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ABSTRACT
The cartographic Principle of Constant Information Density
suggests that the amount of information in an interactive
visualization should remain constant as the user pans and
zooms.  In previous work, we presented a system, VIDA
(Visual Information Density Adjuster), which helps users
manually construct applications in which overall display
density remains constant.  In the context of semantic zoom
systems, this approach ensures uniformity in the z
dimension, but does not extend naturally to ensuring
uniformity in the x and y dimensions.

In this paper, we present a new approach that automatically
creates displays that are uniform in the x, y, and z
dimensions.  In the new system, users express constraints
about visual representations that should appear in the
display.  The system applies these constraints to
subdivisions of the display such that each subdivision
meets a target density value.

We have implemented our technique in the
DataSplash/VIDA database visualization environment.  We
describe our algorithm, implementation, and the advantages
and disadvantages of our approach.

KEYWORDS: Clutter, constant information density,
multiscale interfaces, non-uniform distributions,
visualization.

1. INTRODUCTION
Clutter and sparsity commonly occur in visualizations of
data.  They are undesirable for a number of reasons.  For
example, clutter can result in overplotting, in which certain
objects are not visible because they are occluded by other
objects.  Sparsity can result in inefficient use of the

available display space.

Many visualization systems address these problems by
supporting multiple graphical representations of objects.
The user is provided with an interactive visualization, and a
representation with appropriate visual complexity for the
current view appears in the display.

More concretely, many such systems use a spatial metaphor
in which objects are displayed in a two-dimensional canvas
over which the user can pan and zoom.  The user’s distance
from the canvas is known as their elevation.  Note that
when the user views an object from a high elevation, it may
appear quite small.  However, when they zoom in on it, it
gets larger, occupying a larger percentage of the display.
As the object gets larger, it is appropriate to make its
graphical representation more complex.  Therefore,
different graphical representations are appropriate for
different elevations.  For example, suppose a city is
represented as a dot when the user is at a high elevation.
When the user zooms in on the city, a text label or a city
map may be added to the representation.

In systems that use this spatial metaphor, a common
technique is to change automatically the representation of
objects as the user zooms.  This functionality is described
as semantic zoom, e.g., [7,4,17].  Programming the
behavior of objects during zooming is a challenging task.
As a result, objects in semantic zoom applications may
have inappropriate visual complexity.  Additionally, the
amount of information in the display can vary significantly
as the user pans and zooms.

We have identified a cartographic precept that defines
appropriate transition points between different graphical
representations.  The Principle of Constant Information
Density states that the number of objects per area should
remain constant.  More generally, the amount of
information should remain constant as the user pans and
zooms above a display [20,9].  We apply this principle to
interactive visualizations of cartographic and non-



cartographic data.

In previous work, we presented a system, VIDA (Visual
Information Density Adjuster), which helps users manually
construct applications in which overall display density
remains constant [26].  However, although the total amount
of information in the display remains constant as the user
zooms, the information within the display may not be
distributed uniformly.  In other words, this approach
ensures uniformity in the z dimension, but does not ensure
uniformity in the x and y dimensions, nor does it extend
naturally to providing such uniformity.  Because many
naturally occurring data sets have non-uniform
distributions, clutter and sparsity commonly occur in
subdivisions of VIDA visualizations.

In this paper, we present a new version of VIDA that
automatically creates displays that are uniform in the x, y,
and z dimensions.  In the new system, users express
constraints about visual representations that should appear
in the display.  The system applies these constraints to
subdivisions of the display such that each subdivision
meets a target density value.  Henceforth, we refer to the
original version of VIDA as presented in [26] as VIDA0

and the new version simply as VIDA.

Figure 1 illustrates the different approaches.  It contains
interactive scatterplots of selected states in the United
States.  On the x and y axes are housing cost and income,
respectively.  Each state may be graphically represented by
a dot or by its polygonal outline.  Figure 1a shows a
visualization of this data that was created in the DataSplash
database visualization environment [7].  The visualization
is plainly cluttered.

