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ABSTRACT
Sensor network applications tend to exhibit significant high-
level commonalities along several major dimensions that have
heretofore been underexposed, particularly in the areas of
collection and dissemination. We have developed a compo-
nent library, Sdlib, which presents the fundamental abstrac-
tions of collection and dissemination as part of a dataflow
sytem. This allows application developers to rapidly develop
applications at the nesC level. This means that Sdlib main-
tains significant expressivity while operating efficiently.

We have built four applications, each faithful to a ma-
ture monolithic application, on top of Sdlib to compare its
performance to that of original. We find that applications
implemented with Sdlib are much simpler to write, just as
resource efficient, and perform comparably to monolithic im-
plementations.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures;
D.2.13 [Software Engineering]: Reusable Software

General Terms
Design

Keywords
Wireless sensor networks, software library, collection, dis-
semination

1. INTRODUCTION
To date, the sensor network community has proposed many

patterns of communication [1] [2] [3]. However, two commu-
nication patterns, collection and dissemination, have expe-
rienced far greater adoption and emerged as core to wireless
sensor networks [4]. Collection, the gathering of data from
all nodes in the network to one location, is, not surprisingly,
a fundamental task of many sensor network deployments.
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Dissemination, the distribution of common data from one
to all points in the network, has emerged as the comple-
mentary and equally critical task.

It is then surprising that little support has emerged for
these often-used patterns, collection and dissemination. We
too often observe the unlucky application developer still un-
dertaking a sizable challenge when attempting to build her
particular collection or dissemination-based application. For
example, suppose our application developer desires to build
a best-effort video monitoring application. If the popular
nesC [5] is the programming language chosen, at a mini-
mum, the novice must master split-phase asynchronous pro-
gramming, sidestep insidious race conditions, and gracefully
handle resource contention. Moreover, the non-expert and
expert developer both face significant challenges building
plumbing for handling control commands and network-wide
data delivery.

It is unfortunate then, that our developer can only benefit
minimally from another recently completed reliable-delivery
vibration event detection application, which possesses both
significant similarities (e.g. large data objects; query han-
dling; Flash storage buffering) and differences (e.g. need
for retries; monitored polling vs. event triggered) with her
own. Yet in order to successfully make use of it, she must
first know about the existence of this foreign application,
entrust in its maturity, extract the relevant similarities and
adapt them to suit her needs. Clearly this approach to reuse
is not scalable (with the number of reusable applications),
is error-prone, and is tedious.

Daunted by these obstacles, or simply by lack of knowing
about pertinent similar applications, our application devel-
oper may choose to use systems exporting high-level lan-
guages, such as TinyDB [6], Snack [7], or Mate [8]. None
of the aforementioned systems provides direct support for
large data objects, a fundamental requirement for our ex-
ample application. In general, such a system is a suitable
choice only if the user’s task is within the expressiveness of
the chosen system.

These implications present an opportunity to build pa-
rameterized generic communication components that serve
the purposes of a wide developer audience. The goal of this
work is to identify common functionality among a broad
range of sensor network applications yearning for appropri-
ate abstractions, and develop a library of thoroughly-tested,
reusable and efficient nesC components that present the fun-
damental high-level operations while parameterizing essen-
tial differences. We call this library Sdlib: Sensor Data Li-
brary. We draw an analogy to the traditional C++ Stan-
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dard Template Library. Sdlib provides powerful components
for the recurring common cases. Simultaneously, because
Sdlib is implemented as a collection of nesC components,
the developer retains unfettered access to low-level opera-
tions when desired.

As a result, our objective has been to look at monolithic
applications, extract the relevant communication patterns,
analyze and distill dimensions along which variations were
important, and then supply these variable pieces as subcom-
ponents, from which the original communication protocol
could be constructed. Along the way, we discovered that
composition of these subcomponents could lead to incorpo-
ration into other well-known communication patterns, on
top of which new classes of applications can be built. This
process is summarized in Figure 1.

Sdlib will not eliminate asynchronous operations, race
conditions, or resource contention. Eliminating these usu-
ally incurs an unacceptable system penalty. Rather, Sdlib en-
ables the developer to relieve herself of a system full of such
concerns and instead directs focus to the core application-
specific module which can be more easily debugged. A set
of composable components can greatly simplify the develop-
ment task and mitigate the developer’s worries.

Yet successful libraries offer generality without sacrificing
efficiency. Efficiency of operations is particularly critical for
sensor networks due to battery life, RAM/ROM and other
resource constraints. Here Sdlib exposes policy decisions
such as resource allocation and rate of operation to the de-
veloper, while hiding the mechanisms of policy enforcement.
Sdlib aggressively uses compile-time information to create
lean output.

