
Navigation and Coordination Primitives for
Multidimensional Visual Browsers∗

Allison Woodruff, Alan Su, Michael Stonebraker, Caroline Paxson, Jolly
Chen, and Alexander Aiken
Department of Electrical Engineering and Computer Sciences
University of California at Berkeley
Berkeley, CA 94720 USA
email: tioga@postgres.berkeley.edu

Peter Wisnovsky and Cimarron Taylor †

Illustra Information Technologies, Inc.
1111 Broadway, Suite 2000
Oakland, CA 94607 USA

Abstract

This paper describes extensions to the Tioga flight-simulator browsing protocol presented by
Stonebraker et al. (1993a). These extensions allow users to navigate a multidimensional data space
using sophisticated zooming capabilities. This design also allows users to move easily between
different multidimensional spaces. Tunneling between different data spaces is shown to be a
substantial generalization of hyperlinks in a hypermedia system. Finally, our design provides for
the coordination of multiple browsers. This preserves context and allows users to explore multiple
paths simultaneously.

In concert, these extensions incorporate the functionality of many information management
paradigms as well as introducing new constructs. These powerful mechanisms for relating data
provide users with great flexibility. For example, users can create magnifying glasses which show
an enhanced view of the underlying data.

Keywords

Data browsing, hypermedia, magnifying glasses, user interfaces, visual databases, visual
programming, wormholes, zooming.

∗ Supported in part by CNRI grant #M1717 and by NSF grant #FD94-00773.
† Presently with Automation Consultants Group, 650 California Street, 26th Floor, San Francisco, CA 94108.

1 INTRODUCTION

The design of user interfaces for database systems is an area in need of more attention
(Stonebraker et al., 1993c). Existing database user interfaces are often unfriendly and difficult for
nonexperts to use. Common database interfaces include textual programming languages or forms-
based interfaces oriented towards business applications.

In Stonebraker et al. (1993a), we presented Tioga, a new paradigm for user interaction with a
database management system (DBMS). Tioga is motivated by the needs of scientific DBMS users
in the SEQUOIA 2000 project (Stonebraker and Dozier, 1992; Stonebraker et al. 1993b). Tioga
uses the boxes and arrows notation popularized by scientific visualization systems such as AVS
(Upson et al., 1989), Data Explorer (Lucas et al., 1992), and Khoros (Rasure and Young, 1992).
Tioga improves upon these systems by providing sophisticated data management using the
POSTGRES DBMS (Stonebraker and Kemnitz, 1991). In the Tioga programming model, boxes
represent user-defined database queries or browsers, and edges between boxes represent flow of
data. Although a limited number of boxes has currently been implemented, additional boxes may
be programmed by users. Nonexperts build visual programs called recipes by interactively
connecting boxes together using a graphical user interface. Current recipes include a photographic
35mm slide library and a geoindexing system. The underlying data manager is able to optimize
and efficiently execute recipes.

The purpose of a recipe is to specify the data to be visualized, access the data through a
database management system, and then locate the data in a multidimensional browser display.
Figure 1 shows a typical recipe as constructed by a user. The recipe includes two browsers,
viewer1 and viewer2, to display the data generated by the recipe. The default Tioga browsing
paradigm allows users to visualize data results in a multidimensional space. Users navigate
through their data using a flight-simulator interface. (Additional browsers may be implemented by
advanced users.) Figure 2 shows a browser displaying objects in a latitude/longitude viewing
space that contains California. One object, a digitized 35mm slide, has been selected and
displayed.

In the default Tioga browser, the user
chooses two dimensions to be displayed on the
screen. Remaining dimensions appear as
sliders which restrict the objects in the display
to those which have values matching the
constraints indicated by the sliders. The
original navigational interface allows the user
to pan over the two dimensions of the display
or to zoom by enlarging a certain portion of
the display. Clearly, more sophisticated
navigation is desirable.

In Stonebraker et al. (1993a), we explored
the basic constructs of Tioga and provided a
query execution model. Chen et al. (1993)
expanded the Tioga model to interface to
foreign systems and provided a notion of

Figure 1
A Tioga Boxes and Arrows Diagram.

transactions for the Tioga environment.
Woodruff et al. (1994) introduced mechanisms
to support navigation in multidimensional
space.