Figure 1b shows a visualization of this data that was
manually constructed based on VIDA0’s feedback about the
density of the visualization.  In this example, the number of
vertices is used as the density metric; density metrics are
discussed further in Section 2.2.  Because the polygonal
representation has high density, VIDA0 recommends
changing the display.  In response, the user employs the
graphical mechanism described in [26] to replace the
polygonal representation with the dot representation.  Note
that in both Figures 1a and 1b, all objects in a given display
are shown with a single graphical representation (a few of
the smaller polygons in Figure 1a appear to be dots in this
reproduction, but they are actually small state outlines).

Figure 1c shows VIDA’s automatically generated constant
information density visualization of this data.  Note that
different representations are chosen for different objects
based on local density.

The technique shown in Figure 1c has several advantages.
It minimizes both clutter and sparsity in the display.
Further, observe that it provides additional detail about
outliers.  This additional information can be useful in the
identification of exceptions, which Williamson and
Shneiderman identify as a common task [25].

It can be argued that VIDA’s technique distorts the user’s
view of the underlying data.  However, the usefulness of
such distortion in the cartographic domain is well-accepted.
For example, hardcopy maps frequently show small cities
in sparse areas while omitting cities of the same size in
dense areas, e.g., Rand McNally’s world map [18].
Similarly, some map tools on the World-Wide Web remove
labels from some cities or counties to reduce clutter, while
leaving labels on other cities or counties; users can zoom in

Figure 1a: DataSplash visualization. Figure 1b: VIDA0 visualization. Figure 1c: VIDA visualization.

Figure 1: A visualization of states in the United States, displayed according to housing cost (x axis) and income (y axis).
In Figure 1a, the visualization is obviously cluttered in many regions.  In Figure 1b, objects are shown with a less detailed
representation, as recommended by VIDA0. Note that within Figures 1a and 1b, all objects are displayed with a single
graphical representation.  In Figure 1c, VIDA displays dots for objects that appear in dense regions; objects in less
dense regions are displayed as polygonal outlines.



on the maps to see the labels that have been removed
[23,24].  Because users understand these common
cartographic conventions, we believe they can learn to
understand the same techniques when they are applied in
non-cartographic visualizations.  We further discuss this
issue in Section 3.1.

The remainder of this paper is organized as follows. In
Section 2, we explain our approach in more detail, and we
further discuss its advantages and disadvantages in Section
3.  In Section 4, we describe related work. In Section 5 we
discuss conclusions and future work.

2. TECHNIQUE
Recall that the Principle of Constant Information Density
states that the amount of information per area should
remain constant.  Our general approach is to break the
screen into subdivisions and fill each subdivision with
graphical information such that some target information
density value is met.

In this section, we describe the organization and creation of
graphical objects in our system.  We then define
information density.  Next, we discuss general processes by
which density can be changed. We then describe our
specific algorithm for creating visualizations and discuss its
computational complexity.  Finally, we discuss our
implementation and provide a number of illustrative
examples.

2.1 Organization and Creation of Graphical Objects
As described in further detail below, we have implemented
our work in the DataSplash database visualization
environment [7].  DataSplash objects appear in a two-
dimensional canvas over which the user can pan and zoom.

In DataSplash, all objects in a canvas are organized into
layers.  Each object is a member of exactly one layer.  Each
layer is associated with exactly one database table.  Each
row in the table is assigned an x,y location in the canvas,
i.e., the rows are scattered across the canvas, giving an
effect similar to a scatter plot.  The x,y locations are derived
from data values in the rows.  For example, if the user has a
table of United States cities with latitude and longitude
columns, x and y can be assigned to the longitude and
latitude values of each city.

At any point, the user can create an object in DataSplash’s
paint program interface and duplicate that object for every
row in the database table.  As a result of this duplication
operation, a copy of the object appears at the x,y location of
every row in the table. The effect is like splashing paint
across the canvas, coating every scattered row.  The user
may also associate display properties of objects with
columns in the table, e.g., height, width, color, and rotation
of each splash object can be derived from values in the
columns of its row.  Continuing our example of a
visualization of United States cities, the user may specify
that a circle is to be drawn at the x,y location of each city.

