
The Tioga-2 Database Visualization

Environment

Alexander Aiken?, Jolly Chen, Mark Lin, Mybrid Spalding,

Michael Stonebraker and Allison Woodru�

Department of Electrical Engineering and Computer Sciences
University of California, Berkeley

email: tioga@postgres.berkeley.edu

Abstract. This paper reports on user experience with Tioga, a DBMS-

centric visualization tool developed at Berkeley. Based on this experience,

we have designed Tioga-2 as a direct manipulation system that is more
powerful and much easier to program. We present a detailed design of

the revised system together with an extensive example of its application.

We also give a progress report on a Tioga-2 implementation.

1 Introduction

Database system performance|as measured by either processing speed or the

quantity of data that can be managed|has grown by an order of magnitude

in recent years, making increasingly sophisticated applications feasible on ever-

larger data sets. However, database query languages have changed relatively little

and are di�cult for non-experts to use. The vast majority of database users are

unable to customize applications to their own needs, let alone develop their own

custom applications. Thus, at present the expanding capabilities of database

systems can be exploited fully only by expert programmers. Making databases

easier to use and program, and thereby more accessible, is an important issue

today and will become more important as database technology becomes faster,

cheaper, and more powerful [11].

This paper reports on the design of Tioga-2, a new database visualization en-

vironment. We use the term \visualization environment" rather than \program-

ming environment" to emphasize that most programming operations in Tioga-2

are performed by manipulating graphical representations of either programs or

data. Tioga-2 is based on a small set of primitive operations for transforming

data and its visualization. These primitives have been chosen carefully to have

clear, simple semantics and to be composable. Thus, Tioga-2 users can build

sophisticated applications|or modify existing applications|by successive com-

position of the primitives. We believe that by providing a small set of general

\building blocks", minimum language syntax, and immediate feedback on the

e�ect of incremental program modi�cations, Tioga-2 makes it much easier for

database users to develop database applications.

? This research was sponsored by NSF under grants IRI-9400773 and IRI-9411334.

Tioga-2 has not been designed in a vacuum. Previously, we reported on

the design and implementation of Tioga, a visualization system that is cou-

pled closely with the POSTGRES DBMS [12]. The design of Tioga-2 has been

in
uenced heavily by what we learned from user experiences with Tioga and a

companion commercial product, Illustra Object-Knowledge, based on the same

ideas. In the rest of this introduction, we �rst discuss the problems and lessons

from Tioga and then outline our solution to those problems in Tioga-2.

1.1 Tioga

Tioga adopts the \boxes-and-arrows" programming paradigm popularized by

AVS [13], Data Explorer [7], and Khoros [9]. Every box is a user-de�ned function,

which has been registered with POSTGRES. A programmer constructs a Tioga

program using a drag and drop editor to move and connect boxes on the screen.

Every Tioga program has a designated viewer connected to the output of

a speci�ed box. The viewer provides the user with a two-dimensional canvas

onto which the programmer places renderable objects. In addition, the viewer

provides a pan feature whereby the user can \
y over" the canvas viewing areas

of interest. Furthermore, the user can zoom into areas of the canvas to see more

detail. Zoom is a powerful construct, as it supports so-called drill-down|the

ability to change the visual representation of data. For example, a state map

of the United States could become a county map upon suitable zooming. In

addition, we speci�ed but never implemented the features of multiple viewers,

viewers within viewers, cloning of viewers, slaving of viewers, and wormholes

[14].

Experience with Tioga and Illustra Object-Knowledge can be summarized as

follows:

1. Programmer model

Tioga is based on the idea that an expert programmer constructs POST-

GRES user-de�ned functions (boxes) and that a second programmer uses

an editor to \wire up" visualizations. In this way, Tioga implements a \big

programmer / little programmer" environment.

It has been su�ciently hard to construct boxes-and-arrows programs that

the little programmer must, in fact, be a big programmer. The key problem

is that simplifying the speci�cation of control logic through a boxes-and-

arrows notation does not simplify programming su�ciently. For example, to

construct Tioga applications, the little programmer must understand locat-

ing objects on a canvas and turning objects into graphical representations.

It turns out that even expert programmers �nd these tasks di�cult. As a

result, little programmers have not been able to program in Tioga because

it is not nearly easy enough to use.

2. Programming environment

Tioga has the familiar notion of building a program, compiling it, and then

running the compiled result. Novices have di�culty learning how to program

e�ectively in this paradigm. For example, if nothing appears on the screen,

then there is a \bug" in the program. Bugs are hard for the programmer

to �nd because Tioga provides a viewer only for the �nal result; it is not

possible to place a viewer on any edge in a diagram to visualize the data

that is
owing along that edge.

3. Expressive power

As a result of trying to provide a simple programming model, Tioga is in

some ways oversimpli�ed. To select only a single example, because every box

must be a user-de�ned function, a box has a single output, which must be

of a speci�c type. This makes it di�cult to implement functionality of the

form:

if condition then deliver data to box i else deliver data to box j

1.2 Tioga-2: Guiding Principles

Based on our experiences, we are redesigning Tioga completely from scratch,

and the result is Tioga-2, described in this paper. We begin with the principles

that have guided the redesign.

Much of the problem with the original Tioga system is that there is no

way to specify some aspects of a visualization except via ordinary statement-

and expression-oriented programming. Learning to write procedural code is a

high hurdle for many non-programmers, and some visualization aspects|such

as writing functions to position data in a multi{dimensional space|are di�cult

even for expert programmers.

There is an alternative way to specify data visualizations. Even non-programmers

intuitively understand how to specify desired computations \by example"|by

manipulating sample data. Instead of writing in a standard programming syntax,

the programmer begins with very simple displays of data and composes them

directly on the screen to construct elaborate visualizations. In moving from the

boxes-and-arrows notation of Tioga to the direct manipulation programming

paradigm of Tioga-2, we have identi�ed a number of principles we believe to be

important to a usable,
exible, and powerful direct manipulation visualization

system:

1. Every result of a user action has a valid visual representation.

All data types constructible by Tioga-2 programs have a well-de�ned screen

representation. As such, the programmer obtains immediate visual feedback

of the e�ect of any change to a Tioga-2 program and can visually inspect

intermediate results. This principle facilitates debugging activities and solves

problem (2) noted above.

