
Amdb: A Visual Access Method Development Tool

Mehul A. Shah Marcel Kornacker Joseph M. Hellerstein�

University of California. Berkeley
fmashah, marcel, jmhg@cs.berkeley.edu

Abstract

The development process for access methods (AMs) in
database systems is complex and tedious.Amdbis a graph-
ical tool that facilitates the design and tuning process for
height-balanced tree-structured AMs. Central toamdb’s
user interface is a suite of graphical views that visualize the
entire search tree, paths and subtrees within the tree, and
data contained in the tree. These views animate search tree
operations in order to visualize the behavior of an access
method.Amdbprovides metrics that characterize the per-
formance of queries, the tree structure, and the structure-
shaping aspects of an AM implementation. The visualiza-
tions can be used to browse the performance metrics in the
context of the tree structure. The combination of these fea-
tures allows a designer to locate the sources of performance
loss reported by the metrics and investigate causes for those
deficiencies.

1. Introduction

The recent explosion in the volume and diversity of elec-
tronically available information has prompted the need for
efficient techniques for searching this data. To address this
demand, object-relational database systems provide inter-
faces for managing data of various types and implement
secondary-storage data structures (also referred to asaccess
methods or indexes) for efficientlyaccessing this data. A
commonly implemented access method (AM) for ordered
data types is the B+-tree [5].

Countless access methods for non-traditional data types
have been proposed by the database research commu-
nity, yet relatively few are supported in production scale
databases. Part of the impediment is the complexity of the
design, implementation, and refinement process for AMs.
Often, it is difficult for a designer to assess which aspects
of an AM design are responsible for observed performance.

�This work was supported by NASA grant 1996-MTPE-00099, NSF
grant IRI-9703972, and a Sloan Foundation Fellowship. Computing and
network resources for this research were provided through NSF RI grant
CDA-9401156.

Even the research community is undecided on the best de-
signs for non-traditional data types. For example, Gaede
and Gunther [6] survey numerous techniques for AMs that
manage spatial data, but their results are inconclusive. Fur-
thermore, correctness of an AM implementation is often
difficult to verify.

Traditional tools such as programming language debug-
gers and profilers are cumbersome and uninformative for
developing AMs. Pinpointing implementation flaws and un-
derstanding the mechanics of an AM require the ability to
visually inspect the AM’s state and observe the AM’s be-
havior during index search, insert, and delete operations.
Programming language debuggers are tedious because they
offer interactive execution at the level of single lines of
source code and introspection features for low-level data
structures. Moreover, profiling tools are designed for an-
alyzing code execution paths rather than AM-specific prop-
erties, such as clustering of data items, that characterize AM
performance. A tool that encapsulates knowledge about
AM structures and operations and exposes AM-specific,
higher-level interfaces is needed. Thus, we presentamdb,
a graphical tool that simplifies the design, verification, and
tuning process for height-balanced tree-structured AMs.

Amdb is a comprehensive, data-type independent de-
velopment tool for AMs built in the Generalized Search
Tree (GiST) framework. GiST encapsulates core AM func-
tionality such as page management and exposes a domain-
independent extensible interface for implementing height-
balanced search trees.Amdb leverages GiST because it
reduces implementation effort while still encompassing a
broad class of AMs [8, 11].Amdbprovides debugger-like
functionality at the level of the basic actions that comprise
search tree operations. These actions are node-oriented
actions such as node traversal, node split, node update,
etc. Thus, the designer can observe and reason about the
larger-scale mechanics of the tree rather than individual
lines of code to gain a better understanding of the AM’s
behavior. Furthermore, given a workload — a tree and a
set of queries —amdb reports metrics that characterize
the input tree’s performance in terms of the fundamental
performance-relevant properties of the tree such as cluster-



ing of data items. These metrics are further broken down
on a per-node and per-query basis. Such a breakdown
enumerates the sources of performance loss. Determining
how to improve an AM’s performance involves scrutinizing
this large collection of metrics, and understanding a search
tree’s behavior also requires the ability to navigate it.

A key challenge in buildingamdb was to enable navi-
gation of the search tree and facilitate browsing of the met-
rics in terms of tree structure. Several techniques have been
proposed for representing and navigating large hierarchies
[15, 13, 9, 4]. However, none are well suited to the require-
ments of search tree access methods, which are typically
short and height-balanced with high fanout.Amdbprovides
a hierarchy of visualization tools tightly integrated with the
debugging and analysis facilities that fulfill these unique re-
quirements.

These visualizations are theglobal view, tree view, and
subtree viewshown in Figure 1. These linked views rep-
resent and help a user navigate the structure, contents, and
properties of the search tree at various levels ranging from
a global perspective to the individual entries in eachnode.
In conjunction with the performance metrics, these views
bring out sources of inefficiencies in the tree structure, and
allow a designer to investigate causes for those inefficien-
cies. In this paper, we identify several modes of interaction
during this investigative phase and show how these views
address each. Finally, combined with the debugging fea-
tures, they provide animations of AM operations to under-
stand the behavior of those operations and elucidate flaws
in an implementation.

