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Abstract Even the research community is undecided on the best de-
signs for non-traditional data types. For example, Gaede
The development process for accessho@s (AMS) in and Gunther [6] survey numerous techniques for AMs that
database systems is complex and tedidumdbis a graph- manage spatial data, but their results are inconclusive. Fur-
ical tool that facilitates the design and tuning process for thermore, correctness of an AM implementation is often
height-balanced tree-structured AMs. Centralamdb's difficult to verify.
user interface is a suite of graphical views that visualize the Traditional tools such as programming language debug-
entire search tree, paths and subtrees within the tree, andgers and profilers are cumbersome and uninformative for
data contained in the tree. These views animate search treedeveloping AMs. Pinpointing implementation flaws and un-
operations in order to visualize the behavior of an access derstanding the mechanics of an AM require the ability to
method.Amdb provides metrics that characterize the per- visually inspect the AM's state and observe the AM’s be-
formance of queries, the tree structure, and the structure- 40" quring index search, insert, and delete operations.
;haping aspects of an AM implementation. The V,isu","liza'Programming language debuggers are tediegsaibse they
tions can be used to browse the performance metrics in theygo, interactive execution at the level of single lines of
context of the tree structure. The combination of these fea’source code and introspection features for low-level data
tures allows a designer to locate the sources of performancestructures_ Moreover, profiling tools are designed for an-
Ios§ repqrted by the metrics and investigate causes for thosealyzing code execution paths rather than AM-specific prop-
deficiencies. erties, such as clustering of data items, that characterize AM
performance. A tool that encapsulates knowledge about
) AM structures and operations and exposes AM-specific,
1. Introduction higher-level interfaces is needed. Thus, we preaemdb,
a graphical tool that simplifies the design, verification, and

The recent explosion in the volume and diversity of elec- . .
e recent explosion in the volume and diversity of elec tuning process for height-balanced tree-structured AMs.

tronically available information has prompted the need for
efficient techniques for searching this data. To address this Amdb is a comprehensive, data-type independent de-
demand, object-relational database systems provide intervelopment tool for AMs built in the Generalized Search
faces for managing data of various types and implementTree (GiST) framework. GiST encapsulates core AM func-
secondary-storage data structures (also referreddocass  tionality such as page management and exposes a domain-
methods or indexes) for efficientlyccessing this data. A  independent extensible interface for implementing height-
commonly implemented access method (AM) for ordered balanced search treesAmdb leverages GiST because it
data types is the B-tree [5]. reduces implementation effort while still encompassing a
Countless access nhetds for non-traditional data types broad class of AMs [8, 11]JAmdb provides debugger-like
have been proposed by the database research commuunctionality at the level of the basic actions that comprise
nity, yet relatively few are supported in production scale search tree operations. These actions are node-oriented
databases. Part of the impediment is the complexity of theactions such as node traversal, node split, node update,
design, implementation, and refinement process for AMs. etc. Thus, the designer can observe and reason about the
Often, it is difficult for a designer to assess which aspects larger-scale mechanics of the tree rather than individual
of an AM design are responsible for observed performance.lines of code to gain a better understanding of the AM’s
*This work was supported by NASA grant 1996-MTPE-00099, NSF behavior. Furthermore, given a workload — a tree and a
grant IRI-9703972, anFc)ipa SloanyFounda%on Fellowship. Computi‘ng and set ,Of queries —amdb report§ metrics that characterize
network resources for this research were provided through NSF RI grantth€ input tree’s performance in terms of the fundamental
CDA-9401156. performance-relevant properties of the tree such as cluster-




ing of data items. These metrics are further broken down brief overview of the R-tree [7] in terms of the GiST frame-
on a per-node and per-query basis. Such a breakdowrwork. The R-tree serves as the example GiST AM that is
enumerates the sources of performance loss. Determiningised to highlight the utility of the user intade.

how to improve an AM’s performance involves scrutinizing

this large collection of metrics, and understanding a search2.1  Generalized Search Trees

tree’s behavior also 'requilre.s the ability to navigate it. . A generalized search tree (GiST) is a balanced tree

