DATA BASE RESEARCH AT BERKELEY

Michael Stonebraker
Department of Electrical Engineering and Computer Science
University of California, Berkeley

1. INTRODUCTION

Data base research at Berkeley can be decom-
posed into four categories. First there is the POSTGRES
project led by Michael Stonebraker, which is building a
next-generation DBMS with novel object management,
knowledge management and time travel capabilities.
Second, Larry Rowe leads the PICASSO project which
is constructing an advanced application development
tool kit for use with POSTGRES and other DBMSs.
Third, there is the XPRS project (eXtended Postgres on
Raid and Sprite) which is led by four Berkeley faculty,
Randy Katz, John Ousterhout, Dave Patterson and
Michael Stonebraker. XPRS is exploring high perfor-
mance /O systems and their efficient utilization by oper-
ating systems and data managers. The last project is one
aimed at improving the reliability of DBMS software by
dealing more effectively with software errors that is also
led by Michael Stonebraker.

In this short paper we summarize work on POST-
GRES, PICASSO, and software reliability and report on
the XPRS work that is relevant to data management.
Moreover, the scope of this paper is limited to the Com-
puter Science Division of the EECS Department. As
such, research efforts at the Lawrence Berkeley Labora-
tory (LBL) and in the School of Business Administration
are not discussed.

2. The POSTGRES PROJECT

The POSTGRES project is focused on building a
next generation DBMS with novel object management,
knowledge management and time travel capabilities.
This system is now operational and consists of about
170,000 lines of code in the language C, and it runs on
DECstation 3100s, SUN 3s, SUN 4s, and Sequent Sym-
metry machines. POSTGRES is available on tape for a
nominal fee or it can be copied electronically from our
Berkeley machine. Information on either distribution
mechanism can be obtained from Claire Mosher, 521
Evans Hall, University of California, Berkeley, Ca.
94720.

In this section we report on projects oriented
toward efficient object management, knowledge manage-
ment and time travel support. Since POSTGRES is now
mostly operational, the project is focusing on improving

the performance of the prototype, finishing the imple-
mentation of promised function, and on integrating ter-
tiary memory into the POSTGRES environment in a
more flexible way.

General POSTGRES information can be obtained
from the following references.

[MOSH90] Mosher, C. (ed.), "The POSTGRES Ref-
erence Manual, Version 2," University of
California, Electronics Research Labora-
tory, Technical Report UCB/ERL
M90-60, Berkeley, Ca., August 1990.

Stonebraker M. and Rowe, L., "The
Design of POSTGRES," Proc. 1986
ACM-SIGMOD Conference on Manage-
ment of Data, Washington, D.C., June
1986.

Stonebraker, M. et. al., "The Implementa-
tion of POSTGRES," IEEE Transactions
on Knowledge and Data Engineering,
March 1990.

[STONS6]

[STON90]

2.1. Object Management

POSTGRES supports a general abstract data type
(ADT) system whereby a user can add new data types on
the fly as well as operators and functions for such data
types. When an operator is defined on a data type, suffi-
cient information is specified by the definer to allow the
POSTGRES optimizer to choose heuristically optimal
plans for queries which include such operators. This
information is not recorded for functions, and the opti-
mizer will not be able to optimize queries including
functions. In addition, fixed and variable length arrays
of abstract data types are allowed, and the query lan-
guage, POSTQUEL has been extended with standard
referencing into arrays. In addition, multiple inheritance
of tables (classes) is supported, and functions that are
defined for specific tables are inherited down the inheri-
tance hierarchy in the standard way.

POSTGRES also supports complex objects by
allowing a field of a table (class) to contain a procedural
(executable) object. The value of the field is then the
result of the procedure execution. We have spent consid-
erable time researching the optimization of procedural

fields. We have investigated algorithms ranging from
executing the procedure in full when needed (complete
materialization) to query rewrite, whereby the definition
of the procedure in POSTQUEL is substituted into the
user query to produce a revised query for subsequent
execution. In addition, we have investigated ¢hehing

of procedures prior to their evaluation being requested
by a user. We have results both from simulation studies
as well as from experiments on implementations of pro-
cedures in POSTGRES. Further details are available in
the following references.

[JHINSS8] Jhingran, A., "A Performance Study of
Query Optimization Algorithms on a
Data Base System Supporting Procedural
Objects," Proc. 1988 VLDB Conference,

Los Angeles, Ca., Sept. 1988.