The user may further specify that the radius of each circle
be proportional to the population of that city.  Such a
visualization appears in the detailed example presented in
Figure 3 in Section 2.6.

2.2 Density Metrics
As discussed in [26], we have designed a software
framework in which we can explore generalizations of the
Principle of Constant Information Density.  Since we are
unlikely to anticipate the needs of all applications, we
express all of our notions of information density in terms of
extension and configuration interfaces.

Information density metrics are expressed using density
functions.  Expert users may define new density functions
to supplement those already included in the system.  (These
functions are currently compile-time extensions.)  Density
functions return the associated density metric value for a
given  layer at a given elevation.

Our system currently supports two density metrics, number
of objects and number of vertices.  There are a number of
other metrics that could be used, e.g., Tufte’s data density
[21].  For a thorough review of possible density metrics see
[16].  Because the focus of our work is on maintaining
constant information density for a given metric rather than
on determining good density metrics, we have not yet
implemented additional metrics.

2.3 Processes for Modifying Density
There are two general processes by which density may be
modified.  These approaches may be used individually or in
combination.

First, different graphical representations of objects
appropriate for different elevations, known as multiscale
representations [11], can be selected according to their
density.  There are three interesting ways multiscale
representations can decrease density (corresponding actions
exist to increase density):

1. The glyph used to represent an object can be replaced
with one of lower density.  As one example, a river
represented by a polyline with many vertices can be
replaced by a simplified representation with fewer
vertices.

2. Part of the graphical representation of an object may be
omitted, e.g., the text label for a city can be removed,
leaving only a dot to represent the city.

3. A number of objects can be aggregated.  For example,
a number of dots in a scatterplot can be replaced by a
single larger dot.

Second, objects may be omitted to decrease density.
(Correspondingly, objects may be included to increase
density.)  Note that this can be considered a special case of
number 1 above, in which a glyph is replaced with a glyph
of 0 density.  However, because this type of replacement



has a dramatically different visual effect, we consider it
separately.

In previous work, we applied these processes uniformly to
all objects of a given type.  For example, all cities might
appear as dots in the display.  Alternatively, all cities might
be excluded from the display.

However, if we are to provide a uniform display of non-
uniform data, objects that differ only in their location in the
display must be displayed differently.  As an example of
non-uniformly applied multiscale representations, a large
number of dots in one part of a scatterplot can be replaced
with a large circle, while dots in other parts of the same
scatterplot can be left in the display.  As an example of
non-uniformly applied omission, in a traditional map, small
cities might not be shown in areas with large populations.
However, cities of the same size might appear in less
populous areas in the same map.  We call this technique
selective omission.

2.4 Algorithm
We have developed an algorithm that controls the display
of layers in subdivisions of the screen based on density.
(Recall that a layer consists of a data set and a specification
of the graphical representation of that data set.)  The
algorithm works as follows.  First, it divides the visible
screen into a regular n x n grid.  Every cell in the grid has a
goal density.  Goal density is the same for every cell in the
grid and is configurable.  For a given cell, our algorithm
calculates the density of each layer.  We assess the grid
approach and discuss alternatives in Section 3.2 below.

We began our experiments with a fairly naïve algorithm
that finds the combination of layers yielding the density
value closest to the goal density for a given cell.  It renders
those layers within the boundaries of that cell.  While this
approach is effective for some applications, it is highly
inappropriate for many others.  For example, in one
application, in some parts of the screen state outlines are
rendered without cities while in other parts of the screen
cities are rendered without state outlines (the former is
acceptable while the latter is not).

Based on our experience with the naïve algorithm, we
decided to allow the user to specify the combinations of
layers that are semantically meaningful.  We identified two
possible approaches.  First, we could allow the user to
specify the valid combinations of layers extensionally, i.e.,
we could provide an interface in which the user could
explicitly identify all valid combinations.  Second, we
could allow the user to specify the valid combinations of
layers intensionally, i.e., we could allow the user to specify
certain constraints from which the system could infer all the
valid combinations.  Because typical DataSplash
applications range from 5 to 15 layers, we decided
extensional specification would be prohibitively time-
consuming for the user.