A key challenge in bwldmglm'd.b was to e'nable navl-— \which provides “template” algorithms for navigating the
gation of the search tree and facilitate browsing of the met- yo¢ strycture and modifying the tree structure through node
rics in terms of tree structure. Several techniques have bee@plits and deletes. A GiST stor¢eey, RID)pairs in the
proposed for representing and navigating large hierarchie§g,es: the RIDs (record identifiers) point to the correspond-
[15, 13, 9, 4]. However, none are well suited to the require- ing records on the data pages. Internal nodes cofjiesa-

ments of search tree access huets, which are typically  joa10 child page pointerpairs; the predicate evaluates to
shortand height-balanced with high fanofimdbprovides ;0 tor any of the keys contained in or reachable from the

a hierarchy of visualization tools tightly integrated with the - 5qqcjated child page. This captures the essence of a tree-

depugglng and analysis facilities that fulfill these unique re- - <o 4 index structure: a hierarchy of predicates, in which

quwement;. L ) ) each predicate holds true for all keys stotedler it in the
These visualizations are tigiobal view tree view and  pigrarchy. The predicates in the internal nodes of a search

subtree vienshown in Figure 1. These linked views rep- a0 il subsequently be referred to as subtree predicates
resent and help a user navigate the structure, contents, an Ps).

properties of the search tree at various levels ranging from Apart from these structural requirements, a GiST does

a globgl perspecj[ive to the individual entrigs in eaduie.. not impose any restrictions on the key data stored within
In conjunction with the performance metrics, these VIews yhe yree or their organization within and across nodes. In
bring out sources of inefficiencies in the tree structure, and particular, the key space need not be ordered, thereby al-

allow a designer to investigate causes for those inefficien-j,\ing many data types including multidimensional data.
cies. In this paper, we identify several modes of interaction Moreover, the nodes of a single level need not partition or

during this investigative phase and show how these viewSgyen cover the entire key space, meaning that (a) overlap-
address each. Finally, combined with the uiging fea- i,y 5pg of entries at the same tree level are allowed and (b)

tures, they provide animations of AM operations to under- the union of all SPs can have “holes” when compared to the
stand the behavior of those operations and elucidate ﬂaWSentire key space. The leaves, howevertifian the set of

in an implementation. , _ stored RIDs, so that exactly one leaf entry points to a given
In this paper, we present the detailsashdb's user in- data record.

terface. We begin with an overview of the GiST framework GiST supports the standard index operations:

and some sample balanced trees in Section 2. In Section &g ,pch, which takes a predicate and returns all leaf en-
we enumerate the design criteria which guidentibdevel- o5 satisfying that predicatensErT, which adds gkey,
opment. A description of thamdb analysis, visualization, RID) pair to the tree; and BLETE, which removes such a

and animation facilities is given in Section 4. Section 5 pair from the tree. The GiST can be specialized to one of a
describes some previous work in both generic tree visual-,, |\ ber of particular access rhetls by providing a set of
izations as well as search tree and database visualization$yiansion methods specific to thatcess mébd. These
Finally, Section 6 concludes with future work. extension methods encapsulate the exact behavior of the

search operation as well as the organization of keys within
2. Balanced Search Trees the tree.

Databases store and retrieve data from disk in units of e now provide a sketch of the implementation of the
pages. Retrieving specific data items from disk is a rel- Operations and how they use the extension methods. For a
atively expensive operation. It involves locating the page More detailed description see the original paper [8].
containing the item, which may require sifting through
many pages. Access nhetds are algorithms and data struc-
tures that attempt to minimize the number of I/Os necessary
for this operation. Balanced search trees encompass a broad
category of hierarchical access imetls whose tree nodes
correspond to pages on disk.

We give an overview of the GiST framework to describe INSERT Given a hewmkey, RID)pair, we must find a leaf
the class of balanced search trees we are attempting to  to insert it on. Note that because GiSTs allow over-
model with the visualizations. In addition, we provide a lapping SPs, there may be more than one leaf where

SEARCH In order to find all leaf entries satisfying the
search predicate, we recursively descatidsubtrees

for which the parent entry’s predicate is consistent with
the search predicate (employing the user-supplied ex-
tension methodonsistent().
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Figure 1. The amdb user interface.

the key could be inserted. A user-supplied extension control over the performance-relevant structural character-
methodpenalty() compares a key and predicate and istics of the AM. We briefly describe these characteristics
computes a domain-specific penalty for inserting the below.

key within the subtree whose bounds are given by the

predicate. Using this extension method, we traverse aClustering is the organization of the indexed data in leaf
single path from root to leaf, following branches with pages, and SPsin the internal pages. The clustering de-
the lowest insertion penalty. termines the amount of extra data that a query needs to
access in order to retrieve its result setp@or cluster-

ing causes a query to fetch many pages each of which
may contain only a few relevant items. An AM de-
sign controls the clustering through thigkSplit()and
penalty()extension methods.