In this paper, we present the details ofamdb’s user in-
terface. We begin with an overview of the GiST framework
and some sample balanced trees in Section 2. In Section 3
we enumerate the design criteria which guidedamdbdevel-
opment. A description of theamdb analysis, visualization,
and animation facilities is given in Section 4. Section 5
describes some previous work in both generic tree visual-
izations as well as search tree and database visualizations.
Finally, Section 6 concludes with future work.

2. Balanced Search Trees

Databases store and retrieve data from disk in units of
pages. Retrieving specific data items from disk is a rel-
atively expensive operation. It involves locating the page
containing the item, which may require sifting through
many pages. Access methods are algorithms and data struc-
tures that attempt to minimize the number of I/Os necessary
for this operation. Balanced search trees encompass a broad
category of hierarchical access methods whose tree nodes
correspond to pages on disk.

We give an overview of the GiST framework to describe
the class of balanced search trees we are attempting to
model with the visualizations. In addition, we provide a

brief overview of the R-tree [7] in terms of the GiST frame-
work. The R-tree serves as the example GiST AM that is
used to highlight the utility of the user interface.

2.1 Generalized Search Trees

A generalized search tree (GiST) is a balanced tree
which provides “template” algorithms for navigating the
tree structure and modifying the tree structure through node
splits and deletes. A GiST stores(key, RID)pairs in the
leaves; the RIDs (record identifiers) point to the correspond-
ing records on the data pages. Internal nodes contain(pred-
icate, child page pointer)pairs; the predicate evaluates to
true for any of the keys contained in or reachable from the
associated child page. This captures the essence of a tree-
based index structure: a hierarchy of predicates, in which
each predicate holds true for all keys storedunder it in the
hierarchy. The predicates in the internal nodes of a search
tree will subsequently be referred to as subtree predicates
(SPs).

Apart from these structural requirements, a GiST does
not impose any restrictions on the key data stored within
the tree or their organization within and across nodes. In
particular, the key space need not be ordered, thereby al-
lowing many data types including multidimensional data.
Moreover, the nodes of a single level need not partition or
even cover the entire key space, meaning that (a) overlap-
ping SPs of entries at the same tree level are allowed and (b)
the union of all SPs can have “holes” when compared to the
entire key space. The leaves, however, partition the set of
stored RIDs, so that exactly one leaf entry points to a given
data record.

A GiST supports the standard index operations:
SEARCH, which takes a predicate and returns all leaf en-
tries satisfying that predicate; INSERT, which adds a(key,
RID) pair to the tree; and DELETE, which removes such a
pair from the tree. The GiST can be specialized to one of a
number of particular access methods by providing a set of
extension methods specific to thataccess method. These
extension methods encapsulate the exact behavior of the
search operation as well as the organization of keys within
the tree.

We now provide a sketch of the implementation of the
operations and how they use the extension methods. For a
more detailed description see the original paper [8].

SEARCH In order to find all leaf entries satisfying the
search predicate, we recursively descendall subtrees
for which the parent entry’s predicate is consistent with
the search predicate (employing the user-supplied ex-
tension methodconsistent()).

INSERT Given a new(key, RID)pair, we must find a leaf
to insert it on. Note that because GiSTs allow over-
lapping SPs, there may be more than one leaf where

2



Figure 1. The amdb user interface.

the key could be inserted. A user-supplied extension
methodpenalty()compares a key and predicate and
computes a domain-specific penalty for inserting the
key within the subtree whose bounds are given by the
predicate. Using this extension method, we traverse a
single path from root to leaf, following branches with
the lowest insertion penalty.

If the leaf overflows and must be split, a extension
method,pickSplit(), is invoked to determine how to
distribute the keys between two leaves. If, as a result,
the parent also overflows, the splitting is carried out
recursively bottom-up.

If the leaf’s ancestors’ predicates do not include the
new key, they must be expanded, so that the path from
the root to the leaf reflects the new key. The expan-
sion is done with an extension methodunion(), which
takes two predicates, one of which is the new key, and
returns their union. Like node splitting, expansion of
predicates in parent entries is carried out bottom-up
until we find an ancestor node whose predicate does
not require expansion.

DELETE In order to find the leaf containing the key we
want to delete, we again traverse multiple subtrees as
in SEARCH. Once the leaf is located and the key is
found on it, we remove the(key, RID)pair and, if pos-
sible, shrink the ancestors’ SPs.

Although the GiST abstraction prescribes an algorithm
for searching and inserting, the AM designer still has full

control over the performance-relevant structural character-
istics of the AM. We briefly describe these characteristics
below.

Clustering is the organization of the indexed data in leaf
pages, and SPs in the internal pages. The clustering de-
termines the amount of extra data that a query needs to
access in order to retrieve its result set. Apoor cluster-
ing causes a query to fetch many pages each of which
may contain only a few relevant items. An AM de-
sign controls the clustering through thepickSplit()and
penalty()extension methods.

