
DataPlay: Interactive Tweaking and Example-driven
Correction of Graphical Database Queries

Azza Abouzied
Yale University

azza@cs.yale.edu

Joseph M. Hellerstein
Univ. of California, Berkeley
hellerstein@cs.berkeley.edu

Avi Silberschatz
Yale University
avi@cs.yale.edu

ABSTRACT
Writing complex queries in SQL is a challenge for users.
Prior work has developed several techniques to ease query
specification but none of these techniques are applicable to a
particularly difficult class of queries: quantified queries. Our
hypothesis is that users prefer to specify quantified queries in-
teractively by trial-and-error. We identify two impediments
to this form of interactive trial-and-error query specification
in SQL: (i) changing quantifiers often requires global syntac-
tical query restructuring, and (ii) the absence of non-answers
from SQL’s results makes verifying query correctness diffi-
cult. We remedy these issues with DataPlay, a query tool
with an underlying graphical query language, a unique data
model and a graphical interface. DataPlay provides two in-
teraction features that support trial-and-error query specifi-
cation. First, DataPlay allows users to directly manipulate
a graphical query by changing quantifiers and modifying de-
pendencies between constraints. Users receive real-time feed-
back in the form of updated answers and non-answers. Sec-
ond, DataPlay can auto-correct a user’s query, based on user
feedback about which tuples to keep or drop from the answers
and non-answers. We evaluated the effectiveness of each in-
teraction feature with a user study and we found that direct
query manipulation is more effective than auto-correction for
simple queries but auto-correction is more effective than di-
rect query manipulation for more complex queries.

Author Keywords
Quantification; Query Specification; Query Correction;
Semantic fine-tuning

ACM Classification Keywords
H.5.2 Information interfaces and presentation: User Inter-
faces - Graphical user interfaces.

General Terms
Design, Human Factors, Languages

INTRODUCTION
Despite decades of work on language and interface design,
many database users find it difficult to specify complex

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
UIST’12, October 7–10, 2012, Cambridge, Massachusetts, USA.
Copyright 2012 ACM 978-1-4503-1580-7/12/10...$15.00.

queries. Of all query tasks, users find non-trivial quan-
tification to be most difficult [20, 19]. Contemporary
query specification paradigms, such as query-by-example,
visualization-driven querying and faceted search offer help
with specifying simple query blocks, but they offer very
little assistance for precisely those queries that are most
difficult to specify — quantified queries. For those queries,
users are stuck with the powerful but difficult database query
language: SQL.

Quantified queries evaluate constraints over sets of tuples
rather than individual tuples, to determine whether a set as
a whole satisfies the query. Inherent in these queries are (i)
the grouping of tuples into sets, and (ii) the binding of con-
straints with either existential or universal quantifiers. Exis-
tential quantifiers ensure that some tuple in the set satisfies the
constraint, while universal quantifiers ensure that all tuples in
the set satisfy the constraint.

People engage in casual quantified-query specification with
one other on a regular basis. For example, when buying
flowers, we might request a bouquet of ‘some red and white
roses’. Despite this request being somewhat underspecified,
the florist will still try putting together a bouquet. He may
add some red and white roses and then add a few lilies. If we
wanted only roses, we clarify the misunderstanding and say
‘only roses’. If we wanted only red or white roses, we might
allow the lilies but object to pink roses. Such casual inter-
actions suggest that we are accustomed to specifying quan-
tified queries by trial-and-error, where we adjust our initial
query specification by modifying quantifiers — only roses —
or modifying dependencies between constraints — only red
or white roses but no other rose colors1.

What makes SQL — the de facto query language for
quantified querying — challenging is that it discourages this
trial-and-error approach to querying. Effective trial-and-error
query specification depends on (i) the facility to incremen-
tally refine an incorrect query through small tweaks and (ii)
the ability to understand the effect of these tweaks. SQL,
however, does not facilitate incremental query refinement
because it lacks syntax locality: semantically small tweaks,
such as changing a quantifier from existential to universal,
usually result in large changes in the structure and syntax of
a SQL query. Moreover, SQL does not present the complete
effects of a query. While SQL presents answers or tuples that
satisfy a query, it does not present non-answers or tuples that
do not satisfy the query. Non-answers and answers together

1The dependency here is between a constraint on flower type and a
constraint on flower color.

Figure 1. DataPlay’s pivot interface: transforming a relational database into a nested data tree

help explain the behavior of quantifiers and help users assess
the correctness of a query.

We present the design of DataPlay, a query tool that simpli-
fies the specification and debugging of quantified queries by
encouraging a trial-and-error approach to querying. DataPlay
lets users specify their constraints without worrying about
how to assemble them into a complete query. It builds from
these constraints a graphical query, which users can directly
manipulate to semantically refine the query. This is possible
because the graphical query language exhibits syntax local-
ity. DataPlay, also, helps users explore the space of query
refinements by visually suggesting possible manipulations.
As users tweak the query, it displays both answers and non-
answers and keeps an interactive graphical history viewer of
all modifications made to the query.

DataPlay also auto-corrects queries: users mark answers with
‘want out’ or ‘keep in’ labels and non-answers with ‘want
in’ or ‘keep out’ labels and in turn DataPlay generates all
modifications to the current query that satisfy the user’s re-
vision of answers and non-answers. To help users choose one
query from several suggested queries, DataPlay rank-orders
the generated queries by the size of their changes to the an-
swers and non-answers, provides visual previews of these
changes and also provides side-by-side comparisons of sug-
gested queries.

DataPlay’s mixed-initiative user interface integrates direct
query manipulation with automated query correction. This
interface is feasible because of DataPlay’s unique data model
and graphical query language. In this paper, we describe the
data model and query language and how it relates to the rela-
tional data model and SQL.