If the leaf overflows and must be split, a extension
method, pickSplit() is invoked to determine how to
distribute the keys between two leaves. If, as a result,
the parent also overflows, the splitting is carried out
recursively bottom-up.

If the leaf's ancestors’ predicates do not include the page iilization is the fraction of the page occupied with
new key, they must be expanded, so thatthe path from = a5 Typically, the utilization varies across nodes and
the root to the leaf reflects the new key. The expan-  anges from some fixed tunable lower bound to 100%.
sion is done with an extension methodion(), which Utilization determines the number of pages that the
takes two predicates, one of which is the new key, and indexed data and the SPs occupy, and therefore also

returns their union. Like nodg splittjng, expansion of influences the number of pages that a query needs to
predicates in parent entries is carried out bottom-up yisjt - Similar to the clustering, the page utilization is

until we find an ancestor node whose predicate does
not require expansion.

DEeLETE In order to find the leaf containing the key we

want to delete, we again traverse multiple subtrees as
in SEARCH Once the leaf is located and the key is
found on it, we remove théey, RID)pair and, if pos-
sible, shrink the ancestors’ SPs.

Although the GIiST abstraction prescribes an algorithm

for searching and inserting, the AM designer still has full

controlled by thepickSplit() and penalty() extension
methods.

Subtree Predicates(SPs) describe, or cover, that part of

the data space which is present atléed|evel of each
SP’s associated subtree. We speak ofeS¢ess cov-
erageif the SP covers more of the data space than is
needed in order to represent the data contained in the
subtree. If a SP exhibits excess coverage, it may cause
gueries to visit pages that contain no relevant data.



2.2 R-trees the designer to follow the essential aspects of a search tree’s
behavior while hiding unnecessary details. Traradb al-

lows interactive execution of index operations at the level of
node-oriented actions.

An R-tree [7] is a common AM that is easily modeled
in the GIST framework. It is a height-balanced search tree
which indexes multidimensional spatial objects. Each SP in
an R-tree is the minimum bounding rectangle (MBR) that Performance feedback for a workload. An AM'’s per-
encloses the spatial objects contained in the subtree belowormance characteristics can not be deduced from single ex-
Search is performed starting from the root. To find all ob- ecutions or from aggregate numbers alone. Characterizing
jects contained within a rectangle, all subtrees whose MBRsthe performance of a particular AM in general is a difficult
overlap the query rectangle are explored further. Once a leafproblem as evidenced by the efforts in the research litera-
is reached during a search, the data items contained withiniture [12, 6]. One reason is because an AM'’s performance
are filtered by the query rectangle. Thus, for a GiST imple- is dependent on many factors: the queries run against it, the
mentation of an R-tree that supports containment queriesdata it contains, and its structure. A more tractable approach
the consistent()function returns all MBRs or data items for evaluating an AM is to characterize its performance for
which overlap the query rectangle. Insertion is also carried a given workload — a set of queries run against a fixed tree.
out top-down. At each level, the subtree in which to insert This is the approach taken layndb.
is determined by the picking the MBR which requires the o . i )
minimum volume enlargement. For a GiST implementa- \{|§gallzat|on and an|mat|on.. Interactive execution fa-”
tion, thepenalty()function is defined to return the enlarge- C|I|.t|es and performance metrics are not enogg'h for facili-
ment in volume of the MBR. Finally, upon an overflow dur- &ting the AM development process. Recognizing patterns
ing insertion, a node is split by separating its contents into !N large collections of data is difficult for humans. Both
two disjoint subsets whose MBRs overlap the least. Variousth€ Séarch tree and performance data reporteahib are
other heuristics for separating the contents have been protyPically large enough to make manual browsing tedious.
posed. Split heuristics are encapsulated inpoSplit() V|§ual|zat|ons and anlmgplons are necessary 'bec.ause they
function. For a more detailed description, of the R-tree ex- stimulate pattern recognition. Software.wsu.allzatlon tools
tension methods, see the original GIST paper [8]. are too Iow-level to be generally useful in this coptext [1].