2. Programming is incremental.

Visualizations are constructed incrementally by successive composition of a

small number of simple primitives. Combined with the ability to visualize

results of incremental changes immediately, we believe that we can empower

the little programmer to construct Tioga-2 programs. In Tioga-2, there is no

distinction between constructing a program, modifying an existing program,

and using an existing program.

3. To the extent possible, programming is speci�ed visually by direct manipu-

lation of visualized data.

A boxes-and-arrows representation of the user's program is available and

must be used for certain operations. However, considerable programming is

done by direct manipulation of the screen without reference to this data

structure.

4. Every operation has a clear, well-speci�ed semantics.

Unlike many previous direct manipulation systems there is no inference pro-

cedure to synthesize a program from a user's examples [4]. Instead, every

Tioga-2 operation has a straightforward, unambiguous meaning as a step in

a program.

5. Retain the \big programmer/little programmer" model.

We recognize that there are computations that cannot be speci�ed in Tioga-

2. For example, while Tioga-2 has the equivalent of an if-then-else construct,

it does not have arbitrary recursion. Thus, we expect that big programmers

will construct additional Tioga-2 boxes as in the original Tioga system.

The remainder of this paper is organized as follows. We begin in Section 2

with a quick tour of the structure of Tioga-2. This section introduces terminology

and notation used throughout the paper. Section 3 presents the user's view of

Tioga-2, the user interface. The description of Tioga-2 programming begins in

Section 4 with the primitive operations for editing boxes-and-arrows diagrams

and performing standard database operations. Section 5 presents primitives for

de�ning visualizations of database relations. Section 6 describes three sets of

primitives for de�ning alternative views of data and connections between related

data: (a) drill down, in which a user moves from a coarse visualization (e.g., a

state map) to a more re�ned visualization of the same data (e.g., a county

map), (b) wormholes, in which a user can move from a visualization of one data

set to a visualization of a di�erent data set, and (c) rear view mirrors, which

allow users to keep track of \where they came from" (i.e., wormholes through

which they have travelled). Section 7 continues with mechanisms to link multiple

visualizations together. Section 8 discusses database updates. A progress report

on an implementation of Tioga-2 together is given in Section 9; this section also

covers a few additional features we have found either necessary or convenient to

add based on early experience with Tioga-2. Finally, Sections 10 and 11 cover

future and related work respectively, and Section 12 presents a few conclusions.

2 The Model

Before presenting the Tioga-2 system in detail, we de�ne some basic terminology

and concepts. The reader may wish to skim this section on a �rst reading.

Tioga-2 programs are represented by data
ow graphs with boxes and arrows.

A box is a primitive procedure with some number of inputs and outputs (see

Figure 1). The output of one box may be connected to the input of another

box by an edge (also called an arrow). Box inputs and outputs are typed and

Fig. 1. Weather stations in Louisiana.

edges connect outputs to inputs of compatible types. Any attempt to connect an

output to an input of incompatible type is a type error. Tioga-2 programs have

data
ow semantics; when data is present on all of a box's inputs, the box can

\�re", producing results on one or more outputs. Execution is lazy, evaluating

only what is required to produce the demanded visualization.

A box input or output may be a scalar value (e.g., a runtime parameter

supplied by the user) or a displayable, described below. Displayables de�ne vi-

sualizations. Most Tioga-2 boxes compute displayable outputs from one or more

displayable inputs. Tioga-2 has three displayable types: extended relations, com-

posites, and groups.

The �rst displayable type is an extended database relation R. In Tioga-2,

the visualization of R is de�ned by R's attributes. Intuitively, R \knows" how

to display itself. We assume an object-relational DBMS in which a relation has

stored attributes as well as methods de�ning additional attributes. For each

tuple t of R, location attributes de�ne the position of t on the screen and a

display attribute de�nes the screen representation of t. Tioga-2 visualizations are

constructed \tuple-wise"|the visualization R is the sum of the visualizations of

each tuple of R.

Every visualization has at least the two screen dimensions and a representa-

tion for every tuple. Therefore, an extended relation has at least x and y location

attributes, corresponding to the two screen dimensions, and an attribute display.

A relation R may have additional location attributes; the dimension of R is the

number of R's location attributes. A relation may also have multiple display

attributes de�ning alternative representations of the data. We adopt a uniform

notation and write t:l to denote attribute l of tuple t, whether l is a stored or

computed attribute. We stress that the location and display attributes used to

de�ne visualizations are computed attributes and are not stored in the database.

The second displayable type is a composite of relationsC = Composite(R1; : : : ;

Rn). A composite visualization is the overlay of the composite's components|

the visualizations are simply superimposed. Thus, composites provide a way to

combine visualizations of di�erent relations in the same viewing space.

The third type of displayable is a group of compositesG = Group(C1; : : : ; Cn).

A group visualization is the visualization of each of the composites Ci arranged

either side-by-side, top-to-bottom, or in a tabular fashion according to the user's

speci�cation. Groups allow visualizations of di�erent viewing spaces to be com-

bined. To render Group(C1; : : : ; Cn), a viewer displays each of the Ci in the

speci�ed layout. The viewer has a position for each of the n displayables|the

user may independently pan and zoom in each of the grouped visualizations.

In summary, there are three kinds of displayable types, described as follows:

G = Group(C1; : : : ; Cn)

C = Composite(R1; : : : ; Rn)

R = relations with attributes x; y; display

Many Tioga-2 operations presented in subsequent sections are de�ned only

for R or C inputs. To make programming easier, Tioga-2 extends such operations

to work on \higher" types. For example, theRestrict operation �lters a relation;

it is a box that takes an R input and produces an R output. Given a group G

input toRestrict, Tioga-2 asks the user for the composite within the group, and

the relation within that composite, to which the Restrict applies. After applying

the Restrict to the selected relation, Tioga-2 reassembles the composite and

the group in the obvious way. This is all done graphically with point-and-click

operations, so that the user need not be aware explicitly of how Restrict is

overloaded to work on group and composite displayables.