Given the novelty of query auto-correction, we compare
its effectiveness against direct query manipulation in a
controlled user-study. We asked users to correct an incorrect
query by either directly manipulating the graphical query
or using the auto-correction feature. Our results show that

users prefer direct manipulation to auto-correction for simple
queries. As the query complexity increases, users prefer the
query auto-correction feature; more users reach the correct
query in less time. Thus the study provides evidence that a
mixed-initiative query specification interface is superior to
only a direct manipulation interface.

QUERYING WITH DATAPLAY
Querying with DataPlay involves four steps: (1) Pivoting,
(2) Specifying constraints, (3) Fine-tuning and (4) Auto-
correcting. Users typically iterate over steps two and three
and occasionally auto-correct a query.

We explain how a user, Jane, performs each of these steps
through an example query task. Suppose Jane has a school
database and she wants to find students who
a) are in the CS department
b) completed all of CS11, CS16 and CS18 and
c) received A’s in all three courses. She doesn’t care about
their grades in other courses.

Pivoting
Jane begins by connecting to the school database. DataPlay
visualizes the database schema and the relationships between
the tables of the database (left panel in Fig. 1). The school
database consists of four tables: student, course, takes
and prerequisites. The student and course tables rep-
resent tangible entities that users may wish to gather informa-
tion about. Users will most-likely select one of these tables as
a pivot. The remaining tables represent relationships between
these entities. Since Jane is searching for students, she selects
the student table as the pivot. DataPlay now restructures
the database schema into a nested schema, which we call the
data tree (middle panel Fig. 1). All tables are pivoted by the
student table: for every student we have a nested-set of all
the courses they took along with their grades in each course
and for every course taken by a student we have a nested-set

(i)

(ii)

(iii)

(iv)

Figure 2. DataPlay’s query interface: (i) query tree (ii) interactive graphical history viewer (iii) command bar (iv) data and visualization panel

of all the prerequisites of that course. DataPlay thus trans-
forms the many tables of the database into a single nested-
universal table akin to a JSON or XML document. DataPlay
shows Jane a tabular presentation of this nested-universal ta-
ble to help her understand its nested structure (right panel in
Fig. 1).

After pivoting, Jane begins querying the data. The query in-
terface (Fig. 2) consists of (i) a query panel that visualizes
the current query as a query tree, (ii) an interactive graph-
ical history that presents all modifications made to a query,
(iii) a command bar to specify constraints or visualizations
in, and (iv) a data presentation panel which presents data-
visualizations and two tables: an answer table and a non-
answer table. At this point, all tuples of the nested-universal
table are in the answers table and the non-answer table is
empty.

Specifying Constraints
Jane can specify her constraints explicitly by writing sim-
ple propositions into a command bar or by brushing data-
visualizations and having DataPlay automatically infer the
propositions in the style of Tableau [3] or [8]. For the depart-
mental constraint, she decides to visualize the department dis-
tribution first. As soon as she types ‘dep’ into a visualization-
bar, DataPlay auto-suggests all attributes with ‘dep’. She
selects student.dept. DataPlay suggests two possible vi-
sualizations for the department attribute: a bar chart and a
piechart. These suggestions are graphical thumbnails com-
puted on a sample of the data. She picks the piechart; Data-
Play adds a piechart to the visualization panel. She brushes
the ‘CS’ pie; DataPlay (i) generates a constraint node with

the propositional formula student.dept =′ CS′, (ii) adds it
on the query tree, (iii) executes the query and (iv) updates the
answers and non-answers.

Jane then visualizes the student.takes.grade attribute
in a bar chart. She brushes the A-bar. This causes Data-
Play to add another constraint node with the proposition
student.takes.grade =′ A′. Since each student has a set
of grades, DataPlay binds a default existential quantifier to
the added constraint. The query tree finds CS students who
have an A in their set of grades.

Jane types the following constraint for courses into the com-
mand bar:
student.takes.course.id[= CS11,= CS16,= CS18]
As a syntactic convenience, DataPlay enables users to specify
multiple propositions in the above shorthand. DataPlay treats
such propositions as a single constraint. As before, DataPlay
generates another constraint node and adds it to the query tree
and since each student takes multiple courses, DataPlay binds
an existential quantifier to the course constraint.

Every modification made to the query results in the interactive
update of answers and non-answers. In addition, a graphical
snapshot of the preceding query tree is recorded in history.
Jane can revert to a previous query tree by clicking its snap-
shot in the interactive history viewer; this adds the current tree
to history before loading the previous query tree from history.

Jane has now specified all of her constraints and DataPlay has
assembled the simplest possible query tree (Fig. 2), which
finds students who are in the CS department, and took any of
CS11, CS16 or CS18, and got at least one A in any course.

Fine-tuning
Jane starts fine-tuning the query tree. Any time she hovers
over a constraint node on the query tree, DataPlay suggests
possible manipulations to the node that will change the se-
mantics of the query. In Figure 3, Jane hovers over the grade
constraint and DataPlay suggests (i) toggling the quantifier
from existential to universal such that students who only got
A’s are answers (Jane can click the ‘Toggle Quantifier’ but-
ton) or (ii) moving the grade constraint underneath the course
constraint such that we only test for the presence of one of
the three courses (CS11, CS16 and CS18) in the nested-set of
courses taken that have an A grade. Jane drags the grade con-
straint node to the suggested position underneath the course
constraint. She scans the answer and non-answer tables and
is happy with the conditional dependence between the grade
and course constraint: students who got A’s in any of the three
courses are answers. The query still needs fine-tuning; Jane
wants students who got A’s in all three courses. She decides
to provide DataPlay with examples of tuples that are answers
and tuples that are non-answers and let DataPlay fix her query
for her.