To simplify the user’s task, we developed intuitive and
composable constraints with which the user can express the
relationships between layers.  We designate each unit to
which constraints may be applied a bundle; the simplest
bundle is a single layer.  When a constraint is applied to
two bundles, it may be considered to generate a new bundle
to which additional constraints may be applied.  The
constraints are a lower-level specification mechanism than
the processes described in Section 2.3 and can be used to
simulate these processes.

Constraint 1 (mutual exclusivity): The user can state that
two bundles are mutually exclusive.  In this case, only one
of the two bundles may be displayed within a given
subdivision of the screen.  This can be useful when one
layer is an alternative representation of another.  For
example, suppose two layers exist for representing cities,
one of which represents cities as a dot and one of which
represents cities as a circle.  For a given city, only one such
representation should be displayed.  The user specifies a
density ordering of the two bundles, i.e., they specify which
has higher density.

Constraint 2 (additivity): The user can state that one bundle
may be added to another.  In this case, the first bundle may
appear alone or with the second bundle in a given
subdivision of the screen.  For example, the state outline
layer may appear alone, or with the city layer.  Note that the
relationship is not symmetric, e.g., cities may not appear
without state outlines.

We illustrate our algorithm with the following example.

Example A: Constraint 1 can be used to generate a
bundle that specifies that cities may be represented as
dots or circles.  It can also be used to generate a bundle
that specifies that city labels may be represented with a
small font or with a large font.  Constraint 2 can then
be used to specify that the city dots/circles bundle can
appear alone or with the city labels bundle.

We call a set of layers chosen for display a configuration.
Applying our constraints to Example A results in six
configurations: (1) a dot, (2) a circle, (3) a dot plus a small-
font text label, (4) a dot plus a large-font text label, (5) a
circle plus a small-font text label, and (6) a circle plus a
large-font text label.

Our algorithm chooses a list of valid configurations such
that the density of each of the configurations in the list is
guaranteed to be non-decreasing.  This is desirable because
we want to make the choice of representation as consistent
and stable as possible (see the discussion of flickering
representations in Section 3.2).  Additionally, we wish to
limit the number of configurations to avoid unnecessary
visual complexity.



Generation of a density-ordered list is simplified by two
observations.  First, recall that the density ordering of a
mutually exclusive bundle is known from the user’s
specification.  Second, observe that the density ordering of
an additive bundle is obvious; a bundle appearing alone has
density lower than or equal to that of the same bundle
appearing with another bundle.

These observations immediately result in a partial ordering
of the set of potential configurations listed above.  In
Example A, we can see that (1) has lower density than (2).
However, the relative density of, for example, (2) and (3) is
not known.  VIDA’s algorithm proceeds in a depth-first
fashion, producing a fully ordered list consistent with the
partial ordering.  In this example, it chooses (1), (2), (5),
and (6).

2.5 Computational Complexity
Our current density computations are fast enough that
performance is not affected visibly when rendering our
current main-memory-resident data sets (typical sizes range
from hundreds to tens of thousands of objects).  In fact, in
many cases our techniques improve performance, since
they significantly reduce the number of objects that must be
rendered.

Our current algorithm for computing the density of an
individual layer runs in linear time (using number of
objects or number of vertices as the density metric).  The

algorithm that selects the layers to display is more
computationally intensive.  (In fact, the naïve algorithm that
does not consider constraints is provably NP-Complete.
This can be shown by a polynomial reduction from Subset-
sum [13] to our problem of choosing a set of layers that
sum to a given density.)  In practice, we have found that the
number of layers is generally low enough that performance
is not affected noticeably.

There are at least two facts that can allow computation
costs to become prohibitive.  First, user-defined density
metrics can be arbitrarily expensive to compute.  Second,
larger data sets can increase computation time significantly
(albeit linearly).  However, if necessary, the following three
techniques can be used to reduce computation time:

� The density values can be stored during or across
browsing sessions (currently they are dynamically
computed each time the user moves).