In this companion paper, we extend these
ideas and present three mechanisms which can
be combined to support both novel, powerful
constructs and constructs of proven worth.
These extensions include:
• enhanced detail. Our system must be able

to provide enhanced detail as a result of a
zoom operation. For example, the Kodak
PhotoCD representation for digital images
supports five different resolution formats,
ranging from a full size 2K by 3K by 8-bit
color image to a 128 by 192 by 8-bit
abstract (Eastman, 1992). A user would
like the ability to see abstracts on the
screen and then zoom in to view the
images at a higher resolution. A similar
feature was provided by SDMS (Herot,
1980), but it was hard-coded into that

execution engine. Hence, retargeting SDMS required a considerable amount of customization.
• movement to different multidimensional spaces. Enhanced detail implies a change in

perspective within a multidimensional space. Users also want the ability to switch to a new
multidimensional space. For example, a user could zoom in on a map of Berkeley to find the
Computer Science building. Additional levels of detail could yield documents corresponding
to Computer Science technical reports. These documents should be displayed in a different
context than the latitude/longitude coordinates appropriate for the map of Berkeley. When a
document is being viewed, a further zoom could yield the image of the author or the layout
geometry of his or her office. Again, a different multidimensional space should be used.

• coordination of multiple browsers. Our system must support multiple levels of detail in the
same display. For example, it should be possible to place a magnifying glass on a portion of
the display and have a zoom operation performed only for the objects under the glass. The
remaining objects in the display should serve as a context for the magnified data and should
not change. Because the objects in the magnifying glass are shown with enhanced detail, this
function is considerably more complex than simply changing the number of pixels used for
display. For example, support for magnifying glasses requires that browsers be allowed to
share windows.

In the rest of this paper, we explore our design in detail. Specifically, in Section 2 we define a
zoom capability that allows enhanced detail. We proceed in Section 3 to define wormholes that
allow users to change multidimensional spaces. We turn in Sections 4 and 5 to our design for

Figure 2
Data Displayed in the Tioga Browser.

coordination of multiple browsers. We present
the execution model in Section 6. In Section 7
we discuss potential applications, and in
Section 8 we summarize our findings.

2 SHOWING ENHANCED DETAIL

To eliminate clutter in the display and to orient
the user, data should have different
representations when seen from different
distances in multidimensional space.
Intuitively, we wish to extend Tioga with the
possibility of zooming into data to display
more detail about screen objects. Our notion of
zooming is semantic in that it involves
changing the data objects being displayed, as
opposed to simple graphical zooming. To
support this functionality, we are extending the
original Tioga browsing protocol.

In our design, data objects can have
different abstracts that are produced by
separate recipes. An elevation map relates
these recipes to each other by specifying which

recipes are valid at what distance (elevation) from the object. The elevation map is used to control
the invocation of different recipes as the user zooms in and out through the data space. Therefore,
if the user zooms into the elevation range of a different recipe, the recipe providing input to the
browser is changed.

Figure 3 shows an elevation map containing four recipes, R1 ("State outline"), R2 ("Census
tracts"), R3 ("Rivers"), and R4 ("Highways"). R1 produces output for the browser at high
elevations. When the user zooms to elevation E1, R1 and R2 are both valid. Further inward at E2,
R1 stops output and only R2 may display data. Further zooming can display output from recipes
R3 and R4.

To support this behavior, we begin by associating with any browser in any recipe an elevation
range over which the browser displays data from this recipe. A browser is associated with a
multidimensional coordinate system as noted above. In this presentation, we assume N dimensions
which we denote A1, ..., AN. We add an N + 1st dimension, designated elevation, which is
used to indicate the user’s perspective. This does not represent a physical elevation, but is rather a
logical representation of a user’s viewing distance from the N-dimensional space.

Overlay Priority

exclusive
optional

required

E
l
e
v
a
t
i
o
n

low
low high

high

E1

E2

R1

R4R3

R2

Figure 3
An Example Elevation Map.