Collection and dissemination then became the natural ini-
tial candidates around which to start. Sdlib is general enough
to build a range of collection and dissemination applications
while doing so efficiently. We demonstrate this by taking
four real applications from across the collection and dissem-
ination spectrum and building them on top of Sdlib. Our
applications are comparable in terms of both performance
and resource usage to the original, monolithic implementa-
tions. In some cases, we even outperform custom imple-
mentations in resource usage. We discuss the design and
architecture of Sdlib in Section 2 and Section 3 respectively.
Section 4 evaluates the implementation. Section 5 discusses
the related work and Section 6 offers conclusions.

2. SDLIB DESIGN
Sdlib is comprised of a composable core set of services

that work together to expose a consistent service interface
to the developer. The user of our system is an applica-
tion developer wishing to implement a new sensor network
application rapidly, yet efficiently and correctly. To the
developer, Sdlib provides a simple nesC get/set interface.
The developer views the use of Sdlib primarily through the
use of these interfaces. NesC, the primary language for
the popular TinyOS wireless sensor network operating sys-
tem [9], is a dialect of C that provides first class support
for components as logical modules of code. NesC interfaces
govern communication between these components. Com-
munication between two components follows a hierarchical
user/provider relationship, where the user calls down to the
interface’s commands and is the callee of the interface’s
events, whereas the provider is the callee of commands and
calls up to events. NesC thus allows interface matching of

Figure 1: Transition from monolithic apps, to monolithic

protocol implementations, to share protocol implementa-

tions, to protocols with new features.

components, or wiring, to be deferred until compile time.
A simple dataflow system allows for expressing a rich va-

riety of possible tasks in Sdlib from a set of rudimentary
components. In fact, this dataflow system has proven useful
for implementing optimizations of dissemination, reliability
of both collection dissemination, and is promising for a host
of other features we mention below.

2.1 Primary Interfaces
Let us consider the case where the developer is interested

in extracting a single object from the system. For exam-
ple, this could be to read the node’s routing table, or fetch
the latest vibration sensor sample. Below, we show the get
interface, Producer, for exposing such objects.

interface Producer {
command result_t get(Buffer_t* buf,

bool first, bool last);
event Buffer_t* give(Buffer_t* buf, uint8_t size,

bool first, bool last);
}

Here, the developer is the provider of this interface i.e.
the developer implements the get() command and calls the
give() event. On the other side, we can think of the user
of this interface to be the collection operation (that wishes
to dynamically get this data) or the dissemination operation
(that wishes to update other nodes with the newest data held
by this node). In reality, we interpose the Sdlib Runtime
Engine between the user and provider such that all get()
and give() calls are vectored through the engine. We will
describe the operations of the engine in more detail below.
The typical call sequence is:

engine: get() // initiate stream
object: give() // filled buf
object: give() // filled buf
...
object: give() // filled buf, terminates stream

There is typically one get() call to initiate the stream,
followed by one or more give calls that return the data. This
provides a way for objects of any size to interact gracefully
with Sdlib.

There are several points to note about this interface. First,
the interface is inherently streaming. This provides a simple
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baseline with minimal state maintenance needed by either
party. It would be unreasonable to belabor an inherently
streaming object with a non-streaming interface, though it is
easier to adapt an inherently non-streaming object to export
a stream. We later show the construction of more complex
interfaces on top of this streaming interface.

Second, the units of data at the the level of this interface
are in terms of Buffer t. The engine is constantly providing
buffers to the component, with which the component fills
with the appropriate next piece of the object. The Buffer t
provided allows the component to fill in as much of a variable
sized portion of the data object as desired, up to the size of
the Buffer t.

Third, the return value of the give() immediately pro-
vides a new Buffer t upon which to operate. The process
is driven at the producer’s rate of data production, and is
one of the keys to streaming effectively: Sdlib cannot make
assumptions about the rate of data production on behalf of
the object.

A primary goal of Sdlib is to achieve efficiency on par
with hand-coded implementations. To do this, we assidu-
ously avoid the use of extra buffers beyond those needed
to accomplish the task at hand. For example, we could
have taken a pointer to an arbitrary memory address and
arbitrary length as arguments to give() and copied these
into Buffer t units on behalf of the developer. However,
this unnecessarily requires allocation of more memory and
requires more memory copies. Rather, each Buffer t di-
rectly point to space in some preallocated network packet.
(We elaborate on this in Section 2.2) The implications are
that the Sdlib Runtime Engine operates with zero scratch
buffers and needs zero memory copies in the entirety of the
system. The tradeoff is application developers (1) become
aware of these artificial Buffer t size limitations and (2) are
coerced to work with Buffer t units. We have found that
in practice, the former is not a concern, and that the object
fragments generated at any one time by most applications
are well within the size of one Buffer t. With regards to
the latter concern, we note that in some cases, it may be
less convenient for the developer to manage operations in
terms of Buffer t units than in terms of units the appli-
cation naturally generates. For example, a vibration sensor
might sample at hundreds of hertz, at each interval generat-
ing an 10 bit sample. The natural thing to do here is work
in the Application Data Units native to the application, e.g.
10 bit units. Therefore, we also provide a templated inter-
face, ProducerSimple that achieves this goal when the ADU
is known in advance at compile time and does not vary in
size from one invocation of give() to another:

interface ProducerSimple<Adu_t> {
command result_t get(Adu_t* buf,

bool first, bool last);
event Adu_t* give(Adu_t* buf,

bool first, bool last);
}

Here, the interface ProducerSimple takes a type param-
eter Adu t defined at compile time. Sdlib performs some
internal manipulation to map this Adu t to a space in some
free Buffer t on behalf of the developer, masking the rigid-
ness of dealing in Buffer t units. We again use compile-time
parameterizations for efficient Buffer t management.

At this point, it is helpful to discuss the interplay and
distinction between large and small data objects in Sdlib.

At the interface level, there is no distinction! With the
ProducerSimple interface, we can iteratively signal give()
as many times as necessary, including only once. If we only
signal give() once, marking last right away, then we in effect
provide a single small data object. In fact, this reduced case
looks very familiar to Nucleus’ get()-getDone() calls [10].
With only a small modification to the interface beyond what
is needed for small objects, we are able to provide support
for arbitrary sized objects as well. In the evaluation, we
show support for data objects ranging from several tens of
bytes to several tens of kilobytes.

Sdlib provides a set interface as well as a get interface for
modifying data objects. We show this interface below:

interface Consumer {
command result_t set(Buffer_t *pBuf, uint8_t size,

bool first, bool last);
event result_t setDone(result_t r, Buffer_t *pBuf,

bool first, bool last);
}

Many of the same design decisions that influenced Producer
are also visible here in Consumer. Similarly, Sdlib provides a
ConsumerSimple interface that mitigates the effort of man-
aging buffers.

2.2 Additional Interfaces
From the interfaces presented so far, we see that Buffer t

are passed back and forth between the Sdlib Runtime En-
gine, Producer and Consumer, but the responsibility of buffer
allocation and management is not yet clear. On the one
hand, forcing developers to manage buffers is extremely tax-
ing and error prone. On the other hand, it is often the devel-
oper, not Sdlib Runtime Engine, that has knowledge about
the appropriate quantity of resources to use. Sdlib offers a
nice solution to this resource management issue. We parti-
tion the problem of allocation and management between the
developer and Sdlib: the developer is simply responsible for
resource allocation, whereas Sdlib Runtime Engine manages
these on behalf of the user. To perform the allocation, the
developer implements giveBufs() of the Resource interface:

interface Resource {
command result_t giveBufs(WrapBuffer_t* bufs,

uint8_t* num);
}

With this flexibility in allocation, but without the burden
of management, the developer is free to express any degree
of resource sharing desired. For example, if the developer
desires isolation from interaction with other objects, then
an allocation strategy similar to the one below may be ap-
propriate:

WrapBuffer_t localBufs[N]; // wrapper for Buffer_t
command result_t
Resource.giveBufs(WrapBuffer_t* bufs, uint8_t* num) {
*bufs = localBufs;
*num = N;
return SUCCESS;

}

On the other hand, the developer can express sharing of
Buffer t units from a single resource pool as well:

command result_t
Resource.giveBufs(WrapBuffer_t* bufs, uint8_t* num) {
call SomeSharedBufPool.giveBufs(bufs, num);
return SUCCESS;

}
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A problem that has increasingly manifested itself in sen-
sor networks application development is the uncooperative
interaction of services developed separately. The possibility
for the developer to allocate resources wisely should help
alleviate this problem. Later, when the sequence of get()-
give() or set()-setDone() calls require Buffer t, it is easy
for the Sdlib Runtime Engine to manage the allocation and
use of these across the entire system. In Section 3, we de-
scribe the internal handling of Buffer t by Sdlib Runtime
Engine.

So far the interfaces Producer and Consumer and their
derivatives ProducerSimple and ConsumerSimple are pas-
sive: in the case of Producer, data is pulled from the in-
terface. In the case of Consumer, data is pushed onto the
interface. We observed this to be by far the most common
programming usage model. However, there are certain cases
where developers build components that actively push data
outward (e.g. when the component itself is the generator of
new program images) or that actively pull data inward to
consume (e.g. when a component requests a program image
to boot from at initialization). These push vs. pull issues of-
ten arise in dataflow systems, and have been explored exten-
sively before [7]. We also provide for such active Producer
and Consumer components with a slightly modified interface.