� Heuristics can be used to estimate density.  Because
the density metrics are used to choose representations,
approximations are acceptable.  This can be
particularly useful when updates are frequent.

� More advanced data structures can be used to compute
or estimate density values.  For example, R-trees can
be extended to include density estimates as in [3].

Figure 2a: VIDA visualization at a high elevation. Figure 2b: Zoomed-in view.

Figure 2: A visualization of Fortune 500 data, displayed according to % profit growth (x axis) and income (y axis).  In
Figure 2a, VIDA displays different objects at different levels of detail, ranging from dots in the most dense regions to
detailed icons for the outliers.  In Figure 2b, the user has zoomed in.  VIDA dynamically adjusts the display so that
more detailed representations are visible, since they are more appropriate to the lower elevation.



2.6 Implementation and Examples
We have implemented our algorithm in VIDA0, which is an
extension to the DataSplash database visualization
environment [2,7].  VIDA0, VIDA, and DataSplash are
implemented in C++, the Mesa graphics library [15],
XForms [27], and POSTGRES [19], and run on most UNIX
platforms.

In this section, we present three sample visualizations of
non-uniform distributions of data.  These examples
illustrate a number of advantages and disadvantages of
VIDA’s technique for displaying non-uniform data.  These
issues are discussed in Section 3.

We begin by revisiting Figure 1, an interactive scatterplot
of selected states in the United States.  On the x and y axes
are housing cost and income, respectively.  Each state may
be graphically represented by a dot or by its polygonal
outline (each representation is associated with a layer).
Previously we discussed Figures 1a and 1b.  At this time,
we provide more detail about Figure 1c, which shows
VIDA’s automatically generated constant information
density visualization of this data.  In this example, VIDA
uses the number of vertices as the density metric.  There is
a mutually exclusive relationship between the two
representations (dot and polygonal outline), so that within a
grid cell all states are represented by either a dot or a
polygonal outline, but not both.  In this visualization, the
general trend of the data is still visible (housing cost and
income appear to be correlated), but additional data about

the outliers is visible.  For example, California is very
expensive to live in, but also has a high income level.

The second example, shown in Figure 2, is an interactive
scatterplot of selected Fortune 500 companies.  On the x
and y axes are % profit growth and number of employees,
respectively.  Each company has three potential
representations (each associated with one layer): (1) a dot;
(2) an icon of the general category of industry to which the
company belongs; and (3) an icon of the specific type of
industry to which the company belongs.  Figure 2a shows
VIDA’s constant information density visualization of this
data.  As in Figure 1, VIDA uses the number of vertices as
the density metric.  There is a mutually exclusive
relationship between the three representations (dot, general
category icon, and specific category icon), so that within a
grid cell all companies are represented by exactly one of the
three possible representations.  Because the outliers are
shown with more detail, we can observe that many of the
companies with a high % profit growth are forestry
companies (the tree icons on the right), while many of the
companies with a low % profit growth and a large number
of employees are telecommunications companies (the
telephone icons in the upper-left).

Suppose the user is browsing the visualization and wants
more information about companies with high profit growth
and a small number of employees.  Then the user may
zoom in to the area in the lower right of the visualization;
Figure 2b shows the resulting zoomed-in view.  Note that if

Figure 3a: Naïve DataSplash visualization. Figure 3b: VIDA visualization.

Figure 3: A visualization of population data, displayed according to latitude and longitude.  In the naïve DataSplash
visualization shown in Figure 3a, many regions of the visualization are too sparse.  In Figure 3b, VIDA has made the
display more uniform by showing cities of lesser populations in regions where no large cities exist.



the user zooms in on a fixed set of objects, each object that
remains in the display occupies more screen space.
Therefore, when the user zooms in, each object is shown
with a more detailed representation.  From this vantage
point, the user learns that, unexpectedly, only a small
number of the high growth companies with few employees
are high-technology companies (many of them are forestry,
service, or heavy industry companies).