The original Tioga implementation displays two user-selected dimensions, AX and AY, on the
screen. In this browser, the user can change the range of these dimensions by resizing the window.
The range is adjusted proportionally to the change in window size. Note that resizing the window
has no effect on elevation, as Figure 4 illustrates. Assume that the user’s initial position in a
displayed dimension is ELEVI with viewing angle θI, as shown in TRIANGLEI. Adjusting the
window size while remaining at a constant elevation is analogous to changing the user’s viewing
angle, as shown in TRIANGLEW.

In our new design, the user is also allowed to adjust the elevation of a browser. When the user
zooms to ELEVZ, θI remains constant, resulting in TRIANGLEZ. Because TRIANGLEI and
TRIANGLEZ are similar, RANGEZ can be recalculated as follows:

RANGEZ = RANGEI * (ELEVZ / ELEVI)

Adjusting the window size or zooming may select the same range for display. However, the
two operations may have very different results. Adjusting the window size does not change the
recipe providing input to the browser. Conversely, zooming may place the user in the elevation
range of a different recipe. In this case, the recipe providing input to the browser is changed as
specified by the elevation map.

The data provided by each recipe must be supplied to the browser in a common,
multidimensional coordinate system. When more than one recipe at a given elevation may provide
output to the browser, the elevation map also specifies the overlay priority of the recipes, which is
shown on the horizontal axis. When conflicts occur in allocation of display space, objects from
recipes with higher priority are visible on the screen in preference to those from recipes with
lower priority.

In addition to specifying the elevations at which recipes are to be invoked and their overlay
priority, the elevation map also contains a collection of semantic restrictions on the display of
recipe output. Each recipe in an elevation
map can be:
• required. In this case, recipe output must

be displayed if the browser is at an
elevation within the elevation range.

• optional. In this case, when the user
enters the elevation range of the recipe, he
or she is prompted as to whether the
output from this recipe should be visible.
This behavior occurs if the user zooms
into the elevation range from above or
zooms out from below. At any given
elevation range, a mechanism allows
users to turn on or off optional recipes
valid at the current elevation. Using this
interface, a user can change his or her
mind about seeing (or not seeing) the
objects from optional recipes.

TRIANGLE

TRIANGLE

TRIANGLE
I

Z

W

RANGE

RANGE

RANGE
I

Z

W

ELEV

ELEV

ELEV

θ

θ

θ
I

I

I

I

Z

W

Zoom

Window
Resize

Figure 4
Changing Viewing Angle and Elevation.

• exclusive. A user can specify a radio button behavior for recipes that are valid at common
elevations. With this behavior, at most one of the recipes can be activated, and the user is
presented with a menu of radio buttons to indicate which one.

These semantics are illustrated in Figure 3. At higher elevations, R1 displays the outline of
California. Upon zooming to E1, the user has the option to see also the census tracts in the state as
output by R2. At the next transition point, E2, the outline of the state is no longer visible and the
census tracts are optionally visible. Further zooming shows either the rivers or the highways of
California (as generated by R3 and R4), but not both.

Previous work has identified the merits of zooming capabilities (Gorlick and Quilici, 1994;
Perlin and Fox, 1993). We contribute a dynamic, visual mechanism for specifying the behavior of
objects when viewed from different distances. Elevation maps allow a user to define easily the
semantics of the zoom operation, assuming that all recipes produce data in the same
multidimensional space. We now turn to a mechanism for changing from one multidimensional
space to another.

3 CHANGING MULTIDIMENSIONAL SPACES

Enhanced detail implies a change in perspective within a multidimensional space. Users also want
the ability to move to related multidimensional data spaces for new perspectives on the data, a
functionality similar to that provided by hyperlinks (Conklin, 1987). Consider the following
example in which Tioga presents information about the residents of Berkeley. Initially, the
application displays a map of Berkeley. Zooming inward gives more detail about geographic
objects, culminating with the outline of each individual residence. At this point, the user may
invoke a new type of browser, defined for each residence, that displays an image of the people
living there. Requesting detail on the residence therefore causes a different multidimensional
space to be explored.