Page Utilization is the fraction of the page occupied with
data. Typically, the utilization varies across nodes and
ranges from some fixed tunable lower bound to 100%.
Utilization determines the number of pages that the
indexed data and the SPs occupy, and therefore also
influences the number of pages that a query needs to
visit. Similar to the clustering, the page utilization is
controlled by thepickSplit() and penalty()extension
methods.

Subtree Predicates(SPs) describe, or cover, that part of
the data space which is present at theleaf level of each
SP’s associated subtree. We speak of SPexcess cov-
erageif the SP covers more of the data space than is
needed in order to represent the data contained in the
subtree. If a SP exhibits excess coverage, it may cause
queries to visit pages that contain no relevant data.

3



2.2 R-trees

An R-tree [7] is a common AM that is easily modeled
in the GiST framework. It is a height-balanced search tree
which indexes multidimensional spatial objects. Each SP in
an R-tree is the minimum bounding rectangle (MBR) that
encloses the spatial objects contained in the subtree below.
Search is performed starting from the root. To find all ob-
jects contained within a rectangle, all subtrees whose MBRs
overlap the query rectangle are explored further. Once a leaf
is reached during a search, the data items contained within it
are filtered by the query rectangle. Thus, for a GiST imple-
mentation of an R-tree that supports containment queries,
the consistent()function returns all MBRs or data items
which overlap the query rectangle. Insertion is also carried
out top-down. At each level, the subtree in which to insert
is determined by the picking the MBR which requires the
minimum volume enlargement. For a GiST implementa-
tion, thepenalty()function is defined to return the enlarge-
ment in volume of the MBR. Finally, upon an overflow dur-
ing insertion, a node is split by separating its contents into
two disjoint subsets whose MBRs overlap the least. Various
other heuristics for separating the contents have been pro-
posed. Split heuristics are encapsulated in thepickSplit()
function. For a more detailed description, of the R-tree ex-
tension methods, see the original GiST paper [8].

Variants of the R-tree modify one or more of the follow-
ing three aspects: SP design,penalty(), andpickSplit(). For
example, the R*-tree [2], modifies thepenalty()andpick-
Split() routines. SS trees and SR trees [10, 16] modify the
SP in addition. Each of these designs attempt to create a
better AM by adhering to two goals. The first is to min-
imize SP overlap. The second is to minimize the volume
spanned by the SPs.

3. Design Criteria

There are a number of principles which guided the de-
sign for amdb. These criteria were inspired by our ex-
perience in developing GiST-based AMs and initial devel-
opment efforts to visualize their structure. We summarize
these goals before we describe the features ofamdb.

High-level and interactive. Debugging AMs requires the
ability to step through index search, insert, and delete com-
mands, but programming language tools are too tedious
for this purpose. They provide interactive execution at the
source code level rather than at the level of the salient ac-
tions that comprise the index operations. For search trees,
these basic actions are node-oriented. Examples include
node traversal, node split, item insertion, item deletion, etc.
Index operations often take convoluted paths through the
code. Hence, with a source code debugger, it is difficult for
the user to determine why and when these node-oriented
actions are invoked. Raising the level of abstraction allows

the designer to follow the essential aspects of a search tree’s
behavior while hiding unnecessary details. Thus,amdb al-
lows interactive execution of index operations at the level of
node-oriented actions.

Performance feedback for a workload. An AM’s per-
formance characteristics can not be deduced from single ex-
ecutions or from aggregate numbers alone. Characterizing
the performance of a particular AM in general is a difficult
problem as evidenced by the efforts in the research litera-
ture [12, 6]. One reason is because an AM’s performance
is dependent on many factors: the queries run against it, the
data it contains, and its structure. A more tractable approach
for evaluating an AM is to characterize its performance for
a given workload – a set of queries run against a fixed tree.
This is the approach taken byamdb.

Visualization and animation. Interactive execution fa-
cilities and performance metrics are not enough for facili-
tating the AM development process. Recognizing patterns
in large collections of data is difficult for humans. Both
the search tree and performance data reported byamdb are
typically large enough to make manual browsing tedious.
Visualizations and animations are necessary because they
stimulate pattern recognition. Software visualization tools
are too low-level to be generally useful in this context [1].
Like programming language debuggers and profilers, they
do not encapsulate any knowledge about AM-specific data
structures or operations. Thus,amdb must provide a visu-
alization of the search tree structure and its contents. This
in turn can be leveraged to browse reported statistics as well
as animate debugging operations in the context of the AM
structure.

Many tree visualization schemes have been proposed;
however, none of them are directly appropriate for the task
at hand. The following requirements are crucial for our vi-
sualizations.

Focus + context visualizations.A common form of interac-
tion for inspecting search trees involves traversing sev-
eral paths, or subtrees. For example, a window query
often traverses several paths in an R-tree. During an
interactive execution of a query, a user may want to
compare the nodes along the traversed paths to better
understand the query’s behavior. While a user is focus-
ing on this subset of the tree, it is also useful to see its
relationship to the whole tree. A similar argument ap-
plies when a user is looking at the contents of a single
node. Context helps place the “focused” items. Any
visualizations that model the search tree must provide
focus with context at all levels.

