exhibit this exponential growth in optimization time.

Caching the return values of function calls will prove to be
vital to the techniques presented in this paper. Jhingran [Jhi88]
has explored a number of the issues involved in caching proce-
dures for query optimization. Our model is slightly different,
since our caching scheme is value-based, simply storing the
results of a function on a set of argument values. Jhingran’s
focus is on caching complex object attributes, and is therefore
instance-based.

1.3 Structure of the Paper

The following section develops a model for measuring the cost
and selectivity of a predicate, and describes the advantages of
caching for expensive functions. Section 3 presents the Predicate
Migration Algorithm, a scheme for optimally locating predicates
in a given join plan. Section 4 details the results of our imple-
mentation experience in POSTGRES. Section 5 summarizes and
provides directions for future research.

2 Background: Expenses and Caching

Query optimization schemes typically attempt to find a query
plan of minimal estimated cost. To develop our optimizations,
we must enhance the traditional model for analyzing query plan
cost. This will involve some modifications of the usual metrics
for the expense of relational operators, and will also require the
introduction of function caching techniques. This preliminary
discussion of our model will prove critical to the analysis below.

A relational query in a language such as SQL or
Postquel [RS87] may have a where clause, which contains an

arbitrary Boolean expression over constants and the range vari-
ables of the query. We break such clauses into a maximal set
of conjuncts, or “Boolean factors” [SAC+79], and refer to each
Boolean factor as a distinct “predicate” to be satisfied by each
result tuple of the query. When we use the term “predicate”
below, we refer to a Boolean factor of the query’s where clause.
A join predicate is one that refers to multiple tables, while a
restriction predicate refers only to a single table.

Traditional query optimizers compute selectivities for both
joins and restrictions. That is, for any predicate p (join or
restriction) they estimate the value

selectivity(p) =
card(output(p))
card(input(p))

and make the assumption that selectivities of different predi-
cates are independent. Typically these estimations are based
on default values and system statistics [SAC+79], although re-
cent work suggests that accurate and inexpensive sampling tech-
niques can be used [LNSS93, HOT88].

2.1 Cost of User-Defined Functions in POSTGRES

In an extensible system such as POSTGRES, arbitrary user-
defined functions may be introduced into both restriction and
join predicates. These functions may be written in a general pro-
gramming language such as C, or in the database query language,
e.g. SQL or Postquel. In this section we discuss programming
language functions; we handle query language functions below.

Given that user-defined functions may be written in a general
purpose language such as C, there is little hope for the database
to correctly estimate the cost and selectivity of predicates con-
taining these functions, at least not initially.1 In this section
we extend the POSTGRES function definition syntax to cap-
ture a function’s expense. Selectivity modeling for user-defined
operators in POSTGRES has been described in [Mos90].

To introduce a function to POSTGRES, a user first writes
the function in C and compiles it, and then issues Postquel’s
define function command. To capture expense information,
the define function command accepts a number of special
flags, which are summarized in Table 1.

The cost of a predicate in POSTGRES is computed by adding
up the costs for each expensive function in the expression. Given
a POSTGRES predicate p(a1; : : : ; an), the expense per tuple is
recursively defined as:

ep =

8>>>><
>>>>:

Pn

i=1 eai+percall cpu(p)
+perbyte cpu(p) � (byte pct(p)=100)

�
Pn

i=1bytes(ai)+access cost
if p is a function

0 if p is a constant or tuple variable

where eai is the recursively computed expense of argument ai,
bytes is the expected (return) size of the argument in bytes,
and access cost is the cost of retrieving any data necessary to
compute the function. This data may be stored anywhere in
the various levels of the POSTGRES multi-level store, but un-
like [Sto91] we do not require the user to define constants specific

1After repeated applications of a function, one could collect per-
formance statistics and use curve-fitting techniques to make estimates
about the function’s behavior. Such techniques are beyond the scope of
this paper.

to the different levels of the multi-level store. Instead, this can
be computed by POSTGRES itself via system statistics, thus
providing more accurate information about the distribution and
caching of data across the storage levels.

2.2 Cost of SQL Subqueries and Other Query Language
Functions

SQL allows a variety of subquery predicates of the form “ex-
pression operator query”. Such predicates require computation
of an arbitrary SQL query for evaluation. Simple uncorrelated
subqueries have no references to query blocks at higher nesting
levels, while correlated subqueries refer to tuple variables in
higher nesting levels.

In principle, the cost to check an uncorrelated subquery re-
striction is the cost em of materializing the subquery once, and
the cost es of scanning the subquery once per tuple. However,
we will need these cost estimates only to help us reorder opera-
tors in a query plan. Since the cost of initially materializing an
uncorrelated subquery must be paid regardless of the subquery’s
location in the plan, we ignore the overhead of the materializa-
tion cost, and consider an uncorrelated subquery’s cost per tuple
to be es.

Correlated subqueries must be materialized for each value
that is checked against the subquery predicate, and hence the
per-tuple expense for correlated subqueries is em . We ignore
es here since scanning can be done during each materialization,
and does not represent a separate cost. Postquel functions in
POSTGRES have costs that are equivalent to those of correlated
subqueries in SQL: an arbitrary access plan is executed once per
tuple of the relation being restricted by the Postquel function.