When a user changes to a new multidimensional space, objects have a spatial relationship that
is unrelated to the relationship in effect on the near side. This behavior should be distinguished
from a zoom operation where the same spatial relationship is present before and after the zoom.
Therefore, we denote this operation of changing from one multidimensional space to another as
tunneling through a wormhole, to differentiate it from zooming. A wormhole is a connector
between two disparate data spaces, and tunneling is the process of travelling through a wormhole.

To construct a wormhole, the user must specify the following information:
• the wormhole location. We associate the wormhole with objects displayed by some recipe in

some browser. Hence, the location is indicated by the three-tuple: (recipe name, browser
name, query).

• the new application that should be run on the other side of the wormhole.
• a tag associated with the wormhole. Because there may be multiple wormholes for a given

object in a given recipe, we require the tag field to allow a user to specify which wormhole
should be followed.

In practice, a user-interface gesture indicates the user's desire to tunnel through a wormhole.
The user then chooses a wormhole from the list of tags associated with the object(s) selected. At

this point, a new application is invoked taking the object(s) selected as a parameter(s). In the
example given above, the object identifier of the house would be passed to the new application to
allow it to display only the people living there. It is also possible to define the wormhole over a
collection of object identifiers. Specifically, we allow an arbitrary function to identify the objects
for which the wormhole is defined. One such function could be:

retrieve (House.oid)
where House.architect = "Wright"

in which case the wormhole would be defined only for houses designed by Wright.

4 SLAVING AND CLONING BROWSERS

It is difficult for users zooming and tunneling in single browsers to explore multiple paths
simultaneously. Additionally, when users are zooming and tunneling in multidimensional space, it
is difficult for them to maintain a sense of context. A related problem may be observed in
traditional systems such as graphics packages, help systems, and hypermedia systems. In many of
these systems, users must repeatedly zoom in and out or backtrack. Somewhat more sophisticated
systems provide limited browser coordination in overview-detail browser pairs (Plaisant et al.,
1995). In the next two sections, we introduce mechanisms for browser coordination which support
simultaneous exploration of multiple paths through multidimensional space and display context to
the user.

Browsers in the same recipe can be independent of each other. In this case, movement in one
browser does not affect the others. This behavior is appropriate when the browsers are displaying
independent objects.

On the other hand, one browser can be constrained to another in a master/slave relationship. In
this case, whenever the user changes the master’s position in N-dimensional space, the slave’s
position in M-dimensional space automatically changes as well. More specifically, during the
recipe definitions, the user defines a function, LOC_CALC, that translates requests in the master into
requests to the slave:

LOC_CALC(N-space-region) → M-space-region

When the master is moved to REGION1, the slave will be instructed by Tioga to move to
LOC_CALC(REGION1). Both browsers must recalculate their visible rectangles and issue commands
to retrieve the objects which will be displayed. Further, when the master changes elevation, the
slave must automatically change elevation at the same time. Usually, slaved browsers will be
constrained to have the same elevation as their master; however, we allow the user to specify
optionally a second function, ELEV_CALC:

ELEV_CALC (elevation) → elevation

In this way, the slaved browser can be constrained to operate at a second elevation that is a
function, ELEV_CALC, of the elevation of the master.

There are four interesting ways in which slaved browsers may be constrained:
• Slaved browsers may display data from different regions in a multidimensional space. For

example, a user may need to examine all areas 5 miles north of a pipeline to ensure that a
toxin carried by the pipeline has not affected these areas. In Tioga, the pipeline could be

viewed in one browser. A second browser could be slaved with a function LOC_CALC that
mapped an N-space-point to a new point 5 miles north.

• Slaved browsers may display the same data seen from different elevations. For example, the
slave could show a detailed representation of what is seen in the display of the master. In
effect, the slave would show the data of the first browser through a magnifying glass.

• Slaved browsers may display different data from the same points in a multidimensional space.
For example, one browser could show color-coded precipitation data for an area while its
slave displayed temperature data for the same area.

• Slaved browsers may display related data in different multidimensional viewing spaces. For
example, a master browser could show a map of California while a slaved browser displayed a
list of all seismographic sensor stations located in the area shown in the master browser. As
the user looked at different parts of California, the slaved browser would automatically adjust
the list of stations.

