
Abstract: Decision support systems (DSS) and data ware-
housing workloads comprise an increasing fraction of the data-
base market today. I/O capacity and associated processing
requirements for DSS workloads are increasing at a rapid rate,
doubling roughly every nine to twelve months [38]. In
response to this increasing storage and computational demand,
we present a computer architecture for decision support data-
base servers that utilizes "intelligent" disks (IDISKs). IDISKs
utilize low-cost embedded general-purpose processing, main
memory, and high-speed serial communication links on each
disk. IDISKs are connected to each other via these serial links
and high-speed crossbar switches, overcoming the I/O bus bot-
tleneck of conventional systems. By off-loading computation
from expensive desktop processors, IDISK systems may
improve cost-performance. More importantly, the IDISK
architecture allows the processing of the system to scale with
increasing storage demand.

1 Introduction

Microsoft Research’s Dr. Philip Bernstein estimates that
decision support systems (DSS) account for about 35%
of database servers [10]. The size and computational
requirements of these DSS systems are growing at a
rapid rate [38] [56] due to numerous factors:

1. More detailed information being saved in each
record, such as all of the items in a shopping cart at a
retail store;

2. Companies expanding the length of the history they
examine (e.g., three years versus six months) to
make better decisions;

3. More people wanting access to the historical sys-
tems, increasing the number of queries to the DSS.

In addition, when mergers occur, the decision support
system of one company must quickly grow to accom-
modate the historical record of the other; i.e., mergers
lead to fewer, larger decision support systems with a
larger number of users.

According to Dr. Greg Papadopoulos, chief technical
officer at Sun Microsystems Computer Company, the

demand for decision support doubles every 9 to 12
months, making its growth faster than both the growth
rate of disk capacity (2X in 18 months) and the growth
rate of processor performance (2X in 18 months) [38].
This suggests a demand for server designs that can scale
processor performance and the number of disks far
beyond the evolutionary path of today’s server systems.

Results from the 1997 and 1998 Winter Very Large
Database (VLDB) surveys illustrate these phenomenal
growth trends [57] [56]. The Sears, Roebuck, and Co.
DSS database, the largest Unix-based DSS database
reported in 1998, grew more than 350% in the last year
from 1.3 TB to 4.6 TB. As part of this growth, Sears
added 550% more rows, for a total of 33 billion in 1998.
Wal-Mart’s DSS database, the largest Unix-based DSS
database reported in 1997, nearly doubled in size from
2.4 TB to 4.4 TB in 1998. The number of rows
increased 150% from 20 billion to 50 billion. Unfortu-
nately, it is not clear that server designs will scale
accordingly [56]: “Wal-Mart says that a major obstacle
to its VLDB plans is that hardware vendors can barely
keep up with its growth!”

Shared-nothing clusters comprised of workstations, PCs
or symmetric multiprocessors (SMPs) are commonly
used as decision support server architectures. The chief
strengths of clusters are their incremental scalability and
the high performance afforded by developments in par-
allel shared-nothing database algorithms. However,
shared-nothing clusters have several weaknesses,
including the I/O bus bottleneck of their nodes, the chal-
lenge of distributed system administration, packaging
inefficiencies, and the unsuitability of desktop micro-
processors for database applications.

This paper presents a vision of an alternative approach
to scalable decision support: replacing the standard
nodes in a cluster server with “intelligent” disks
(“IDISKs”), where each IDISK is a hard disk containing
an embedded processor, tens to hundreds of megabytes
of memory, and gigabit per second network links. Links

A Case for Intelligent Disks (IDISKs)

Kimberly Keeton, David A. Patterson and Joseph M. Hellerstein

Computer Science Division
University of California at Berkeley

387 Soda Hall #1776
Berkeley, CA 94720-1776

{kkeeton,patterson,jmh}@cs.berkeley.edu

from each disk are connected via switches so that
IDISKs can simultaneously communicate with each
other at full link bandwidth.

An IDISK-based architecture offers several potential
price and performance advantages over traditional
server architectures. By off-loading computation from
expensive central desktop processors to inexpensive
embedded disk processors and by leveraging the cabine-
try, cooling and power supplies already needed for the
disks, IDISK systems may cost much less than conven-
tional systems. IDISK pushes computation closer to the
data, thus providing a potential reduction in data move-
ment through the I/O subsystem. The IDISK architec-
ture allows the processing of the system to scale with
increasing storage demand. Finally, by using a switch-
based interconnect between IDISKs, this architecture
provides a truly scalable I/O subsystem, overcoming the
I/O bus bottleneck of conventional bus-based systems.

This architecture is motivated by trends in several com-
puter architecture fields. First, hard disks are being
designed with an increasing amount of general purpose
processing and memory on-board. Second, embedded
processors possess increasing computational capability,
and are available at a fraction of the cost and power dis-
sipation of desktop processors. Third, switch-based
interconnects and advances in high-speed serial commu-
nication mean that high bandwidth does not require
physical proximity: processors 10 meters apart can com-
municate as quickly as those communicating over a
bus.

Intelligent disk processing for database workloads is not
a new idea. Database machines, an active area of
research in the 1970s and early 1980s, typically
included a central host processor plus intelligent disk
processing in the form of a processor per head, track or
disk or a multiprocessor disk cache arrangement. These
systems fell out of favor in the late 1980s and 1990s
because their modest performance did not justify the
high cost of special-purpose hardware. However, the
increasing demands of DSS workloads, the commoditi-
zation of more intelligent disk subsystems, processor
and communication technology trends, and advances in
database algorithms suggest that it is now time to re-
examine intelligent disk processing.

This paper explores the IDISK vision, rather than the
performance of a real system. To set the stage for IDISK
we first review the strengths and weaknesses of today’s
servers in Section 2. Section 3 presents the technologi-
cal trends that lead to the IDISK hardware and software
architecture described in Section 4. Since IDISK is rem-

iniscent of past database machines, Section 5 then
reviews the successes and failures of these machines
and suggests which might apply to IDISK. Section 6
presents the open issues in IDISK, followed by a brief
conclusion.