The cost estimates presented here for query language func-
tions form a simple model and raise some issues in setting costs
for subqueries. The cost of a subquery predicate may be lowered
by transforming it to another subquery predicate [LDH+87], and
by “early stop” techniques, which stop materializing or scanning
a subquery as soon as the predicate can be resolved [Day87]. In-
corporating such schemes is beyond the scope of this paper, but
including them into the framework of the later sections merely
requires more careful estimates of the subquery costs.

2.3 Join Expenses

In our subsequent analysis, we will be treating joins and restric-
tions uniformly in order to optimally balance their costs and
benefits. In order to do this, we will need to measure the ex-
pense of a join per tuple of the join’s input, i.e. per tuple of the
cartesian product of the relations being joined. This can be done
for any join method whose costs are linear in the cardinalities
of the input relations, including the most common algorithms:
nested-loop join, hash join, and merge join. Note that sort-
merge join is not linear in the cardinalities of the input relations.
However, most systems, including POSTGRES, do not use sort-
merge join, since in situations where merge join requires sorting
of an input, either hash join or nested-loop join is almost always
preferable to sort-merge.

A query may contain many join predicates over the same set
of relations. In an execution plan for a query, some of these pred-
icates are used in processing a join, and we call these primary
join predicates. If a join has expensive primary join predicates,
then the cost per tuple of a join should reflect the expensive
function costs. That is, we add the expensive functions’ costs,

flag name description

percall cpu execution time per invocation, regardless of the size of the arguments
perbyte cpu execution time per byte of arguments
byte pct percentage of argument bytes that the function will need to access

Table 1: Function Expense Parameters in POSTGRES

as described in Section 2.1, to the join costs per tuple.
Join predicates that are not applicable while processing the

join are merely used to restrict its output, and we refer to these
as secondary join predicates. Secondary join predicates are
essentially no different from restriction predicates, and we treat
them as such. These predicates may be reordered and even pulled
up above higher join nodes, just like restriction predicates. Note,
however, that a secondary join predicate must remain above
its corresponding primary join. Otherwise the secondary join
predicate would be impossible to evaluate.

2.4 Function Caching

The existence of expensive predicates not only motivates re-
search into richer optimization schemes, it also suggests the
need for DBMSs to cache the results of expensive predicate
functions. In this paper, we assume that the system caches the
return values of all functions for at least the duration of a query.2

This lowers the cost of a function, since with some probability
the function can be evaluated simply by checking the cache.
Given the distribution of the data in a function’s cache, and the
distribution of the inputs to a function, one can derive a ratio of
cache misses to cache lookups for the function. This ratio serves
as the probability of a cache miss for a given tuple, and should
be factored into the per-tuple cost for a function.

In addition to lowering function cost, caching will also allow
us to pull expensive restrictions above joins without modifying
the total cost of the restriction nodes in the plan. In general, a
join may produce as many tuples as the product of the cardinal-
ities of the inner and outer relations. However, it will produce
no new values for attributes of the tuples; it will only recombine
these attributes. If we move a restriction in a query plan from
below a join to above it, we may dramatically increase the num-
ber of times we evaluate that restriction. However by caching
expensive functions we will not increase the number of expen-
sive function calls, only the number of cache lookups, which are
quick to evaluate. This results from the fact that after pulling
up the restriction, the same set of function calls on distinct argu-
ments will be made. In most cases the primary join predicates
will in fact decrease the number of distinct values passed into
the function. Thus we see that with function caching, pulling
restrictions above joins does not increase the number of function
calls, and often will decrease that number.

Current SQL systems do not support arbitrary caching of the
results of evaluating subquery predicates. To benefit from the
techniques described in this paper, an SQL system must be en-
hanced to do this caching, at least for the duration of a query.
It is interesting to note that in the original paper on optimizing

2As discussed in [Hel92], this cannot be done for some functions,
e.g. functions that calculate the time of day. Such functions are rather
unusual, though, since they result in ill-defined queries: the answer to
such queries is dependent on the order in which tuples are scanned,
something that is non-deterministic in relational-based systems.

Table Tuple Size #Tuples

maps 1 040 424 932
weeks 24 19

emp 32 10 000
dept 44 20

Table 2: Benchmark Database

SQL queries in System R [SAC+79], there is a description of
a limited form of caching for correlated subqueries. System R
saved the materialization of a correlated subquery after each
evaluation, and if the subsequent tuple had the same values for
the columns referenced in the subquery, then the predicate could
be evaluated by scanning the saved materialization of the sub-
query. Thus System R would cache a single materialization of a
subquery, but did not cache the result of the subquery predicate.
That is, for a subquery of the form “expression operator query”,
System R cached the result of “query”, but not “expression op-
erator query”.

2.5 Environment for Performance Measurements

It is not uncommon for queries to take hours or even days to com-
plete. The techniques of this paper can improve performance
by several orders of magnitude — in many cases converting an
over-night query to an interactive one. We will be demonstrating
this fact during the course of the discussion by measuring the
performance effect of our optimizations on various queries. In
this section we present the environment used for these measure-
ments.