The third example, shown in Figure 3, is a map of cities in
the United States.  On the x and y axes are longitude and
latitude, respectively.  One layer contains the outline of the
United States.  Four additional layers contain cities
partitioned by population.  In this example, VIDA uses the
number of objects as the density metric.  Additive
relationships pertain to these layers, so that any given grid
cell may contain only the outline of the United States, the
outline of the United States plus the largest cities, the
outline of the United States plus the largest and second
largest groups of cities, etc.

Multiscale representations are illustrated in Figures 1 and 2.
Selective omission is illustrated in Figure 3. In these
examples, it happens to be the case that multiscale
representations are supported by mutual exclusivity and
selective omission is supported by additivity.  However,
each of these processes can be generated by either
constraint.

3. DISCUSSION
In this section, we discuss the effectiveness of constant
information density displays in non-cartographic domains.
We then assess our methods for choosing representations to
create uniform density displays.

3.1 Effectiveness in Non-cartographic Domains
Historically, the Principle of Constant Information Density
has been used in the cartographic domain.  In VIDA, we
have applied this principle to non-uniform data in both
cartographic and non-cartographic domains.  In this
subsection, we discuss our informal observations of its
effectiveness for different tasks.

We begin by discussing the utility of constant information
density displays.  We then assess individual characteristics
of the two processes by which constant information density
displays are created, multiscale representation and selective
omission.  For each technique, we discuss advantages and
disadvantages, as well as potential improvements.

Constant Information Density Displays.  Constant
information density displays have a number of advantages.
If the target density value is chosen appropriately,
overplotting is minimized and use of the available display
space is maximized.  Further, the displays are visually
appealing.  Additional advantages are discussed below.

A potential disadvantage of the technique is that it might
give users a distorted perception of the actual density of the

underlying data space.  We have three responses to this
argument in general; more specific issues are discussed in
the subsections on multiscale representations and selective
omission below.

First, we mentioned above that we believe users can learn
to interpret VIDA visualizations, just as they have learned
to interpret maps which distort information.

Second, we observe that because cluttered visualizations
contain overplotting, they do not give an accurate
representation of the distribution of the data.  Therefore, for
tasks specifically involving density distributions, we
recommend developing visualizations compatible with the
Principle of Constant Information Density.  For example, a
visualization in which each pixel is colored to show density
at a given location has constant information density and
provides a good sense of the distribution of data.  As
another example, a scatterplot can use aggregation in the
following manner: when a region of the screen contains
more than a given number of dots, these dots can replaced
by a single, larger dot of a different color.

Third, we observe that one can apply the Principle of
Constant Information Density only to those dimensions in
which the user is not explicitly studying distribution.  For
example, if the user is looking for high-density areas in the
x and y dimensions, it might be appropriate to apply the
Principle of Constant Information Density only in the z
dimension.  More concretely, suppose that at a given
elevation, all visible objects are shown with the same
representation.  This specific representation can be chosen
such that the total density of the screen approximates a
target density value.  Techniques to ensure uniformity in
the z dimension are discussed further in [26].

Multiscale Representation.  Note that multiscale
representation of data according to density shows outliers
with more detail (and therefore often with more screen
space).  We argue that showing more detail for outliers
assists in the detection and investigation of anomalies.
However, because this technique makes outliers
disproportionately prominent, there is a danger that this
technique will overemphasize outliers, which may be
inappropriate for some applications.

As an additional advantage of the variable-detail
representation technique, we have observed that, rather than
obscuring trends, the technique actually makes the
distribution of the data more apparent.  For example, in
Figure 2a, it can be seen that the data distribution roughly
follows the shape of a bell curve.  (In the color version of
the visualization, this is strongly apparent, since each
representation has a different color.)

Selective Omission.  While omission does achieve constant
information density displays, it can be fairly misleading.
Consider Figure 3b.  This visualization is consistent with



the common cartographic convention of omission in paper
maps.  However, if this same technique were applied to a
different type of visualization, e.g., a scatterplot, the user
might incorrectly infer that no data existed in a specific
region when in fact such data did exist.