2 Strengths and Weakness of DSS Clusters

Large-scale decision support systems typically employ
shared-nothing clusters of workstations, PCs or SMPs.
While this hardware architecture possesses strengths
that facilitate the development and execution of data-
base software, the architecture also presents several
weaknesses. This section discusses these architectural
strengths and weaknesses.

The main advantage of cluster organizations is their
incremental scalability: machines can easily be added
or subtracted as needed by the application. Another
advantage of clusters is the high performance afforded
by developments in parallel shared-nothing database
algorithms. One such example is Berkeley’s NOWSort,
a shared-nothing sort implemented on a cluster of
UltraSparc workstations, which currently holds the
MinuteSort record for sorting 8.4 GB in a minute [7]. A
final strength is that clusters today leverage the hard-
ware development investment in the desktop, thus using
processors, memory, and disks without paying for sepa-
rate development costs.

We see four weaknesses in cluster architectures:

1. The I/O bus bottleneck

2. System administration challenges

3. Packaging and cost difficulties

4. Inefficiency of desktop microprocessors for database
applications

We explore these weaknesses further below.

The first weakness of shared-nothing clusters is I/O bus-
ses. Clusters often utilize commodity desktop machines
such as workstations or PCs as building blocks, which
employ standard processor I/O busses, such as S-bus or
PCI. Unfortunately, the performance of these I/O bus
standards is limited by the rate of committee decision-
making, rather than the rate of technological improve-
ments. As a result, the increase in bus bandwidth is typi-
cally much slower than the increase in bandwidth
provided by high-performance disk and network periph-
erals. For example, transfer rates of disks improve at
40% per year, suggesting about a 40 MB/sec transfer
rate in 2000. It is not clear that I/O bus performance

will keep up.

The limitations of current I/O busses become even more
evident when we consider that both disk and network
peripherals must simultaneously use an I/O bus to trans-
fer data. The I/O subsystem of some workstations is
quickly saturated by just a few high-performance disks
and network communication for cluster-based database
applications [6].

The second weakness of clusters is the high cost of clus-
ter system administration. Managing the distributed
resources of a cluster typically involves performing
diagnostic and maintenance operations for each individ-
ual node in the cluster. Unfortunately, few tools exist to
automate these diagnostic and maintenance tasks at the
database level [20] and at the operating system level
[42]. As a result, cluster system administration typically
requires human supervision, which drives up the associ-
ated costs [5]. The annual personnel costs can be three
times the cost of the disks.

The third cluster weakness is that cluster packaging is
often inefficient and expensive. Because clusters rely on
more cost-effective commodity building blocks, they
must deal with the tower or “pizza box” packaging that
houses the processor, memory, and I/O peripherals of
these commodity machines. When assembling a large
number of such nodes, these packaging configurations
occupy significant space and are not nearly as efficient
as rack-mountable systems. Commodity desktop proces-
sors also have high power requirements, which
increases the cost of cooling and power supplies.

A final weakness of clusters is the ineffectiveness of
desktop processors for database workloads. The design
of a desktop microprocessor requires significant design

effort and capital outlay, so a company needs the vol-
ume sales of the desktop to justify the expense. Unfor-
tunately, architectural innovations that aid floating point
and desktop integer programs, such as multilevel
caches, multiple instruction issues per cycle, branch pre-
diction and out-of-order execution [23], are generally
less helpful for databases [26] [15] [41] [31]. For exam-
ple, despite a theoretical peak of 3.0 instructions exe-
cuted per clock cycle, the Pentium Pro executes on
average only 0.74 instructions per clock cycle for the
scan and aggregate operations defined in TPC-D query
1 [25]. Transaction processing performance is even
worse: the Pentium Pro executes on average only 0.29
instructions per clock cycle for a TPC-C-like workload
[26].

The complexity of desktop processor innovations results
in increased die size, power requirements, cost, and
price, yet yields little improvement in integer perfor-
mance over much simpler embedded processor
designs. Table 1 shows the characteristics of desktop
microprocessors versus several embedded microproces-
sors. Larger die size, power, cost and price of desktop
chips may be justified for SPECfp95, but using
SPECint95 or Dhrystone we see a much smaller differ-
ence. Furthermore, although desktop performance gen-
erally increases at roughly 60% per year, experts
estimate that desktop performance for transaction pro-
cessing workloads stays constant at roughly 70 to 100
MIPS [19]. Thus we see cost/power/price differences
of factors of 5 to 20 yielding integer performance differ-
ences of 1.5X to 2X. While it makes economic sense to
use desktop processors in clusters, we see that they are
not well-suited to database workloads.

Figure 1 shows the configuration of a high-end cluster-
based decision support server used for the 1 TB TPC-D

Processor Digital SA-110 MIPS R5000
MIPS R5400

(NEC VR 5464) MIPS R10000 Intel Pentium II

Class Embedded Embedded Embedded Desktop Desktop

Clock rate 233 MHz 200 MHz 250 MHz 200 MHz 300 MHz

Cache size (I / D) 16 K / 16 K 32 K / 32 K / 512 K 32 K / 32 K 32 K / 32 K / 4 M 16 K / 16 K / 512 K

IC process 0.35 µm 3 M 0.35 µm 3 M 0.25 µm 3 M 0.35 µm 4 M 0.28 µm 4 M

Die size 50 mm2 84 mm2 47 mm2 298 mm2 203 mm2

SPEC95 base (int/fp) n/a 4.7/4.7 10/4.5 (est) 10.7/17.4 11.6/6.8

Dhrystone 268 MIPS 260 MIPS 519 MIPS 203 MIPS 500 MIPS (est)

Power 0.36 W 10 W 4.4 W 30 W 30 W

Est. mfr’s cost $18 $25 $25 $160 $90

Price $49 $325 $95 $3000 $1981

TABLE 1. 1997-98 Comparison of Embedded and Desktop Processors. [34] [35] [52]

benchmark [51]. The NCR WorldMark cluster is fully
configured with 32 nodes, where each node contains a
four-processor PentiumPro SMP, 1 GB of main memory
and a disk array containing 41 disks [36]. NCR adds
value by repackaging these commodity parts more effi-
ciently, and including their proprietary interconnect, the
BYNET switched network. This server contains a hier-
archy of busses and networks to connect disks to proces-
sors, which not only add cost to system, but also serve
as potential bottlenecks.