We focus on a complex query workload (involving subqueries,
expensive user-defined functions, etc), rather than a transaction
workload, where queries are relatively simple. There is no ac-
cepted standard complex query workload, although several have
been proposed ([SFGM93, TOB89, O’N89], etc.) To measure
the performance effect of Predicate Migration, we have con-
structed our own benchmark database, based on a combined
GIS and business application. Each tuple in maps contains a
reference to a POSTGRES large object [Ols92], which is a map
picture taken by a satellite. These map pictures were taken
weekly, and the maps table contains a foreign key to the weeks
table, which stores information about the week in which each
picture was taken. The familiar emp and dept tables store infor-
mation about employees and their departments. Some physical
characteristics of the database are shown in Table 2.

Our performance measurements were done in a development
version of POSTGRES, similar to the publicly available ver-
sion 4.1 (which itself contains the Predicate Migration opti-
mizations). POSTGRES was run on a DECStation 5000/200
workstation, equipped with 24Mb of main memory and two
300Mb DEC RZ55 disks, running the Ultrix 4.2a operating sys-
tem. We measured the elapsed time (total time taken by system),
and CPU time (the time for which CPU is busy) of optimizing

and executing each example query, both with and without Pred-
icate Migration. These numbers are presented in the examples
which appear throughout the rest of the paper.

3 Min-Cost Plans for Queries With Expensive
Predicates

At first glance, the task of correctly optimizing queries with ex-
pensive predicates appears exceedingly complex. Traditional
query optimizers already search a plan space that is exponen-
tial in the number of relations being joined; multiplying this
plan space by the number of permutations of the restriction
predicates could make traditional plan enumeration techniques
prohibitively expensive. In this section we prove the reassuring
results that:

1. Given a particular query plan, its restriction predicates can
be optimally interleaved based on a simple sorting algorithm.

2. As a result of the previous point, we need merely enhance
the traditional join plan enumeration with techniques to in-
terleave the predicates of each plan appropriately. This in-
terleaving takes time that is polynomial in the number of
operators in a plan.

3.1 Optimal Predicate Ordering in Table Accesses

We begin our discussion by focusing on the simple case of
queries over a single table. Such queries may have an arbitrary
number of restriction predicates, each of which may be a compli-
cated Boolean function over the table’s range variables, possibly
containing expensive subqueries or user-defined functions. Our
task is to order these predicates in such a way as to minimize
the expense of applying them to the tuples of the relation being
scanned.

If the access path for the query is an index scan, then all
the predicates that match the index and can be applied during
the scan are applied first. This is because such predicates are
essentially of zero cost: they are not actually evaluated, rather
the indices are used to retrieve only those tuples which qualify.
Note that it is possible to index tables on function values as well
as on table attributes [MS86, LS88]. If a scan is done on such
a “function” index, then predicates over the function may be
applied during the scan, and are considered to have zero cost,
regardless of the function’s expense.

We will represent each of the subsequentnon-index predicates
as p1; : : : ; pn, where the subscript of the predicate represents its
place in the order in which the predicates are applied to each
tuple of the base table. We represent the expense of a predicate
pi as epi , and its selectivity as spi . Assuming the independence
of distinct predicates, the cost of applying all the non-index
predicates to the output of a scan containing t tuples is

e1 = ep1 t+ sp1ep2 t+ � � �+ sp1sp2 � � � spn�1epn t:

The following lemma demonstrates that this cost can be mini-
mized by a simple sort on the predicates.

Lemma 1 The cost of applying expensive restriction predicates
to a set of tuples is minimized by applying the predicates in
ascending order of the metric

rank =
selectivity� 1

cost-per-tuple

Plan 1

rank = −
Restrict

Restrict

Scan
EMP

coverage(picture) > 1

rank = −
Restrict

week = 17

channel = 4

rank = −0.003

Plan 2

Scan
EMP

Restrict
coverage(picture) > 1

rank = −
Restrict

week = 17

rank = −
Restrict

channel = 4

rank = −0.003

Figure 1: Two Execution Plans for Example 1

Proof. This results directly from work done by W. E.
Smith [Smi56] on job scheduling. It has been reviewed in a
database context in [Han77], [IK84], [KBZ86], and [Hel92].
Intuitively, the above ordering gives priority to the execution
of restrictions with low selectivity and low cost. This reduces
the number of tuples that will have to be processed by more
expensive predicates.

Thus we see that for single table queries, predicates can be
optimally ordered by simply sorting them by their rank. Swap-
ping the position of predicates with equal rank has no effect on
the cost of the sequence.

To see the effects of reordering restrictions, we return to Ex-
ample 1 from the introduction. We ran the query in POSTGRES
without the rank-sort optimization, generating Plan 1 of Fig-
ure 1, and with the rank-sort optimization, generating Plan 2 of
Figure 1. As we expect from Lemma 1, the first plan has higher
cost than the second plan, since the second is correctly ordered
by rank. The optimization and execution times were measured
for both runs, as illustrated in Table 3. We see that correctly
ordering the restrictions can improve query execution time by
orders of magnitude.