Displayable types are translated into screen output by viewer boxes. If an

n-dimensional relation R is the input to a viewer, then the viewer has an n+ 1-

dimensional position specifying the location of the viewer for each of the n di-

mensions and the elevation. The user controls the position by panning in the n

viewing dimensions and by zooming, which changes the elevation, moving the

user \closer to" or \further from" the data. A viewer displays the x and y di-

mensions of R on the 2-D canvas; the remaining n�2 dimensions are available as

sliders. If R has location attributes x; y; l1; : : : ; ln�2 each tuple t of R is rendered

by drawing t:display at position ht:x; t:y; t:l1; : : : ; t:ln�2i in n-space. Because a

visualization space may be larger than the canvas, the viewer �lters tuples to

the ranges speci�ed by the sliders for dimensions l1; : : : ; ln�2, �lters tuples to the

visible area on the screen for dimensions x and y, and then renders the tuples'

display attribute to the screen.

3 User Interface

The Tioga-2 user interface contains several main windows. All may be visible

on the screen or iconi�ed. There is a single user interface both for building and

for using programs, but a user browsing a previously constructed visualization

will not require all of the windows available. A screen dump of the interface is

shown in Figure 1. The user interface windows are: a programwindow, containing

a boxes-and-arrows representation of a Tioga-2 program, a canvas window for

each viewer in the current program, and a menu bar containing the pull-down

menus to invoke primitive operations.

A canvas window shows data visible in a viewer at the current position. In

addition, each canvas window includes: a rear view mirror, zero or more slider

bars, an elevation map, and an elevation control (a dashed line through the

elevation map).

The menu bar includes menus of all operations, tables, and boxes available,

an undo button to undo the last operation performed, and a help button.

A Tioga-2 program is constructed incrementally by applying program editing

operations to the program window (thereby modifying the boxes-and-arrows di-

agram) and rendering and/or drill down operations to a canvas window (thereby

making modi�cations via direct manipulation). At any stage in the construction

of a program the current result is displayed on all non-iconi�ed canvases.

Since a canvas may be much larger than the available screen real estate, we

allow the user to change the viewer's position, altering the area visible in the

viewer. Scroll bars control panning in the screen dimensions x and y; canvas

slider bars control panning in any remaining dimensions. The elevation control

allows the user to drill down into data displayed on the screen. Elevation maps

are an interface for programming drill down (Section 6).

4 Program and Data Management Operations

This section discusses the operations available in the programwindow and Tioga-

2's database operations. These operations allow the incremental construction of

a boxes-and-arrows program specifying data the user wishes to visualize. Op-

erations for constructing visualizations themselves are discussed beginning in

Section 5.

We use the following example to illustrate Tioga-2 programming. An agri-

cultural specialist wishes to construct a visualization of temperature and precip-

itation data for various sites in Louisiana. The data is stored in two relations:

Stations, which contains a tuple describing each weather station, and Obser-

vations, which contains all observations (e.g., date, time, conditions) from all

stations. The data covers all of North America and contains a great deal of

information besides temperature and precipitation.

As a �rst step toward constructing a temperature and precipitation visualiza-

tion for Louisiana, the user limits the Stations relation to the stations of interest.

For every relation known to the Tioga-2 system there is a box of the same name

that takes no inputs and produces as output the tuples of the relation. Beginning

with the Stations box, the user incrementally adds boxes to perform standard

database operations such as restricting the data to tuples satisfying a predicate

(e.g., stations in Louisiana) and projecting out unneeded �elds (e.g., date of

construction). Figure 1 shows a boxes-and-arrows diagram and canvas. The last

box in Figure 1 is a viewer, which in this case displays data using a default two-

dimensional table format. The user can also inspect any of the partial results.

If the user discovers that any step produces unexpected results, he can inspect,

delete, and replace boxes as necessary to �x the program.

For convenience, the operations in this section are subdivided into operations

that manipulate program structure and database operations.

4.1 Program Operations

This group of primitives permits the initialization, loading, and saving of pro-

grams, as well as the deletion, insertion, and connection of boxes into an existing

program. There are also primitives that provide familiar language abstractions

analogous to procedures and macros. The operations are listed in Figure 2; we

brie
y discuss the most interesting.

If the user clicks on one or more edges in the current program, Apply Box

gives the user a menu of all boxes whose inputs match the types of the selected

edges. This is a shorthand way to identify those boxes in the database that could

possibly take the indicated edges as input.

A design principle of Tioga-2 is that every operation preserves a visual repre-

sentation. The thesis is that users are most likely to understand their programs

and recognize errors if the results of every small, incremental change can be visu-

alized and inspected. Deleting boxes from a program is dangerous, because inputs

of other boxes may be left dangling and, therefore, their results unavailable for

visualization. To preserve the property that \everything is always visualizable",

arbitrary box deletions are not allowed in Tioga-2. A box may deleted if it has

no outputs connected to other boxes (in which case no box inputs are left dan-

gling), or if it has a single input and output of the same type (in which case the

system connects the deleted box's predecessor to its successor). A box may also

be Replaced by another box with compatible types.

A T box simply passes its input unchanged to both outputs, and allows

another box, for example a viewer, to be connected to the T.

Encapsulate permits the user to de�ne new boxes. The user speci�es a

portion of the program to be encapsulated by drawing a closed curve around a

region of the program. Edges cut by the curve are the inputs and outputs of the

new box. The new box may be used like any other primitive box.

Encapsulated boxes may also be parameterized to create something akin to

a macro or (more accurately) a higher-order function. The user draws additional

closed areas within the program region to be encapsulated. These areas become

\holes"|they are not included in the encapsulated box, and edges cut by a hole

are unconnected. To use an encapsulated box with holes, the user must specify

a box|with compatible types|that can be plugged into each hole.

Operation E�ect

New Program Erase the program canvas.

Add Program Add a named program to the program canvas.

Load Program Shorthand for New Program followed by Add Program.