Table 2 shows the hardware prices for this WorldMark
configuration. The repackaging and proprietary inter-
connect provided by NCR prove to be quite costly.
Note that the processors, main memory, boards and
enclosures cost over $5M. The disk I/O subsystem,
including the disks, controllers, and disk enclosures,
costs nearly $3M.

Given these characteristics of clusters, performance
analysis experts suggest that configuring a system for
decision support databases typically involves:

1. Putting the maximum number of processors in a box
to amortize the cost of the enclosures;

2. Putting the maximum amount of memory into the
box to get maximum memory bandwidth and to
avoid going to disk, thereby avoiding I/O bus bottle-
necks;

3. Attaching as many disks as needed for capacity and
trying to spread data over multiple disks to quickly
load information into memory.

Decision support databases on architectures configured
to follow this advice are normally CPU bound, and the
disks are typically not very busy [21].

We found this observation surprising: we thought that
the data-intensive nature of decision support would
translate into an I/O-bound system, rather than a CPU-
bound system. Given that a significant fraction of the
cost of such a configuration is the disk subsystem, we
should be able to construct a system with sufficient pro-
cessing and communication bandwidth so that the per-
formance limit is also the disks.

3 Technological Trends

We see five trends that make IDISK viable:

1. Commodity disks include embedded processors and
memory.

2. Embedded CPUs have much lower costs, with inte-
ger performance within 2X that of desktop CPUs.

3. Disks are beginning to include high speed serial
links.

4. High speed links and switches are economical.

5. Integrated devices combining embedded processors,
memories, and serial lines are being developed that
match the requirements of disk manufacturers.

In this section, we explore these trends further. For a
more detailed discussion of processor, memory, net-
work, and disk trends, see [39].

The first trend is increased disk-resident processing and
memory. Moore’s Law says the number of transistors
per chip will double every 1.5 years and transistor speed
is improving at about 1.3X per year. In light of these
advances, disk manufacturers are increasingly using
embedded processors to perform tasks previously done
in special-purpose hardware. Using software for fea-
tures such as servo control, error correction calculation,
and SCSI command processing gives them flexibility
and reuse in disk development. Power budgets for such
processors inside the disk assembly are on the order of 2
watts [32]. The low power consumption of embedded

CPUs, DRAM, enclosures,
boards, power.

$5,360k

Disks, controllers $2,164k

Disk enclosures $674k

Cables $126k

Console $16k

Hardware total $8,340k

TABLE 2. NCR WorldMark Price Breakdown.

FIGURE 1. Typical High-End Decision Support Server
Computer Architecture: NCR WorldMark. This cluster
has 32 nodes, each with four processors and 1 GB
memory and 41 disks. This system uses a total of 128
processors, 32 GB of memory, and 1312 disks for a 1 TB
TPC-D configuration [36].

…

BYNET switched network

…

… …

bus bridge

…
…

1

… …
s
c
s
i

…
…

bus bridge

64

Bus

bridge

Proc

Mem

1

ProcProcProc Mem
Bus

bridge

Proc

32

ProcProcProc

s
c
s
i

s
c
s
i

s
c
s
i

s
c
s
i

s
c
s
i

Mem Mem

pci pci

processors allows the combined disk and processor to
remain well within the allotted power budget.

In addition to on-disk processing, disk manufacturers
are including more and more memory on disk. For
instance, the Seagate Cheetah hard drive includes 1 MB
of track buffer memory. Seagate also offers the option
of increasing the track buffer memory to 4 MB, for an
additional fee [44]. By the year 2001, experts at Seagate
estimate that a high-end disk drive will have 100 MIPS
to 200 MIPS in processing, plus up to 64 MB of mem-
ory provided by one or two high-density memory chips
[4].

A second trend that supports IDISK is the cost-perfor-
mance of embedded processors versus desktop proces-
sors. As mentioned above, given the highly competitive
desktop environment, designers are willing to make
trade-offs that raise the costs by factors of 5 to 10, while
improving integer performance by less than factors of 2.
Embedded designs provide integer performance within
2X that of desktop designs, at a fraction of the cost and
power.

A third technology trend is that disk manufacturers are
moving away from busses to fast serial lines, such as
Fibre Channel Arbitrated Loop (FC-AL) and Serial
Storage Architectures (SSA). In addition, Intel recently
announced their plans to use a Gbit/sec serial bus as a
follow-on to 64-bit, 66 MHz PCI busses [13]. The
inclusion of fast serial line technology and serial cables
in mainstream disks makes IDISK more plausible. Giga-
bit per second serial lines imply that a few pins can sup-
ply substantial bandwidth. A state-of-the-art serial line
today operates at 4 to 5 Gbit/sec [16] [58]. To put these
bandwidths into perspective, today’s peak PCI bus
bandwidth (32-bit wide, 33 MHz) is 1.1 Gbit per sec-
ond. Hence, moving from busses to point-to-point con-
nections can offer tremendous bandwidth increases as
well as pin efficiency.