Auto-correcting
In Figure 4, Jane marks the ‘want out’ checkbox for students
in the answer table who didn’t take all courses. She marks
the ‘keep in’ checkbox for students who took all three courses
with A’s in them. She only marks a few tuples in the answer
table. She decides not to mark any of the tuples in the non-
answer table. Jane thus revises the result of the current query
to match her intended query. She clicks the ‘Fix my query’
button. DataPlay constructs all query trees derivable from
the current query tree and suggests query trees that satisfy the
tuple memberships that Jane provided as possible corrections
(See Section ‘DataPlay’s Query Auto-correction’ for details).

DataPlay suggests only one correction for Jane’s query: cov-
ering the course constraint. Coverage ensures that all propo-
sitions in a constraint are satisfied. Coverage is visually pre-
sented as a shading of the constraint node. Jane’s accepts this
correction and now the query finds all students in the CS de-
partment who took all three courses with A’s in them.

FROM SQL DEFICIENCIES TO DATAPLAY FEATURES
We designed DataPlay out of a frustration with SQL query
tools. We conducted an observational study on thirteen SQL
users and analyzed what makes SQL challenging. We identi-
fied two key deficiencies, a lack of syntax locality and a lack
of non-answers, which together hinder a trial-and-error ap-
proach to querying. We worked from SQL’s deficiencies to
DataPlay’s features: our query language exhibits syntax lo-
cality and our data model enables the computation of non-
answers for any query.

Figure 6 presents the results of the observational study. It
shows the time it takes for trained2 SQL users to specify a
deceivingly complex query task: “find straight-A students
2On a 10-point scale 1 being basic knowledge and 10 being expert,
the median self-reported SQL expertise was 5. The study partici-
pants were mainly graduate students in Systems research or under-
graduate students who recently completed SQL training.

Figure 3. DataPlay visually suggests the different semantic modifications
to a query’s constraints

Figure 4. DataPlay’s Correction by Example: users mark which tuples
they want out or kept in Answers

Figure 5. DataPlay searches the space of query trees derivable by manip-
ulating the user’s initial query to find query trees that satisfy the user’s
Answer/Non-Answer markings. Here, DataPlay found one correct query
tree.

Figure 6. SQL query specification behavior of 13 SQL users.

(students who got A’s in all their courses)”. Only 4 of the
13 users successfully specified the query within 10 minutes!
Most users (11 of 13) began with the simpler existential vari-
ant of this query, i.e., they found students with at least one A.
This ‘existential phase’ was followed by a ‘universal phase’:
users attempted to rewrite the existential query to get to the
universal query. The prevalence of this two-phase querying
behavior hints at the intrinsic trial-and-error nature of quanti-
fied querying.

In the following sections, we explain how each SQL defi-
ciency discourages trial-and-error querying.

Syntax Locality
The following two SQL queries find students who got at least
one A and students who got all A’s respectively.
SELECT * FROM student s, takes t,
WHERE t.grade = ’A’ AND t.student_id = s.id;

SELECT * FROM student s, takes t
WHERE t.student_id = s.id AND s.id NOT IN
(SELECT student_id FROM takes WHERE grade != ’A’);

A key observation about the SQL queries is that their struc-
tures are very different. The simple change of the quantifier
from existential to universal appears to have global impact
on the query syntax. For this reason we say that SQL often
exhibits poor syntax locality with respect to changes in quan-
tification. The inability to localize the details of the quanti-
fier make the language confusing to users. Poor syntax local-
ity discourages trial-and-error tuning of query specifications:
small changes to query semantics can require large changes
to query syntax.

Moreover, SQL users often feel stuck after formulating an in-
correct query in SQL. Complex SQL queries tend to follow
templates or tricks, which users learn with experience: two
of the four users who wrote a correct SQL query were di-
rectly applying a learned template; they skipped the ‘exis-
tential phase’. Users who haven’t yet learned such templates
cannot brute-force their way out of incorrect queries by ap-
plying different modifications.

Non-answers
As users write SQL queries, they look at the results to affirm
that the written SQL matches their intended query. The pre-
sentation of a SQL query’s results, however, is insufficient:

two of the study’s successful users wrote additional queries
to check that their query was correct (Data Check phase in
Figure 6): they arbitrarily chose a couple of students from the
query result and wrote another query to view all the grades of
these students to ensure that they indeed had no other non-A
grades.

Nina Simone BLUS101 A Bill Withers CLAS101 C

Nina Simone JAZZ101 A Louis Armstrong REGA101 B

Nina Simone SOUL101 A Bob Marley BLUS101 C

Bill Withers BLUS101 A Bob Marley RYTM101 C

Bill Withers RYTH101 A Bob Marley JAZZ101 C

Nina Simone BLUS101 A Bill Withers BLUS101 A

Nina Simone JAZZ101 A Bill Withers RYTH101 A

Nina Simone SOUL101 A Bill Withers CLAS101 C

Frank Sinatra CLAS101 A Louis Armstrong JAZZ101 A

Frank Sinatra MELD101 A Louis Armstrong REGA101 B
(c) (d)

E
x
is

te
n

ti
a

l

U
n

iv
e

rs
a

l

Answers Non-Answers

Answers Non-Answers

(a) (b)

Table 1. Answers and Non-Answers for queries that find students with
at least one A and students with all A’s

Tables 1a and 1c are example results of executing the existen-
tial and the universal SQL queries for finding students who
got at least one A and students who got all As respectively.