Save Program Save the current program in the database.

Apply Box see discussion

Delete Box see discussion

Replace Box Replace one box by a di�erent box with compatible types.

T Add a T-node to a designated edge.

Encapsulate see discussion

Fig. 2. Operations that manipulate the boxes-and-arrows diagram.

4.2 Database Operations

The primitives in this group provide database operations, which are listed in

Figure 3. Each operation adds a new box to the program. The type of the intro-

duced box is indicated in Figure 3. Note that all input/output types are R. As

discussed in Section 2, these operations are extended to apply to composite (C)

and group (G) types as well.

As mentioned above, the Add Table operation adds a new \source" box to

the current program. The box is named for a table in the database and has a

single output edge. The parameters of many Tioga-2 operations can be speci�ed

in several ways; usually there is at least one textual and one graphical method.

For example, the user may specify the table to add to the program by either

typing the name or selecting it from a menu of available relations. Note that

Add Table is a special case of Apply Box with zero inputs.

ARestrict box �lters its input, retaining only tuples that satisfy a restriction

predicate. The user is prompted for the predicate to be applied. A Sample

box produces a random subset of an input relation on its output. Each input

is retained with a user-speci�ed probability. Sample is useful for improving

interactive response by reducing the size of data sets to be processed.

Operation Box Type E�ect

Add Table ; ! R Add the box producing a speci�ed relation as output.

Project R! R0 Standard database projection;

user is prompted for �elds.

Restrict R! R Filter a relation to tuples satisfying a predicate.

Sample R! R Randomly sample a relation.

Join R� R0 ! R00 Standard join of two relations;

user is prompted for join predicate.

Fig. 3. Operations on relations.

The result of applying these operations is to iteratively build up a boxes-

and-arrows program in the program window. We now turn to the visualization

of the result of such programs.

5 Rendering Operations

The previous section has indicated how a Tioga-2 program can be built to re-

trieve complex computations (relations) from the database. Now we must deal

with two additional questions:

{ How are tuples positioned on the canvas?

{ How are tuples rendered as screen pixels?

As discussed in Section 2, these questions are addressed by location attributes

specifying the position of tuples in n-space and display attributes that spec-

ify tuples' screen representations. This section describes location and display

attributes, default displays, and their associated operations.

5.1 Location and Display Attributes

Figure 4 shows a visualization of the Louisiana weather station data produced

by the diagram shown in Figure 1. Each station in the state is represented by

one tuple in the relation. The visualization shows a circle and the name of

each station at its (longitude, latitude) coordinate. To position representations

Fig. 4. A visualization of weather station locations.

of tuples on the screen, relations have location attributes. Every relation must

have x and y location attributes to specify the x and y dimensions of a 2-D

canvas; in Figure 4, the x dimension is longitude and the y dimension is latitude.

There may be additional location attributes, which specify slider dimensions. In

Figure 4, there is a slider dimension Altitude. By setting the range of altitude

values that are visible using the slider, the user can see any appropriate subset

of the stations. Location attributes are represented by
oating point numbers.

Tioga-2 requires that every relation have at least one display attribute. A

display attribute is a list of primitive drawable objects. Intuitively, a viewer

renders a tuple by simply painting each drawable in its display attribute on the

screen. In Figure 4, the display attribute is a list containing the text of the name

of the station and a circle. There may be additional display attributes to provide

alternative visualizations of the data.

The primitive drawables include: point, line, rectangle, circle, polygon, text,

and viewer. Each primitive drawable has an o�set, a color, and a style. The o�set

gives a position relative to the location attributes of the tuple; thus, multiple

drawables need not be stacked directly one atop the other. In Figure 4, the name

is positioned below the circle. Of the primitives listed above, all but viewers

are standard primitives for graphics hardware. Viewers are used to implement

wormholes (Section 6). The list of primitive drawables is preliminary and more

may be added in the future.

In Tioga-2, every relation is augmented with location and display attributes.

Actually computing the values of these attributes should be avoided except where

necessary. As discussed in Section 2, display and location attributes, along with

any other \extra" attributes, are speci�ed by functions of the base tuple.

5.2 Defaults

To guarantee that boxes produce relations with initial valid displays, Tioga-2

provides default location and display attributes. There is a default display for

each atomic type (i.e., each type of a column of a relation). The default display

for a relation renders each �eld in the tuple, side by side, using the default

display for each column type to produce a screen representation. The default

space has two dimensions: the x-location is 0 and the y-location is the sequence

number of the tuple. Typically, the default attributes de�ne a display consisting

of a sequence of tuples in ASCII. The major relational DBMS vendors all have

so-called terminal monitors, which produce a display of this form for the result

of any possible query.

Just as the user may incrementally modify the data management operations

to change the data to be visualized, so may the user incrementally modify the

location and display attributes of a relation to change the visualization. Ini-

tially, every Add Table operation introduces a box that produces a relation

with the default display and location. The user may then incrementally modify

the defaults, or replace them altogether, by adding boxes to the diagram or by

manipulating data on the canvas. In Figure 4, the default viewer of Figure 1 has

been changed by modifying location functions (to associate (longitude,latitude)

with (x; y) canvas coordinates) and the display function (changed to the combi-

nation of station name and a circle).

5.3 Operations

In the remainder of this section we discuss the operations for modifying location

and display attributes listed in Figure 5. Most of these operations apply to all

attributes, not just location or display attributes.

Operation Box Type E�ect

Add Attribute R! R0 Add an attribute to a relation;

user is prompted for de�nition.

Remove Attribute R! R0 Remove an attribute;

cannot remove attributes x, y, or display.

Set Attribute R! R0 Change the value of an existing attribute.

Swap Attributes R! R0 Interchange two attributes of the same type.

Scale Attribute R! R0 Multiply numerical attribute by a number.

Translate AttributeR! R0 Add a number to a numerical attribute.

Combine Displays R! R0 Combine two display attributes.

Fig. 5. Location and display operations.

The user may add new attributes, including new location and display at-

tributes. Adding a location attribute adds a new dimension to the visualization.