Serial lines provide a unique opportunity for IDISK that
is not mirrored for conventional cluster building blocks.
The problem is that workstations, PCs, and SMPs are
not designed to have anything on their proprietary mem-
ory interconnect but a fixed number of processors,
memory modules, and bridges to standard I/O busses.
These devices must be few in number and carefully
designed to match the speed demands, to maintain the
symmetry of uniform latency to memory or I/O devices.
As long as these commodity building blocks are con-
structed from many chips connected over short dis-
tances via proprietary interfaces, optional peripherals,
such as the network, will likely be connected via the I/O

bus.

Switch designers are also taking advantage of the tran-
sistor density and speed growth trends of Moore’s Law
to build switches on a single chip. One example of a
state-of-the-art nonblocking, fully connected switch
comes from AMCC [3]. This single-chip, 32 x 32 port
switch has links that operate at 1.5 Gbit/sec. Since it is a
single chip, the price is about $400 [3]. Such switches
can be cascaded together in various topologies to pro-
vide the desired bandwidth and connectivity [14].

Fitting sufficient logic into the constrained space and
power budgets of commodity disks has proven to be a
challenge for disk manufacturers. Fortunately, there are
products and research projects looking at integrating
several components into a single chip--processor,
DRAM, and even networks--thereby reducing some of
these latencies and vastly increasing the bandwidth [40]
[46]. One example project is Berkeley’s IRAM, or
“intelligent RAM,” project [40]. Such integration
reduces memory latency by factors of 5 to 10 and
increases memory bandwidth by factors of 25 to 50 [40].
This integration is also important to meet the power and
size restrictions of the disk assembly, since integration
of several chips reduces size and also reduces power by
avoiding the driving of the pins to send signals off chip.

4 The Intelligent Disk Architecture

Given the background of the prior sections, we can now
describe the hardware parameters and software model
for the IDISK architecture.

4.1 Hardware Architecture

Figure 2 shows the IDISK architecture. The standard
nodes in a conventional shared-nothing cluster decision
support database server are replaced with IDISKs. Each
IDISK has an embedded processor, memory, and giga-
bit per second serial links. IDISKs communicate with
each other using these serial lines, which are connected
via high-speed non-blocking crossbar switches.

The goal of IDISK is to leverage the increasing integra-
tion of processing, memory, and high-speed communi-
cation on the actual disk. The associated physical
restrictions impact the speed of the processor and the
size of memory. An IDISK processor will have about
half the performance of a central desktop processor, and
its memory might be limited to about 32 MB to 64 MB
in the year 2000 time frame. Thus with hundreds of
disks there are gigabytes of memory, but the memory is
distributed. Each node could have up to eight 2 gigabit/

sec links. Depending on the bandwidth desired, such
links can be connected in topologies that range from
point-to-point rings to fully interconnected switches,
with many possible compromises between these two
extremes. Applications requiring low bandwidth could
use some of these serial lines for redundancy.

Since the disk must already have a power supply, enclo-
sure, and cabling to the outside world, an IDISK system
could be made available at little extra cost over a con-
ventional disk subsystem. Even including the extra cost
of the crossbar switches, it is possible to imagine the
extra cost of an IDISK system to be on the order of 10%
of the cost of a traditional disk subsystem.

While the IDISK architecture is similar in some ways to
a traditional cluster, IDISK also exhibits several key dif-
ferences. First, the memory capacity on a single IDISK
is limited, due to the strict power and area budget of the
disk. IDISK memory capacity may be as much as 5X to
10X smaller than the capacity of a cluster workstation,
PC, or SMP. This constraint presents research chal-
lenges in designing memory-conscious algorithms, as
described in Section 6.

Second, IDISK’s ratios between computation power,
memory capacity, disk bandwidth, and network band-
width are more fixed than those of the traditional cluster
building block. IDISK’s one-to-one mapping between
disks and processors and memory capacity limits
present fewer node configuration options than the
options provided by traditional cluster building blocks,
which have a lower degree of system integration.

While the IDISK architecture presents several research
challenges, it also solves several of the shortcomings of
traditional cluster architectures. First, by integrating the
processor with the disk, the issue of limited I/O bus
bandwidth is sidestepped, provided that the processor’s

I/O interface can keep up with the bandwidth require-
ments of a single disk and the high-speed network. By
using a switch-based interconnect between IDISKs, this
architecture provides a truly scalable I/O subsystem.

Second, IDISK systems may cost less than conventional
cluster systems, for several reasons. One cost reduction
comes from off-loading computation from expensive
desktop processors to less expensive embedded disk
processors. Since computation and communication are
directly integrated into the disk, the bulky packaging of
conventional cluster building blocks can be eliminated.
An IDISK system can then be built in roughly the same
floor space and with the same amount of cabinetry as a
conventional disk subsystem. Additionally, an IDISK
architecture will require only marginally greater power
and cooling budgets than conventional disk systems,
which are far less than the power-hungry behavior of
central processing in conventional cluster systems.

Finally, by using one or more of the IDISK processors
as an interface processor, the IDISK cluster can be con-
figured to look like a traditional disk array externally.
This configuration allows it to be administered with the
same ease as a traditional centralized SMP-based sys-
tem, rather than the difficulty of a distributed cluster.

In addition to solving cluster challenges, IDISK also
provides several unique opportunities. First, through
the one-to-one coupling of processors and disks, the
IDISK architecture allows the processing of the system
to scale with increasing storage demand. Since each
IDISK also contains a high-speed network interface, the
communication bandwidth of the system grows, as well.
Adding another IDISK to the system automatically adds
processing and communication bandwidth to help
address the explosive growth in decision support data
capacity and associated processing and communication
requirements.

Second, by locating processing closer to the disk, IDISK
gives the opportunity for closer coupling between appli-
cation software and on-disk scheduling and physical
resource management. For instance, by understanding
the physical layout of data and the location of the disk
head, an IDISK processor could reorder a series of
IDISK requests to minimize the number of costly ran-
dom seek operations, thus improving disk performance.