The four examples above assume the existence of two browsers in the same recipe. If only one
browser exists, it may be more convenient to clone it rather than to place explicitly a new browser
in the recipe graph. Cloned browsers can be slaved or independent. The examples above
demonstrate possible uses for slaved clones. For instance, to display the same data at different
levels of detail, the user could clone and slave a viewer to act as the magnifying glass.

Independent clones are appropriate in other situations. For example, it is easy for a user to
become disoriented when navigating in a multidimensional space. Hence, the user would like to
mark the position of something of interest and return to it at a later time. Cloning a browser allows
one browser to remain stationary at the object of interest while the second one continues to browse
the multidimensional space.

To support this functionality, we propose the following design. The original browser becomes
the originator and the new browser becomes the clone. The originator and the clone have exactly
the same elevation map. During the cloning operation, the user must specify if the clone is to be
slaved to the originator, and if so must specify LOC_CALC and ELEV_CALC.

If the originator and the clone are independent (i.e. not slaved), then the second browser is
initially assigned the same elevation and spatial location in multidimensional space as the first
browser. The joystick of either browser can be moved arbitrarily, and the displays of the two
browsers will typically diverge. As a result, cloning subsumes bookmarking features found in
other systems.

If the clone is slaved to the originator, then the clone is constrained to operate at an elevation
and location offset relative to the originator; these offsets are determined by LOC_CALC and
ELEV_CALC. In this case, the slaved browser operates at an elevation of

ELEV_CALC (elevation of originator)

and at a location given by
LOC_CALC (N-space-region of originator)

If LOC_CALC is the identity function, and ELEV_CALC specifies a zoom, then the clone will provide
an automatic magnifying glass, without requiring the user to perform the zoom manually.

Using slaving and cloning, a variety of offset displays and magnifying glass effects can be
constructed. The next section describes mechanisms that allow two browsers to share the same
screen area, thereby permitting a true magnifying glass effect to be implemented.

5 SHARING WINDOWS

We would like to allow the user to place one browser inside another. For example, the user could
place a magnifying glass browser inside another browser displaying a map of California. This is
analogous to reading a map of California with the aid of a physical magnifying glass. Adding this
functionality to Tioga allows users to combine the usefulness of effects such as Magic Lenses
(Bier et al., 1993) with the strength of a DBMS. To provide this functionality, we require that
browsers be allowed to share their windows. If two browsers share the same multidimensional
space, then it is permissible for them to share a browser window. Note that since a clone and its
originator automatically share the same multidimensional space, they are able by definition to
share a window.

When two browsers are declared to share a window, they are referred to as the outer browser
and the inner browser. Each browser has separate slider bars that determine the content of its
display. The outer browser uses the complete window to display its objects. The inner browser
magnifies a portion of the data shown in the outer browser. The display of the inner browser is
then overlaid on the display of the outer one, thereby creating a single composite display which

can be rendered on the screen by the window
manager.

To create this composite, Tioga finds the
center of the inner browser’s current viewing
region, and then locates this point in the outer
browser’s window. Next, Tioga positions the
inner browser’s viewing region at this location
within the outer browser. There are three
cases of interest:
• case 1: the inner viewing region is

completely inside the outer viewing
region. In this case, the two regions are
overlaid and displayed.

• case 2: the inner viewing region is
completely disjoint from the outer viewing
region. In this case, the inner viewing
region cannot be seen, and only the outer
viewing region is visible.

• case 3: the inner viewing region overlaps
the outer viewing region. In this case,
Tioga must clip the inner viewing region
and then overlay the two displays as
above.

These behaviors can be illustrated in the
following examples. The user can clone a
browser and run both the originator and the
clone in a common window. A zoom

Inner
Browser

Outer
Browser

Multidimensional Data Space

Figure 5
Viewing Regions of Nested Browsers.

operation on the inner browser will allow the user to observe a magnifying glass effect, whereby
one browser is providing a detailed blowup of the region displayed by the other. Figure 5 shows a
magnifying glass (the inner browser) positioned above a window (the outer browser) which is in
turn positioned above a map (the multidimensional space).

