
CONTROL: Continuous Output and Navigation Technology
with Refinement On-Line

Ron Avnur, Joseph M. Hellerstein, Bruce Lo, Chris Olston, Bhaskaran Raman, Vijayshankar
Raman, Tali Roth, and Kirk Wylie

Department of Electrical Engineering and Computer Sciences

University of California at Berkeley

{ronathan, jmh, brucelo, cao, bhaskar, rshankar, tali, wylie}@cs.berkeley.edu

ABSTRACT
The CONTROL project at U.C. Berkeley has developed
technologies to provide online behavior for data-intensive
applications. Using new query processing algorithms, these
technologies continuously improve estimates and confidence
statistics. In addition, they react to user feedback, thereby giving
the user control over the behavior of long-running operations.
This demonstration displays the modifications to a database
system and the resulting impact on aggregation queries, data
visualization, and GUI widgets. We then compare this interactive
behavior to batch-processing alternatives.

1. INTRODUCTION
Despite significant advances in data processing over the years,
many data-intensive applications still run in �batch" mode: they
require a long period of time to execute, and during that time they
provide neither feedback nor control to the user. This state of
affairs holds in a number of important domains, from the desktop
(e.g. spreadsheets) to the back office (e.g. decision support) to
new high-end applications (e.g. data mining and visualization
tools). In each of these domains, batch processing is frustrating or
even unacceptable for serious users. In order to investigate large
data sets, users require "on-line" behavior: they need to get
meaningful feedback while the system runs, and they need to be
able to act on the feedback by controlling the system while it runs.

The goal of the CONTROL (Continuous Output and Navigation
Technology with Refinement On-Line) project at UC Berkeley is
to develop a set of core technologies for building applications that
provide online behavior, and deploy those technologies in a
variety of applications including database query processing, data

mining, user-interface widgets and data visualization. We will
demonstrate the following three applications of CONTROL:

1. Online Aggregation in a DBMS.

2. Online Data Visualization.

3. Gigantic Adaptive Dataset Graphical Element Tools
(GADGETs)

We show the functionality of these applications by providing user
interfaces that will allow visitors to participate in online queries
and compare them with the batch-like alternatives. Based on this
demonstration, we describe the core technologies that enable the
applications to provide satisfactory online behavior.

In this text, we first discuss the demonstration of our algorithms
for Online Aggregation. We then continue with an explanation of
an Online Data Visualization demonstration, followed by a
description of what we will show for GADGETs. We conclude
briefly with an overview of the demonstration’s theme.

2. ONLINE AGGREGATION IN A DBMS
Aggregation queries in relational database systems often require
scanning and analyzing a significant portion of a database. In
current relational systems such queries have batch behavior,
requiring a long wait. The online version of the same queries
reports a running estimate of the final aggregate in real time,
along with a confidence measure during the processing of the
query. The measure, or "confidence interval", says that with x%
confidence, the current estimate is within an interval of size ε
from the final answer. Reaching a small confidence interval
quickly can allow the user to stop the query and go on to his/her
next task. As a performance measure, online algorithms are
designed to shrink the confidence interval faster while providing
updated estimates at a satisfactory rate. To support this behavior,
we demonstrate a new join algorithm called the Ripple Join [1],
which allows the user to dynamically control the tradeoff between
the rate at which the confidence interval shrinks (accuracy of the
display), and the time between successive estimations
(interactivity of the display). For GROUP BY queries, we would
also like the user to see all the groups decrease their confidence
intervals at similar rates, and also allow the user to control those

rates on the fly. New access methods Index Stride [3] and Online
Permutation [2] provide this desired behavior.

We have implemented an Online Aggregation system by
modifying the internals of Informix Universal Server to include
Online Permutation, Index Stride and Ripple Join. Users at the
demonstration will be able to submit queries and interact with the
results using the Informix Metacube Explorer ROLAP tool which
we have modified to serve as a front-end to our system. We
describe the demonstration of each of these techniques below,
beginning with the Stride algorithms, which are followed by
Ripple Join.

2.1 Index Stride
Index Stride provides a user with simultaneously refining
estimates for each group in a GROUP BY query. Without the
algorithm, the distinct confidence intervals could not be refined
concurrently, and the relative rates for the groups could not be
controlled on the fly.

To understand the behavior of index stride, consider the following
query:

SELECT ONLINE AVG(grade) FROM grades

GROUP BY major;

Index Stride first probes the index to find all the groups (majors).
It then processes tuples from each group in a "round robin"
schedule, improving each major's confidence interval and
updating its running estimate. The user can manipulate the
schedule at which different groups are processed by increasing,
decreasing, or stopping the amount of time spent sampling each
group as results arrive. The demonstration shows Index Stride
and a typical Index Scan side by side to illustrate the improvement
in usability that "even" group distribution provides over serial
scanning. Unlike the Index Scan, Index Stride provides the user
with the ability to choose which groups to favor at any given time.