Variants of the R-tree modify one or more of the follow- Lik€& programming language debuggers and profilers, they
ing three aspects: SP desigrenalty() andpickSplit() For do not encapsulate any knowledge about AM-speuflc data
example, the R*-tree [2], modifies theenalty()and pick- st'ruct'ures or operations. Thuandb must p'rowde avisu-
Split()routines. SS trees and SR trees [10, 16] modify the f':l|I2atI0n of the search tree structure and its contents. This
SP in addition. Each of these designs attempt to create d" turn can be Ievergged to brqwse reported statistics as well
better AM by adhering to two goals. The first is to min- 25 animate debugging operations in the context of the AM

imize SP overlap. The second is to minimize the volume StrUcture. o

spanned by the SPs. Many tree visualization sghemes have been proposed,;
however, none of them are directly appropriate for the task

3. Design Criteria at hand. The following requirements are crucial for our vi-
sualizations.

There are a number of principles which guided the de-

sign foramdb. These criteria were inspired by our ex- Focus + context visualizationgh common form of interac-

perience in developing GiST-based AMs and initial devel- tion for inspecting search trees involves traversing sev-
opment efforts to visualize their structure. We summarize eral paths, or subtrees. For example, a window query
these goals before we describe the featuresadb. often traverses several paths in an R-tree. During an

interactive execution of a query, a user may want to
compare the nodes along the traversed paths to better
understand the query’s behavior. While a user is focus-
ing on this subset of the tree, it is also useful to see its
relationship to the whole tree. A similar argument ap-
plies when a user is looking at the contents of a single
node. Context helps place the “focused” items. Any
visualizations that model the search tree must provide
focus with context at all levels.

High-level and interactive. Debugging AMs requires the
ability to step through index search, insert, and delete com-
mands, but programming language tools are too tedious
for this purpose. They provide interactive execution at the
source code level rather than at the level of the salient ac-
tions that comprise the index operations. For search trees,
these basic actions are node-oriented. Examples include
node traversal, node split, item insertion, item deletion, etc.
Index operations often take convoluted paths through the
code. Hence, with a source code debugger, it is difficult for AM specific visualizationsAmdbmodels height-balanced
the user to determine why and when these node-oriented  trees that usually have bounded and high fanout.
actions are invoked. Raising the level of abstraction allows Database search trees typically have a fanout between



100 and 200 and are 3 to 4 levels deep. A completely 4.2. Visualization

generic tree visualization is unnecessary, especially if o
it sacrifices one of the other criteria. In this section, we present the graphical interfaces that

amdb provides to support the process for determining the
Preserve data-type independence. GiST is a generic, causes of AM performance degradation. The main contri-
data-type independent framework for implementing searchbutions of our design are as follows. First, we provide new
trees.Amdbleverages GiST to encompass as many flavors mechanisms that help a designer navigate database search
of AMs as possible. Accordingly, the features and analy- trees without being overwhelmed by their width. Second,
sis framework thaamdb imp|ements should preserve data- we Identlfy three modes of interaction with the search tree
type independence whenever possible. during this investigative process and provide a visualization
that addresses each. The three views thppert this pro-
cess argjlobal view tree view andsubtree view They are
tightly integrated via various methods of linked views.

In this section, we give an in-depth description of the  To illustrate the utility of these intestes, we refer to a
functionality provided by theamdb user interface and il-  running example of an R-tree which indexes 2-D point data
lustrate how it can be used to refine an AM design. First, (see Figure 2). It contains 40,000 points which are clus-
we give an overview of the performance metrics taidb tered around 200 randomly distributed centers in the range
reports. These metrics can be browsed naturally using thg0..100] in both dimensions. The clusters are square with
graphical views thaamdb provides. We describe these vi- an average side-length of 5. We ran 20,000 queries against
sualizations next. Finally, we describe the debugging func- this R-tree to compute the performance metrics. These were
tionality and how it is integrated with the views to provide square queries of side-length 2.5, and centered on randomly
animations of index operations. chosen points from the indexed data.