Consider the case in which the inner and outer browsers are independent. In this situation, the
position and elevation of each browser can be changed independently. Moving the inner browser
will change its position above the map, and therefore, its contents. Because it moves
independently, moving it will also change its position relative to the outer browser. This will
allow the user to magnify various areas of the map. If the user moves the magnifying glass
completely out of the region displayed by the outer browser, then case 2 above applies and the
detail will not be shown. If the magnifying glass is partly outside this region, then case 3 above
applies and only a portion of the inner browser will be displayed. Similarly, if the user moves the
outer browser, the content of the inner browser will not automatically change, although its
position relative to the outer browser will change.

To achieve different behavior, we can slave the clone to the originator. Since the inner
browser is slaved to the outer browser, moving the outer browser will change the area displayed in
both browsers. However, the position of the magnifying glass within the outer browser will
remain constant. Moreover, if the user zooms the outer browser to blow up the map of interest,
say to a map of a specific county, then the magnifying glass will also zoom.

The definitions presented above may be recursively extended so that an inner browser may in
turn serve as an outer browser. This allows an arbitrary number of browsers to share a window,
with a pairwise inner-outer relationship between them. Thus, a hierarchical collection of browsers
can be defined. For example, a user may choose to have a magnifying glass on top of another
magnifying glass, providing even more detail.

6 EXECUTION MODEL

The original Tioga executor considered the execution of single recipes. However, zooming
requires that multiple recipes execute concurrently to supply data to a browser. We have extended
our design to include an abstract manager which controls the execution of recipes and coordinates
their communication with browsers.

In a naive implementation of zooming, all browsers in a recipe would be displayed when the
user zoomed to the elevation at which the recipe became valid. However, different recipes in an
elevation map may contain different types and numbers of browsers. Therefore, the naive
implementation would result in arbitrary browsers appearing and disappearing as the user adjusted
elevation. To provide a more intuitive semantics, we introduce the notion of a base recipe which
defines the visual environment which the user can explore. The visual environment is made up of
one or more browsers which appear in the base recipe. Each of these browsers is associated with
an elevation map that specifies which recipes may provide data to it.

Execution begins when a base recipe is passed to the abstract manager. The abstract manager
examines the elevation maps of all browsers in the base recipe to determine the set of all recipes
which may be accessed through the visual environment. The abstract manager then starts an
executor for each of these recipes, as well as a process for each browser in the base recipe. The

abstract manager establishes communication channels between executors and browsers. These are
distinct from the dataflow edges which exist in the recipe graphs. At any given time, a browser
has a communication channel to every recipe in its elevation map which is currently active (i.e.
valid at the current elevation). The browser uses these channels to request data from the executors.
When the user adjusts elevation, the abstract manager updates the communication channels
between the browsers and executors, adding and deleting connections as appropriate.

Since abstracts allow movement in a single multidimensional space, the appearance of new
browsers might be disorienting. However, since tunneling by definition involves viewing a new
multidimensional space, we allow the recipe invoked by a wormhole to serve as a base recipe and
start a new visual environment. The invocation is similar to a fork operation; both the original
browser and the new browser continue to exist as independent processes, each with a base recipe.

7 APPLICATIONS

In the preceding sections, we have defined semantics for zooming, tunneling, and the coordination
of multiple browsers. The resulting model unites constructs which have proved useful in many
types of information management systems.

For example, the reader can readily observe that wormholes are a substantial generalization of
hyperlinks in a hypermedia system. A traditional hyperlink is a wormhole in which there is a
prespecified object or collection of objects on each side of the hole. Wormholes allow a run-time
specified set of objects to be on each side. Further, classical hypermedia systems only provide a
two-dimensional display space composed of the X and Y screen dimensions. The Tioga paradigm
extends such systems by supporting the display of objects in user-specified dimensions.

Similarly, abstracts generalize the notion of layers as used in many Geographic Information
Systems (GISs). In many such systems, data is stored in separate layers representing categories
such as species distribution, land use, or political boundaries. Layers may be viewed
independently or displayed together in one window. Abstracts provide a mechanism for the
application developer to define the levels at which each layer will be visible. Further, while some
GISs support browsing in 2 or 3 dimensions representing the physical dimensions of the Earth,
they do not incorporate browsing in arbitrary multidimensional spaces. Such browsers could be
used to provide additional data. For example, selecting a city might offer the option to tunnel to a
browser containing people objects displayed according to the dimensions age, income, and
consumption of a product.