Jhingran, A., and Stonebraker, M., "Alter-
nates in Complex Object Representation:
A Performance Perspective,” Proc. 1990
IEEE Data Engineering Conference, Los
Angeles, Ca., Feb. 1990.

[JHIN9O]

2.2. Knowledge Management

Extending a DBMS to include knowledge man-
agement support through useprbduction rulesis one
of the main goals of the POSTGRES project. Such a
rules system allows complex integrity constraints to be
supported as well as enabling certain expert systems to
be implemented entirely within the DBMS kernal.
Moreover sophisticated protection and view support can
be easily enabled.

We have explored two different implementations
for rules. The first one is@uery rewritesystem. In this
approach, an incoming user query or update is modified
by the rule system into one or more alternate queries
and/or updates that guarantee that the rules currently
being enforced are satisfied. Hence, support for rules
occurs at a high level in the DBMS directly after parsing
and prior to query optimization.

The major benefit of this implementation com-
pared to an implementation deep in the DBMS kernal is
the reduction in book-keeping compared to lower level
support for rules. Also, we expect this system to outper-
form a lower level implementation when a small number
of rules apply to a large number of tuples.

The second implementation we are exploring is a
tuple level implementation. When an event (retrieval,
insertion, deletion or update) happens to a tuple, a spe-
cial module, theule manager checks for all applicable
rules and activates them. We usée locksandrule stub

recordsto efficiently retrieve all the rules that affect a
given tuple. This rule system should be very efficient
when a large number of rules is present but each one
affects only a small number of tuples.

Our knowledge management research has focused
on several problems. First, we have constructed a gen-
eral purpose algorithm which will support rewriting all
POSTGRES commands. In addition, we have also
focused on adapting the rules system to support more
general view mechanisms than those currently available
in commercial systems. Third, we have worked on mak-
ing the rules system supparrsionsof objects. Fourth,
we are exploring the various rule semantics that can be
implemented within either implementation. Moreover,
we have both implementations running and are design-
ing a benchmark to test performance of them under a
variety of conditions. Sixth, we are investigating higher
level rule notations that can be built on top of this rule
system. Lastly, we are experimenting with various types
of locks, of various granularities, and with different
locking decisions and algorithms. As the best choice for
all these parameters depends on the specific application,
we also plan to design and implementute lock opti-
mizerthat will choose the most efficient locking scheme
for a particular rule.

[STON90] Stonebraker, M. et. al., "On Rules, Proce-
dures, Caching and Views in Data Base
Systems," Proc. 1990 ACM-SIGMOD

Conference on Management of Data,

Atlantic City, N.J., May 1990.

Ong, L. and Goh, J., "A Unified Frame-
work for Version Modeling using Produc-
tion Rules in a Database System," Uni-
versity of California, Electronics
Research Laboratory, Technical Report
UCB/ERL M90-33, April 1990.

[ONG90]

2.3. Time Travel

POSTGRES is ao-overwritedata manager that
keeps the past history of the states of the data base and
supportstime travelqueries on historical data. There-
fore, this research focuses on several indexing tech-
niques to facilitate time travel queries for historical data.
In addition, many of the concepts extend to spatial
access methods in general. The work consists of three
main approaches: (Hegment Indexewhich are useful
for historical data as well as spatial data consisting of
arbitrary multi-dimensional interval data; (Rpp-Sided
Indexes which are multi-way tree-structured indexes
that are not necessarily balanced to support non-uniform
query distributions; (3Mixed-Media Indexeswvhich are

useful for indexing large historical data relations that are
maintained in a temporally partitioned storage architec-
ture. Each of these subjects is briefly described below.

Segment Indexes are tree-structured indexes which
store line segments in leaf and non-leaf nodes. In
essence, the Segment Index concept is to store each seg-
ment in the highest level node such that the extent of the
segment spans (covers) all of the intervals contained
(represented by) its descendant nodes. Using this
approach, long intervals are stored in higher level nodes,
and short intervals in lower level nodes. Our research
has focused on applying this idea to multiway tree struc-
tures such as B-trees and R-trees.