Without any additional information, it is impossible to deter-
mine which query produced which of the sample results in
Tables 1a and 1c. SQL interfaces usually provide us with the
answers or the tuples that satisfy our query, but they do not
provide us with the answers’ complement: the non-answers
or tuples that do not satisfy our query. Answers alone, how-
ever, may not help us fully understand a query. It is only when
we see ‘Bill Withers’ in both the answers (Table 1a) and the
non-answers (Table 1b), that we can deduce that Table 1a is
the result of the at least one A query. Similarly, it is only
when we see A’s in the non-answers (Table 1d), that we can
deduce that Table 1c is the result of the straight-A query.

Without non-answers, a user looking for straight-A students
can mistakenly believe that an existentially-quantified query
is correct just by examining the answers. Therefore, SQL
interfaces that do not present non-answers hinder query inter-
pretation and ultimately correct query specification.

Unfortunately, this problem is not amenable to a quick inter-
face fix: complements are not commonplace in SQL inter-
faces because the pure relational query and data model make
it hard to define and compute complements. Consider the fol-
lowing poorly constructed yet valid query:
SELECT * FROM student, takes WHERE
student.id = x AND takes.student_id = x;

In this query it is difficult to determine the universe from
which we complement answers to form non-answers. It is
likely that the user’s perspective of the universe is student
./ takes, which represents the courses taken by the student.
However, the query has no apparent join and one can infer the

universe to be student× takes, which represents all possi-
ble combinations of student tuples with takes tuples. If we
infer the second universe, we will compute a much larger and
an incomprehensible non-answer set.

DataPlay’s data model enables the presentation of non-
answers and its graphical query language exhibits syntax
locality. We describe the data model and query language in
the following sections. We describe how the language’s syn-
tax locality and the presentation of answers and non-answers
enable query auto-correction. We then discuss the inner
workings of the query auto-correction feature.

DATAPLAY’S DATA MODEL
DataPlay restricts the relational data model to a nested uni-
versal relation: while this limits the expressive power of Dat-
aPlay compared to SQL to a degree, it enables a far more ef-
fective specification interface for a large class of sophisticated
queries. We describe the data model, the features it enables
and its limitations.

DataPlay uses a user-specified pivot to assemble a single
nested universal table from the many tables of a database. We
refer to the schema of this table as the data tree. Any rela-
tional schema can be transformed into a data tree: we map the
schema of the relational database into a graph where nodes
represent relations and edges represent primary-foreign key
relationships between relations. We call this graph the key-
graph. The data tree is a rooted spanning-tree of the key-
graph with the pivot as the root. Starting with the pivot, we
add it as the root of our data tree. We add all its attributes,
excluding any foreign keys, as leaves. We then traverse all
edges outgoing from the pivot in the key-graph in a depth-
first fashion. For each relation that we add as a node to the
data tree, we add all its attributes as leaves excluding foreign
keys. In the data tree, every attribute is identified by its path
from the pivot. We populate the nested universal table by tak-
ing the join of a child relation with a parent relation in the
data tree.

The nested universal table is an abstract view on top of the
relational database; we do need not to physically restructure
the database or materialize multiple nested universal tables,
one for every pivot.

While the nested universal table is not a new concept [13], it is
a largely forgotten one. As the name suggests, it merges uni-
versal relations [14] with nested data models, such as JSON
or XML. This buys us the following:

1. A natural grouping hierarchy for a large class of quantified-
queries: For these queries, users are relieved from two
cumbersome SQL steps: join specification and group con-
struction through sub-queries.

2. A closed-world: Querying in DataPlay is simply the par-
titioning of the tuples of nested universal table into an-
swers or non-answers. If tuples of the pivot satisfy all
our constraints then they are answers, otherwise, they are
non-answers. In contrast, non-answers, in the traditional
relational-model, are neither well defined nor easy to com-
pute as we discussed in the previous section.

DATAPLAY’S GRAPHICAL QUERY LANGUAGE
A query in our language is called a query tree. The class
of queries captured by query trees are Boolean conjunctive
quantified queries over nested relations. Each quantified ex-
pression consists of conjunctions or Horn3 statements over
Boolean functions (these are the constraints) and only con-
junctions of quantified expressions are allowed.

grade

student

grade = A

takes

grade

student

takes
f

mark

f

grade = A

mark > 90 course

id

id {= CS11, =CS12}

grade

student

takes

f

mark

grade = A

mark > 90 course

id

id {= CS11, =CS12}

f

grade

student

grade = A

takes

(a) (b)

(c) (d)

Existential Quantifier Universal Quantifier

Nested Query-Trees Coverage

Figure 7. DataPlay’s Graphical Query Language

The example query trees in Figure 7 comprehensively de-
scribe all aspects of DataPlay’s graphical query language.
Query trees are data trees overlaid with constraints. Every
relation node is a query tree that maps its tuples to either an-
swers or non-answers. An empty query tree — one without
constraints — maps all its tuples to answers. The trees are
conjunctive in nature, they take the conjunction of all con-
straints on their descendants —attributes or answer tuples
from a nested query tree.

In Figure 7a, the empty query tree at takes maps all its tu-
ples to answers as it has no constraints. For every student, the
query tree at the pivot, student, determines whether there
exists a tuple in the nested set of answer-tuples in takes
where grade is A. Those students are answers. The remaining
students are non-answers. In, Figure 7b, the query tree at the
pivot, student, determines whether all grades of a student in
the nested set of answer-tuples in takes are A.

Note that when a constraint node operates over a set of tuples,
it has one of the following quantifier symbols in it: ∀ for the
universal quantifier or ∃ for the existential quantifier. If the
constraint node operates over an individual tuple and not a set
of tuples, it requires no quantifier, and instead has the symbol
f in it.