While the primary interface of Sdlib is stream-based, at
times an additional random access interface to the data ob-
ject may boost performance. A common example of this
is when the underlying producer directly provides the frag-
ments necessary for retransmission e.g. when the object
is nonvolatile. In these cases, the developer implements a
simple seek() call that permits random access. The Sdlib
Runtime Engine calls seek() when it needs to perform such
access.

2.3 Building Rich Dataflows
An object is not restricted to solely a producer or con-

sumer role. In fact, permitting components to provide both
Producer and Consumer interfaces offers great expressive-
ness. For example, a ProgramImageStore object can both
provide and consume program images. In effect, the abil-
ity to interpose arbitrary intermediaries between production
and consumption endpoints opens up a range of possible
functionality. We provide both intra-node and inter-node
examples below:

• Storage manager: A common intermediary that we
frequently use in our construction of services for collec-
tion and dissemination, especially for reliability, is the
general storage manager. By providing the Consumer
interface for writing arbitrary data objects, and the
Producer interface for reading arbitrary data objects,
the storage manager uses no special mechanisms to
store incoming data objects (e.g. program images) and
deliver these to the appropriate endpoint (system re-
programmer); and buffer outgoing data objects for re-
transmission (e.g. reliably transported sensor values).

• Object identifier and classifier: Dependent upon
run-time demands, the raw object data may not be
necessary for the end user. For example, the develop-
ers of the Cyclops video camera mote [11] indicate it is
often unnecessary to send an entire video frame back
to the base station if the end user only needs to know
whether or not an interesting entity is in the video

frame. Here it is very sensible to incorporate a modu-
lar detection and classification filter [12] that consumes
raw object data as input and produces a concise de-
scription of the event. Such a identifier and classifier
could serve the purposes of a wide variety objects.

• Binary verifier or rewriter: A binary verifier or
rewriter interposed between the program image store
and the delivery mechanism for new images (e.g. in-
bound radio) can easily inspect all images delivered to
the store. Authenticity checks can include verifying
the key chain hash of the stream of program image
fragments streaming by, as proposed in [13]. Alterna-
tively, if the developer’s deployment lacks preestab-
lished authentication keys, an intermediary module
can perform binary rewrites of the incoming image,
mitigating manipulation of protected memory addresses
[14].

• Single-node compression: It is often possible to
compress data as it is being generated. Compression
operators can either be data specific e.g. a Discrete
Fourier Transform or general e.g. gzip. Such an in-
termediary operator appropriately placed immediately
after the production of the sensor sample can serve to
separate the roles of sampling from compression.

• Production suppressor: To regulate the flow of a
particular object e.g. for application level network con-
gestion avoidance, a suppression operator sits in the
path between the object and its destination e.g. the
radio’s transmit queue. We construct dissemination
suppression for our dissemination protocol with this
technique.

These are all intermediary operators that act on the data
generated at the same node. We are also able to construct
operators that inspect the flow of data as it is routed in the
network. These inter-node intermediaries are perhaps even
more interesting:

• Opportunistic consumption: It is often the case
that a node can benefit from the messages produced
by neighbors in the network, even if the message is
not destined for it. This is the case in dissemination:
if a node overhears data messages of a greater version
number than it currently possesses, it will proceed to
snoop on the entire sequence of data messages. Such
opportunistic consumption provides one of the main
benefits of gossip-based dissemination. This is in fact
the method by which we implement dissemination.

• Neighborhood data sharing: Hood [15] proposes
a neighborhood abstraction for the purposes of data
sharing. Such abstractions are shown to be useful for
event detection applications. Providing a Neighbor
Consumer and NeighborProducer should be similar to
providing the opportunistic consumer above.

• Model-based in-network compression: We pre-
viously mentioned providing single-node compression
via the Sdlib interfaces would be straightforward. Ex-
tending this idea, several works have found in-network
model-based compression across nodes to be very ef-
fective [16]. The basic idea is for the network to save

4



communication costs by taking advantage of spatial
correlations of data in the network: in effect, routing
nodes do not need to send their own data if the data
can be inferred from correlations with already trans-
ported data. Sdlib can similarly express these dataflow
via interposed (across the network) operators.