2.2 Online Permutation
In the previous discussion, an index allows the algorithm to
alternate between groups as tuples are fetched. However, if an
index on the grouping columns does not exist we still desire the
same query behavior. Moreover, the user should still be able to
control the relative rates of groups on the fly. The Online
Permutation algorithm uses a buffer and an auxiliary disk to
permute the unordered tuples of a heap file on the fly, as
described in [2]. The result is a simultaneous refinement of the
different groups' confidence intervals, as if an index existed on the
grouping column. Our demonstration shows the ordering of
tuples in the input relation and how they are permuted to the
desired output order. Like the Index Stride demonstration, we
display how user preference affects the output ordering of tuples,
and compare Online Permutation and Heap Scan to illustrate the
usability improvement, while displaying an Index Stride as a
reference.

2.3 Ripple Join
The traditional goal for join algorithms is to minimize the
completion time. In contrast, the goal of online queries is to
maximize the rate at which the confidence interval decreases. We

have developed a family of Ripple Join algorithms, which
improve the rate at which the confidence interval decreases for
multi-table aggregation queries, and simultaneously provide
updated estimates to the display in a timely fashion.

The central idea of Ripple Join comes from the fact that in order
to generate a new confidence interval, a sample of one input
relation must be fully joined with a sample of another input
relation. To achieve this as quickly as possible, the ripple join
alternates fetching from each of its input relations. When it
fetches a new tuple from one relation, that tuple is combined with
all previously seen tuples from the other relation. The ratio at
which the join fetches from the two relations is critical to
performance, and can be determined and modified dynamically by
observing the statistical properties of the sets of tuples seen so far.
The demonstration will use our implementation of Ripple Join in
IUS to illustrate how Ripple Join reduces the confidence interval
faster than the usual join algorithms, and allows the user to trade
off the rate at which the confidence interval shrinks against the
rate at which the display is updated.

3. ONLINE DATA VISUALIZATION
Visualizing large datasets is problematic because it takes a long
time for all the data to be retrieved for display. Users must wait to
begin interpreting the data until all the tuples have been retrieved
and rendered. Many traditional techniques have batch-like
characteristics. In contrast, Online Data Visualization allows the
user to get intermediate results using density approximations
while the remaining tuples are rendered.

If an R-Tree index exists for the spatial layout of the visualization,
it can be used to provide the user with refining estimates of the
final picture while the data tuples are being retrieved. Each
internal node of the R-Tree provides a set of bounding rectangles
for its child nodes. Rendering the internal nodes therefore gives a
crude map of the dense areas of the visualization. While
processing the tuples of the relation to draw them on the screen,
Online Data Visualization also traverses the R-tree breadth-first to
refine the density estimates. Each subsequent step down the tree
provides a more accurate estimation of the final visualization. We
will display a traditional rendering technique and our density
refining technique side by side to illustrate Online Data
Visualization as the clear usability winner.

4. GIGANTIC ADAPTIVE DATASET
GRAPHICAL ELEMENT TOOLS
(GADGETS)
Data from databases and other data sources is often displayed in
user applications via graphical user interface "widgets".
Unfortunately, these GUI widgets typically do not work for large
data sets. We are developing a Java toolkit of Online GUI
widgets (GADGETS) for use in applications managing massive or
streaming data sources.

GADGETs are able to use the backend technology of online
processing to handle large datasets and respond to the user�s
needs faster and more interactively than normal GUI widgets.
With feedback about what the user wants, a GADGET can show
results before it has all the data; as it receives more data from its
source, it can begin populate itself with the preferred results first.

In addition, GADGETs utilize a more efficient storage method in
order to be able to access the data faster. For our demonstration,
we will build a GADGET that interacts with an online
permutation source and is able to respond to the user browsing
through the data, sorting it according to a certain column, or
jumping to a certain part of the data. As user preference changes,
the GADGET forwards that request to the online data source and
thus begins to favor the desired values.

5. CONCLUSIONS
Batch processing is unattractive because it requires the user to
wait while a large dataset is processed. In addition, the user may
not require the fully accurate result if a "good" estimate is
available much sooner. Online Aggregation, Visualization and
GUI Widgets improve upon batch behavior by sending
intermediate results to the user as soon as possible. By comparing
the batch processing methods to our online algorithms we show
that CONTROL improves the usability of large dataset
processing.

6. ACKNOWLEDGMENTS
We would like to thank Chih-Po Wen and Paul Friedman of
Informix for their help with the development of this software. We
are also grateful to Mike Stonebraker, Cristi Garvey, and Robyn
Chan of Informix for facilitating this work. Our research was
sponsored by a grant from Informix Software Inc., a California
MICRO grant, and a Sloan Foundation Research Fellowship.

7. REFERENCES
[1] Haas, P.J., Hellerstein, J.M. Join Algorithms for Online

Aggregation. Submitted for publication.

[2] Hellerstein, J.M. Online Processing Redux. Data
Engineering Bulletin, September 1997.

[3] Hellerstein, J.M., Haas, P.J., and Wang, H.J. Online
Aggregation. In Proceedings of SIGMOD 1997
(Tucson, AZ, May 1997), ACM Press, 171-182.