In Figure 7c, the query tree at takes maps tuples where grade
is A and mark is above 90 to answers. The query tree at the

3e.g. a ∧ b → c

student pivot, now tests if all of the nested answer tuples in
takes are either CS11 or CS12 and no other courses. The
universally-quantified course constraint here only examines
the nested answer tuples of takes ignoring the nested non-
answer tuples.

The query tree of Figure 7d illustrates a special feature of
the language: coverage. Coverage allows users to ensure that
all of a constraint’s propositions (assuming it has more than
one) are true for a set of tuples4. The query tree of Figure
7d ensures that a student has taken both CS11 and CS12 with
A’s and marks above 90. Coverage is denoted by a shading
of the constraint node. Technically, coverage is a redundant
feature of the language as one can write separate constraints
for every course and the conjunctive nature of DataPlay will
ensure coverage. However, users may conceptualize several
propositions as a single self-contained constraint. Also, when
brushing dense-visualizations, if we generate one constraint
for every brushed area or glyph, rather than a list of proposi-
tions for a single constraint, we might over-crowd the query
tree.

The graphical query language is expressive enough to de-
scribe a large class of quantified queries succinctly and with
syntax locality: compare the query trees of Figure 7a and
7b with their equivalent SQL queries (see section on SQL
‘Syntax Locality’). Notice that to change the semantics of
a constraint from existential to universal, only a single sym-
bol change is required. Users can tweak the properties of a
constraint independently of other constraints and without re-
creating a new query tree. Since each constraint supports a
fixed set of manipulations (toggle quantifier, toggle coverage
or change position), DataPlay visually suggests these manip-
ulations to users. Users, no longer have to feel stuck: they can
try out different manipulations until they reach their intended
query.

Moreover, the language ensures that for a given collection of
constraints, there is a finite and searchable space of possi-
ble query trees: this enables auto-correction. Instead of di-
rectly manipulating a query tree to achieve a certain partition
of tuples into answers or non-answers, users can simply spec-
ify this partition by marking tuples as either answers or non-
answers and DataPlay will search the space of query trees to
find one that achieves the required partition.

Finally, compared to a textual query representation, query
trees better reflect the hierarchical structure of the nested uni-
versal table and better illustrate the dependencies between
constraints; nesting is visually awkward in a linear represen-
tation.

DATAPLAY’S QUERY AUTO-CORRECTION
We built the auto-correction feature because as the complex-
ity of a query increases, the more difficult it becomes to debug
and fix a query by directly manipulating it as we empirically
demonstrate in the following section.
4A list of propositions is different from specifying a boolean con-
junction or disjunction of these propositions: a list operates at the
set level, while the disjunction or conjunction operates at an individ-
ual tuple-value.

Users validate a query’s correctness by examining its answers
and non-answers and searching for misplaced tuples. En-
abling users to label offending tuples in answers with ‘want
out’ and actual answers misplaced in non-answers with ‘want
in’ and in turn correcting the query for the user reduces the
gulf of execution [17] of a query specification tool as users
combine validation and debugging in a single process. In
DataPlay, we also allow user to label correctly placed answer
and non-answer tuples with ‘keep in’ and ‘keep out’ respec-
tively. We refer to the user-specified mapping of tuples into
answers or non-answers as tuple memberships. Users only
provide partial mappings of all database tuples to answers or
non-answers: unmapped tuples are free. Automated query-
correction must support such partial mappings as no user will
map all tuples of a database to answers or non-answers.

DataPlay generates the space of all possible query trees deriv-
able from the current query tree by (i) toggling quantifiers,
(ii) toggling coverage or (iii) changing the positions of con-
straints. DataPlay suggests all query trees in this space that
satisfy the given tuple memberships. If users provide a few
or not enough selective tuple memberships the space of sug-
gested query trees can be large and it might be difficult for
users to understand the semantic differences between the sug-
gested query trees. To reduce this gulf of evaluation [17]:

1. We preserve tuple memberships across several iterations of
automated query correction. This allows users to pick any
one of the suggested query trees and provide more tuple
memberships if the selected query tree turns out to be in-
correct. Users can explicitly clear tuple memberships by
clicking a ‘Clear In/Out’ button.

2. We provide visual-previews of the effect of a suggested
query tree: when users mouse-over over a suggested query
tree, DataPlay shades tuples that are non-answers for that
query tree.

3. We allow users to diff suggested query trees; DataPlay
opens up a comparison window containing tuples on which
the query trees disagree on whether they are answers or
non-answers.

DataPlay rank-orders its query correction suggestions by the
number of tuples that change membership from answers to
non-answers or vice-versa. We chose this order under the
assumption that users might directly manipulate a query to
get close to their intended answers/non-answers and then use
auto-correction to fix the membership of few problematic tu-
ples. Thus, we order query trees that drastically change an-
swers and non-answers last. This order, however, does not
guarantee that the user’s intended query is at the top of all the
query tree suggestions.

EVALUATING DATAPLAY’S INTERFACE
As an initial evaluation of our mixed-initiative user interface,
we conducted a comparative user study of DataPlay’s novel
query specification features: direct query manipulation and
automated query correction. Our goal was to observe task
completion times for each feature to determine which feature
users were more effective at debugging queries with.

Figure 8. Black bars indicate median task completion times. ‘DM’
stands for Direct Manipulation and ‘AC’ for Auto-Correction.

Participants and Methods
We recruited the same 13 participants of the SQL observation
study. These subjects are familiar with database querying:
undergraduate students from an Introduction to Databases
course and graduate students who regularly work with
databases. The subjects had never used DataPlay before.