4. Analysis, Visualization, and Animation

4.2.1. Global View. The purpose of the global view is to
provide a manageable aggregate view of the entire index
We give a brief overview of thamdb analysis frame-  with respect to a particular node property (see Figure 2 and
work; for a more complete description see [12]. The analy- Figure 3). This property can be a workload-performance
sis framework defines performance metrics that characterizemetric, a generic attribute like page utilization, or a boolean
the page access behavior of a specific workload-rpnti attribute like traversal during a query. The global view is
tree and a set of queries. These metrics are more meaningfuineant to help designers recognize patterns in a property
than aggregate page access or runtime numbers and therelamong all nodes in the tree and correlations between dif-
allow the AM designer to detect and isolate deficiencies in ferent properties. Thus, a designer can use it to quickly spot
an AM design. The analysis framework applies to all GiST regions in the search tree which are responsible for perfor-
AMs. mance loss. In order to provide a manageable overview,
Central to the analysis is the comparison of observedthe global view approximates the search tree. It factors out
page accesses with optimal page accesses, i.e., the nunmuch of the exact tree structure while trying to preserve the
ber of page accesses in a tree that is optimal for ipeti relative positions of nodes within the tree.
workload (a model of which can be approximated relatively ~ The global view is constructed by mapping a conven-
efficiently). The performance metrics are derived from this tional 2-D layout of the entire tree onto a triangle (see top
comparison and exprepgerformance losswvhich is the dif- of Figure 2). A conventional 2-D layout of a tree is one
ference between actual and optimal page accesses. Thi which parents are centered above their children. In the
framework defines metrics for each query of the workload, global view, eacmode is represented by a vertical colored
for eachnode of the input tree, and for the structure-shaping bar which reflects a user-chosen node property for the en-
aspects of the AM implementation, namely thiekSplit() tire tree. The links between parents and children are not
andpenalty()GiST extension functions. In order to provide shown, and all nodes on the same level are concatenated.
additional insight into the sources of performance deterio- In this layout, the distance between nodes on a particular
ration, the loss metrics are further broken down to reflect level is roughly related to the distance to a common an-
clustering loss, page utilization loss, and excess coveragecestor — a property users are accustomed to in conven-
loss in the input tree. tional 2-D tree layouts. The height of the tree is changed
Amdb implements this framework and offers text- by adjusting the size of the window, and the baseline of the
oriented browsers to step through individual metrics. Sincetriangle is adjusted with the scale at the top of the view.
these interfaces can be cumbersome, it also offers a combiSince search trees usually have high and roughly constant
nation of visualization tools to browse the structural metrics fanout, the number of nodes @ach level increases geo-
more naturally. metrically while the allocated screen space only increases

4.1. Analysis Framework



Flclobal view

ETree View: Excess Coverage Loss

Legend Mavigate Align
1980 -

178.2-

158.4-

138593

o] [olEEE I

T26231

T2 .
. "

o Sl

PO .

i, WL [a° ’
s Y . 036 — =] E3.032 r

63.07E I I,
1433 11481 21769 32056 42344 52631 43,414 4864 46,313 47.763 49213 S0EE3

T T T T T 1
42,687 45,475 47263 43052 5084 C2E28

Figure 2. In this amdb session, we begin with the global view and narrow down upon the sources
of excess coverage loss through the tree view to the subtree views. We discover the cause of high
excess coverage loss for node 192 is high overlap with node 63. Thus, the SP or split algorithm are
design aspects for further refinement.

linearly. Thus, the pixel density of nodes increases roughly extra I/Os incurred because of overly general MBRs, in our
geometrically. This implies that at the bottom levels, it is example R-tree. Notice that there are localized spots of high
possible that a vertical bar that is one pixel wide representsexcess coverage loss in the leaf and internal levels, indicated
a collection of nodes. In this case, the default behavior is by white regions. Correlations of excess coverage loss with
to use the average of the property across the nodes to repanother metric may provide insight into the cause of the
resent the collection. The mapping between colors and theempty traversals. A designer can search for correlations by
node-related property is displayed in the legend on the leftprojecting the new metric onto the same view. To show how
of thetree view(see center of Figure 2), which is described the global view can point out correlations between metrics,
in the next section. we digress from our current example to another tree, an R*-
tree which indexes 8-D point data. Figure 3 shows the cor-
The global view elucidates patterns in a chosen metric relation between clustering loss and excess coverage loss
and correlations between two metrics. For example, thefor the leaf level of this tree. In both views, black represents
global view in Figure 2 displays excess coverage loss, the
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Figure 3. The top view shows clustering loss and the bottom view displays excess coverage loss
for an R*-tree indexing 8-D clustered point data. These views have been extracted from the user
interface and placed side by side to highlight the correlation.

low loss and white represents high loss. Notice the correla-relationships among the visited nodes (see center of Fig-
tion for the leaf nodes slightly right of center. The correla- ure 2). It also offers an intuitive point-and-click interface
tion between these metrics is not exact, but strong enougtfor browsing the search tree while improving on conven-
to merit further investigation. With the approximation of tional tree navigation interfaces that become cumbersome
the search tree provided by the global view, the designerfor high-fanout trees. Conventional 2-D tree ingaxds dis-
can identify areas of interest which can be explored further play all the children of a node at once and provide a sin-
using a more detailed view of the search tree structure, thegle scrollbar for navigation in the tree if it becomes too
tree view large to fit on screen. This can be unwieldy for browsing
The user can navigate to an area of interest in the tree bysearch trees because even a single level oftenatdit on

clicking on it in the global view. Subsequently, a path to a screen. Below, we describe how the tree view provides con-
node in the vicinity of the click is shown in the tree view. text without overwhelming the user with the tree’s width.