3.2 Predicate Migration: Moving Restrictions Among
Joins

In the previous section, we established an optimal ordering for
restrictions. In this section, we explore the issue of ordering re-
strictions among joins. Since we will eventually be applying our
optimization to each plan produced by a typical join-enumerating
query optimizer, our model here is that we are given a fixed join
plan, and want to minimize the plan’s cost under the constraint
that we may not change the order of the joins. This section devel-
ops a polynomial-time algorithm to optimally place restrictions
and secondary join predicates in a join plan.

3.2.1 Definitions

The thrust of this section is to handle join predicates in our
ordering scheme in the same way that we handle restriction
predicates: by having them participate in an ordering based
on rank. However, since joins are binary operators, we must
generalize our model for single-table queries to handle both
restrictions and joins. We will refer to our generalized model as
a global model, since it will encompass the costs of all inputs to
a query, not just the cost of a single input to a single node.

Execution Plan Optimization Time Execution time
CPU Elapsed CPU Elapsed

Plan 1 0.12 sec 0.24 sec 20 min 34.36 sec 20 min 37.69 sec
Plan 2 (ordered by rank) 0.12 sec 0.24 sec 0 min 2.66 sec 0 min 3.26 sec

Table 3: Performance of Example 1

Definition 1 A plan tree is a tree whose leaves are scan nodes,
and whose internal nodes are either joins or restrictions. Tuples
are produced by scan nodes and flow upwards along the edges
of the plan tree.

Some optimization schemes constrain plan trees to be within a
particular class, such as the left-deep trees, which have scans as
the right child of every join. Our methods will not require this
limitation. We do not, however, consider non-tree queries, i.e.
queries with common subexpressions or recursion.

Definition 2 A stream in a plan tree is a path from a leaf node
to the root.

Figure 2 below shows a tree with one of its plan streams outlined.
Within the framework of a single stream, a join node is simply
another predicate; although it has a different number of inputs
than a restriction, it can be treated in an identical fashion. We
do this by considering each predicate in the tree — restriction
or join — as an operator on the entire input set to the query.
That is, we consider the input to the query to be the cartesian
product of all relations referenced in the query, and we model
each node as an operator on that cartesian product. By modeling
each predicate in this global fashion, we can naturally compare
restrictions and joins in different streams. However, to do this
correctly, we must modify our notion of the per-tuple cost of a
predicate:

Definition 3 Given a query over relations a1; : : : ; an, the
global cost of a predicate p over relations a1; : : : ; ak is defined
as:

global-cost(p) =
cost-per-tuple(p)

card(ak+1) � � �card(an)
where cost-per-tuple is the cost attribute of the predicate, as
described in Section 2.

That is, to define the cost of a predicate over the entire input
to the query, we must divide out the cardinalities of those tables
that do not affect the predicate. As an illustration, consider the
case where p is a single-table restriction over relation a1. If we
push p down to directly follow the table-access of a1, the cost
of applying p to that table is cost-per-tuple(p)card(a1). But in
our new global model, we consider the input to each node to be
the cartesian product of a1; : : : ; an. However, note that the cost
of applying p in both the global and single-table models is the
same, i.e.,

global-cost(p)card(a1 � : : :� an)

= cost-per-tuple(p)card(a1):

Recall that because of function caching, even if we pull p up to
the top of the tree, its cost should not reflect the cardinalities of
relations a2; : : : ; an. Thus our global model does not change
the cost analysis of a plan. It merely provides a framework in
which we can treat all predicates uniformly.

The selectivity of a predicate is independent of the predi-
cate’s location in the plan tree. This follows from the fact that

card(a1 � a2) = card(a1)card(a2). Thus the global rank of a
predicate is easily derived:

Definition 4 The global rank of a predicate p is defined as

rank =
selectivity(p)� 1

global-cost(p)
Note that the global cost of a predicate in a single-table query is
the same as its user-defined cost-per-tuple, and hence the global
rank of a node in a single-table query is the same as its rank
as defined previously. Thus we see that the global model is
a generalization of the one presented for single-table queries.
In the subsequent discussion, when we refer to the rank of a
predicate, we mean its global rank.

In later analysis it will prove useful to assume that all nodes
have distinct ranks. To make this assumption, we must prove
that swapping nodes of equal rank has no effect on the cost of a
plan.
Lemma 2 Swapping the positions of two equi-rank nodes has
no effect on the cost of a plan tree.

Proof. Note that swapping two nodes in a plan tree only affects
the costs of those two nodes. Consider two nodes p and q of
equal rank, operating on input of cardinality t. If we order p
before q, their joint cost is e1 = tep + tspeq . Swapping them
results in the cost e2 = teq+ tsqep . Since their ranks are equal,
it is a matter of simple algebra to demonstrate that e1 = e2,
and hence the cost of a plan tree is independent of the order of
equi-rank nodes.

Knowing this, we could achieve a unique ordering on rank by
assigning unique ID numbers to each node in the tree and or-
dering nodes on the pair (rank, ID). Rather than introduce the
ID numbers, however, we will make the simplifying assumption
that ranks are unique.

In moving restrictions around a plan tree, it is possible to push
a restriction down to a location in which the restriction cannot
be evaluated. This notion is captured in the following definition:

Definition 5 A plan stream is semantically incorrect if some
predicate in the stream refers to attributes that do not appear in
the predicate’s input.