We first presented a 15-minute DataPlay video-tutorial. The
tutorial described how to (i) load and pivot a database, (ii)
specify constraints, (iii) directly manipulate a query tree and
(iv) auto-correct a query tree by providing tuple member-
ships. We then allowed the participants to play with the tool
for 10 minutes. The users directed this play-time and we an-
swered any questions they had about the tool.

We then asked the subjects to fix a set of three incorrect
queries of increasing complexity (described below) using
only one of the features tested: direct query manipulation
or automated query correction. Users then fixed a second
set of three incorrect queries of similar complexity to the
first three but on a different dataset and using the other,
still unused feature. The choice of dataset for each feature
was randomized across subjects. The two datasets were
(randomly generated) student academic records and US flight
arrival and departure records.

Task 1: We gave users a query tree that finds (a) students who
got A’s in some courses or (b) routes where some flights ar-
rived late. We asked users to fix the query to find (a) students
with all A’s or (b) routes where all flights arrived late. The
complexity of this task is ‘1-tweak’.

Task 2: We gave users a query tree that finds (a) students
who took courses in any of three areas or (b) flights that were
delayed by any of three causes. We asked users to fix the
query to find (a) students who took courses in all and only the
three areas or (b) flights that were delayed by all and only the
three causes. The complexity of this task is ‘2-tweaks’.

Task 3: We gave users a query tree that finds (a) students who
took any of three specific courses and got an A in any course
or (b) flights that were delayed by any of three causes and
some delays lasted more than 10 minutes. We asked users
to fix the query to find (a) students who took all three courses
with A’s in them ignoring grades in other courses or (b) flights
that were delayed by all three causes and for each cause the
delay lasted more than 10 minutes. The complexity of this
task is ‘3-tweaks’.

Both features are important
We performed a repeated-measures ANOVA of completion
times with query complexity and feature used as independent
factors. We log-transformed responses to better approximate
a normal distribution. We found a significant main effect of
query complexity (F2,11 = 36.74, p < 0.001). In Figure
8, we notice that overall speed and accuracy for both features
are adversely affected as query complexity increases. We also
found a significant main effect of feature (F1,12 = 7.37, p <
0.02) and a significant interaction effect of query complexity
and feature (F2,11 = 5.39, p = 0.02); as the query complex-
ity increased (Task 3), performance with the auto-correction
tool improved over direct manipulation despite direct manip-
ulation being significantly better than auto-correction for sim-
pler query tasks.

In Figure 8, we observe that the median performance to fix
the first two less complex query tasks with direct manipula-
tion is faster than query correction. Users expressed through
comments in a post-study questionnaire that when they knew
exactly what changes they had to apply to the query tree, they
felt query correction slowed them down because they had to
spend more time scanning and labeling tuples.

For the third query task, however, we observe the opposite ef-
fect: the median performance with query correction is faster
than direct manipulation. Even though only three tweaks
are required to fix the third query, there were eleven possi-
ble query trees. With direct manipulation, users who were
still unfamiliar with the query language had many query trees
to manually search through, this slowed their overall time.
One user expressed: “I really just bruce forced looking for
the 2*2*2 options by toggling coverage, quantifier, and posi-
tion”. Those users performed better when they offloaded the
mechanical brute-force search to DataPlay. Thus, with auto-
correction, task completion time for 75% of the users was
under 3 minutes, but with direct-manipulation only 46% of
the users completed the task in under 3 minutes.

We also conducted a post-study questionnaire and asked users
to rate the utility of DataPlay’s features on a Likert scale:
users found direct manipulation (µ = 4.5) and query auto-
correction (µ = 4.6) to be extremely useful. Users were given
the opportunity to elaborate on their ratings. One user ex-
plained that with auto-correction: “you no longer really even
need to think in sql, just what you want or not [sic] want.”
Another explained that “auto-correction is useful, but I found
marking tuples as ‘want in’/‘keep out’ to be more tedious
than [manually] correcting queries”. Another user said “It
was very useful in the sense that it was simple to manually
filter the data elements. I would probably find myself us-
ing the manual constraint manipulation first to narrow down
results and then using auto-correction if I became confused.”
As such, we believe that a mixed query specification interface
is superior to an interface that only offers direct manipulation.

Users also found answers and non-answers to be very use-
ful for debugging queries (µ = 4.6), however they found
the presentation of nested rows to be lacking: DataPlay by
default collapses nested rows and shows the top four nested
rows; users had to expand some rows to examine relevant

data. Users found DataPlay’s highlighting of values that sat-
isfy a constraint to be a useful feature when scanning answers
and non-answers for correctness.

We note that the first query task in this study is as complex as
the query task used in the SQL observational study. A qual-
itative argument in support of DataPlay can be made here:
while only 2 of 11 users successfully transformed an exis-
tential SQL query to a universal one, all 13 users successfully
transformed an existential query to a universal one in less than
3.5 minutes.

Reducing errors: DATAPLAY v2.0
As query complexity increased, the likelihood of errors also
increased: 15% and 30% of users submitted incorrect queries
for the third query task when using query auto-correction and
direct manipulation respectively (See Fig. 8). We examined
screen-recordings of users who failed the third query task and
found the following two issues:

1. When users quickly scanned answers or non-answers, they
sometimes missed tuples that indicate query-specification
errors, especially if those tuples are not within the first few
tuples.

2. When correcting queries, users may provide a few or not
enough selective tuple-memberships: this results in Data-
Play generating a large set of query trees that satisfy the
given tuple-memberships. DataPlay’s simple ordering of
suggested query trees may not bring forward the user’s
intended query. Users, who submitted incorrect queries,
provided a few non-selective tuple-memberships, and then
picked the highest ranked query tree from DataPlay’s sug-
gestions and hastily concluded that they fixed the query.