Adding a display attribute creates an alternative visualization of the data. Add

Attribute prompts for the type and de�nition of the new attribute; the de�ni-

tion may depend only on other attributes of the relation. Set Attribute changes

the type and de�nition of an existing attribute.

In both Add and Set Attribute, an attribute's de�nition may be given in

a general query language. However, the preferred method is to begin with a very

simple de�nition (e.g., a copy of another �eld, or a single primitive drawable)

and then re�ne it using the other operations.

Swap Attributes is handy for interchanging two dimensions (two location

attributes), thereby \rotating" the canvas, or interchanging the display attribute

with one of the alternative displays, thereby changing the visualization of the

data.

Scale and Translate Attribute are de�ned only for numeric �elds. These

operations are convenient shorthands for more complex Set Attribute com-

mands.Scale and Translate are useful for changing location attributes, thereby

scaling or translating dimensions of a visualization.

Combine Display is the mechanism for combining primitive drawables to

form more complex displays. The user positions the displays on top of one an-

other graphically to establish the relative position; alternatively, an explicit o�set

of one display to the other can be entered. The combined display becomes a new

display attribute. The user may combine any of the display attributes of the

relation. In Figure 4, a circle display has been combined with a text display

showing the name of the station.

6 Drill Down

Drill down allows users to see more details in data of interest. There are two

distinct, useful notions of drill down. The �rst provides a more re�ned view of

the same data in the same visualization space (e.g., switching from a state to a

Operation Box Type

Set Range R! R

Overlay Composite(R1; : : : ; Rn) �Composite(Rn+1; : : : ; Rm)!

Composite(R1; : : : ; Rm)

Shu�e Composite(R1; : : : ; Ri�1; Ri; Ri+1; : : :)!

Composite(Ri; R1; : : : ; Ri�1; Ri+1; : : :)

Fig. 6. Primitives for drill down.

county map). The second allows movement between one space and a di�erent,

but semantically related, space (e.g., after �nding a weather station, switch to

look at its temperature/precipitation data).

Two mechanisms provide drill down in Tioga-2. First, the user can specify

that additional detail about screen objects becomes available as the user zooms

in. Second, we have a notion of wormholes, by which a user can move from one

canvas to another canvas.

6.1 Additional Detail

The �rst formof drill down is de�ned as operations on relationsR and composites

C. There are three operations:

{ Set Range

This operation speci�es the maximum and minimum elevations at which a

relation's display is de�ned. Outside of this range, the relation contributes

nothing to the canvas.

{ Overlay

Two composites may be overlaid. The relative position of one overlay to an-

other may be given either by an explicit n-dimensional o�set, or by dragging

one canvas over the other. If the component displays are de�ned with di�er-

ent elevation ranges, then it is possible to program drill down by having the

displayable at the lower elevation provide a specialization of the displayable

at the higher elevation.

{ Shu�e

It may be desirable to change the drawing order of the relations within

a composite. The Shu�e command moves a relation to the \top" of the

drawing order.

Figure 7 illustrates overlay and setting ranges. Weather stations are now

shown together with a map of Louisiana; this is achieved by overlaying the map

(derived from a relation of lines de�ning the map) with the result of Figure 4. In

addition, a third display is overlaid to give less detail at higher elevations. This

display shows only a circle at the station's location. The programmer has set the

ranges of the two weather station displays so that station names disappear at

high elevations, where they would be illegible. The range of the Lousiana map

is all elevations (the default).

Fig. 7. Overlaid displays with restricted ranges.

There is a small di�culty with the overlay in Figure 7. The visualization of

the state map of Louisiana has no Altitude dimension, and such a dimension

makes no sense for a
at map. However, the composite has an Altitude slider;

how are changes in Altitude to be interpreted for the Louisiana map? If the user

attempts to overlay relations with di�erent dimensions, Tioga-2 warns about the

mismatch. If the user wishes, the underlying relations are treated as invariant

in the \extra" dimensions. This achieves the desired e�ect in Figure 7: the user

can change the Altitude slider to see di�erent subsets of the stations, but the

Louisiana map remains in place for reference.

The elevation map is a bar-chart display of the maximum/minimum eleva-

tions and drawing order of all elements of a composite on the current canvas (see

Figure 7). The elevation map can be manipulated directly by the user to adjust

the ranges and drawing order of overlaid relations. For a group displayable, a

viewer shows an elevation map for only one member of the group at a time. In

this case, the user can explicitly cycle through all of the elevation maps.

6.2 Wormholes

It is often desirable to associate objects in one visualization space directly with

objects in a di�erent visualization space. A wormhole is a viewer onto another

canvas, i.e., what is visible inside a wormhole is a point on another canvas

from some elevation. Figure 8 shows an example application of wormholes. Upon

zooming into an individual station s, a wormhole appears (achieved by a com-

bination of modifying display functions and overlaying and setting ranges) that

takes the user to a canvas displaying temperature data for each station as a

function of time. The user is initially positioned viewing the data for station s.

Providing wormholes is technically straightforward. Viewers are primitive

drawable objects; thus, Tioga-2 programs may produce displays containing view-

ers (wormholes). A viewer drawable requires several parameters, including the

size for the viewer, a destination canvas, the elevation from which the canvas

is viewed, and the initial location; the user de�nes these values as part of the

display attribute. As with any drawables, wormholes can be overlaid with other

drawables. In Figure 8, the axes labels are the result of overlaying text at an

o�set from the wormhole (for brevity, these boxes are not shown).

When a user zooms in on a wormhole and reaches zero elevation he passes

through the wormhole and moves from the original canvas to the destination

canvas. Needless to say, the user can pan and zoom on this second canvas, as

well as move to a third canvas. After changing canvases several times, there is a

de�nite possibility the user will get lost. For this reason, we introduce the notion

of a rear view mirror.

6.3 Rear View Mirrors

For each canvas, we introduce an additional window called a rear view mirror.

This window shows the \bottom side" of the canvas through which the user last

moved. Hence, immediately after going through a wormhole, the user is looking

down at a new canvas from some speci�c elevation and is at negative ground

level for the canvas he just left. As the user descends toward the new canvas, the

distance from the previous canvas increases. In Figure 9, the rear view mirror

shows that the user came through the wormhole at New Orleans in Figure 8.