AM specific visualizations.Amdbmodels height-balanced
trees that usually have bounded and high fanout.
Database search trees typically have a fanout between

4



100 and 200 and are 3 to 4 levels deep. A completely
generic tree visualization is unnecessary, especially if
it sacrifices one of the other criteria.

Preserve data-type independence. GiST is a generic,
data-type independent framework for implementing search
trees.Amdb leverages GiST to encompass as many flavors
of AMs as possible. Accordingly, the features and analy-
sis framework thatamdb implements should preserve data-
type independence whenever possible.

4. Analysis, Visualization, and Animation

In this section, we give an in-depth description of the
functionality provided by theamdb user interface and il-
lustrate how it can be used to refine an AM design. First,
we give an overview of the performance metrics thatamdb
reports. These metrics can be browsed naturally using the
graphical views thatamdb provides. We describe these vi-
sualizations next. Finally, we describe the debugging func-
tionality and how it is integrated with the views to provide
animations of index operations.

4.1. Analysis Framework

We give a brief overview of theamdb analysis frame-
work; for a more complete description see [12]. The analy-
sis framework defines performance metrics that characterize
the page access behavior of a specific workload—an input
tree and a set of queries. These metrics are more meaningful
than aggregate page access or runtime numbers and thereby
allow the AM designer to detect and isolate deficiencies in
an AM design. The analysis framework applies to all GiST
AMs.

Central to the analysis is the comparison of observed
page accesses with optimal page accesses, i.e., the num-
ber of page accesses in a tree that is optimal for the input
workload (a model of which can be approximated relatively
efficiently). The performance metrics are derived from this
comparison and expressperformance loss, which is the dif-
ference between actual and optimal page accesses. The
framework defines metrics for each query of the workload,
for eachnode of the input tree, and for the structure-shaping
aspects of the AM implementation, namely thepickSplit()
andpenalty()GiST extension functions. In order to provide
additional insight into the sources of performance deterio-
ration, the loss metrics are further broken down to reflect
clustering loss, page utilization loss, and excess coverage
loss in the input tree.

Amdb implements this framework and offers text-
oriented browsers to step through individual metrics. Since
these interfaces can be cumbersome, it also offers a combi-
nation of visualization tools to browse the structural metrics
more naturally.

4.2. Visualization

In this section, we present the graphical interfaces that
amdb provides to support the process for determining the
causes of AM performance degradation. The main contri-
butions of our design are as follows. First, we provide new
mechanisms that help a designer navigate database search
trees without being overwhelmed by their width. Second,
we identify three modes of interaction with the search tree
during this investigative process and provide a visualization
that addresses each. The three views that support this pro-
cess areglobal view, tree view, andsubtree view. They are
tightly integrated via various methods of linked views.

To illustrate the utility of these interfaces, we refer to a
running example of an R-tree which indexes 2-D point data
(see Figure 2). It contains 40,000 points which are clus-
tered around 200 randomly distributed centers in the range
[0..100] in both dimensions. The clusters are square with
an average side-length of 5. We ran 20,000 queries against
this R-tree to compute the performance metrics. These were
square queries of side-length 2.5, and centered on randomly
chosen points from the indexed data.

4.2.1. Global View. The purpose of the global view is to
provide a manageable aggregate view of the entire index
with respect to a particular node property (see Figure 2 and
Figure 3). This property can be a workload-performance
metric, a generic attribute like page utilization, or a boolean
attribute like traversal during a query. The global view is
meant to help designers recognize patterns in a property
among all nodes in the tree and correlations between dif-
ferent properties. Thus, a designer can use it to quickly spot
regions in the search tree which are responsible for perfor-
mance loss. In order to provide a manageable overview,
the global view approximates the search tree. It factors out
much of the exact tree structure while trying to preserve the
relative positions of nodes within the tree.

The global view is constructed by mapping a conven-
tional 2-D layout of the entire tree onto a triangle (see top
of Figure 2). A conventional 2-D layout of a tree is one
in which parents are centered above their children. In the
global view, eachnode is represented by a vertical colored
bar which reflects a user-chosen node property for the en-
tire tree. The links between parents and children are not
shown, and all nodes on the same level are concatenated.
In this layout, the distance between nodes on a particular
level is roughly related to the distance to a common an-
cestor — a property users are accustomed to in conven-
tional 2-D tree layouts. The height of the tree is changed
by adjusting the size of the window, and the baseline of the
triangle is adjusted with the scale at the top of the view.
Since search trees usually have high and roughly constant
fanout, the number of nodes oneach level increases geo-
metrically while the allocated screen space only increases

5



Figure 2. In this amdb session, we begin with the global view and narrow down upon the sources
of excess coverage loss through the tree view to the subtree views. We discover the cause of high
excess coverage loss for node 192 is high overlap with node 63. Thus, the SP or split algorithm are
design aspects for further refinement.

linearly. Thus, the pixel density of nodes increases roughly
geometrically. This implies that at the bottom levels, it is
possible that a vertical bar that is one pixel wide represents
a collection of nodes. In this case, the default behavior is
to use the average of the property across the nodes to rep-
resent the collection. The mapping between colors and the
node-related property is displayed in the legend on the left
of thetree view(see center of Figure 2), which is described
in the next section.