For example, in our example R-tree we notice several areas |n the tree view, the tree’s nodes are represented by boxes
of high excess coverage loss. Itis worth investigating thoseand labeled with a unique number for reference. The nodes
areas further to determine the causes for such a performancgre colored according to the samede property shown in
loss. Figure 2 shows the path that is highlighted in the treethe global view. The mapping between colors and the node
view if we click on the first white bar in the lowest level of property value is d|sp|ayed in a color |egend in left of the
the global view. tree view. Each node is enclosed in a scrollable and stretch-
4.2.2. Tree View. The purpose of the tree view is to allow aplg containgr, aiblir)g containeywhich displays its direct

the user to focus on several paths or subtrees at once Withir,?'b“ngs' Th|s contgmer allows users to focus on nodes of
the search tree. This form of interaction is useful during |ntere§t while providing as much cpntext as possible and
animations of index operations. In addition, it is necessary bounding the fanput o#achnode. Figure 2 shows an ex-
when investigating sources of performance loss. Looking ample for the children of nodes 188 and 189; they cannot

at several paths or subtrees at once helps the user recogni |fit on the screen, .but.smce they are enclosed in S'b“.ng
correlations in statistics between parents and children anocontgmers the wsuahzaﬂqn works r)atlurally. A S,C“)” bar is
among different paths. These correlations are obscured b)})rowded to find nodes of interest within a container.
the global view. Furthermore, the relationship between the ~ Any node can be expanded or contracted by clicking on
global view's representation of the tree and the paths shownit. When a node is initially expanded, the container hold-
in the tree view is obscured or lost when there are numer-ing its children is displayed below it with a line linking the
ous paths displayed. Since a focus+context visualization istwo. When contracted, the entire subtree below the node
an important criterion for our design, one requirement of is removed. If it is subsequently expanded, the previously
the tree view is to provide as much context as possible incontracted subtree is re-displayed.
relation to the search tree to compensate for this drawback. The conventional 2-D tree layout algorithm is used to
The tree view displays the true structure of the subtreeslay out the sibling containers. The only subtlety is in deter-
and paths that are visited by exactly depicting ancestralmining what width the containers should be. The goal is to



provide as much context as possible without cluttering the tree view and provide the following features. First, the user
display or going beyond its boundary. Initially, the width of can visualize, on a single canvas, the entire contents of any
the window is divided among containers at the same level,chosen node or the subtree rooted at that node. With the
and this allocation is dynamically maintained until the user subtree option, the user must specify the number of levels
resizes the container. After resizing, the container’'s width (from the subtree root) that are displayed simultaneously.
remains fixed until it is resized again. For example, the subtree view in the lower left of Figure 2
The tree view also provides the notion of a “current shows the data items in node 192. The axes represent the
path”, a path from the root to a given node in the tree. This orthogonal axes of the data domain. The left view in Fig-
notion is useful while browsing and debugging. During de- ure 4 shows the SPs contained in the first two levels of the
bugging, the “current path” represents the progress of thetree; the SPs in node 1 are superimposed upon the SPs in
index operation which moves from node to node. While node 188 and 189 from our example R-tree.
browsing, it serves as a visual cue for linking this view to  The subtree view provides other convenient features that
the data-type specific visualization of the tree contents de-link it to the tree view. These features help the user discover
scribed in the next section. If a “current path” is shown, the context of the displayed items in terms of the tree struc-
then it is highlighted, and the sibling containers that hold ture. First, the subtree view highlights all SPs contained in
nodes along the path are aligned vertically. the view that describe nodes along the “current path.” For
Continuing with our example, the tree view in Figure 2 example, in the center subtree view of Figure 2, the MBR
shows a highlighted path to node 192, which we narrowed of node 192 is highlighted (in white)deausenode 192 is
down upon from the global view. Notice that the children on the “current path.” Another example is shown in Fig-
of node 189, which has high excess coverage loss, have alure 5. The subtree view of node 1 shows the MBR of node
most no excess coverage loss. But, the children of node 188189 highlighted, and the subtree view of node 189 shows
which has low excess coverage loss, have arelatively highethe MBR of node 60 highlighted. These MBRs are high-
excess coverage loss. Such a non-intuitive and suggestivéighted because they lie on the “current path” shown in the
observation is difficult to discern with only the global view. tree view. In addition to the “current path”, subtree view
Once we have located sources of performance loss, we neegrovides a facility to highlight the contents of entire sub-
to determine the causes of these losses to refine our AM detrees that are contained within a subtree view. For example,
sign. To do so, we need to investigate the data containecthe left view in Figure 4 highlights the contents of the sub-
in the candidate nodes or subtreasadboffers thesubtree  tree rooted at node 188. Only the MBRs contained in node
viewwhich visualizes these data. 188 are highlighted since it is the only node from the sub-
tree whose contents are being displayed. Finally, in a single
node visualization, one has the option to display the poten-
tial results of a node split in contrasting colors. The right