Lop-Sided Indexes are multi-way, tree-structured
indexes which are not necessarily balanced, in order to
support query distributions which are not uniform. Vari-
ous methods of node splitting were developed to control
the evolution of an index so as to maintain its desired
degree ofop-sidedness

Mixed-Media Indexes are indexes which span
magnetic and optical disk media, in order to exploit the
benefits of both, i.e., the high performance of magnetic
disk access times and the low media cost and large
capacity of optical disks. Several methods of migrating
index nodes from magnetic to a write-once read-many
(WORM) optical disk were explored in order to deter-
mine whether such mixed-media indexes may be com-
petitive with other approaches that are maintained
entirely either on magnetic or optical disk.

[KOLO89] Kolovson, C. and Stonebraker, M.
"Indexing Techniques for Historical
Databases,” Proceedings of the 1989
IEEE Conference on Data Engineering,

Los Angeles, Ca., February 1989.

[KOLO90] Kolovson, C. and Stonebraker, M. "Seg-
ment Indexes: Dynamic Indexing Tech-
nigues for Multi-Dimensional Interval
Data," University of California, Electron-
ics Research Laboratory, Technical
Report UCB/ERL M90-55, Berkeley, Ca.,

August 1990.

3. THE PICASSO PROJECT

The PICASSO project consists of three related
efforts. The first is focused on supporting persistence in
programming languages, storing computer programs in
data bases, and on providing easy to use interfaces to
such program data bases. This group has also con-
structed an implementation of persistent CLOS objects
though a shared object hierarchy. On top of persistent

CLOS, the PICASSO programming environment has
been constructed which facilitates building advanced
data base applications. Lastly, a variety of Computer
Integrated Manufacturing (CIM) applications have been
built using this toolkit. We discuss these three research
topics below.

PICASSO is now available for Unix systems
including Sun-3's and Sparcstations, DECStation
3100’s, and Sequent Symmetry machines and uses Franz
Allegro Common Lisp. Information on acquiring the
software should be directed to Claire Mosher, 521 Evans
Hall, University of California, Berkeley, Ca. 94720.
Further information on PICASSO is available in the fol-
lowing document.

Schank, P. et. al., "PICASSO Reference
Manual,” University of California, Elec-
tronics Research Laboratory, Technical
Report UCB/ERL M90-79, July 1990.

[SCHA90]

3.1. Data Base Interfaces for Programming
Environments

We are implementing a shared object hierarchy for
the PICASSO interface Programming system. It is an
extension to the Common Lisp Object System (CLOS)
that allows classes to be declared persistent and shared
(shared classgs The definition of a shared class and all
its instance objects are stored in a POSTGRES database
or in a commercial relational DBMS. We have com-
pleted the implementation of a single-user application
program cache that allows programs to reference private
or shared objects using the same abstractions. Early
experiments indicate that access time for shared objects
in the cache is within 10% of the access time for private
objects.

A typical multi-user environment will execute
applications on workstations connected to a database
server through a network. This architecture leads to the
problem of managing distributed caches. We are cur-
rently experimenting with different concurrency control
algorithms and distributed cache update protocols. A
simulation study is being conducted to determine the rel-
ative performance of these different algorithms and pro-
tocols.

[ROWES87] Rowe, L., "A Shared Object Hierarchy,"
in "Object-Oriented Database Systems,"
(K. Dittrich, et. al. editors), Springer-
Verlag 1987.

[ROWES89] Rowe, L., "Database Representation for

Programs,” Proceedings 1989 ACM

SIGMOD/SIGSOFT Workshop on Soft-
ware CAD Databases, Napa, Ca, Febru-
ary 1989.

3.2. The
Environment

PICASSO Programming

The PICASSO programming environment is a
graphical user interface development environment
(GUIDE). The system consists of an application frame-
work, an interface toolkit, and a visual WYSIWYG
application builder/editor. The PICASSO system is
written in the Common Lisp Object System (CLOS)
extended with persistent objects as noteavalnd uses
the X Window System.

Applications are composed of a collection of
frames, dialogs, and panels. These objects, called
PICASSO objects (PO’sre analogous to procedures in

a conventional programming language because they can

be called with parameters and they can define local vari-
ables. The PICASSO framework supports writing

reusable interface components through libraries of
parameterized PO’s.