The global view elucidates patterns in a chosen metric
and correlations between two metrics. For example, the
global view in Figure 2 displays excess coverage loss, the

extra I/Os incurred because of overly general MBRs, in our
example R-tree. Notice that there are localized spots of high
excess coverage loss in the leaf and internal levels, indicated
by white regions. Correlations of excess coverage loss with
another metric may provide insight into the cause of the
empty traversals. A designer can search for correlations by
projecting the new metric onto the same view. To show how
the global view can point out correlations between metrics,
we digress from our current example to another tree, an R*-
tree which indexes 8-D point data. Figure 3 shows the cor-
relation between clustering loss and excess coverage loss
for the leaf level of this tree. In both views, black represents

6



Figure 3. The top view shows clustering loss and the bottom view displays excess coverage loss
for an R*-tree indexing 8-D clustered point data. These views have been extracted from the user
interface and placed side by side to highlight the correlation.

low loss and white represents high loss. Notice the correla-
tion for the leaf nodes slightly right of center. The correla-
tion between these metrics is not exact, but strong enough
to merit further investigation. With the approximation of
the search tree provided by the global view, the designer
can identify areas of interest which can be explored further
using a more detailed view of the search tree structure, the
tree view.

The user can navigate to an area of interest in the tree by
clicking on it in the global view. Subsequently, a path to a
node in the vicinity of the click is shown in the tree view.
For example, in our example R-tree we notice several areas
of high excess coverage loss. It is worth investigating those
areas further to determine the causes for such a performance
loss. Figure 2 shows the path that is highlighted in the tree
view if we click on the first white bar in the lowest level of
the global view.

4.2.2. Tree View. The purpose of the tree view is to allow
the user to focus on several paths or subtrees at once within
the search tree. This form of interaction is useful during
animations of index operations. In addition, it is necessary
when investigating sources of performance loss. Looking
at several paths or subtrees at once helps the user recognize
correlations in statistics between parents and children and
among different paths. These correlations are obscured by
the global view. Furthermore, the relationship between the
global view’s representation of the tree and the paths shown
in the tree view is obscured or lost when there are numer-
ous paths displayed. Since a focus+context visualization is
an important criterion for our design, one requirement of
the tree view is to provide as much context as possible in
relation to the search tree to compensate for this drawback.

The tree view displays the true structure of the subtrees
and paths that are visited by exactly depicting ancestral

relationships among the visited nodes (see center of Fig-
ure 2). It also offers an intuitive point-and-click interface
for browsing the search tree while improving on conven-
tional tree navigation interfaces that become cumbersome
for high-fanout trees. Conventional 2-D tree interfaces dis-
play all the children of a node at once and provide a sin-
gle scrollbar for navigation in the tree if it becomes too
large to fit on screen. This can be unwieldy for browsing
search trees because even a single level often cannot fit on
screen. Below, we describe how the tree view provides con-
text without overwhelming the user with the tree’s width.

In the tree view, the tree’s nodes are represented by boxes
and labeled with a unique number for reference. The nodes
are colored according to the samenode property shown in
the global view. The mapping between colors and the node
property value is displayed in a color legend in left of the
tree view. Each node is enclosed in a scrollable and stretch-
able container, asibling container, which displays its direct
siblings. This container allows users to focus on nodes of
interest while providing as much context as possible and
bounding the fanout ofeachnode. Figure 2 shows an ex-
ample for the children of nodes 188 and 189; they cannot
all fit on the screen, but since they are enclosed in sibling
containers the visualization works naturally. A scroll bar is
provided to find nodes of interest within a container.

Any node can be expanded or contracted by clicking on
it. When a node is initially expanded, the container hold-
ing its children is displayed below it with a line linking the
two. When contracted, the entire subtree below the node
is removed. If it is subsequently expanded, the previously
contracted subtree is re-displayed.

The conventional 2-D tree layout algorithm is used to
lay out the sibling containers. The only subtlety is in deter-
mining what width the containers should be. The goal is to

7



provide as much context as possible without cluttering the
display or going beyond its boundary. Initially, the width of
the window is divided among containers at the same level,
and this allocation is dynamically maintained until the user
resizes the container. After resizing, the container’s width
remains fixed until it is resized again.

The tree view also provides the notion of a “current
path”, a path from the root to a given node in the tree. This
notion is useful while browsing and debugging. During de-
bugging, the “current path” represents the progress of the
index operation which moves from node to node. While
browsing, it serves as a visual cue for linking this view to
the data-type specific visualization of the tree contents de-
scribed in the next section. If a “current path” is shown,
then it is highlighted, and the sibling containers that hold
nodes along the path are aligned vertically.