4.2.3. Subtree View. Unlike the previous two views
which provided data-type independent visualizations, the

subtree view is a data-type specific visualization of data in side of Figure 4 shows an example in which the black points

the search tree. It provides a graphical display of some . . S
user-specified subset of the items and SPs contained iﬁNOUId be placed in the leftode and the white points in the

the search tree. The goal of the subtree view is to helpright if node 218 were split. This feature is indispensable

. ' - for debugging theickSplit()method.
the designer translate the sources of performance loss into 99 ) o
domain-specific intuitions that reflect the causes of these CONtinuing with our example in Figure 2, we want to
losses. These intuitions can then be used to refine the Amdetermine the cause of excess coverage loss in node 192.
design for reducing the losses. For example, the subtred!S contents are shown in the left most subtree view of Fig-
view should help us explain the excess coverage loss inure 2. Notice, the node contains points from different clus-
terms of the points and MBRs contained in our example R- ters in an arrangement for which MBRs are not well suited.

tree, so that we may reduce or eliminate the loss. Since tree! NUS: node 192's MBR has a lot of emptyase. In or-

nodes contain arbitrary user-defined SPsattwess method ~ d€' 10 find node 192's MBR in relation to its siblings, we
designer must provide a module which displays the dataneed to take a look at the contents of node 188. We can see

items and SPs. Currentigmdb is released with a built-  thatnode 192 has an MBR which has high overlap with an-
in suite of modules which visualize two-dimensional pro- Other MBR contained within it, the one of node 63From
jections of multi-dimensional data. A designer may install [NES€ Views, we see thattwo factors, the MBR's overlap and
the MBR’s inability to describe data from different clusters,

custom modules if needed. As a default, if no visualization . :
are causing the excess coverage loss. Some alternatives for

modules are applicablemdb provides a textual descrip-
tion of the SPs, their sizes, and associated pointers con C T o owth directl sl

H H H urrently, the subtree view does not allow the user to directly select an
tained in any chosen node. We describe the features thaR/IBR to find out which node it describes. Thus, we manually searched the

the 2-D subtree view mOdU|eS support. _ . textual descriptions of node 188 to determine which node’s MBR overlaps
The 2-D subtree view modules are integrated with the node 192's MBR.
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Figure 4. The two figures represent data contained in our example R-tree. The left view shows the SPs
contained in the first two levels, nodes 1, 188, and 189. The SPs of internal node 188 are highlighted.
The right shows a visualization of  pickSplit()results for node 218.

improving our design include changing the SPs, changingful feedback than textual descriptions. The breakpoints
the pickSplit() method to reduce overlap, or changing the encountered during the interactive execution mark the

penalty()method to seek clusters. “frames” of the animation. For each frame, the path to the
current node being considered is expanded and highlighted
4.3. Animation Features in the tree view. Likewise, the SPs of all nodes along this

. e “current path” are also highlighted in the subtree views. In-
. The behaw'o'r of an AM can be d'ﬁlcm.t to under.stand tegrating these views with debugging features not only pro-
without an ability to obgerve Its mechamcs.. Previously, vides context for the progress of the execution, but also pro-
only standard programming language debugging tools werey | .o 4 cogent animation while single-stepping.
available for examining GiST AMs. Because these tools A snapshot of an interactive execution of a rectangu-
are designed for analyzing low-level actions, such as a sin-Iar window query on an R-tree indexing 2-D point data is
gle line of source gode, they are too cumbersome for g"?‘in'shown in Figure 5. The tree view highlights the path to
Ing an unde'rstandmg.of how search and updatg operatlonzihe current node (60) and textual descriptions of the inter-
behave'and.mteract with the treg. Hermmdb provides vi- .action are shown in the console. The subtree views display
sual ammatlons of these operations to help understand the'Ehe MBRs contained in the root and node 189. The MBRs
behavior. . . . of node 189 and node 60 are highlighted in top and bot-
Amdb allows a designer to single-step through index tom subtree views respectively since they lie on the current