Streams can be rendered semantically incorrect by pushing a
secondary join predicate below its corresponding primary join,
or by pulling a restriction from one input stream above a join,
and then pushing it down below the join into the other input
stream. We will need to be careful later on to rule out these
possibilities.

In our subsequent analysis, we will need to identify plan trees
that are equivalent except for the location of their restrictions
and secondary join predicates. We formalize this as follows:

Definition 6 Two plan trees T and T 0 are join-order equivalent
if they contain the same set of nodes, and there is a one-to-one
mapping g from the streams of T to the streams of T 0 such that
for any stream s of T , s and g(s) contain the same join nodes
in the same order.

3.2.2 The Predicate Migration Algorithm: Optimizing a
Plan Tree By Optimizing its Streams

Our approach in optimizing a plan tree will be to treat each of
its streams individually, and sort the nodes in the streams based
on their rank. Unfortunately, sorting a stream in a general plan
tree is not as simple as sorting the restrictions in a table access,
since the order of nodes in a stream is constrained in two ways.
First, we are not allowed to reorder join nodes, since join-order
enumeration is handled separately from Predicate Migration.
Second, we must ensure that each stream remains semantically
correct. In some situations, these constraints may preclude the
option of simply ordering a stream by ascending rank, since a
predicate p1 may be constrained to precede a predicate p2, even
though rank(p1) > rank(p2). In such situations, we will need
to find the optimal ordering of predicates in the stream subject
to the precedence constraints.

Monma and Sidney [MS79] have shown that finding the op-
timal ordering under a large class of precedence constraints can
be done fairly simply. Their analysis is based on two key results:

1. A stream can be broken down into modules, where a module
is defined as a set of nodes that have the same constraint
relationship with all nodes outside the module. An optimal
ordering for a module forms a subset of an optimal ordering
for the entire stream.

2. For two predicates p1; p2 such that p1 is constrained to pre-
cede p2 and rank(p1) > rank(p2), an optimal ordering will
have p1 directly preceding p2, with no other unconstrained
predicates in between.

Monma and Sidney use these principles to develop the Series-
Parallel Algorithm Using Parallel Chains, an O(n logn) algo-
rithm for optimizing streams under a large class of constraints.
The algorithm repeatedly isolates modules in a stream, optimiz-
ing each module individually, and using the resulting orders for
modules to find a total order for the stream. Since the constraints
which can appear in a query plan stream are subsumed by those
considered by Monma and Sidney, we use their algorithm as a
subroutine in our optimization algorithm.

“Predicate pushdown” is traditionally considered a good
heuristic, and most systems construct plan trees with restriction
and secondary join predicates pushed down as far as possible.
Thus our algorithm was designed to work on plan trees with
predicates already pushed down. For completeness, we include
the pushdown step in the algorithm, although it would be unnec-
essary in most RDBMS implementations.

Predicate Migration Algorithm: To optimize a plan tree, we
push all predicates down as far as possible, and then re-
peatedly apply the Series-Parallel Algorithm Using Parallel
Chains [MS79] to each stream in the tree, until no more progress
can be made.

Upon termination, the Predicate Migration Algorithm pro-
duces a tree in which each stream is well-ordered (i.e. optimally
ordered subject to the precedence constraints). We proceed to
prove that the Predicate Migration Algorithm is guaranteed to
terminate in polynomial time, and we also prove that the result-
ing tree of well-ordered streams represents the optimal choice
of predicate locations for the given plan tree.

Theorem 1 Given any plan tree as input, the Predicate Migra-
tion Algorithm is guaranteed to terminate in polynomial time,

producing a join-order equivalent tree in which each stream is
semantically correct and well-ordered.

Proof. The proof, which appears in [Hel92], has been deleted
due to space constraints. It develops a conservative upper bound
of O(n4 logn) for the algorithm’s running time, where n is the
number of nodes in the plan tree.

Theorem 1 demonstrates that the Predicate Migration Algo-
rithm terminates, and [MS79] assures us that each stream in the
resulting tree is well-ordered. This is not sufficient, however,
to establish the optimality of the algorithm’s output — we must
also prove that the resulting tree of well-ordered streams is a
minimal-cost tree. This is guaranteed by the following:

Theorem 2 For every plan tree T there is a unique join-order
equivalent plan tree T 0 with only semantically correct, well-
ordered streams. Moreover, T 0 is a minimal cost tree that is
join-order equivalent to T and semantically correct.

Proof. Deleted due to space constraints. It appears in full
in [Hel92].

Theorems 1 and 2 demonstrate that the Predicate Migration Al-
gorithm produces our desired minimal-cost interleaving of pred-
icates. As a simple illustration of the efficacy of Predicate Mi-
gration, we go back to Example 2 from the introduction. Figure 2
illustrates plans generated for this query by POSTGRES running
both with and without Predicate Migration. The performance
measurements for the two plans appear in Table 4.

4 Implementation and Further Measurement

The Predicate Migration Algorithm, as well as pruning opti-
mizations described in [Hel92], were implemented in the POST-
GRES next-generation DBMS, which has an optimizer based
on that of System R. The addition of Predicate Migration to
POSTGRES was fairly straightforward, requiring slightly more
than one person-month of programming. The implementation
consists of two files containing a total of about 2000 lines, or
600 statements, of C language code. It should thus be clear that
enhancing an optimizer to support Predicate Migration is a fairly
manageable task.