Scientific visualization systems could also take advantage of the constructs supported in the
Tioga model. Many existing scientific visualization systems provide users the option of browsing
through data in multidimensional space. However, many scientists would like to perform data
lineage queries in which they trace the history of the operations that have been performed on their
data. Slaved browsers could be used to simultaneously display different versions of data. In this
case, navigation in one browser would cause the slaved browser to automatically display the
corresponding data.

The model presented in this paper incorporates multiple concepts of proven worth. This model
can be used both to enhance existing systems and to create new information management
applications.

8 CONCLUSIONS

In this paper we have detailed mechanisms that support navigation in multidimensional space. We
first outlined a zoom capability that allows users to view data at different levels of detail. We next
introduced the concept of wormholes. Tunneling through a wormhole allows users to view their
data in the context of a new multidimensional viewing space. We then proposed mechanisms for
linking browsers together as well as for creating new browsers. We detailed the behavior of
multiple browsers sharing a portion of the screen. The resulting data management and browsing
model is a generalization of many existing systems. In combination, the ideas presented not only
add functionality to existing paradigms but support new constructs such as magnifying glasses as
well. We are currently extending the original Tioga system to support the features discussed in
this paper.

9 REFERENCES

Bier, E., Stone, M., Pier, K., Buxton, W., and DeRose, T. (1993) Toolglass and Magic Lenses: The See-
Through Interface. Proceedings of SIGGRAPH 93, Anaheim, California.

Chen, J., et al. (1993) Extending a Graphical Query Language to Support Updates, Foreign Systems, and
Transactions. SEQUOIA 2000 Technical Report 93/38, University of California at Berkeley.

Conklin, J. (1987) Hypertext: An Introduction and Survey. Computer, 20:9, pp. 17-41.
Eastman Kodak Company (1992) Programmer’s Guide for UNIX Systems. Kodak PhotoCD Access

Developer Toolkit.
Gorlick, M. and Quilici, A. (1994) Visual Programming-in-the-Large versus Visual Programming-in-the-

Small. Proceedings of the 1994 IEEE Symposium on Visual Languages, St. Louis, Missouri.
Herot, C. (1980) Spatial Management of Data. ACM Transactions on Database Systems, 5:4, pp. 493-513.
Lucas, B. et al. (1992) An Architecture for a Scientific Visualization System. Proceedings of the 1992

IEEE Visualization Conference, Boston, Massachusetts.
Perlin, K. and Fox, D. (1993) Pad: An Alternative Approach to the Computer Interface. Proceedings of

SIGGRAPH 93, Anaheim, California.
Plaisant, C., Carr, D., and Shneiderman, S. (1995) Image-Browser Taxonomy and Guidelines for

Designers. IEEE Software, 12:2, pp. 21-32.
Rasure, J. and Young, M. (1992) An Open Environment for Image Processing Software Development.

Proceedings of the 1992 SPIE Symposium on Electronic Image Processing.
Stonebraker, M. and Kemnitz, G. (1991) The POSTGRES Next-Generation Database Management

System. Communications of the ACM, 4:10, pp. 78-92.
Stonebraker, M. and Dozier, J. (1992) SEQUOIA 2000: Large Capacity Object Servers to Support Global

Change Research. SEQUOIA 2000 Technical Report 91/1, University of California at Berkeley.
Stonebraker, M., Chen, J., Nathan, N., Paxson, C., and Wu, J. (1993a) Tioga: Providing Data Management

for Scientific Visualization Applications. Proceedings of the 1993 VLDB Conference, Dublin, Ireland.
Stonebraker, M., et al. (1993b) The SEQUOIA 2000 Architecture and Implementation Strategy, SEQUOIA

2000 Technical Report 93/23, University of California at Berkeley.
Stonebraker, M., et al. (1993c) DBMS Research at a Crossroads: The Vienna Update. Proceedings of the

1993 VLDB Conference, Dublin, Ireland.
Upson, C., et al. (1989) The Application Visualization System. IEEE Computer Graphics and

Applications, 9:4, pp. 32-40.