search, insert, and delete commands. Those commands gerES'ath. The user can control the execution with the buttons at
erate an event for eaatode-oriented action, such as node the top of the screen

split, node traversal, etcAmdbpermits users to step from

event to event. Since manual stepping can become tediou

amdb also supports breakpoints. Breakpoints can be de-ss' Related Work

fined on generic node-oriented actions, e.g., node traversak 1 Tree Visualization

or node update. Breakpoints can also be tied to a specific

tree node, e.g., update of node 227. When a breakpoint Numerous techniques have been proposed for visualiz-

event is encountered, execution is suspended, and the uséng large hierarchiesCone Treeshyperbolic browsers, and

has an option to single-step through events or continue unireemaps are a representative subset. Each of these have

til the next breakpoint. Textual descriptions of an interac- their merits but were passed over for various reasons.

tive execution are provided in a console window. However, = The Cone Tree [15] embeds the hierarchy in a three-

these descriptions are often not very effective for graspingdimensional space; the children ofrde are wrapped

the overall behavior of the particular operation. around the base of a circular cone with the parent located
Amdbintegrates the debugging features with the visu- at the apex. Nodes can be rotated to the front of the view

alizations to produce animations that provide more use-to bring a path into focus while maintaining its context in
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Figure 5. An interactive execution of a rectangular query on an R-tree.

the entire structure. In addition, subtrees can be pruned or Finally, treemaps represent hierarchies with screen real
expanded. One limitation is that only a single path can be estate [9]. A node is assigned a section of the display which
brought into focus at any one time. Index operations often is then divided among its children. The area allocated is re-
take several paths and hop around the tree. This propertyated to some property of the node. This layout helps find
makes an execution animation hard to follow with the Cone certain patterns easily. However, becausepimgsical lay-
Tree becausaodes and paths are constantly rotated in and out for one property can be quite different from another,
out of focus. The authors note the Cone Tree becomes unfinding rough correlations between two distinct properties
wieldy at about 1000 nodes or with a fanout higher than 30, is difficult.
and is more effective for unbalanced structures. Database
search trees typically have more nodes, higher fanouts, ands 2. |ndex Visualization and Animation
are balanced. User experience with our initial prototype in-
dicated this representation was not effective at high fanouts.  To our knowledgeamdb is the only tool that provides
It obscured parts of the tree, hindering the ability to grasp both debugging and analysis functionality for AM develop-
the tree’s global structure. Finally, the Cone Tree requiresment. It is also the only one which integrates a scalable
3-D rendering and animation support. Our current imple- representation of the search tree structure with these fea-
mentation is 2-D and relies on simple Java toolkit primitives tures. There have been precedents inlifeeature of de-
which makesamdb easy to port. bugging tools geared toward domain-specific indexes. DE-
Hyperbolic browsers are a focus+context technique for Vise is a general purpose visualization tool that has been
visualizing hierarchies [13]. They lay out the hierarchy in a useful in debugging R-tree implementations [14]. It sim-
hyperbolic plane which is then mapped to a circular disk. ply provides a 2-D view of the points and their bounding
This places the root at the center with thede density  rectangles contained within the R-tree, akiratodb 's de-
increasing exponentially towards the circumference. This fault subtree view. It offers no facilities for animating in-
is similar to our global view but in a circular orientation. dex operations. Similarly, Brabec and Samet [3] provide
Change of focus is performed by dragging a node of inter- a collection of Java applets that encapsulate a wide variety
est towards the center. The drawback to this approach is thaof 2-D R-tree and quad-tree variants. Again, ldmdb's
only one node and its direct ancestors and children can besubtree view, they focus on 2-D geographic visualizations
broughtinto focus at a time. Furthermore, a user study indi- of nodes spanning one or more levels. These views offer
cated that it provides a “weaker sense of directionality and the ability to zoom in and out of the spatial representation,
location in the overall space” [13]. If applied to search trees, with domain-specific statistics reported per level. They do
this would tend to obscure the difference between internalanimate insertions, deletions, and splits in which users can
and leaf nodes, a critical distinction in our application. observe changes in the points and bounding boxes indexed.
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The authors indicate that their visualizations do not scale foris written in C++. The packages are available for several
high-fanout trees, as we have noticed with our subtree viewplatforms.

(without the context provided by the other views). Neither

of these two tools provide detailed feedback about an AM’s Acknowledgments
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