The PICASSO toolkit provides a wide variety of

interface abstractions that can be used to create interest-

ing graphical interfaces. In addition to buttons, radio
buttons, check boxes, pull-down and pop-up menus, and
scrolling text widgets, PICASSO provides color graphics
images and drawings, scrolling tables that can contain
heterogeneous data, video widgets that display full-
motion video (from a tape or disk player) in real time,

and hypermedia documents that connect all types of data

together. The toolkit is extensible. Users can easily add
new widgets, new looks for existing widgets, and new
strategies for laying out widgets in an application.

It also contains a browser that allows a user to
visualize the structure of a PICASSO application by dis-
playing a "call graph" of the application. Heuristic algo-
rithms are used to display this graph in a visually pleas-
ing way.

[ROWES0] Rowe, L. et. al., "The PICASSO Applica-
tion Framework," University of Califor-
nia, Electronics Research Laboratory,
Technical Report, UCB/ERL M290-18,

May 1990.

Konstan, J. and Rowe, L., "Developing a
GUIDE using Object-Oriented Program-
ming," University of California, Electron-

[KONS90]

ics Research Laboratory, Technical
Report, UCB/ERL M98-82, October
1990.

[MESS90] Messinger, E. et. al., "A Divide-and-
Conquer Algorithm for the Automatic
Layout of Large Directed Graphs," IEEE
Transactions of Systems, Man, and

Cybernetics, Dec. 1990.

3.3. IC- CIM Data Base Applications

Our IC-CIM suite of applications has been built
using PICASSO connected to a commercial relational
DBMS. It consists of a facility manager tool, a process
flow language and a hypermedia system.

The facility manager displays a 2D schematic
view of an IC fabrication laboratory and allows users to
access other facility and manufacturing information
stored in the DBMS including equipment, utility, and lot
information.

The process flow system allows a user to specify a
complete representation of the operations to manufacture
and test a semiconductor integrated circuit. Both a pro-
cess flow language and an executor for this language
have been constructed. Moreover, complex heuristics
can be coded in the process flow language to automate
actions traditionally performed by hand. Lastly,
dynamic changes to active runs are supported by the
executor. This system has been used to specify the
CMOS process in use at Berkeley Microlab. Further
experimentation and the inclusion of a version control
system are planned.

In order to allow occasional users, such as facility
managers and process engineers, easy access to the CIM
data, we are designing a graphical facility management
tool called CIMTOOL. One unique feature of CIM-
TOOL is that it provides an easy to use user-interface
that allows free mixing of spatial, graphical and numeric
data queries using a novel paradigm for query specifica-
tion. We have recently extended CIMTOOL to include
support for video and audio data, making a very flexible
multimedia database browser. Multimedia data can be
used to train personnel using video instruction and to
integrate non-traditional data types, such as images, with
more traditional information, such as yield data.

[HODG87] Hodges, D. and Rowe, L., "Information
Management for CIM," Proc. Advanced
Research in VLSI, Stanford University,
March 1987.

[SEDA90Q] Sedayao, J. and and Rowe, L., "A Struc-

tured Editor for Process Specification,"”
University of California, Electronics

Research Laboratory, Technical Report,
UCB/ERL M90-48, April 1990.

Hegarty, C. et. al., "The Berkeley Pro-

cess-Flow Language WIP System," Pro-
ceedings 1990 Semiconductor Research
Technical Conference, October, 1990.

[HEGA90]

4. The XPRS PROJECT

XPRS is focused on building a redundant array of
inexpensive disks (RAID), file systems that run on top of
a RAID, distributed RAIDs, and on parallelism that can
be exploited by a data manager in a RAID environment.
We report on these four areas in turn.

4.1. RAID

RAID (Redundant Arrays of Inexpensive Disks)
has been proposed as a new way to organize disk sys-
tems to achieve high bandwidth, high I/O rates, and high
availability for low capacity cost. The project has com-
pleted a first prototype system constructed from off the
shelf components. The hardware consisted of a SUN
4/280 with 128 MBytes of RAM, 4 Jaguar dual SCSI
string host bus adapters, and 32 Imprimis 5.25" syn-
chronous SCSI disk drives. This first prototype is opera-
tional but suffers from bottlenecks in the I/O controllers
as well as high CPU overhead.

Now we are hard at work on RAID II, which will
include a custom designed 1/O controller to alleviate the
bottlenecks. The goal of RAID Il is to support a peak
transfer rate of 100 MB/s and a sustained transfer rate of
40 MB/s. A prototype system, based on 150 3.5" IBM
Lightning disk drives, should be operational by the sum-
mer of 1991.