Given the ease of implementation, and the potential benefits
for both standard SQL and extensible query languages, it is our
belief that Predicate Migration is a worthwhile addition to any
DBMS. To further motivate this, we present two more examples,
which model SQL queries that would be natural to run in most
commercial DBMSs. We simulate an SQL correlated subquery
with a Postquel query language function, since POSTGRES does
not support SQL. As noted above, SQL’s correlated subqueries
and Postquel’s query language functions require the same pro-
cessing to evaluate, namely the execution of a subplan per value.
The only major distinction between our Postquel queries and an
SQL system is that Postquel may return a different number of
duplicate tuples than SQL, since Postquel assigns no semantics
to the duplicates in a query’s output. In our benchmark database
the example queries return no tuples, and hence this issue does
not affect the performance of our examples.

Restrict

Restrict

Scan

Join

Scan

Restrict

an unoptim
ized

 plan stream

rank = −

rank = −

maps

coverage(picture) > 1

channel = 4

outer.week = inner.num

weeks

month = "June"

rank = −0.028

rank = −7.692

Join

Scan

Restrict

outer.week = inner.num

Scan
maps

coverage(picture) > 1

weeks

Restrict

rank = −
month = "June"

Restrict rank = −
channel = 4

rank = −7.692

rank = −0.028

With Predicate MigrationWithout Predicate Migration

Figure 2: Plans For Example 2, With and Without Predicate Migration

Execution Plan Optimization Time Execution time
CPU Elapsed CPU Elapsed

Without Predicate Migration 0.29 sec 0.30 sec 20 min 29.79 sec 21 min 12.98 sec
With Predicate Migration 0.36 sec 0.57 sec 0 min 3.46 sec 0 min 6.75 sec

Table 4: Performance of Plans for Example 2

Example 3. This query finds all technical departments with
either low budgets or an employee over the age of 65. In SQL,
the query is:

SELECT name FROM dept d1
WHERE d1.category = ’tech’
AND (d1.budget < 1000

OR EXISTS (SELECT 1 FROM emp
WHERE emp.dno = d1.dno
AND emp.age > 65));

Since the existential subquery is nested within an OR, the
subquery cannot be converted to a join [PHH92]. To simulate
this query in Postquel, we define a function seniors, which
takes one argument ($1) of type integer, and executes the
Postquel query:

retrieve (x = "t")
where emp.dno = $1 and emp.age > 65

Given this function, the SQL query is simulated by the follow-
ing Postquel query:

retrieve (dept.name)
where dept.category = "tech"

and (dept.budget < 1000
or seniors(dept.dno))

Predicate Migration ensures that the expensive OR clause
containing seniors is applied after the restriction
dept.category = "tech".3 As shown in Table 5, Pred-
icate Migration speeds up execution time by orders of magni-
tude, while affecting optimization time only marginally.

3As an additional optimization, POSTGRES orders the operands
of OR by rank, and quits evaluating the OR expression as soon as any
operand evaluates to true. This issue was left out of the discussion
previously in order to simplify matters. It is a straightforward extension
to the techniques presented here.

Example 4. Our final example uses a subquery and a join to
find the managers of the departments found in the previous
example. The SQL version of the query is:

SELECT dept.name, mgr.name
FROM dept d1, emp mgr
WHERE d1.category = ’tech’

AND d1.dno = mgr.dno
AND (d1.budget < 1000

OR EXISTS (SELECT 1 FROM emp e1
WHERE e1.dno = d1.dno

AND e1.age > 65));

Since this uses the same subquery as the previous example, the
equivalent Postquel query can reuse the function seniors:

retrieve(dept.name, mgr.name) from mgr in emp
where dept.category = "tech"
and dept.dno = mgr.dno
and (dept.budget < 1000

or seniors(dept.dno))

Predicate Migration in this query pulls the expensive OR clause
above the join of dept and emp, resulting in the dramatic
execution speedup shown in Table 6. Once again, the increase
in optimization time is comfortably low.

These examples demonstrate that even for short queries in
standard SQL, the techniques presented in this paper can improve
execution time by orders of magnitude.

5 Conclusions and Future Work

In this paper we highlight the fact that database query opti-
mization has up until now ignored the costs associated with
restriction. We present a framework for measuring these costs,
and we argue the necessity of caching expensive functions in a
DBMS. We develop the Predicate Migration Algorithm, which

Execution Plan Optimization Time Execution time
CPU Elapsed CPU Elapsed

Unoptimized Plan 0.34 sec 0.75 sec 2 min 25.61 sec 2 min 26.32 sec
Optimized Plan 0.34 sec 0.88 sec 0 min 0.06 sec 0 min 0.39 sec

Table 5: Performance of Plans for Example 3

Execution Plan Optimization Time Execution time
CPU Elapsed CPU Elapsed

Unoptimized Plan 0.13 sec 0.42 sec 2 min 24.51 sec 2 min 25.69 sec
Optimized Plan 0.16 sec 0.52 sec 0 min 0.06 sec 0 min 0.39 sec

Table 6: Performance of Plans for Example 4

is proven to transform query plans in a way that optimally inter-
leaves restriction and join predicates. This was implemented in
POSTGRES, and measurements show that Predicate Migration
is a low-overhead optimization that can produce query plans that
run orders of magnitude faster than those produced by systems
without Predicate Migration. This work can be applied not only
to advanced research DBMSs such as POSTGRES, but also to
any DBMS that supports SQL. There are not many additions to
current DBMSs that can produce dramatic performance gains
with modest implementation cost. Predicate Migration is one
such addition.