Perhaps the easiest way to think about the IDISK archi-
tecture shown in Figure 2 is as the next step in the life
cycle of clusters for data-intensive applications. Eco-
nomic and packaging arguments suggest that IDISK
will eventually be the cluster building block for these
applications. However, until a single IDISK possesses

FIGURE 2. IDISK Architecture.

…

cross bar

…

cross bar

… …

…

IRAM

IRAM IRAM

IRAM

…

cross bar

… …

…

IRAM

IRAM IRAM

IRAM

enough computation and memory capacity to run arbi-
trary database applications, we envision a more evolu-
tionary design. Figure 3 illustrates this evolutionary
IDISK architecture. Although IDISK trades inexpen-
sive IDISK processing for expensive central processing,
the evolutionary design retains centralized processing to
simplify the programming model, accept and optimize
user queries, and assist in executing queries too complex
for IDISK alone. To reduce price, evolutionary IDISK
servers may incorporate inexpensive lower-end PCs or
SMPs for the centralized resources, with few CPUs and
less memory.

4.2 Software Architecture

The goal of IDISK is to move data-intensive processing
closer to the data. We see four main software architec-
ture options, where each option seems well-suited for a
particular IDISK architecture:

1. Run a complete shared-nothing database server and
operating system on each disk processor.

Given the commercial and research experience with
shared-nothing databases, this well-understood
model seems suited to the IDISK architecture shown
in Figure 2. The disadvantage is that it takes up a
non-trivial amount of the precious DRAM inside
each disk to contain copies of whole operating sys-
tems and database code. At 32 MB to 64 MB per
IDISK in 2000, this could sacrifice performance.
However, as computational and memory capacity
per IDISK grow, this approach seems the most desir-
able for the cluster-based IDISK architecture.

2. Run only a library of functions specified by the disk
manufacturer on the disk processor.

In this alternative, the database would be executed
entirely on the centralized front end node of an evo-
lutionary IDISK design, as shown in Figure 3. A
small library would contain the functions needed to
turn record accesses into physical disk addresses.
This library might also perform low-level optimiza-
tions, such as scheduling of accesses to minimize
costly seek operations. The chief advantage of this
approach is that it would entail minimal changes to
database software. However, this alternative pro-
vides only a small evolutionary step beyond the
interface that disks offer today; it is not clear that this
approach would take advantage of the available on-
disk processing capabilities.

3. Run all of the database storage/data manager and a
reduced operating system on each disk node.

Similarly to the previous alternative, the remaining
database functionality would be executed on a cen-
tralized front end node, as shown in Figure 3. This
approach would reduce the memory costs, simplify-
ing both the database code and hopefully the operat-
ing system to be run on the IDISK. An advantage of
this approach is that the interface between the stor-
age/data manager and the rest of the database is rea-
sonably clearly defined. However, this tuple-based
interface may be too low-level to allow considerable
functionality to be implemented on-disk.

4. Run a reduced operating system and relational oper-
ators, such as scan, sort, and join, on the disk proces-
sor.

As in the previous two alternatives, the remaining
database functionality would be executed on the
front end. This approach would keep memory costs
low, yet allow considerable data-intensive function-
ality to be implemented on disk. The research chal-
lenge to this approach is to define a general-purpose
interface to allow primitive operations to be down-
loaded to and executed on the IDISK processor.
From our perspective, this option is the most desir-
able for the evolutionary IDISK architecture.

Initial reactions to our proposal have been mixed, with
some industrial database experts suggesting that IDISK
can succeed only if it requires minimal changes to exist-
ing database software. This outlook inverts the historic
roles of hardware and software, implying that hardware
is now flexible and easy to change, while software is
now brittle and hard to change.

We think it is unwise to accept such restrictions, for sev-

FIGURE 3. Evolutionary IDISK Architecture.

…

…

Mem
XbarProcProcProcProc

sEnet

…

cross bar

… …

…

IRAM

IRAM IRAM

IRAM

…

cross bar

… …

…

IRAM

IRAM IRAM

IRAM

eral reasons. First, researchers should explore a wider
space than what industry considers practical immedi-
ately if we are to have a foundation of ideas for future
systems. Second, the cost of software maintenance and
innovations such as Java may lead companies to re-
engineer their software just to stay in business, thereby
simplifying such changes. Finally, if it is true that leg-
acy software prevents database companies from inno-
vating, then such inertia will create a market opportunity
for new companies with an innovative idea and no soft-
ware legacy.

5 Historical Perspective and Related Work

The concept of putting processing closer to the disk is
not a new one. In the late 1970s and early 1980s the
field of hardware database machines was an active area
of research [24] [18]. The disk processing in the data-
base machines fell into roughly four categories: proces-
sor per head (e.g., OSU’s DBC [9], SURE [27]),
processor per track (e.g., CASSM [50], RAP [37],
RARES [29], and CAFS [8]), processor per disk (e.g.,
SURE [27]) and multi-processor cache (e.g., RAP.2
[45], DIRECT [17], INFOPLEX [30], RDBM [22], and
DBMAC [33]). In each architecture, a central proces-
sor(s) acted as the front end of the system. For the most
part, these machines were exceptionally good at pushing
simple processing, such as scan operations, closer to the
disk, achieving great performance improvements.

Database machines experienced many pitfalls, however,
which eventually led to their demise [12]. First and fore-
most, most database machines used non-commodity
hardware, such as associative disks, associative CCD
devices, and magnetic bubble memory. Unfortunately,
the performance gains weren’t great enough to justify
the additional cost of the special-purpose hardware. Sec-
ond, while scan performance was impressive, perfor-
mance gains were not as forthcoming for more complex
operations, such as joins and sorts. Again, such nar-
rowly defined speedup often did not justify the extra
cost. Third, the “brute” force solution provided by data-
base machines was surpassed by the performance given
by smarter algorithms, such as new indexing techniques.
Fourth, communication performance between the pro-
cessing elements was insufficient: bandwidth was not
high, and message overheads were quite large. Fifth,
improvements in disk transfer rates didn’t keep pace
with processing element speed improvements, resulting
in low utilization for disk processors. Finally, authors
of legacy commercial database code didn’t rewrite their
applications to take advantage of the new hardware
advances.