Every Tioga-2 displayable has a minimum and maximum elevation. If both

are positive, then the viewer only shows objects on the top side of the canvas.

If the minimum and maximum elevations are both negative, then the viewer

places objects only on the underside of the canvas, and they are visible only in

Fig. 8. A visualization with wormholes.

the rear view mirror after the user proceeds through a wormhole. If the minimum

elevation is negative and the maximum is positive, then the objects can be seen

on both sides of the canvas. Thus, the programmer can create overlays in such a

way that the top side and the underside of the canvas both have meaning. One

is visible from above in the viewer window and one is visible from below in the

rear view mirror.

A natural use of the rear view mirror is to illuminate the wormholes back to

the canvas from which the user came to this canvas. In this way, the user can

\�nd the way home" if he is lost. As such, the rear view mirror is a generalization

of the notion of \back" in a hypertext system.

7 Additional Operations

This section discusses the remaining Tioga-2 features, with exception of updates

(Section 8) and a few user-interface features discussed in Section 9. Slaving con-

strains two viewers to move together. Magnifying glasses provide hierarchical

viewers (viewers within viewers). As discussed below, magnifying glasses are

quite di�erent from wormholes. Stitch and replicate produce group displays. Slav-

ing and magnifying glasses are operations on viewers, while stitch and replicate

are operations on displayables.

7.1 Slaving

Two viewers may be slaved together, in which case the system maintains the

relative o�set between the two viewers. When a viewer is deleted, all of its

slaving relationships are also deleted. Slaving is only de�ned for two viewers

with the same dimensions.

7.2 Magnifying Glasses

A user may create a magnifying glass by placing a viewer inside another viewer.

Typically, a user places a copy of the current viewer inside itself and then zooms

the inner viewer to magnify what is in the outer viewer. A magnifying glass must

have the same dimensions as its containing viewer. The inner and outer viewers

may be slaved; magnifying glasses may also be deleted.

A simple technique for correlating temperature and precipitation uses a mag-

nifying glass in Figure 9. The user begins with a temperature vs. time display.

The underlying relation that is being visualized has more information|in par-

ticular, the precipitation data|that is not being utilized. An alternative display

attribute shows precipitation vs. time (the boxes de�ning the precipitation dis-

play are not shown). By creating a magnifyingglass using this alternative display,

the user sees the precipitation data for points underneath the magnifying glass.

In Figure 9, the magnifying glass is realized by making the precipitation display

the display attribute (done by the Swap Attribute box) and then viewing the

result.

7.3 Stitch

Any number of composites can be stitched to form a group displayable. Groups

can be displayed side-by-side, arranged vertically, or laid out in a tabular fashion.

If the user performs a window operation on one of the group members, such as

moving the window on the screen or iconifying it, then the same operation is

performed on the other members. Zooming and panning is de�ned for each of

Fig. 9. Using a magnifying glass.

the constituent displays. That is, there is a separate focus for all components, as

well as separate x, y, slider, and zoom dimensions. Components may be slaved.

In Figure 10, a display showing temperature vs. time is stitched to a dis-

play showing precipitation vs. time. The precipitation display is slaved to the

temperature display, so that whenever the user changes the date range under

temperature, the precipitation display changes to display the same date range.

Fig. 10. An example of stitched viewers.

7.4 Replicate

A relation can be replicated by specifying a partition. Replicated displays for

each partition are stitched together into a group. The user must specify the area

to be given to each display and the initial point of focus.

The partitioning predicate is speci�ed by giving a collection of predicates in

the underlying query language or an enumerated type. For example, the spec-

i�cation may be that replication is tabular, with predicates salary � 5000

and salary > 5000 in the horizontal dimension and the enumerated type

department in the vertical dimension.

In Figure 11, a viewer showing temperature vs. time and precipitation vs.

time has been replicated to show records for years prior to 1990 and after 1990

separately. This example motivates the need for operator overloading discussed

in Section 2. Because Replicate partitions a relation, it takes an R as input

and produces multiple R's as output. However, in this example the display is a

G type (a group of two displays). Thus, before the replication can be performed,

the user must specify the relation. When the user selects Replicate, the system

prompts the user for the group component on which the replication is to be done.

8 Updates in Tioga-2

Tioga-2 is oriented toward browsing a database. As such, we expect users to

wander around a canvas and possibly notice things they wish to update. For

example, the quantity on hand of speci�c items could appear on a canvas. The

user would �nd an item of interest and then wish to order a certain number of the

item, thereby decreasing the quantity on hand. The user could also notice data

errors and simply wish to �x them. As a result, we focus on providing an update

capability that allows speci�c screen objects to be updated in the database. We

do not consider general SQL update statements in Tioga-2.

For each primitive type, the type de�ner is required to implement a default

display function that is used by Tioga-2 to render tuples containing this type.

Similarly, we require the type de�ner to write a second update function that

enables Tioga-2 to provide updates for instances of the type that appear on

the screen. When a user clicks on a screen object, the Tioga-2 run time system

activates a generic update procedure, passing it the tuple corresponding to the

screen object. The function engages a dialog with the user to construct a new

tuple|using the primitive update functions for the �elds|and then perform

an SQL update to install the new value in the database. This machinery is all

encapsulated within the update function itself.

When the user customizes a visualization, he can replace the default update

commandwith one of his own choosing, if he so desires. In this way, he can make

an update system with a desired \look and feel".

9 Implementation

In this section we discuss brie
y how the design is evolving to address issues

encountered during implementation. The changes described here result from ob-

servations about how users progressively render data in a multi-dimensional

space. The changes include a paint program window to provide more intuitive

rendering and two new object types for displaying objects that are not associated

with database data.

The current implementation of Tioga-2 is being developed on DEC Alpha

workstations using Postgres95 for the database engine, Tcl/Tk for the boxes-

and-arrows editor, and OpenGL for the 3D graphic visualization.