The first issue can be resolved if we order answers and non-
answers such that they surface query errors or at least cluster
tuples that have identical data with respect to the constraints
and present one tuple from each cluster, hence increasing the
diversity of the top-k presented tuples. Alternatively, we can
allow users to resample the top-k results, thus extracting more
tuples from the database for further query verification.

The second issue is more complex and poses an exciting
research challenge. Query trees map an extremely large
data space to answers and non-answers, user-specified tuple
memberships only map a small random sampling of the data
space to answers and non-answers. To illustrate, with two
constraints over two attributes, for example, grade = A and
course.area = Systems, we have 22 or 4 possible satisfiability
combinations for a two-attribute tuple:

Grade = A Area = Systems Example tuples

True True [A, Systems]

True False [A, Design]

False True [B, Systems]

False False [C, Theory]

!
!
!

If the attributes are two nesting levels deep then our data
space is the number of subsets containing elements from the
four possible two-attribute tuples, i.e 24 or 16. For example:

Student Grade, Course Area Pattern

John A, Systems
B, Design

True, True
False, False

David C, Design
B, Systems

False, False
False, True

!With three constraints on attributes two nesting levels deep,
the data space is 256 tuples and with four constraints, it
is 65536 tuples. The double-exponential size of the data
space means that many semantically-different query trees
will satisfy the small sample of tuple memberships that users
provide. Convergence to the one correct query may require
an unreasonably large sample of tuple memberships: no
user will provide tuple memberships for the entire space.
Worse, the actual database may not be rich enough in its
content and only contain a small sample of the data space.
We are currently exploring techniques from learning theory
to build an alternate interaction mode of query correction,
where DataPlay constructs sample tuples in addition to
using existing database tuples to interactively ask users tuple
membership questions that guarantee convergence to one
correct query tree within a reasonable number questions.
Depending on the task, users provided as low as one tuple
membership and as high as 19 tuple-memberships. The
median number of tuple-memberships provided for each task
was 4, 6 and 6. This data might help us define the bounds of
what is reasonable.

In addition to reducing query specification errors, we would
like to create more scalable query and data tree visualizations.
In particular, we need to employ techniques such as interac-
tive tree navigation and tree summarization to effectively vi-
sualize deeply-nested and bushy data trees (tables with many
attributes).

RELATED WORK
DataPlay is influenced by and builds upon years of research
on database data models and query languages. Our data
model combines the universal relational model [14] with the
nested relational model [13]. Our data model closely resem-
bles that of the LORE database and our query language re-
sembles LOREL, a non-graphical query language for nested
data models [15].

DataPlay uses techniques from visualization-driven query
tools [3, 18, 8]: users can brush visualizations in DataPlay to
specify constraints. Similar to tools like Polaris [21] (and its
commercial successor Tableau [3]) and Orion [9], DataPlay
transforms user-interface actions into formal data-processing
specifications. Polaris maps drag-and-drop operations on
data variables into database queries and visualizations over
single data tables [21]. Orion maps user-interface actions
to data transformation statements and visualizations over
network data [9].

The visual representation of queries in DataPlay as query
trees is influenced in part by the success of code interfaces
like Code Bubbles [4] and Stacksplorer [11] in enhancing
code readability. These interfaces overlay a graphical ‘call-
graph’ representation over code.

Recent research on query causality directed our attention

towards the presentation of non-answers. Query causality
provides users with explanations for a particular query re-
sult [16]. Users pose questions such as “why is a tuple a
non-answer?” and in return the database traces the behavior
of the query to identify features of the tuple that make it a
non-answer[5, 16]. It is from this research that we borrow the
nomenclature of non-answers. We view query correction as
the dual of query causality: while causality finds the data that
caused a given result set, query correction finds the query that
brings about a particular result.

Automated query correction is a novel feature of DataPlay. It
applies techniques from example-driven program synthesis.
While such techniques are currently used for data cleaning
and integration [10, 7], we are not aware of any tool that
applies such techniques for correcting a database query from
example answers and non-answers.

We point out that Query-By-Example (QBE) [22] is not the
same as automated query correction. QBE is a graphical lan-
guage for relational data. It allows users to write queries
by creating example table layouts and specifying constraints
called condition boxes in the columns of these tables. Users
find it difficult to specify quantified queries in QBE [19]; like
SQL, QBE does not exhibit syntax locality and does not pro-
vide non-answers.

Commercial and open-source SQL graphical editors like
Postgres’ pgAdmin [2] and MS Access [1] enable users to
build a graphical SQL query and directly manipulate it. With
these editors, users physically draw the query by dropping
tables into a drawing board and then connecting the tables
with edges to represent joins. Direct manipulation is limited
to removing or adding a table, selecting attributes to project
and clicking edges to edit joins. Constraints are specified
separately and not presented on the drawing board. In MS
Access, constraints are specified using QBE. Users then
execute the query to view answers only. These graphical
editors do not address SQL’s lack of syntax locality, thus
users still need to learn SQL tricks and templates to specify
quantified queries. DataPlay differs from these editors in
many ways. DataPlay reverses the steps of query specifi-
cation: users begin querying by directly specifying their
constraints and DataPlay assembles the constraints into a
query tree. DataPlay also interactively updates answers and
non-answers and maintains a graphical history of all query
modifications.