We have just begun thinking about how to inte-
grate tertiary memory behind a disk array in a memory
hierarchy. Our technology of choice is not optical disk,
but rather helical scan tapes (8mm or 4mm). These have
many of the same desirable features and drawbacks of
small format disks: very high volumetric efficiency (e.g.,

a terabyte in a cubic foot or less) with low cost tape
readers, but slow transfer rates (250 - 500 KBytes per
second). We are investigating methods of implementing
horizontal correction across multiple tapes (i.e., tape
arrays) as well as robotic handling for staging tapes from
shelves to readers. Another area of interest is to embed
application specific compression into the /O system to
perform compression at the system level. The goal is to
improve the severely limited bandwidth rather than
increase an already generous tape capacity. The techni-
cal challenges are how to provide hints from applications
to the 1/O system so that the most effective compression
techniques will be applied as well as how to build index

and directory structures over variable length and com-
pressed data.

Patterson, D. et. al., "A Case for Redun-
dant Arrays of Inexpensive Disks
(RAIDS)," Proc. 1988 ACM-SIGMOD
Conference on Management of Data,
Chicago, lll., June 1988.

Chen, P. et. al., "Performance Evaluation
of a RAID on an Amdahl Mainframe,"
ACM Sigmetrics Conference, Boulder,
Co, May 1990.

Katz, R. et. al., "Disk System Architec-
tures for High Performance Computing,"
Proceedings of the IEEE, December
1989.

[PATTSS]

[CHEN90]

[KATZ89]

4.2. RADD

RAIDs have the desirable property that they sur-
vive disk crashes and require only one extra disk for
each group of G disks. Hence, the space cost of high
availability is modest compared to traditional schemes
which mirror each physical disk at a space cost of 100
percent.

The purpose of this research is to extend the RAID
concept to a distributed computing system. We call the
resulting construct, RADD (Redundant Array of Dis-
tributed Disks). RADDs can support redundant copies of
data across a computer network at the same space cost as
RAIDs do for local data. Such copies increase availabil-
ity in the presence of both temporary and permanent fail-
ures (lisaster$ of single site computer systems as well
as disk failures. As such, RADDs should be considered
as a possible alternative to traditional multiple copy
techniques. Moreover, RADDs are also candidate alter-
natives to high availability schemes suchhag stand-
bys

Our research has focused on identifying the key
issues in the viability of RADDs. All RAID algorithms
work directly in a distributed environment, however dis-
tribution generates its own significant problems. First,
we must consider how to perform updates when the
underlying network is not perfectly reliable. Further-
more, algorithms are needed to deal with an unequal
amount of storage at each site. Next, we must be able to
mix different group sizes on the same network as well as
add or subtract disk storage from a RADD without
requiring global reconstruction. Lastly, we have con-
structed a prototype RADD using our LAN based envi-
ronment of DECstations 3100s, and we are in the pro-
cess of fine-tuning our implementation. Our goal is to

boost performance as well as to experiment with differ-
ent algorithms for parity updates generated in transaction
processing.

[STON90] Stonebraker, M. and Schloss, G., "Dis-
tributed RAID: A New Multicopy Algo-

rithm," Proc. 1990 IEEE Data Engineer-
ing Conference, Los Angeles, Ca., Febru-

ary, 1990.

4.3. File Systems and Transactions in a RAID
Environment

This research focuses on file system allocation
strategies, the performance of the file systems resulting
from these strategies, and providing transaction support
in and on such file systems. We are especially interested
in taking advantage of the presence of an underlying
disk array. The file system design space is divided into
those file systems which allocate disk storage to opti-
mize for writes and those which optimize for sequential
reads. In the first category appear log-structured file
systems which write dirty pages sequentially to disk
blocks, regardless of the previous location of the block.
Since blocks from multiple users may be interspersed on
the disk, then logically sequential reads may not be
physically a sequential. In the second category are
extent-based and large-block based file systems which
guarantee logically sequential reads are physically
sequential.

We have constructed a simulator of several read-
optimized and write-optimized file system allocation
policies and have performed experiments on a wide
range of workloads designed to represent transaction
processing applications, supercomputer applications, and
time sharing environments. Our simulations have shown
that read-optimized file systems do not suffer poor disk
utilization due to internal and external fragmentation.
Moreover, extent-based file systems offer the best I/O
performance over a wide variety of workloads. We
expect to implement one or more of these strategies in a
real file system and compare measured results with those
from our simulation.