Fig. 11. A replicated viewer.

9.1 Overall Design

Tioga-2 is currently being constructed as four major modules:

{ a boxes-and-arrows editor for data programming (Section 4),

{ a new paint program window for rendering display attributes and specifying

wormholes (Sections 5 and 6.2),

{ a composite and group editor for additional operations (Section 7),

{ and a menu bar.

The boxes-and-arrows editor is very similar to the one reported in [12] and is

not discussed here. The paint program implementation is largely complete, with

the exception of wormholes, and is described in Sections 9.2{9.5. The composite

and group editor is not yet implemented and is not discussed.

9.2 The Paint Program

To make rendering intuitive for the user of Tioga-2, an interface similar to those

in paint programs has been constructed. This window has a palette of displayable

primitive objects (point, line, rectangle, circle, polygon, and text) on the left

side of the screen.2 Like conventional paint programs, a displayable primitive is

rendered by selecting that primitive from the paint palette and then placing it

in the canvas window.

The paint program includes a window that shows tuples from the visualized

relation in the default format, constructed by converting all objects to a tex-

tual representation. Postgres95 requires such a function for every valid type and

Tioga-2 simply uses it. Note that this display is in addition to any visualization

the user constructs; thus, the Tioga-2 programmer can see both the visualization

and attribute values of sample tuples simultaneously. Access to the actual data

being visualized helps users quickly interpret unexpected results of incremental

changes to a visualization. For example, suppose that weather station data is vi-

sualized using a rectangle whose height is set to an attribute representing average

annual rainfall. If the relation is �ltered to include only stations in the world's

driest areas, then the height of each rectangle may be zero. Upon noticing that

all displayed rectangles are, in fact, lines, the Tioga-2 programmer instantly can

check the attribute values in the tuple window to con�rm that the corresponding

attribute values indeed produce this result.

9.3 Displayable Objects

The paint program can also draw displayables that are not associated with any

tuple. These displayables are useful for \trim" such as borders, titles, company

logos, etc. Semantically, these displayables are objects associated with an overlay.

We introduce two such types of objects: static and sticky (a term borrowed from

the Pad project [8]).

An example static object is a scale for the (x; y) dimensions with tick marks

on the axes. These objects are static because they have constant position in the

(x; y) dimensions. Panning and zooming of a static object has the same visual

e�ect as panning and zooming in the rendered data.

An example sticky object is a window title. The object sticks to a particular

position in the window and does not have an (x; y) position. As such, panning

has no e�ect on a sticky object. Zooming on a sticky object produces a screen

representation so long as the sticky object's overlay is visible at a particular

viewing elevation.

2 Thus, the appearance of the current interface has evolved to look somewhat di�erent

from the screenshots shown in this paper.

9.4 Dimensia Disorientation

Early in our implementation e�orts we noticed an unanticipated problem: certain

operations could leave the Tioga-2 user suddenly visualizing a region with no

data in it, resulting in a blank screen. The most important case arises when the

user changes the dimensions of the visualization space. For example, suppose

that employee tuples are being viewed and the �elds are salary, name and age.

Further suppose that the tuple (10000; john; 18) appears on the screen and that

the x dimension is set to the salary attribute (i.e., the x location of the

viewer is approximately 10,000). Now suppose that the programmer changes the

x dimension to age. In all likelihood the tuple disappears from the viewer|in

fact, all data disappears from the viewer|and the Tioga-2 programmer su�ers

from dimensia disorientation.

To allow the user to keep the focus of a visualization in an area of inter-

est when performing dimension operations, we have added sticky tuple mode to

Tioga-2. This mode ensures that a particular tuple remains on the screen when

the dimensions of the visualization space are altered.

9.5 Painting Displayables

A Tioga-2 visualization of a relation is the sum of the visualizations of each tuple

of the relation. Each time the programmer modi�es the display it is potentially

necessary to recalculate the visualization of each tuple of the relation. This

is especially expensive when the user is actively modifying the visualization

instead of simply browsing|in this case the underlying relation and the desired

visualization may both change.

To make visual programming as interactive as possible, we have added one

tuple mode, a restriction of sticky tuple mode. In this mode, only the single sticky

tuple appears on the screen and, therefore, the screen can be painted without

access to the database. The user edits the visualization of the single example

tuple to his liking and then switches to viewing the entire relation to con�rm

that the visualization is as desired.

The sticky tuple is speci�ed by the programmer by selecting an example tuple

in the default data window and then clicking on a One Tuple Mode button in

the paint program.

10 Future Work

Tioga-2 raises several interesting issues that we plan to address in future work.

A few of these problems are discussed brie
y in this section.

10.1 Caching Data vs. Caching Graphics

Tioga-2 is designed for visualizing large databases, and thus not all data can

be held in memory at any one time. For this reason, and because browsing has

locality (i.e., panning and zooming move to nearby points in the viewing space),

caching both the database data that is being graphically represented as well

as the actual graphical representation appears to be bene�cial. However, given

that there is limited space available for all caches, any space used for caching

data is not available for caching graphics and vice versa. This is not a trivial

optimization problem because the graphical representation is typically much

larger than the data representation. As a result the graphical coverage will likely

be much smaller than the data coverage; on the other hand, fast response time to

panning operations is only possible with a graphical cache. We expect to explore

these multi-cache issues in detail.

10.2 Sampling

When programming a visualization from a very large data base, it may be desir-

able to construct a visualization for a random sample of the data. In this way, the

programmer can move from initial rendering to a �nal product on a small data

set. Only when he is satis�ed with the result should he move to execution on

the complete data set. Hence, a possible extension (or alternative) to Tioga-2's

\one tuple mode" is the seamless integration of random sampling.

10.3 Clutter

In many cases data is very non-uniform when placed on the canvas. For example,

if the population of the United States is rendered at the (x; y) co-ordinates of

citizen's home address, then the spacing appropriate in Montana yields incredible

clutter in New York City. Conversely, a spacing appropriate in New York City

places people much too far apart in Montana. We plan to search for solutions to

the problem of intelligently displaying non-uniform or \cluttered" data.