Intermediary data operators are also by no means a new
concept. However, despite dealing predominantly with data,
sensor network tools have up until now provided few tools
that expose data operators appropriately. Developers could
have previously accomplished interpositioning without the
aid of Sdlib by manually rewiring components at compile-
time. However, this was a tedious operation that had to be
carefully undertaken for each instance of interpositioning.
In general, nesC and TinyOS do not provide the proper
dataflow abstractions necessary for handling of data. The
Sdlib Runtime Engine provides a common interface for any
producer to have its output redirected to any consumer, and
Sdlib provides a straightforward mechanism, flow rules, to
easily accomplish this goal. We shall discuss the mechanisms
of flow rules in more detail in the following subsection.

2.4 Flow Rules
Flow rules are simple specifications that link producers to

consumers. An example flow rule takes the form: Producer
-> Consumer. This is extremely similar to both component
wiring in nesC and wiring in Snack [7]. The main differences
here are that flow rules in Sdlib deal solely with data, and
not arbitrary interfaces as in nesC nor packets as in Snack.
Also, these flow rules can be redefined at run time.

Here we show two brief examples of an application writer’s
considerably less arduous task in specifying flow rules and
writing application code.

2.4.1 Video
Our first example is for a Video sensor. Recently video

sensors have been developed for several sensor network plat-
forms, such as the Cyclops video camera for Mica motes and
the onboard camera for the Intel iMote2. The application
logic can be subdivided into the camera sensor driver, sensor
parameter control and communication code.

To develop this application in Sdlib, the developer imple-
ments a very simple get() interface that consists of a few
intuitive calls as shown above in Section 2.1. Committing
to this interface is arguably much easier than dealing with
the variability of multiple different sources to which to send
data. Through either the use of a runtime tool or a compile-
time configuration, the user may specify a simple flow rule
that performs basic large data collection at every node:

Video -> Comm

Alternatively, the user might apply feature extraction on
the images. Rather than sending the entire image, the ex-
tracted features of interest are then collected. This is simi-
larly very straightforward with Sdlib:

Video -> FeatureDetector -> Comm

Another actor may wish to request video frames in their
entirety. It is just as easy to incorporate reliability via re-
transmissions by specifying an additional set of rules. The
rules below buffer each video frame into a backing store for
servicing retransmission requests.

Video -> Comm
Video -> GeneralStore
GemeralStore -> Comm

So far we have restricted our demonstrations to intra-node
flow rules. More interesting are data flows between different
nodes. Below we show the specification of an inter-node
dataflow rule which performs filtering at any intermediate
node in the system:

Video -> Comm
Comm -> FeatureDetector -> Comm

The user only has to build the appropriate FeatureDetec-
tor and Video components in this case. The plumbing of
routing the packet is taken care of by Sdlib. Here we omit
the details of differentiating Comm streams. These are per
data object type streams.

2.4.2 Mate
Our second example is an implementation of the Mate

virtual machine using Sdlib. Mate is an application specific
virtual machine runtime for TinyOS [8]. Mate uses Trickle-
style dissemination [4] for propagation of capsules. Mate
capsules are the virtual machine’s units of runnable bytecode
programs.

The capsule reprogrammer that uses capsule dissemina-
tion is shown below. Mate receives data from some source
(typically the base station) and replaces its set of runnable
programs with this data (first line). Concurrently, it partici-
pates in sharing this data with other network nodes (second
line).

Comm -> CapsuleStore -> MateReprogrammer
CapsuleStore -> Comm

We can similarly expose an interface to allow any node in
the network to reprogram other nodes, in the spirit of mo-
bile agents. In fact, the remote reprogrammer would simply
implement a get() interface similar to the one presented
previously for video sample collection. Yet the flow rules in
these cases use dissemination. We show a simplified expo-
sition below. The second line indicates the node can also
reprogram locally.

RemoteReprogrammer -> CapsuleStore -> Comm
CapsuleStore -> MateReprogrammer

This example replaces Mate’s custom capsule dissemina-
tion mechanism with one written with Sdlib. The primary
virtual machine runtime of Mate is still intact. It would also
be reasonable to further use Sdlib to implement communi-
cation primitives for Mate bytecode programs.

3. SDLIB ARCHITECTURE
Figure 2 shows the component diagram of Sdlib, as well

as several applications using the Sdlib interfaces. The Sdlib
Runtime Engine is the central point of control. The user’s
parameterization of the system optionally brings in auxiliary
components, such as the ReliabilityMan and CommandMan.
In this way, Sdlib presents its library of services. Below we
describe the interaction of these components with the Sdlib
Runtime Engine.

The Sdlib Runtime Engine inherits from the Nucleus man-
agement system [10]. Sdlib continues to use the very flex-
ible interface decorators and preprocessing techniques first
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Figure 2: Architecture of Sdlib.

demonstrated in Nucleus, and borrows the small object col-
lection mechanism directly from Nucleus.