While initially the IDISK concept seems similar to the
database machines of old, there are, in fact, a number of
reasons why the same criticisms do not apply today.
Most importantly, disk manufacturers are including gen-
eral-purpose embedded processing and increased mem-
ory on disk. If such processing can provide great
performance gains for important applications like data-
bases, it could lead to even greater processing and mem-
ory in commodity disks. In addition, numerous
algorithmic advances have been made over the last 15 to
20 years, including shared-nothing sort and join algo-
rithms and multi-pass algorithms that trade off I/O
bandwidth for memory capacity. IDISK can leverage
these developments to provide high performance, even
for more complex operations.

From a technological standpoint, advances in serial line
communication will provide high-bandwidth communi-
cation between disk processors. With serial standard-
ization efforts, such as Fibre Channel Arbitrated Loop
(FC-AL), these interfaces will be available on commod-
ity disk drives.

Research in disk-resident processing has experienced a
resurgence in the 1990s [11]. Two other academic
research projects, the “active” disk projects at Carnegie
Mellon and UC Santa Barbara/Maryland, are examining
the advantages of downloading application-specific
code to more intelligent disks for database, data mining
and multimedia applications [1] [2] [43]. Figure 4 shows
the main differences between these two projects and
IDISK, with respect to application complexity and hard-
ware complexity.

CMU’s active disk project has focused on scan-based
algorithms for nearest neighbor searches, frequent sets,
and image edge detection [43]. These algorithms
require relatively weak on-disk processing, low on-disk

CMU
“Active Disks”

{>Memory, CPU speed, network} / Disk

Application
Complexity

Low
e.g., scan

UCSB
“Active Disks”

Medium
e.g., image

General
purpose

UCB
“Intelligent

Disks”

FIGURE 4. Comparison of Ongoing Intelligent Disk
Research Projects.

memory capacity and no communication between disks.
The Santa Barbara/Maryland active disk group has
focused on similar applications, including database
select, external sort, datacube operations, and image
processing [1] [2]. Their architecture assumes more
powerful on-disk processing, higher on-disk memory
capacity, and restricted disk-to-disk communication
through a central front end. In contrast, the IDISK pro-
posal described in this paper permits much higher band-
width disk-to-disk communication, permitting more
general-purpose parallel computation.

Ongoing IDISK research is not limited to database
applications. One example IDISK file system research
issue is reducing write latency by having writes occur
anywhere within a cylinder, leaving the decision to the
IDISK processor and informing the file system later
[53]. Earlier work in the DataMesh project by Wilkes,
et al., foreshadowed the IDISK architecture shown in
Figure 2, and presented a file system to exploit the Data-
Mesh architecture [54] [55].

In addition to file service, we can also imagine IDISKs
offering an advantage for many other application areas:

• software RAID.

• automatic reconfiguration: IDISKs could automati-
cally balance the load between disks, and provide
support for “plug and play,” where a new IDISK is
automatically recognized and incorporated into the
system.

• backup acceleration: IDISKs could compress data as
it is written to tertiary storage across the high-speed
interconnect.

• multimedia service: IDISKs could perform image
manipulations or on-the-fly video transcoding.

• web service.

6 IDISK Challenges and Research Areas

Given that this paper presents a new vision, not surpris-
ingly it leaves many open questions. Below are several
questions that we are currently exploring:

• What is the software model for IDISK; i.e., in an
evolutionary IDISK architecture, how should appli-
cation software be partitioned between the central
processor(s) and the IDISK processors?

• What operating system services should be provided
by the IDISK runtime system?

• How intelligent must IDISK nodes be to run impor-
tant database software? Can algorithms for these
kernels trade-off more disk accesses for less memory
capacity, to accommodate IDISK’s reduced memory
capacity, and still have reasonable performance?

• Will algorithmic and index innovation reduce pro-
cessing demands and disk accesses for decision sup-
port? Or will decision support, by its ad hoc nature,
always ask new questions that are best answered
using substantial processing and disk accesses?

• How can IDISK processing and multiple serial lines
be used to provide data redundancy and high avail-
ability in the presence of disk failures?

• How can the information made available by the
tighter integration of disk and CPU be used to
improve performance?

• An IDISK processor can be used for many opera-
tions (e.g., database functionality, disk arm schedul-
ing). How should these and other competing
demands be scheduled effectively?

• How well do IDISK architectures scale as decision
support systems grow in size and requests in the
future?

• How well will the IDISK architecture work for more
update-intensive workloads, such as online transac-
tion processing (OLTP)?

• What are the solutions to “hot spots,” whereby most
of the queries naturally go to a single IDISK?

• Will commercial database authors restructure their
code to take advantage of potential IDISK benefits?

7 Conclusions

"The history of DBMS research is littered with innumer-
able proposals to construct hardware database
machines to provide high performance operations. In
general these have been proposed by hardware types
with a clever solution in search of a problem on which it
might work. [49]”

As this quote indicates, work on database machines has
a checkered past, causing some to doubt this new line of
research. We view this skepticism as healthy, and in
overcoming our own doubts we have become increas-
ingly convinced that intelligent disks can be efficient
and cost-effective in the short term. Advances in algo-
rithms, communication and the possibility that on-disk
processors will become commodities make IDISK more
viable than these earlier efforts. If we are correct, then

the emergence of IDISK represents a major opportunity
to retool data-intensive software systems for signifi-
cantly increased performance.