The optimization schemes in this paper are useful for run-time
re-optimization. That is, if a query is optimized and the resulting
plan is stored for a period of time, the statistics that shaped
the choice of the optimal plan may have changed. Predicate
Migration can be re-applied to the stored plan at runtime with
little difficulty. This may not produce an optimal plan, since the
join orders and methods may no longer be optimal. But it will
optimize the stored plan itself, without incurring the exponential
costs of completely re-optimizing the query. This could be
particularly beneficial for queries with subqueries, since the costs
of the subqueries are likely to change over time.

This paper represents only an initial effort at optimizing
queries with expensive predicates, and there is substantial work
remaining to be done in this area. The first and most impor-
tant question is whether the assumptions of this paper can be
relaxed without making query optimization time unreasonably
slow. The two basic assumptions in the paper are (1) that func-
tion caching is implemented, and (2) that join costs are linear in
the size of the inputs. Without either of these assumptions, there
are no obvious directions to pursue a polynomial-time algorithm
for Predicate Migration. If one does not have function caching,
then our cost model no longer applies, since a restriction func-
tion will be called once for every tuple that flows through its
predicate, rather than once per value of the attributes on which
it is defined. If one does not assume linear join costs, then the
algorithm of [MS79] no longer applies. It would be interesting
to discover whether the problem of Predicate Migration can be
solved in polynomial time in general, or whether the assumptions
made here are in fact crucial to a polynomial-time solution.

The implementation of function caching in POSTGRES has
not been completed. Once that is accomplished, we will be able
to perform more complex experiments than the ones presented
here, which were carefully tailored to produce no duplicate func-
tion calls after pullup. A more comprehensive performance

study could develop a test suite of queries with expensive func-
tions, and compare the performance of the Predicate Migration
Algorithm against more naive predicate pullup heuristics.

It would be interesting to attempt to extend this work to han-
dle queries with common subexpressions and recursion. Pulling
up a restriction from a common subexpression may require du-
plication of the restriction, while in cyclic (i.e. recursive) query
plans it is not even clear what “predicate pullup” means, since
“up” is not well defined.

Finally, our cost analyses for user-defined functions could be
dramatically improved by techniques to more correctly assess
the expected running-time of a function on a given set of inputs.
Particularly, the POSTGRES define function command in-
cludes an implicit assumption that users’ functions will have
complexity that is linear in the size of their data objects. This
simplifying assumption was made to ease implementation, but
it is certainly possible to add curve-fitting algorithms to better
model a function’s running time and complexity.

6 Acknowledgments

Wei Hong was an invaluable resource, providing extensive and
regular feedback on this work. Jeff Naughton’s encouragement,
patience and support helped to bring this project to completion.
Thanks to Mike Olson, Mark Sullivan, and Kurt Brown for their
comments on earlier drafts of this paper. This work could not
have been completed without the assistance, suggestions, and
friendly support of the entire POSTGRES research group.

References
[CGK89] Danette Chimenti, Ruben Gamboa, and Ravi Krishnamurthy.

Towards an Open Architecture for LDL. In Proc. 15th Inter-
national Conference on Very Large Data Bases, Amsterdam,
August 1989.

[D+90] O. Deux et al. The Story of O2 . IEEE Transactions on
Knowledge and Data Engineering, 2(1), March 1990.

[Day87] Umeshwar Dayal. Of Nests and Trees: A Unified Approach
to Processing Queries that Contain Nested Subqueries, Ag-
gregates, and Quantifiers. In Proc. VLDB 87 [Pro87], pages
197–208.

[Han77] Michael Z. Hanani. An Optimal Evaluation of Boolean Ex-
pressions in an Online Query System. Communications of
the ACM, 20(5):344–347, may 1977.

[HCL+90] L.M. Haas, W. Chang, G.M. Lohman, J. McPherson, P.F.
Wilms, G. Lapis, B. Lindsay, H. Pirahesh, M. Carey, and
E. Shekita. Starburst Mid-Flight: As the Dust Clears. IEEE

Transactions on Knowledge and Data Engineering, pages
143–160, March 1990.

[Hel92] Joseph M. Hellerstein. Predicate Migration: Optimizing
Queries With Expensive Predicates. Technical Report Se-
quoia 2000 92/13, University of California, Berkeley, De-
cember 1992.

[HOT88] Wen-Chi Hou, Gultekin Ozsoyoglu, and Baldeao K. Taneja.
Statistical Estimators for Relational Algebra Expressions.
In Proc. 7th ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, pages 276–287, Austin,
March 1988.

[IK84] Toshihide Ibaraki and Tiko Kameda. Optimal Nesting
for Computing N-relational Joins. ACM Transactions on
Database Systems, 9(3):482–502, October 1984.

[ISO91] ISO ANSI. Database Language SQL ISO/IEC 9075:1992,
1991.