Continuing with our example, the tree view in Figure 2
shows a highlighted path to node 192, which we narrowed
down upon from the global view. Notice that the children
of node 189, which has high excess coverage loss, have al-
most no excess coverage loss. But, the children of node 188,
which has low excess coverage loss, have a relatively higher
excess coverage loss. Such a non-intuitive and suggestive
observation is difficult to discern with only the global view.
Once we have located sources of performance loss, we need
to determine the causes of these losses to refine our AM de-
sign. To do so, we need to investigate the data contained
in the candidate nodes or subtrees.Amdboffers thesubtree
viewwhich visualizes these data.

4.2.3. Subtree View. Unlike the previous two views
which provided data-type independent visualizations, the
subtree view is a data-type specific visualization of data in
the search tree. It provides a graphical display of some
user-specified subset of the items and SPs contained in
the search tree. The goal of the subtree view is to help
the designer translate the sources of performance loss into
domain-specific intuitions that reflect the causes of these
losses. These intuitions can then be used to refine the AM
design for reducing the losses. For example, the subtree
view should help us explain the excess coverage loss in
terms of the points and MBRs contained in our example R-
tree, so that we may reduce or eliminate the loss. Since tree
nodes contain arbitrary user-defined SPs, theaccess method
designer must provide a module which displays the data
items and SPs. Currently,amdb is released with a built-
in suite of modules which visualize two-dimensional pro-
jections of multi-dimensional data. A designer may install
custom modules if needed. As a default, if no visualization
modules are applicable,amdb provides a textual descrip-
tion of the SPs, their sizes, and associated pointers con-
tained in any chosen node. We describe the features that
the 2-D subtree view modules support.

The 2-D subtree view modules are integrated with the

tree view and provide the following features. First, the user
can visualize, on a single canvas, the entire contents of any
chosen node or the subtree rooted at that node. With the
subtree option, the user must specify the number of levels
(from the subtree root) that are displayed simultaneously.
For example, the subtree view in the lower left of Figure 2
shows the data items in node 192. The axes represent the
orthogonal axes of the data domain. The left view in Fig-
ure 4 shows the SPs contained in the first two levels of the
tree; the SPs in node 1 are superimposed upon the SPs in
node 188 and 189 from our example R-tree.

The subtree view provides other convenient features that
link it to the tree view. These features help the user discover
the context of the displayed items in terms of the tree struc-
ture. First, the subtree view highlights all SPs contained in
the view that describe nodes along the “current path.” For
example, in the center subtree view of Figure 2, the MBR
of node 192 is highlighted (in white) becausenode 192 is
on the “current path.” Another example is shown in Fig-
ure 5. The subtree view of node 1 shows the MBR of node
189 highlighted, and the subtree view of node 189 shows
the MBR of node 60 highlighted. These MBRs are high-
lighted because they lie on the “current path” shown in the
tree view. In addition to the “current path”, subtree view
provides a facility to highlight the contents of entire sub-
trees that are contained within a subtree view. For example,
the left view in Figure 4 highlights the contents of the sub-
tree rooted at node 188. Only the MBRs contained in node
188 are highlighted since it is the only node from the sub-
tree whose contents are being displayed. Finally, in a single
node visualization, one has the option to display the poten-
tial results of a node split in contrasting colors. The right
side of Figure 4 shows an example in which the black points
would be placed in the leftnode and the white points in the
right if node 218 were split. This feature is indispensable
for debugging thepickSplit()method.

Continuing with our example in Figure 2, we want to
determine the cause of excess coverage loss in node 192.
Its contents are shown in the left most subtree view of Fig-
ure 2. Notice, the node contains points from different clus-
ters in an arrangement for which MBRs are not well suited.
Thus, node 192’s MBR has a lot of empty space. In or-
der to find node 192’s MBR in relation to its siblings, we
need to take a look at the contents of node 188. We can see
that node 192 has an MBR which has high overlap with an-
other MBR contained within it, the one of node 63.1 From
these views, we see that two factors, the MBR’s overlap and
the MBR’s inability to describe data from different clusters,
are causing the excess coverage loss. Some alternatives for

1Currently, the subtree view does not allow the user to directly select an
MBR to find out which node it describes. Thus, we manually searched the
textual descriptions of node 188 to determine which node’s MBR overlaps
node 192’s MBR.

8



Figure 4. The two figures represent data contained in our example R-tree. The left view shows the SPs
contained in the first two levels, nodes 1, 188, and 189. The SPs of internal node 188 are highlighted.
The right shows a visualization of pickSplit()results for node 218.

improving our design include changing the SPs, changing
the pickSplit()method to reduce overlap, or changing the
penalty()method to seek clusters.

4.3. Animation Features

The behavior of an AM can be difficult to understand
without an ability to observe its mechanics. Previously,
only standard programming language debugging tools were
available for examining GiST AMs. Because these tools
are designed for analyzing low-level actions, such as a sin-
gle line of source code, they are too cumbersome for gain-
ing an understanding of how search and update operations
behave and interact with the tree. Hence,amdbprovides vi-
sual animations of these operations to help understand their
behavior.