The engine exports two communication interfaces, one
through the collection channel and one through the data
channel. Data received at either channel can be destined
for any consumer and any producer can send data on ei-
ther channel. In some cases, it is desirable for certain ob-
jects e.g. the system reprogrammer, to be strongly bound
to a particular channel e.g. the dissemination channel. In
other cases, it is desirable to defer the definition of producer-
consumer relationships until run-time. Sdlib supports both
of these cases. Compile-time configurations specify default
flow rules among objects whereas run-time reconfiguration
occurs through the insertion/deletion of new flow rules. Be-
low we describe the main elements of the system:
Collection: The primary purpose of the collection com-
ponent is to route data from the origin to the destination.
Many specific instances of collection by routing tree have
been built. These provide best-effort collection of individual
packets. We simply use one of these and build our transport
and application level-services on top [10].
Dissemination: Dissemination’s primary purpose within
the Sdlib is to exchange version messages among neighbors.
Our dissemination implementation uses version vectors, sim-
ilar to that described in [17]. When stale state is detected on
a remote node, the Dissemination component contacts the
Sdlib Runtime Engine to initiate data production to sup-
ply the neighbor with fresh data. When the stale state is
detected on a local node, the Dissemination component re-
quests the new data on behalf of the local node. Currently,
the application developer specifies at compile-time which ob-
jects participate in dissemination and therefore need version-
ing support.
FlowMan: The FlowMan is the central router of the sys-
tem. Given production from some object, the FlowMan
determines the next consumer of the data object. Flow-
Man permits both runtime and compile-time flow rule def-
initions. Run-time reconfigurability is implemented by in-
sertion into and deletion from a concise flow table. The
FlowMan receives these requests from the CommandMan.
Alternatively, compile-time flow rules do not require table
entries nor lookups. Hence, FlowMan’s resource usage and
runtime overhead is low. By default, objects that produce
values are sent up the collection tree and objects that con-

sume values are idle.
CommandMan: The CommandMan is responsible for pro-
cessing various commands that arrive externally. There are
two types of commands. The first type of command installs
a new set of flow rules into the FlowMan. The second type
of command initiates a new data production or consumption
in the system. These are roughly analogous to first setting
up a series of stages for data processing and then invoking
the initiating action that sets the dataflow in motion. The
latter command, when for production, is similar to a query;
when for consumption, is similar to a remote set operation.
ReliabilityMan: The ReliabilityMan controls the processes
of reliably delivering and receiving data objects. The Relia-
bilityMan acts on behalf of both the collection and dissem-
ination processes when either desires reliability. Reliability
is always needed for Trickle-style dissemination, whereas it
is often optional for collection. Our current reliability mech-
anism follows those reliability protocols commonly used in
the literature and found in deployments: after initial data
production and output to the radio, the producer awaits
NACKs from the consumer indicating fragments it is miss-
ing. The ReliabilityMan is then responsible for retrieving
the appropriate values and returning them to the requester.

Some object values, especially those that map to under-
lying hardware, such as sensor readings, may change with-
out the involvement of the developer’s application and are
volatile. Other object values, such as the currently running
program image, do not exhibit this behavior and are non-
volatile. Distinguishing between the two cases is important
when we consider efficiency. In particular, objects that are
nonvolatile do not need buffering for retransmissions - we
can directly extract the missing fragments from the origi-
nal object. On the other hand, volatile objects require dis-
tinct storage until the end of the reliable transmission se-
quence. By the application developer’s assistance in mark-
ing objects either volatile or nonvolatile the ReliabilityMan
handles these two cases appropriately.
BufMan: The BufMan is the manager of Buffer t units
throughout the system. The BufMan’s primary responsibil-
ity is the delegation of buffers to producers for filling up, and
then once filled, handing off of the buffers to consumers for
consumption. The BufMan performs the locking and un-
locking bookkeeping associated with proper management.
Unlike monolithic application development, the application
developer is largely relieved of the responsibility of resource
management. The BufMan calls getResources() on the ob-
jects it is managing, as previously described in Section 2.2.

4. EVALUATION

4.1 Experimental Setup
We have built and evaluated an initial implementation

of Sdlib, along with several applications using Sdlib. These
implemented applications are faithful to widely-used and/or
deployed applications:

• Mate (large, reliable dissemination) [8]: The Mate vir-
tual machine runtime uses Trickle dissemination for
propagation of capsules, Mate’s units of packaged code,
typically on the order of 100s of bytes.