10.4 Foreign Systems

It is possible that a Tioga-2 application would entail some browsing of a can-

vas, along with the display of reports, spreadsheets, and forms. How Tioga-2

should interact with other subsystems, such as spreadsheets, is a topic for future

investigation.

11 Related Work

While developing browsers for exploring data is a relatively new research area,

the literature is already substantial. This section surveys a cross-section of re-

lated work.

As discussed in Section 1, Tioga-2 retains the boxes-and-arrows notation for

programs originally developed for data
ow languages and popularized for vi-

sualization by AVS [13], Data Explorer [7], and Khoros [9]. These systems are

similar to Tioga in their reliance on simplifying programming by using data
ow

graphs. Thus, these systems share Tioga's basic problem that boxes-and-arrows

notation alone does not simplify programming su�ciently for novice program-

mers (see Section 1.1). Weaves is another boxes-and-arrows system [3]. Weaves

are intended to support visual programming, so the boxes-and-arrows program is

itself the only visualization of interest. An extension of weaves supports limited

drill down [5].

Many browsing systems are based on a \paradigm". A classic example is

the Fisheye interface, which magni�es data in the center of focus to a greater

degree than data at the periphery [10]. Another example is Magic Lenses, which

provides a set of primitive lenses (windows akin to our magnifying glasses) that

can be placed over data and over each other to modify a visualization [1]. While

we �nd paradigms appealing, we suspect a
aw in the assumption that the space

of possible visualizations can or must be greatly restricted in advance.3 In our

experience, paradigms serve a class of users well and frustrate users with other

applications. To be generally useful|as Tioga-2 aims to be|it is important

that users be able to construct arbitrary ad hoc visualizations of their own, even

inventing their own paradigms if necessary. In short, visualizations should be as

programmable as possible.

A di�erent approach has been taken by the ambitious Pad project [8]. In

Pad, all data lives on a two-dimensional plane. As in our system, every entity (an

object in Pad, a tuple in Tioga-2) has a position and \knows" how to draw itself.

Pad also provides facilities for overlay and drill down that are in some ways richer

than the facilities in Tioga-2. Pad allows a very large class of visualizations to

be built. However, Pad is not end-user programmable; it is designed as a toolkit

for expert programmers and provides a traditional programming interface.

Within the area of browsers for databases, the work of Krishnamurthy and

Zloof on Rendering By Example (RBE) is closest to our own. In particular, RBE

shares our view on the importance of a system that is both highly programmable

and easy to program [6]. RBE provides a more declarative programming interface

than Tioga-2, but RBE can construct a much less general class of visualizations.

Finally, a database-centric visualization system raises the issue of how brows-

ing queries are implemented with tolerable performance. This question is beyond

the scope of this paper; the interested reader is referred to [2] for related work

on the optimization and e�cient implementation of browsing queries.

12 Conclusions

We are now hard at work implementing Tioga-2. An initial version of the system

is functional, and we expect to have a complete prototype by summer 1996. We

plan to systematically test the implementation on little programmers to ascertain

whether it lives up to its goals.

3 In fairness, Magic Lenses is not intended strictly as a browsing paradigm, but as a

general user interface paradigm.

References

1. E. Bier, M. Stone, K. Pier, W. Buxton, and T. DeRose. Toolglass and magic

lenses: The see-through interface. In Proc. of SIGGRAPH 1993, pages 73{80,
Anaheim, CA, August 1993.

2. J. Chen. Optimizing interactive browsing queries. Unpublished manuscript, Uni-

versity of California, Berkeley, June 1995.
3. P. Cox, M. Gorlick, and R. Razouk. Using weaves for software construction and

analysis. In Proc. of the 13th International Conference on Software Engineering,

pages 23{34, Austin, TX, May 1991.
4. Allen Cypher. Watch What I Do: Programming by Demonstration. MIT Press,

Cambridge, MA, 1993.

5. M. Gorlick and A. Quilici. Visual programming-in-the-large versus visual
programming-in-the-small. In Proc. of the IEEE Symposium on Visual Languages,

pages 137{144, St. Louis, MO, October 1994.

6. R. Krishnamurthy and M. Zloof. RBE: Rendering by example. In Proc. of the 11th
International Conference on Data Engineeering, pages 288{297, Taipei, Taiwan,

March 1995.

7. B. Lucas, G.D. Abram, N.S. Collins, D.A. Epstein, et al. An architecture for a
scienti�c visualization system. In Proc. of the IEEE Visualization Conference,

pages 107{114, Boston, MA, October 1992.

8. K. Perlin and D. Fox. Pad: An alternative approach to the computer interface. In
Proc. of SIGGRAPH, pages 57{64, Anaheim, CA, August 1993.

9. J. Rasure and M. Young. An open environment for image processing software

development. In Proc. of the SPIE Symposium on Electronic Image Processing,
pages 300{310, San Jose, CA, February 1992.

10. M. Sarkar and M.H. Brown. Graphical �sheye views. Communications of the

ACM, pages 73{84, December 1994.
11. M. Stonebraker, R. Agrawal, U. Dayal, E. Neuhold, and A. Reuter. DBMS re-

search at a crossroads: The Vienna update. In Proc. of the 19th International

Conference on Very Large Data Bases, pages 688{692, Dublin, Ireland, August
1993.

12. M. Stonebraker, J. Chen, N. Nathan, C. Paxson, and J. Wu. Tioga: Providing

data management support for scienti�c visualization applications. In Proc. of the

19th International Conference on Very Large Data Bases, pages 25{38, Dublin,

Ireland, August 1993.

13. C. Upson et al. The application visualization system. IEEE Computer Graphics

and Applications, 9(4):30{42, July 1989.

14. A. Woodru�, P. Wisnovsky, C. Taylor, M. Stonebraker, C. Paxson, J. Chen, and

A. Aiken. Zooming and tunneling in Tioga: Supporting navigation in multidi-
mensional space. In Proc. of the IEEE Symposium on Visual Languages, pages

191{193, St. Louis, MO, October 1994.

This article was processed using the LaTEX macro package with LLNCS style