Amdb allows a designer to single-step through index
search, insert, and delete commands. Those commands gen-
erate an event for eachnode-oriented action, such as node
split, node traversal, etc.Amdbpermits users to step from
event to event. Since manual stepping can become tedious,
amdb also supports breakpoints. Breakpoints can be de-
fined on generic node-oriented actions, e.g., node traversal
or node update. Breakpoints can also be tied to a specific
tree node, e.g., update of node 227. When a breakpoint
event is encountered, execution is suspended, and the user
has an option to single-step through events or continue un-
til the next breakpoint. Textual descriptions of an interac-
tive execution are provided in a console window. However,
these descriptions are often not very effective for grasping
the overall behavior of the particular operation.

Amdb integrates the debugging features with the visu-
alizations to produce animations that provide more use-

ful feedback than textual descriptions. The breakpoints
encountered during the interactive execution mark the
“frames” of the animation. For each frame, the path to the
current node being considered is expanded and highlighted
in the tree view. Likewise, the SPs of all nodes along this
“current path” are also highlighted in the subtree views. In-
tegrating these views with debugging features not only pro-
vides context for the progress of the execution, but also pro-
duces a cogent animation while single-stepping.

A snapshot of an interactive execution of a rectangu-
lar window query on an R-tree indexing 2-D point data is
shown in Figure 5. The tree view highlights the path to
the current node (60) and textual descriptions of the inter-
action are shown in the console. The subtree views display
the MBRs contained in the root and node 189. The MBRs
of node 189 and node 60 are highlighted in top and bot-
tom subtree views respectively since they lie on the current
path. The user can control the execution with the buttons at
the top of the screen.

5. Related Work

5.1. Tree Visualization

Numerous techniques have been proposed for visualiz-
ing large hierarchies.Cone Trees, hyperbolic browsers, and
treemaps are a representative subset. Each of these have
their merits but were passed over for various reasons.

The Cone Tree [15] embeds the hierarchy in a three-
dimensional space; the children of anode are wrapped
around the base of a circular cone with the parent located
at the apex. Nodes can be rotated to the front of the view
to bring a path into focus while maintaining its context in

9



Figure 5. An interactive execution of a rectangular query on an R-tree.

the entire structure. In addition, subtrees can be pruned or
expanded. One limitation is that only a single path can be
brought into focus at any one time. Index operations often
take several paths and hop around the tree. This property
makes an execution animation hard to follow with the Cone
Tree becausenodes and paths are constantly rotated in and
out of focus. The authors note the Cone Tree becomes un-
wieldy at about 1000 nodes or with a fanout higher than 30,
and is more effective for unbalanced structures. Database
search trees typically have more nodes, higher fanouts, and
are balanced. User experience with our initial prototype in-
dicated this representation was not effective at high fanouts.
It obscured parts of the tree, hindering the ability to grasp
the tree’s global structure. Finally, the Cone Tree requires
3-D rendering and animation support. Our current imple-
mentation is 2-D and relies on simple Java toolkit primitives
which makesamdbeasy to port.

Hyperbolic browsers are a focus+context technique for
visualizing hierarchies [13]. They lay out the hierarchy in a
hyperbolic plane which is then mapped to a circular disk.
This places the root at the center with thenode density
increasing exponentially towards the circumference. This
is similar to our global view but in a circular orientation.
Change of focus is performed by dragging a node of inter-
est towards the center. The drawback to this approach is that
only one node and its direct ancestors and children can be
brought into focus at a time. Furthermore, a user study indi-
cated that it provides a “weaker sense of directionality and
location in the overall space” [13]. If applied to search trees,
this would tend to obscure the difference between internal
and leaf nodes, a critical distinction in our application.

Finally, treemaps represent hierarchies with screen real
estate [9]. A node is assigned a section of the display which
is then divided among its children. The area allocated is re-
lated to some property of the node. This layout helps find
certain patterns easily. However, because thephysical lay-
out for one property can be quite different from another,
finding rough correlations between two distinct properties
is difficult.

5.2. Index Visualization and Animation

To our knowledge,amdb is the only tool that provides
both debugging and analysis functionality for AM develop-
ment. It is also the only one which integrates a scalable
representation of the search tree structure with these fea-
tures. There have been precedents in theliterature of de-
bugging tools geared toward domain-specific indexes. DE-
Vise is a general purpose visualization tool that has been
useful in debugging R-tree implementations [14]. It sim-
ply provides a 2-D view of the points and their bounding
rectangles contained within the R-tree, akin toamdb ’s de-
fault subtree view. It offers no facilities for animating in-
dex operations. Similarly, Brabec and Samet [3] provide
a collection of Java applets that encapsulate a wide variety
of 2-D R-tree and quad-tree variants. Again, likeamdb ’s
subtree view, they focus on 2-D geographic visualizations
of nodes spanning one or more levels. These views offer
the ability to zoom in and out of the spatial representation,
with domain-specific statistics reported per level. They do
animate insertions, deletions, and splits in which users can
observe changes in the points and bounding boxes indexed.

10



The authors indicate that their visualizations do not scale for
high-fanout trees, as we have noticed with our subtree view
(without the context provided by the other views). Neither
of these two tools provide detailed feedback about an AM’s
workload performance.