We have also studied the performance of transac-
tion systems in a read-optimized and write-optimized
environment. We have focused both on transaction man-
agement implemented inside the file system using physi-
cal locking and logging and on transaction support by
DBMS software outside the file system using logical
logging. Our simulations indicate that the transaction
support inside a write-optimized file system appears to
be performance competitive with a DBMS implementa-
tion, especially in workloads with small transactions.

We expect to add transaction support to both kinds of file
systems and compare their performance and ease of
implementation. We expect to also compare actual per-
formance with our earlier simulations.

[SELT90] Seltzer, M., Stonebraker, M., "Transac-
tion Support in Read Optimized and
Write Optimized File Systems,” Proc.
1990 VLDB Conference, Brisbane, Aus-

tralia, August, 1990.

Seltzer, M., Stonebraker, M., "Read Opti-
mized File Systems: A Performance Eval-
uation”, Proc. 1991 IEEE Data Engineer-
ing Conference, Kobe, Japan, April 1991.

[SELT91]

4.4, Parallelism in XPRS

Our objectives for XPRS are to achieve near-linear
query speedup in a shared memory multiprocessor com-
puter system containing a RAID. In addition, we are
focused on problems with load balance and intelligent
management of resources in a multi-user environment.
There are two specific problems that we are trying to
solve: optimization and scheduling. The search space of
sequential query processing plans is small enough that
conventional query optimizers can perform an exhaus-
tive search. However, it is too expensive to do an
exhaustive search in the space of all the possible parallel
query processing plans in a multi-user environment. Our
strategy to overcome the complexity is to divide the opti-
mization into two phases: the first phase is a conven-
tional query optimization that finds a best sequential
plan, and the second phase finds the best parallelization
of the best sequential sequential plan. We fix a buffer
size in the first phase and then dynamically adjust the
plan in the second phase according to the current avail-
able buffer size.

The problem of scheduling is the contention of
resources among the parallel queries. The main
resources that we are considering are CPU cycles, disk
bandwidth and main-memory buffer space. Too little
parallelism will under-utilize the resources while too
much parallelism will make the machine saturate and
thrash. We are designing and evaluating scheduling
algorithms that will choose the optimal degrees and opti-
mal forms of parallelism.

In the past year, we have implemented the parallel
query optimizer and executor for XPRS. Our initial per-
formance results show that the system does achieve near-
linear speedup. Our experiments also show that our two-
phase optimization strategy does not compromise opti-
mality of parallel plans in most cases. More studies on
the scheduling problem are under way.

[HONG90] Hong, W. and Stonebraker, M., "Parallel
Query Processing in XPRS," University
of California, Electronics Research Labo-
ratory, Technical Report, UCB/ERL
M90-47, May 1990.

5. SOFTWARE ERRORS

Software errors (and not hardware failures) are
becoming the dominant cause of data base unavailability.
Therefore, we have focused on mechanisms to improve
the availability of data in the presence of such errors.

Our approach has been to extend the operating
system to allow a DBMS to write-protect (or guard)
important shared data structures like the lock table,
buffer pool, and buffer pool meta-data. Because DBMS
software must explicitly unguard data when access is
required, errors caused by uninitialized pointers or array
bounds overruns will be prevented from propagating
damage to these structures.

With a copy-on-write style of update, guarding
limits error propagation as well. When a transaction first
tries to write a record, the DBMS copies the record into
a writable memory area. At the end of transaction, a
system call copies the changes into write-protected
memory. If a corrupted transaction detects its error
before end of transaction, shared data is never unpro-
tected and never modified. Deferring updates also
restricts the number of modules which are permitted to
unprotect memory and reduces system call overhead.

We are currently evaluating the performance and
reliability of guarding. Initial performance measure-
ments show guarding and deferred update cause two to
four percent degradation when records are small (less
than 1K bytes). For reliability estimation, we used fail-
ure data from commercial programs to develop a model
of software errors. By seeding errors into POSTGRES
according to the model, we can observe changes to the
error detection and propagation rate due to guarding.

[SULL90] Sullivan, M., "Improving Software Fault
Tolerance in Highly Available Systems,"
University of California, Electronics
Research Laboratory, Technical Report,
UCB/ERL M90-11, February 1990.