• Deluge network reprogrammer (very large, reliable dis-
semination) [17]: The de facto network reprogrammer

6



for TinyOS is Deluge. It can reprogram up to a 64KB
image. It also follows a Trickle dissemination proto-
col. It has particularly sophisticated interaction with
the Flash backing store as well. The current imple-
mentation of Deluge is also very specific to network
image dissemination.

• Golden Gate Bridge Application (GGB) (very large,
reliable collection) [18]: This application monitors vi-
brations of the Golden Gate Bridge. Its requirements
are that vibration spectra must be collected reliably
from each node. Each vibration sample is a massive
500KB.

• UCLA Networked Cyclops (Video) (large, best-effort
collection) [11]: A series of networked cameras each
sends video frames back to the base station upon a user
query. The video frames may be transferred without
reliability. Depending on the image quality, a frame
can range from 1KB to 16KB

It is also important to bear in mind the application space
Sdlib supports but which we will not describe in detail in
this paper. Unreliable dissemination i.e. a simplistic one-
time flood has been well-studied in the literature. Also, since
Sdlib builds on the Nucleus Management System [10], we are
also able to provide unreliable collection of small attribute
at marginal cost.

4.2 Study: Resource Usage
We next evaluated the resource usage of Sdlib. Resources

measured are code size (ROM) and data size (RAM). We
compared the size of our implementation of the four appli-
cations on Sdlib with the size of the original applications.
Figures 3 and 4 show the comparisons for ROM and RAM
respectively. In each graph, we show not only the total size
of the final application, but also the breakdown between
Sdlib and the application-specific portion. We expect the
Sdlib-based implementation to use more resources since we
are competing against custom implementations. We can see
from the figures that in no case are we terribly less efficient
than the custom implementation. For the ROM size compar-
isons, our implementations of Mate and Deluge are slightly
smaller because our dissemination protocol omits several
runtime optimizations, and hence compiles to a smaller im-
age. For Video and GGB, we also built a component to
handle the general case of user-initiated queries, accounting
for the increase in ROM size in these two cases.

RAM usage is also comparable between Sdlib-based imple-
mentations and custom implementations, as shown in Fig-
ure 4. The discrepancy in GGB RAM usage results from
GGB Monolithic storing its data readings in flash mem-
ory (not captured by these graphs), whereas the Sdlib-based
implementation, stores them in RAM. Discounting this ad-
ditional 2000B, the Sdlib-based GGB RAM usage falls to
1500B.

We also evaluated our resource consumption when com-
bining multiple applications that use collection or dissem-
ination in the same image. These scenarios present im-
mediate opportunities to consolidate similar functionality,
and are not uncommon in real deployments [19]. Figures 5
and 6 show our results when there is this opportunity to
share. The Deluge/Mate combination yielded ROM sav-
ings of about two kilobytes and RAM savings of about 100

0

5

10

15

20

25

30

5 10 15 20 25 30 35

Time since initial query

N
o.

 o
f m

ot
es

 c
om

pl
et

in
g 

co
lle

ct
io

n

Figure 9: Collection comparison of

average latency for a 24 mote network.

bytes over naively combining Deluge and Mate. The over-
lapping component between these two applications was only
data dissemination. However, our Video/GGB combination
yielded considerably more savings both in ROM and RAM
use due to the fact that the data collection and buffer man-
agement were both done inside Sdlib. These results show the
potential for a common library not only to ease application
programmability, but also result in resource savings.

4.3 Study: Dissemination performance
To evaluate our dissemination performance, we compared

the latency between our dissemination algorithm and the
one used in Mate. We deployed a 22 mote network. Given an
initial announcement of data, we timed how long it took for
each mote to receive new data. Figure 7 shows our results.
Our dissemination protocol performed comparably and in
some cases even completed marginally faster.

Figure 8 compares the transmission counts of the three
primary messages involved in dissemination for the Sdlib dis-
semination implementation and the Mate dissemination im-
plementation: Version, Request and Data messages. For
each class of messages, Sdlib sends a comparable number of
these messages to those sent by Mate’s implementation.

The conclusion to draw is that the Sdlib dissemination im-
plementation uses a reasonably similar number of message
transmissions to achieve similar levels of latency to the cus-
tom dissemination in Mate. These sanity checks assure us
that applications implemented on Sdlib using dissemination
do not suffer from using general dissemination protocols vs.
customized alternatives.

4.4 Study: Collection Performance
We ran experiments testing our unreliable and unreliable

collection implementations. We were interested in knowing
whether our library implementations perform comparably to
custom implementations on the metrics of collection band-
width and latency.

On a 24 node testbed, we collected medium-sized objects
(100s of bytes) from all the nodes in the network. Figure 9
shows the cumulative distribution function time to comple-
tion latency for the nodes in the network. Just as in dissemi-
nation, there is a long tail of nodes that eventually complete
this procedure. Let us recall that this is due to our collec-
tion protocol which iteratively re-requests until we receive
all the data we expect to collect.