6. Conclusion

Amdb is a tool that aids designers in the development
process for GiST-based AMs. It animates interactive exe-
cutions of search tree operations. It reports metrics which
provide detailed feedback about the workload performance
characteristics of an AM. It provides visualization tools
with intuitive controls that are well suited for representing
and navigating database search trees.

These tools allow the user to investigate sources of defi-
ciencies and drill down to determine their causes. The per-
formance metrics provide the input to the visualization tools
for locating sources of performance loss. The global view
provides an approximation of the tree structure which helps
elucidate patterns in the reported metrics. The tree view
allows the designer to focus on paths and subtrees of inter-
est without cluttering the display. Finally, the subtree view
is a visualization of the data that helps a desginer explain
the performance loss. These visualization tools are imple-
mented using primitives available in Java class libraries,
which makes them easy to port.

There are a number of challenges that still need to be
addressed byamdb. First, amdb currently does not pro-
vide visualization facilities for effectively browsing the per-
query metrics. These metrics are just as significant as node
metrics for pinpointing sources of performance loss. Sec-
ond, the domain-independent visualization tools and analy-
sis metrics only point out the locations of deficiencies with-
out proposing deeper intuitions on causes or solutions. The
subtree visualization partly assists the designer, but it is not
enough for fully characterizing the domain-specific causes
for the losses. Also, the state of a search tree is often the
result of a sequence of operations and is highly dependent
on their order. For example, for an R-tree the insertion
order is critical to its performance. Visualizations of SPs
and data give little feedback about such cumulative effects.
One possible approach to remedy these drawbacks is to pro-
vide the AM designer with facilities to collect user-defined
metrics over the workload execution. These metrics can
then track cumulative effects and also incorporate domain-
specific knowledge. Allowing the designer to visualize and
compare these with the domain-independent metrics would
verify intuitions about observed performance.

The current release ofamdb can be downloaded from
http://gist.cs.berkeley.edu/ . Amdb is bun-
dled with thelibgist package, which implements the
GiST abstraction.Amdb is written in Java andlibgist

is written in C++. The packages are available for several
platforms.

Acknowledgments

We want to thank Megan Thomas and the students in the
graduate database course at Berkeley for being guinea pigs.
We would also like to thank Paul Aoki, Allison Woodruff,
Vijayshankar Raman, and Bennet Vance for valuable com-
ments.

References

[1] T. J. Ball and S. G. Eick. Software Visualization in the
Large.Computer, Apr. 1996.

[2] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger.
The R�-Tree: An Efficient and Robust Access Method for
Points and Rectangles. InACM SIGMOD, pages 322–331,
1990.

[3] F. Brabec and H. Samet. Visualizing and Animating R-Trees
and Spatial Operations in Spatial Databases on the World-
wide Web. InVisual Database Systems, May 1998.

[4] J. Carri re and R. Kazman. Interacting with huge hierarchies.
In Information Visualization Symposium, pages 90–96, Oct.
1995.

[5] D. Comer. The Ubiquitous B-Tree.ACM Computing Sur-
veys, 11(4):121–137, 1979.

[6] V. Gaede and O. G¨unther. Multidimensional Access Meth-
ods.ACM Computing Surveys, 30(2), 1998.

[7] A. Guttman. R-Trees: A Dynamic Index Structure for Spa-
tial Searching. InACM SIGMOD, pages 47–57, June 1984.

[8] J. Hellerstein, J. Naughton, and A. Pfeffer. Generalized
Search Trees for Database Systems. InVLDB, pages 562–
573, Sept. 1995.

[9] B. Johnson and B. Shneiderman. Treemaps: A space-filling
approach to the visualization of hierarchical information. In
IEEE Visualization Conf., pages 284–291, 1991.

[10] N. Katayama and S. Satoh. The SR-Tree: An Index Struc-
ture for High-Dimensional Nearest Neighbor Queries. In
ACM SIGMOD, pages 369–380, May 1997.

[11] M. Kornacker. High-Performance Generalized Search Trees.
To appear inVLDB, Sept. 1999.

[12] M. Kornacker, M. Shah, and J. Hellerstein. An analysis
framework for access methods. Submitted for publication
to ICDE 2000.

[13] J. Lamping, R. Rao, and P. Pirolli. A Focus+Context Tech-
nique Based on Hyperbolic Geometry for Visualizing Large
Hierarchies. InACM SIGCHI, May 1995.

[14] M. Livny, R. Ramakrishnan, K. Beyer, G. Chen, D. Don-
jerkovic, S. Lawande, J. Myllymaki, and K. Wenger. DE-
Vise: Integrated Querying and Visual Exploration of Large
Datasets. InACM SIGMOD, 1997.

[15] G. Robertson, J. Mackinlay, and S. Card. Cone trees: An-
imated 3D Visualizations of Hierarchical Information. In
ACM SIGCHI, pages 189–194, 1991.

[16] D. A. White and J. R. Similarity Indexing with the SS-Tree.
In ICDE, pages 516–523, Feb. 1996.

11