Like DataPlay, two recent research query tools are targeting
the apparent gap in usable query tools for complex queries.
QueryViz, translates SQL into an equivalent graphical lan-
guage [6] to help users better understand a query, it does
not enable direct query manipulation and it does not visually
expose possible semantic modifications. SnipSuggest [12]
helps users specify queries by auto-suggesting SQL clauses
in a manner similar to code-assist tools in IDEs. SnipSug-
gest learns a variety of SQL templates from database users
of a particular domain to provide context-aware suggestions
ordered by popularity. SnipSuggest helps users of heavily-
queried databases such as scientific data repositories by lever-
aging the work of the few initial users who write the complex

queries. We can extend DataPlay such that, like SnipSuggest,
it suggests popular constraints and it orders query trees by
popularity during query correction.

CONCLUSION
In this paper, we introduced DataPlay, a query tool that sim-
plifies the specification of quantified queries. We conducted a
study to determine what makes quantified querying challeng-
ing in SQL. We observed that SQL hinders a trial and error
approach to querying because it lacks syntax locality and it
lack non-answers.

We designed DataPlay bearing in mind SQL’s deficiencies.
DataPlay’s data model — a nested universal table — enables
the computation of non-answers for any query and DataPlay’s
query language exhibits syntax locality. DataPlay’s unique
data model and query language help support several inter-
action features: (i) Users specify simple constraints with-
out worrying about how to assemble these constraints into a
whole query (ii) Users semantically tweak a query by directly
manipulating a graphical query representation. The syntax lo-
cality of the language ensures that such tweaks are equivalent
to small manipulations. (iii) Users asses the correctness of a
query by examining answers and non-answers. Every query
modification interactively updates answers and non-answers.

DataPlay provides automated query correction: users provide
tuple memberships (examples of answer and non-answer tu-
ples) and DataPlay suggests the possible manipulations to a
given query that will satisfy the user’s tuple memberships.
We compared the effectiveness of direct manipulation with
auto-correction through a user study. The study demonstrates
that for simple queries, users perform better with direct ma-
nipulation, but as query complexity increases, users perform
better with auto-correction.

REFERENCES
1. Microsoft access.
office.microsoft.com/en-us/access/.

2. pgadmin: Postgresql administration and management
tools. www.pgadmin.org.

3. Tableau software. www.tableausoftware.com.

4. Bragdon, A., et al. Code bubbles: a working set-based
interface for code understanding and maintenance. In
CHI (2010).

5. Chapman, A., and Jagadish, H. V. Why not? In
SIGMOD (2009).

6. Danaparamita, J., and Gatterbauer, W. Queryviz:
helping users understand sql queries and their patterns.
In EDBT/ICDT (2011).

7. Gulwani, S., Harris, W. R., and Sing, R. Spreadsheet
data manipulation using examples. In CACM (2012).

8. Heer, J., Agrawala, M., and Willett, W. Generalized
selection via interactive query relaxation. CHI (2008).

9. Heer, J., and Perer, A. Orion: A system for modeling,
transformation and visualization of multidimensional
heterogeneous networks. In VAST (2011).

office.microsoft.com/en-us/access/
www.pgadmin.org
www.tableausoftware.com

10. Kandel, S., Paepcke, A., Hellerstein, J., and Heer, J.
Wrangler: Interactive visual specification of data
transformation scripts. In CHI (2011).

11. Karrer, T., et al. Stacksplorer: call graph navigation
helps increasing code maintenance efficiency. In UIST
’11 (2011).

12. Khoussainova, N., Kwon, Y., Balazinska, M., and Suciu,
D. Snipsuggest: context-aware autocompletion for sql.
Proc. VLDB Endow. 4, 1 (2010).

13. Levene, M. The nested universal relation database
model. Lecture notes in computer science.
Springer-Verlag, 1990.

14. Maier, D., Ullman, J. D., and Vardi, M. Y. On the
foundations of the universal relation model. ACM Trans.
Database Syst. 9, 2 (June 1984).

15. McHugh, J., Abiteboul, S., Goldman, R., Quass, D., and
Widom, J. Lore: a database management system for
semistructured data. SIGMOD Rec. 26, 3 (Sept. 1997).

16. Meliou, A., Gatterbauer, W., Moore, K. F., and Suciu, D.
The complexity of causality and responsibility for query
answers and non-answers. Proc. VLDB Endow. 4, 1
(Oct. 2010).

17. Norman, D. A. The Design of Everyday Things, reprint
paperback ed. Basic Books, New York, 2002.

18. Olston, C., Stonebraker, M., Aiken, A., Aiken, E., and
Hellerstein, J. M. Viqing: Visual interactive querying,
1998.

19. Reisner, P. Human factors studies of database query
languages: A survey and assessment. ACM Comput.
Surv. 13, 1 (1981), 13–31.

20. Reisner, P., Boyce, R. F., and Chamberlin, D. D. Human
factors evaluation of two data base query languages:
square and sequel. In AFIPS ’75, ACM (New York, NY,
USA, 1975), 447–452.

21. Stolte, C., and Hanrahan, P. Polaris: A system for query,
analysis and visualization of multi-dimensional
relational databases. In INFOVIS (2000).

22. Zloof, M. M. Query by example. In AFIPS National
Computer Conference (1975), 431–438.

	INTRODUCTION
	QUERYING WITH DATAPLAY
	Pivoting
	Specifying Constraints
	Fine-tuning
	Auto-correcting

	FROM SQL DEFICIENCIES TO DATAPLAY FEATURES
	Syntax Locality
	Non-answers

	DATAPLAY'S DATA MODEL
	DATAPLAY'S GRAPHICAL QUERY LANGUAGE
	DATAPLAY'S QUERY AUTO-CORRECTION
	EVALUATING DATAPLAY'S INTERFACE
	Participants and Methods
	Both features are important
	Reducing errors: DATAPLAY v2.0

	RELATED WORK
	CONCLUSION
	REFERENCES