It is our belief the display could be significantly improved
by the addition of visual cues that indicate that objects have
been removed.  Such cues fall into two general categories.
First, cues can indicate the regions from which objects have
been omitted.  For example, Magic Lenses might be placed
over regions in the display to indicate that they are being
shown at a different level of detail [5,8].  Second, cues can
encode information about the distortion that has been
applied.  For example, the background of the visualization
can be colored to indicate density in various regions (note
that it would be interesting to color the backgrounds of a set
of Magic Lenses in this way).  Alternately, objects can be
blurred to indicate the accuracy of the representation;
blurrier areas can represent areas in which higher distortion
has occurred.

3.2 Choice of Representations for Display
In general, the gridding mechanism and simple constraints
we provide are effective. We typically use a 10 x 10 regular
grid, and find that boundaries are not perceptible unless the
data distribution is highly uniform (see Figure 4).  In cases
in which it is desirable to use a less perceptible grid,
alternative subdivisions such as hexagonal and non-regular
grids could be used.

We find the constraints are quite powerful, supporting a
number of diverse applications.  Much of this utility is
evident in the examples provided above.  In this subsection,
we discuss the limitations we have identified with the
gridding and constraint mechanisms and suggest potential
improvements.

Flickering Representations in the Grid.  Despite the fact that
the grid boundaries are not readily apparent, there is a
significant drawback to the grid-based approach.  In our
current implementation, the grid boundaries are relative to
the screen (one can imagine a transparent grid that moves
independently above the two-dimensional canvas).  In this
model, the contents of a given grid cell change as the user
pans or zooms.

Consider the case when the user pans.  Suppose an object is
in a grid cell that has high density.  In this position, it is
displayed with a low-density representation.  If the user
pans slightly, the grid shifts.  In the new subdivision of the
screen, the object may be in a grid cell that has low density
and therefore may be displayed with a high-density
representation.  A similar problem exists when the user
zooms.  For example, during one continuous inward zoom,
a low density representation might be replaced by a high
density representation and then be replaced by the original
low density representation.

Such flickering representations are highly distracting and
create undesirable visual effects.  Panning flicker can be
solved easily by registering the grid to the canvas, i.e., by
embedding it in the underlying x,y space.  Unfortunately,
zooming flicker can not be solved easily because no single
size for a grid cell is appropriate for all elevations.  A
spatial data structure such a quad-tree that subdivides the
space might seem appropriate, but does not in fact entirely
solve the problem.  Possible solutions include choosing
representation on a per-object rather than a per-grid-cell
basis.  Fortunately, the zooming case is not as visually
obtrusive as the panning case.

Aggregated Objects in the Grid.  Our current
implementation chooses layers to render within each grid
cell.  It does not explicitly take into account the semantic
relationship between objects in different layers.  For
example, it does not explicitly consider that the United
States is a single object that contains each of the individual
states.  We would like the system to render either the
United States, or all the individual states.  However, these
semantics are not enforced in the current implementation;
in some situations in which the objects are in multiple grid
cells, states are rendered in some cells but not in others.  An
object-based model for display would ameliorate this
problem.

Allocation.  In some situations, the user may wish to specify
the relative visual resources to be allocated to given
bundles.  For example, suppose an application has two
bundles, one for political boundaries and one for cities.
Each of these bundles may contain a number of different
representations with widely varying density; the political
boundaries bundle may range from a country outline to
county outlines, while the city bundle may contain a
number of layers with different numbers of cities.  It would
be useful to provide a mechanism with which the user could

Figure 4: Visualization of an artificially-created data
set with uniform distribution.  When the grid-based
algorithm is applied to uniformly-distributed data,
grid cell boundaries are immediately discernible (c.f.
Figures 1-3).



specify that at any given time, n% of the visual density
should be allocated to the political boundaries and the
remainder should be allocated to the cities.  This
mechanism could be used, for example, to ensure that a
certain type of feature is always present in the display.

4. RELATED WORK
Indirectly-related work has been done in a number of areas.
In our own work, we have conducted a preliminary pilot
study of user response to constant information density
visualizations of uniform data [26].  Other researchers have
examined appropriate amounts of information density for
specific character displays, user interface screens, or
images (the equivalent of a fixed elevation in our system).
Useful summaries appear in [12,22].  Related work on
creating visually appealing displays has considered the
layout of objects at multiple granularities [14].  However,
the layout problem detailed in this work has different
objectives, requiring that no objects overlap and that the
minimal amount of space be wasted.