[Jhi88] Anant Jhingran. A Performance Study of Query Optimiza-
tion Algorithms on a Database System Supporting Proce-
dures. In Proc. VLDB 88 [Pro88].

[KBZ86] Ravi Krishnamurthy, Haran Boral, and Carlo Zaniolo. Op-
timization of Nonrecursive Queries. In Proc. 12th Interna-
tional Conference on Very Large Data Bases,pages 128–137,
Kyoto, August 1986.

[LDH+87] Guy M. Lohman, Dean Daniels, Laura M. Haas, Ruth
Kistler, and Patricia G. Selinger. Optimization of Nested
Queries in a Distributed Relational Database. In Proc. VLDB
87 [Pro87].

[LNSS93] Richard J. Lipton, Jeffrey F. Naughton, Donovan A. Schnei-
der, and S. Seshadri. Efficient Sampling Strategies for Rela-
tional Database Operations. To appear in Theoretical Com-
puter Science, 1993.

[LS88] C. Lynch and M. Stonebraker.Extended User-Defined Index-
ing with Application to Textual Databases. In Proc. VLDB
88 [Pro88].

[Mos90] Claire Mosher (ed.). The POSTGRES Reference Manual,
Volume 2. Technical Report M90/53, Electronics Research
Laboratory, University of California, Berkeley, July 1990.

[MS79] C. L. Monma and J.B. Sidney. Sequencing with Series-
Parallel Precedence Constraints. Mathematics of Operations
Research, 4:215–224, 1979.

[MS86] D. Maier and J. Stein. Indexing in an Object-Oriented
DBMS. In Klaus R. Dittrich and Umeshwar Dayal, edi-
tors, Proc. Workshop on Object-Oriented Database Systems,
Asilomar, September 1986.

[MS87] D. Maier and J. Stein. Development and Implementation
of an Object-Oriented DBMS. In Bruce Shriver and Pe-
ter Wegner, editors, Research Directions in Object-Oriented
Programming. MIT Press, 1987.

[Ols92] Michael A. Olson. Extending the POSTGRES Database Sys-
tem to Manage Tertiary Storage. Master’s thesis, University
of California, Berkeley, May 1992.

[O’N89] P. O’Neil. Revisiting DBMS Benchmarks. Datamation,
pages 47–54, September 15, 1989.

[ONT92] ONTOS, Inc. ONTOS Object SQL Guide, February 1992.
For the ONTOS DB database, Release 2.2.

[PHH92] Hamid Pirahesh, Joseph M. Hellerstein, and Waqar Hasan.
Extensible/Rule-Based Query Rewrite Optimization in Star-
burst. In Proc. ACM-SIGMOD International Conference on
Management of Data, pages 39–48, San Diego, June 1992.

[Pro87] Proc. 13th International Conference on Very Large Data
Bases, Brighton, September 1987.

[Pro88] Proc. 14th International Conference on Very Large Data
Bases, Los Angeles, August-September 1988.

[RS87] L.A. Rowe and M.R. Stonebraker. The POSTGRES Data
Model. In Proc. VLDB 87 [Pro87], pages 83–96.

[SAC+79] Patricia G. Selinger, M. Astrahan, D. Chamberlin, Ray-
mond Lorie, and T. Price. Access Path Selection in a
Relational Database Management System. In Proc. ACM-
SIGMOD International Conference on Management of Data,
Boston, June 1979.

[SD92] Michael Stonebraker and Jeff Dozier. Sequoia 2000: Large
Capacity Object Servers to Support Global Change Re-
search. Technical Report Sequoia 2000 91/1, University
of California, Berkeley, March 1992.

[SFGM93] Michael Stonebraker, James Frew, Kenn Gardels, and Jeff
Meredith. The Sequoia 2000 Storage Benchmark. In Proc.
ACM-SIGMOD International Conference on Management
of Data, Washington, D.C., May 1993.

[SI92] Arun Swami and Balakrishna R. Iyer. A Polynomial Time
Algorithm for Optimizing Join Queries. Research Report RJ
8812, IBM Almaden Research Center, June 1992.

[Smi56] W. E. Smith. Various Optimizers For Single-Stage Produc-
tion. Naval Res. Logist. Quart., 3:59–66, 1956.

[SR86] M.R. Stonebraker and L.A. Rowe. The Design of POST-
GRES. In Proc. ACM-SIGMOD International Conference
on Management of Data, Washington, D.C., May 1986.

[Sto91] Michael Stonebraker. Managing Persistent Objects in a
Multi-Level Store. In Proc. ACM-SIGMOD International
Conference on Management of Data, pages 2–11, Denver,
June 1991.

[TOB89] C. Turbyfill, C. Orji, and Dina Bitton. AS3AP - A Com-
parative Relational Database Benchmark. In Proc. IEEE
Compcon Spring ’89, February 1989.

[Ull89] Jeffrey D. Ullman. Principles of Database and Knowledge-
Base Systems, volume 2. Computer Science Press, 1989.

[WLH90] K. Wilkinson, P. Lyngbaek, and W. Hasan. The Iris Architec-
ture and Implementation. IEEE Transactions on Knowledge
and Data Engineering, 2(1), March 1990.