Woodruff, A., Wisnovsky, P., Taylor, C., Stonebraker, M., Paxson, C., Chen, J., and Aiken, A. (1994)
Zooming and Tunneling in Tioga: Supporting Navigation in Multidimensional Space. Proceedings of
the IEEE Symposium on Visual Languages, St. Louis, Missouri.

10 BIOGRAPHIES

Allison Woodruff is a Ph.D. student in Computer Science at the University of California at Berkeley. She
received the Bachelors degree in English from California State University, Chico in 1987. She received the
Masters degree in Linguistics in 1989 and the Masters degree in Computer Science in 1993 from the
University of California, Davis. She has worked as a student assistant and as a geographic information
systems analyst at the California Department of Water Resources. Her research interests include user
interfaces for databases and implementation issues for visual languages.

Alan Su is a Bachelors degree candidate majoring in Electrical Engineering and Computer Science at the
University of California at Berkeley. He plans to enroll in the Computer Science Ph.D. program at the
University of California at San Diego in the Fall of 1996.

Michael Stonebraker is a professor of Electrical Engineering and Computer Sciences at the University of
California at Berkeley, where he has been employed since 1971. He was one of the principal architects of
the INGRES relational database management system which was developed during the period 1973-77.
Subsequently, he constructed Distributed INGRES, one of the first working distributed database systems.
Then, he turned his attention to developing a next generation DBMS, POSTGRES, that can effectively
manage not only data but also objects and rules as well. POSTGRES formed one of the cornerstones of the
SEQUOIA 2000 project, the DEC flagship research project of the 1990s for which Dr. Stonebraker has
served as co-project director. SEQUOIA 2000 is striving to build a new computer environment for Earth
science researchers and encompasses networking, storage, DBMS, and visualization activities. Currently,
he is focusing on the DBMS support for visualization environments and on next-generation distributed
DBMSs.

Dr. Stonebraker is a founder of INGRES Corp (now the INGRES Products Division of ASK Computer
Systems), the founder of Illustra Information Technologies, Inc., a past chairman of the ACM Special
Interest Group on Management of Data, and the author of many papers on DBMS technology. He lectures
widely, has been the keynote speaker at several recent conferences, and was the winner of the first ACM
SIGMOD innovations award in 1992.

Caroline Paxson is a Ph.D. student in Art History at the University of California at Berkeley. She
received the Bachelors degree in German Literature from Harvard. She received the Masters degree in
Computer Science from the University of California at Berkeley in 1993.

Jolly Chen is a doctoral candidate in Computer Science at the University of California at Berkeley. He
received the Bachelors degree in Computer Science and Masters degree in Electrical Engineering and
Computer Science from the Massachusetts Institute of Technology in 1990. His research interests include
query optimization and user interfaces for databases. Jolly Chen is a student member of ACM.

Alexander Aiken received his Bachelors degree in Computer Science and Music from Bowling Green
State University in 1983 and his Ph.D. from Cornell University in 1988. He was a Research Staff Member
at the IBM Almaden Research Center before joining the Berkeley faculty in 1993.

Peter Wisnovsky has worked in the database industry for the last six years, for the Sharebase Corporation
(formerly Britton-Lee) and Illustra Information Technologies, the leader in object-relational database
technology. At Illustra he has worked on the Object Knowledge database visualization system and its

visual programming language development environment, the Project Editor. He is currently working on
interface technology at Illustra. He received the Bachelors degree in Computer Science from Princeton in
1989.

Cimarron Taylor is Chief Scientist at Automation Consultants Group. While at the University of
California at Berkeley from 1987 to 1990, he contributed to the query executor, access methods and
transaction system of POSTGRES. After graduating, he went to Scopus Technology where he turned
Scopus’s workflow prototype into a commercial product. He joined Illustra when it was founded in 1992 to
build client software tools. He developed and implemented the compilation algorithms in the Object
Knowledge Toolkit to translate visual programs into Illustra’s dialect of SQL3. He is now responsible for
the information architecture of ACG’s manufacturing enterprise automation system.