Other systems consider ways to construct displays with
constant information density.  In our own work, we have
proposed changing underlying data and graphical
representations to modify density [26]. Additionally, as
discussed above, VIDA0 utilizes the Principle of Constant
Information Density to interactively guide users in the
construction of applications with constant information
density [26].  This system works best on uniformly
distributed data. Further, researchers in the area of map
generalization have studied automated generation of maps
of given scales, although with limited success [6].  The
multi-scale tree algorithm takes a different approach [9].
Given a set of maps produced (manually or with a
computer-assisted tool) at different scales, the algorithm is
designed to automatically produce different views of the
data as the user zooms. These views would have a constant
number of active pixels.  However, the algorithm described
in this approach has several major limitations.  It gives the
user no control over which representations are chosen for
display (VIDA provides a constraint mechanism for this
purpose).  It supports only one density metric (ink, or the
number of live pixels), in contrast to VIDA0 and VIDA,
which have a general infrastructure for supporting multiple
density metrics.  Finally, examples are limited to the
cartographic domain, and it is not clear the technique would
generalize to other applications.

A number of interactive visualization systems provide
clutter reduction mechanisms.  For example, Ahlberg and
Shneiderman’s work allows the user to filter objects in the
display dynamically [1].  This technique does not
differentially filter subdivisions of the display.  Therefore,
the resulting visualizations can have regions that are too
dense and/or too sparse.  Fishkin and Stone extend the
dynamic query model by providing movable filters which
the user can position manually in the display [8].  This
technique is highly appropriate for non-uniform data.
However, unlike VIDA, the movable filter technique as
described in this work requires the user to choose explicitly

the areas to which filtering is applied.  One can imagine
using VIDA’s density techniques to place movable filters
appropriately, as mentioned in Section 3.1.

Non-linear magnification schemes can also be used to
minimize clutter in the display [10].  In fisheye views, for
example, objects are viewed as though through a fisheye
lens so that objects in the center of the screen are given
more display space than objects on the periphery.  Objects
on the periphery can be displayed with reduced detail or
can be omitted.  However, such displays can be disorienting
for the user.  For applications in which they are desirable,
the Principle of Constant Information Density can be
applied to them in interesting ways.  For example,
representations could be chosen or objects could be placed
to guarantee constant information density.  In some
situations, this would create concentric circles containing
representations with decreasing detail.

Another interactive visualization technique, semantic zoom,
reduces clutter by controlling the representation of objects
according to elevation [17,4].  Our work uses the notion of
density to control the representation of objects.  However,
the general approach can be simulated in semantic zoom
systems.  This can be achieved by using density metrics to
assign the transition points between different
representations on a per-object basis.

In theoretical work related to interactive visualization,
Furnas and Bederson present a framework for multi-scale
viewing [11].  This framework seems to extend naturally to
some density metrics, e.g., the number of objects [26].
However, it is not clear that it extends to all such metrics.

5. CONCLUSIONS AND FUTURE WORK
We have presented VIDA, a system that creates
visualizations that have uniform information density in the
x, y, and z dimensions.  VIDA visualizations have this
uniformity even when the data sets being displayed are
non-uniformly distributed.  We have discussed the
advantages and disadvantages of the visualizations created
by VIDA, particularly in non-cartographic domains.  VIDA
visualizations are automatically constructed using
constraints specified by the user.  We have described these
constraints and assessed their utility.

Further studies of user response to applications with
constant information density are plainly warranted.
Additionally, although we are currently focusing on
preserving constant information density for a given metric
rather than comparing density metrics and studying
appropriate values for such metrics, such comparative
studies would be useful.  A formal taxonomy of density
metrics would also be of significant interest.

Finally, we are extending our display and constraint
mechanisms.  Planned improvements include replacing the
grid-based model with an object-based model, adding an
allocation mechanism, and developing a graphical
mechanism with which users can specify constraints.
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