At this early stage of our research, we are mapping out a
variety of hardware/software scenarios for designing
efficient, cost-effective data systems of the future. In
this paper we described two hardware architectures and
several software scenarios for IDISK. In addition, we
enumerated several potential advantages of this system
design, and outlined challenges that must be overcome
for this design to be successful. As this research
progresses, we should develop a better understanding of
these challenges and their solutions. Meanwhile we
believe that realizing the high-performance database
system of the future may require significant research at
both the hardware and software levels.

8 Acknowledgments

The case presented in this paper benefited from discus-
sions with Eric Anderson, Paul Aoki, Remzi Arpaci-
Dusseau, James Beck, Aaron Brown, John Kubiatowicz,
David Oppenheimer, Randi Thomas, and Kathy Yelick
at Berkeley, and with Jim Gray and Catharine van Ingen
at Microsoft Bay Area Research Center. This research
was supported by DARPA (DABT63-C-0056), the Cali-
fornia State MICRO program, NASA grant FDNAGW-
5198, and by research grants from Hitachi, Intel, LG
Semicon, Microsoft, Silicon Graphics, and Sun Micro-
systems. Kim Keeton was supported by a Lucent Tech-
nologies Graduate Fellowship. Joe Hellerstein was
supported by an NSF Career Award and a Sloan Foun-
dation Fellowship.

9 References

[1] A. Acharya, M. Uysal, and J. Saltz. “Active disks: pro-
gramming model, algorithms and evaluation,” to appear in
Proc. 8th Int. Conf. on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS-VIII), Oct.
1998.
[2] A. Acharya, M. Uysal, and J. Saltz. “Active disks,” Tech-
nical Report, TRCS98-06, University of California, Santa Bar-
bara. March 1998.
[3] AMCC S2025 single-chip switch. http://
www.amcc.com/Products/CPSwitch/S2025.htm.
[4] D. Anderson. “Consideration for smarter storage
devices,” presentation given at National Storage Industry Con-
sortium’s (NSIC’s) Network-Attached Storage Devices
(NASD) working group meeting, June 1998. Available from
http://www.nsic.org/nasd/.
[5] E. Anderson. “Results of the 1995 SANS Survey,” ;login,
the Usenix Association newsletter, Vol. 20, No. 5, Oct. 1995.

[6] R. H. Arpaci-Dusseau, A. C. Arpaci-Dusseau, D. E.
Culler, J. M. Hellerstein, and D. A. Patterson. “The architec-
tural costs of streaming I/O: a comparison of workstations,
clusters, and SMPs,” Proc. 4th Sym. on High-Performance
Computer Architecture, February 1998, pp. 90 - 101.
[7] A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, D. E.
Culler, J. M. Hellerstein, and D. A. Patterson. “High-perfor-
mance sorting on networks of workstations,” Proceedings of
SIGMOD ‘97, May 1997, pp. 243 - 254.
[8] E. Babb. “Implementing a relational database by means
of specialized hardware,” ACM Transactions on Database
Systems, Vol. 4, No. 1, March 1979.
[9] J. Banerjee, et al. “DBC - a database computer for very
large data bases,” IEEE Trans. on Computers, June 1979.
[10] P. Bernstein, “Database Technology: What’s Coming
Next?” Keynote presentation at Fourth Symposium on High-
Performance Computer Architecture, February 1998.
[11] D. Bitton and J. Gray. “The rebirth of database machine
research,” invited talk at the 24th International Conference on
Very Large Databases (VLDB ’98), August 1998.
[12] H. Boral and D. J. DeWitt. “Database machines: an idea
whose time has passed? A critique of the future of database
machines,” Proceedings of the Third International Workshop
on Database Machines, 1983, pp. 166 - 187.
[13] R. Boyd-Merritt. “Gigabit bus carries Intel into commu-
nications territory,” EE Times, http://tech-
web.cmp.com/eet/news/98/998news/
gigabit.html.
[14] F. T. Chong, E. Brewer, F. T. Leighton, and T. F. Knight,
Jr. “Building a better butterfly: the multiplexed metabutter-
fly,” Proceedings of the International Symposium on Parallel
Architectures, Algorithms, and Networks, December 1994.
[15] Z. Cvetanovic and D. D. Donaldson. “AlphaServer 4100
performance characterization.” Digital Technical Journal.
8(4):3-20, 1996.
[16] W. J. Dally and J. Poulton. “Equalized 4 Gb/s signalling,”
Hot Interconnects IV Symposium Record, September 1996.
[17] D. J. DeWitt. “DIRECT - A multiprocessor organization
for supporting relational database management systems,”
IEEE Transactions on Computers, June 1979, pp. 395-406.
[18] D. J. DeWitt and P. B. Hawthorn. “A performance evalu-
ation of database machine architectures,” Proceedings of
VLDB ‘81, pp. 199 - 213.
[19] J. Gray, private communication, Microsoft Bay Area
Research Center, June 1998.
[20] J. Gray. “Parallel Database Systems,” tutorial given at
VLDB ‘94, September 1994. Available from http://
www.research.microsoft.com/barc/Gray/.

[21]J. He and R. Raphael, Informix Software, personal com-
munication, January 1998.
[22] W. Hell. “RDBM - A relational data base machine:
architecture and hardware design,” Proc. 6th Workshop on
Computer Architecture for Non-Numeric Processing, June
1981.
[23] J. L. Hennessy and D. A. Patterson. Computer Architec-
ture: A Quantitative Approach, second edition, Morgan Kauf-
man, San Mateo, CA., 1996.