We also measured the bandwidth in a simple 2-node sce-
nario by collecting a very large 4 kilobyte data object, sim-
ilar to that performed in [18]. With Sdlib, we achieved a
bandwidth of 18.5 packets per second. This is slightly lower,
but on the same order of magnitude as the 29.4 packets
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App Monolithic App + Sdlib
Video 164 158
GGB 342 158
Mate 669 73
Deluge 410 60

Lines of code

Table 1: Lines of code comparison.

per second achieved in [18]. Several differences may have
contributed to this, including the fact that our mote plat-
form runs a slower microprocessor than the one used in [18].
Interestingly, we find that in the 2-node case, the propor-
tion of retransmitted packets is negligible compared to the
number of total packets transmitted. Therefore, our band-
width of unique packets/second is very nearly also 18.5 pack-
ets/second. This mirrors results found in [18].

4.5 Study: Programming simplicity
We sought to make programming a simpler task for the

application developer. We have accomplished this primarily
by exposing a simpler interface for the application writer.
Table 1 shows the lines of code written for the same op-
eration with Sdlib and without in the original monolithic
application.

5. RELATED WORK
The initial task of diffusion largely focused on the multi-

hop nature of the network. The obvious first candidate is
naive flooding, where successive receivers of a node would
broadcast as long as they had received this message for the
first time. Applications that truly used dissemination were
very few: the unreliability of the communication often pro-
hibited adoption for control data, though it was used for
sending queries in TinyDB for example. Here, it was per-
missible, though undesirable, for portions of the network to
continue executing under the old routines. Due to the high
variance of the underlying radio hardware, this proved to be
too unpredictable for many of target scenarios.

Due to demands for reliability, several robust flooding so-
lutions have been developed. The Trickle protocol, a gossip-
like protocol provided reliability in the form of eventual con-
sistency, and efficiency with neighbor overhearing and self-
suppression. As a result, several new applications emerged.
Primary among these are Deluge, which disseminates pro-
gram images for whole node reprogramming, and the Mate
virtual machine [8], which disseminates VM programs for
node retasking. More recent query systems, such as the
Nucleus, use Trickle [4] for the purposes of disseminating
a new query, that which TinyDB originally used flooding
for. However, we note that each of these implementations,
though written for the same platform interface, TinyOS,
share much overlapping functionality, but almost zero code.
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At the minimum, this vertical software silo construction has
gone on long enough that we can do better, and we are miss-
ing the great opportunities associated with abstractions by
not doing so.

Collection on sensor networks was traditionally done by
constructing tree networks that dictated the data flow. For
example, TinyDB originally used this method for data col-
lection [6]. On the opposite spectrum, the collection of very
large data items, such as video frames, as opposed to small
items like sensor readings, has become important. Because
of this, new abstractions had to be built to allow for large
data transfer [18].

Nucleus [10] provides a nice foundation from which Sdlib
has emerged. Nucleus is a management system that exports
simple user variables in an easy to use format. However,
Nucleus performs only collection of small (less than 1 packet
in size) variables. We have made a series of modifications
and redesigns to support the full dataflow system that Sdlib
offers.

Sdlib also draws on work from two previous areas, namely
data flows in networks and databases, and programming
abstractions. Sdlib’s internal flow rules from application
to application borrows ideas from the Eddy adaptive query
processing operator [20]. Eddies allow the dynamic flow of
tuples to change while they are pipelined. In our system,
we can also change the flow of data at runtime by adjusting
flow rules through the radio. Similarly to how Eddies routes
tuples through a query processor, we route packet buffers
through a mote. This is also similar to other dataflow sys-
tems such as Snack [7]. However, Sdlib acts on data, rather
than network packets. Data is arguably the more important
concern in sensor networks.

6. CONCLUSION
We have constructed Sdlib, a library of components backed

by a runtime engine that substantially alleviates the applica-
tion developer’s task of application development, especially
in efforts that center around collection and dissemination,
two main tasks in sensor networks. As ongoing work, we are
actively investigating the incorporation of additional com-
munication patterns into Sdlib.

In addition to significantly easing development, Sdlib of-
fers a rich dataflow model on which more intricate dataflows
can be constructed. We use this dataflow system to support
many of the operations common to Sdlib, and in turn, use
Sdlib to construct four mature applications. Benchmark-
ing against the monolithic implementations of these applica-
tions, Sdlib-based implementations perform well. We invite
application developers to try out Sdlib:

www.cs.berkeley.edu/~davidchu/sdlib
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