
amdb: An Access Method Debugging Tool

Marcel Kornacker, Mehul Shah, Joseph M. Hellerstein
U. C. Berkeley

fmarcel,mashah,jmhg@cs.berkeley.edu

1 Introduction

The design and tuning of new access methods (AMs) for non-
traditional data types and application areas has always been more
of a black art than a rigorous discipline. The designer can only rely
on intuition to come up with an effective design; its evaluation and
profiling require tedious instrumentation of complex AM code and
a host of hand-written scripts.

To address these issues, we developed amdb, a visual AM “de-
bugging” tool to support the AM design and implementation pro-
cess. It is based on the GiST (Generalized Search Tree, [HNP95])
framework for AM construction, which offers the designer an ab-
stracted view of a tree-structured AM and factors out the mechanical
aspects of an AM implementation, such as tree traversal, concur-
rency control and recovery. Amdb is a visual analysis, debugging
and profiling tool for AMs that are written as extensions of libgist,
a public-domain stand-alone C++ implementation of GiSTs.

2 System Features

Amdb was developed with the entire AM design and implementa-
tion process in mind and supports the designer in three areas:

1. Analysis of the dataset (i.e., the search keys of the data) and
the index tree structure to evaluate the general indexability of
the dataset ([HKP97]) and the effectiveness of the design.

2. Debugging of dynamic tree operations to pinpoint implemen-
tation flaws.

3. Profiling of a defined query workload to measure the level of
end-user performance.

Central to the user interface of amdb is a graphical display of
the tree structure, which greatly contributes to the ease-of-use of
the debugging and analysis functions. To enhance the clarity of the
display, individual subtrees can be collapsed and expanded via a
point-and-click interface.

As an initial step in AM design, the dataset should be evaluated
with regard to the target query workload to determine its degree
of indexability, i.e., whether an AM can succeed in clustering the
data to outperform a sequential scan of the dataset for the particular

queries in the workload. The starting point of an indexability ana-
lysis is a query workload and the materialized result sets (or rather:
enumerations of the set elements) of the workload queries. The
latter reflect the “clustering affinity” of groups of data items and
serve as the actual input to the analysis algorithm. Given this input,
amdb uses a hypergraph partitioning algorithm to cluster the data.
Based on this clustering, statistical indicators are computed that
characterize the indexability of the dataset/workload combination.

The debugging facility of amdb was designed to make the indi-
vidual steps of the insertion, deletion and search operations visible,
so that bugs and shortcomings in the AM implementation can be
easily located and corrected. The debugging operations available
to the user are similar to those found in programming language
debuggers, except that the smallest unit of execution is not a single
line of source code, but a single node-oriented action such as a node
insertion or node traversal. Specifically, the debugging functions
include:

� single-stepping through insertion, deletion and search opera-
tions; as an aid to the user, the progression of each operation
through the tree is visualized by highlighting the traversed
nodes and updating the display in response to node splits and
deletions

� breakpoints on specific tree nodes and/or node events such as
split, deletion and node updates/traversal

� display of the current traversal path from the root; the nodes
on the path from the root are highlighted in the display of the
tree

� display of relevant node-related data (space utilization,fanout,
more advancednode statistics, node contents—the latter with
a user-supplied function)

� a tracing window, where global statistics and statistics on
selected nodes are shown and continuously updated

� batch execution of commands via scripts, in order to restore
the state of an index tree without having to re-execute all the
modifications manually

The analysis functions found in amdb give the designer feedback
on the structural aspects of the index tree that are likely to affect
retrieval performance. Simple statistics such as node utilization,
fanout or average entry size can be computed either for individual
nodes or for user-selected groups of subtrees; in the latter case, the
statistics are displayed visually by coloring the nodes in the tree
display. A visualization of the node contents can also be helpful;
this is displayed in a separate window and requires a user-supplied



display function. More advanced (built-in) analysis functions dis-
play indicators for the quality of the clustering achieved at each
level in the tree and for the quality of the bounding predicates. Ex-
amples for indicators of clustering quality are node cohesiveness
and overlap, both of which can be derived from profiling statistics
and are displayed by coloring the corresponding nodes in the tree
display. Indicators for the quality of bounding predicates are their
storage size and accuracy—how concisely they represent the data
contained in the subtree. They are visualized in a manner similar to
the other indicators.

A central part of the evaluation of a newly designed AM is
profiling and comparison with existing AMs. Amdb facilitates this
by allowing the user to specify batch operations via scripts and
by collecting performance-relevant data during the execution of
tree operations (examples: number of page accesses/reads/writes,
number of aborted tree descents, BP accuracy metrics, etc.). The
accumulated internal counters can be written to files for further
processing or displayed graphically.

3 Implementation

The GUI frontend and tree visualization are implemented in Java
and the GiST algorithms for tree updates and searching are provided
by libgist, which is implemented in C++. The remaining analysis
functions are also written in C++.

4 Demonstration Description

We will demonstrate amdb by going through a comparison of three
tree-structured spatial AMs, namely R*-trees, SS-trees and SR-
trees. Our group initially undertook this comparison as a research
project ([WHL]), but without the help of tools. The goal of the
comparison is to characterize the performance differences between
the AMs and to determine the source of these differences. The AMs
are structurally very similar and we will investigate three aspects
on which they differ: split algorithms, insertion heuristic and rep-
resentation of the bounding predicates. The analysis functions of
amdb show which of these aspects contribute to the performance
differences.

The second part of the demonstration will show how the debug-
ger can be used to track down deficiencesin an AM implementation.
Starting with an R-tree implementation that employs a naive split al-
gorithm, we will single-step through individual insertions and node
splits to show the effect the split algorithm has on the tree structure.
The debugging facility lets the developer examine the effects of
design decisions at a smaller scale than the global statistics do, and
we will use this more focused perspective in our demonstration to
refine the flawed split algorithm.

References

[HKP97] J. Hellerstein, E. Koutsoupias, and C. Papadimitriou. On
the Analysis of Indexing Schemes. In Proceedings of
the Sixteenth ACM SIGACT-SIGMOD-SIGART Sympo-
sium on Principles of Database Systems, Tucson, Ari-
zona, pages 249–256, 1997.

[HNP95] J. Hellerstein, J. Naughton, and A. Pfeffer. General-
ized Search Trees for Database Systems. In Proc. 21st
Int’l Conferenceon Very LargeDatabases (VLDB), pages
562–573, September 1995.

[WHL] S. Wang, J. Hellerstein, and I. Lipkind. Near-Neighbor
Query Performance in Search Trees. Submitted for pub-
lication.