[24] A. R. Hurson, L. L. Miller and S. H. Pakzad. Parallel
Architectures for Database Systems, IEEE Computer Society
Press, Washington, D. C., 1989.
[25] K. Keeton. “Statistical analysis of database decision sup-
port workloads on the Pentium Pro SMP,” Unpublished
project report for UC Berkeley graduate statistics course, May
1997.
[26] K. Keeton, D. Patterson, Y. He, R. Raphael, and W.
Baker. “Performance characterization of the quad Pentium Pro
SMP using OLTP workloads,” Proceedings of ISCA ‘98, June
1998, pp. 15 - 26.
[27] H. O. Leilich, G. Stiege, and H. C. Zeidler. “A search
processor for data base management systems,” Proceedings of
the 4th Conference on Very Large Databases, 1978.
[28] C. H. C. Leung and K. S. Wong. “File processing effi-
ciency on the content addressable file store,” Proceedings of
VLDB ‘85, pp. 282 - 291.
[29] S. C. Lin, D. C. P. Smith, and J. M. Smith. “The design
of a rotating associative memory for relational database appli-
cations,” Transactions on Database Systems, Vol. 1, No. 1,
March 1976, pp. 53-75.
[30] S. E. Madnick. “The Infoplex database computer: con-
cepts and directions,” Proc. IEEE Computer Conf., Feb. 1979.
[31] A. Grizzaffi Maynard, C. M. Donnelly, and B. R. Olsze-
wski. “Contrasting characteristics and cache performance of
technical and multi-user commercial workloads.” In Proc. 6th
Int. Conf. on Architectural Support for Programming Lan-
guages and Operating Systems, pages 145–156, Oct. 1994.
[32] J. Menon, private communication, IBM, Feb. 22, 1998.
[33] M. Missikoff. “An overview of the project DBMAC for a
relational machine,” Proceedings of the 6th Workshop on
Computer Architecture for Non-Numeric Processing, June
1981.
[34] “Chart watch: mobile processors,” Microprocessor
Report, June 2, 1997, p. 35.
[35] “Chart watch: workstation processors,” Microprocessor
Report, July 14, 1997, pp. 23.
[36] NCR WorldMark/Teradata 1 TB TPC-D executive sum-
mary, available from http://www.tpc.org/.
[37] E. A. Ozkarahan, S. A Schuster, and K. C. Smith. “RAP -
associative processor for database management,” AFIPS Con-
ference Proceedings, Vol. 44, 1975, pp. 379 - 388.
[38] G. Papadopoulos. “Future of Computing.” Unpublished
talk, NOW Workshop, Lake Tahoe, CA USA, 27 July 1997.
[39] D. Patterson and K. Keeton. “Hardware Technology
Trends and Database Opportunities,” Keynote address at SIG-
MOD ‘98, June 1998. Available at http://www.cs.ber-
keley.edu/~pattrsn/talks.html.
[40] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K.
Keeton, C. Kozyrakis, R. Thomas, and K. Yelick. “A case for
intelligent RAM,” IEEE Micro, vol.17, no.2, March-April
1997. pp.34-44.
[41] S. E. Perl and R. L. Sites. “Studies of windows NT per-
formance using dynamic execution traces,” Proc. of the Sec-
ond USENIX Symposium on Operating Systems Design and
Implementation, pages 169-184, 1996.

[42] G. F. Pfister. In search of clusters: the coming battle in
lowly parallel computing, Prentice Hall PTR, Upper Saddle
River, New Jersey, 1995.
[43] E. Riedel, G. Gibson, and C. Faloutsos. "Active Storage
For Large-Scale Data Mining and Multimedia," Proceedings
of the 24th International Conference on Very Large Databases
(VLDB ’98), August 1998.
[44] Seagate Cheetah drive homepage, accessible from
http://www.seagate.com/.

[45] S. Schuster, et al. “RAP.2 - an associative processor for
databases and its applications,” IEEE Trans. on Computers,
June 1979.
[46] T. Shimizu, et al. “A multimedia 32 b RISC micropro-
cessor with 16 Mb DRAM,” ISSCC Digest of Technical
Papers, San Francisco, CA, USA, 8-10 Feb. 1996, pp. 216-17,
448.
[47] The Sort Benchmark Homepage. http://
www.research.microsoft.com/research/barc/
SortBenchmark/default.html.

[48] P. Stenstrom, E. Hagersten, D. J. Lilja, M. Martonosi, and
M. Venugopal. “Trends in shared memory multiprocessing.”
IEEE Computer, pages 44-50, December, 1997.
[49] M. Stonebraker, editor. Readings in Database Systems,
second edition, Morgan Kaufmann Publishers, San Francisco,
1994, p. 603.
[50] S. Y. W. Su and G. J. Lipovski. “CASSM: a cellular sys-
tem for very large data bases,” Proceedings of the VLDB Con-
ference, 1975, pp. 456-472.
[51] Transaction Processing Performance Council, TPC
Benchmark D (Decision Support) Standard Specification
Revision 1.2.1, December 15, 1996.
[52] J. Turley. “NEC VR5400 makes media debut,” Micro-
processor Report, March 9, 1998.
[53] R. Wang. “Cluster file systems,” Unpublished talk at
NOW Workshop, Lake Tahoe, CA USA, January 1998.
[54] J. Wilkes. “DataMesh - parallel storage systems for the
1990s,” Proceedings of the 11th IEEE Mass Storage Sympo-
sium, October 1991.
[55] J. Wilkes. “DataMesh research project, phase 1,” Proc.
USENIX File Systems Workshop, May 1992. pp. 63 - 69.
[56] R. Winter and K. Auerbach. “Giants walk the earth: the
1997 VLDB survey,” Database Programming and Design,
volume 10, number 9, September 1997, pp. S2 - S9+.
[57]R. Winter and K. Auerbach. “The big time: the 1998
VLDB survey,” Database Programming and Design, volume
11, number 8, August 1998.
[58] C. K. Yang and M. A. Horowitz. “A 0.8 mm CMOS 2.5
Gb/s oversampled receiver for serial links,” 1996 IEEE ISSCC
Digest of Technical Papers, February 1996.

