
1

VIQING: Visual Interactive QueryING

Chris Olston, Michael Stonebraker, Alexander Aiken, Joseph M. Hellerstein
{cao, mike, aiken, jmh}@cs.berkeley.edu

Department of Electrical Engineering and Computer Sciences
University of California at Berkeley

Abstract

This paper presents VIQING, an environment for
expressing queries via direct manipulation of data
visualizations. VIQING provides a simple graphical
interface for connecting visualizations, and has the
expressive power of the basic relational operators select,
project and join. VIQING has been implemented in the
Tioga DataSplash visualization system to provide a
seamless integration of querying and browsing. The
resulting system is unique in providing a unified visual
interface for developing database applications,
encompassing both querying and data visualization.

Key Words: database visualization, graphical query
languages, direct-manipulation interfaces

1. Introduction

Database systems are hard to use. Untrained
users often find query interfaces frustrating and even
trained database users frequently have difficulty analyzing
the results of queries. Despite over 25 years of research in
this area, these problems persist today.

The goal of the Tioga project [14] has been to
address these problems by designing a simple graphical
interface for querying a database and visually browsing
the results of queries. The initial Tioga design (Tioga-1
[13]) used a "boxes-and-arrows" paradigm for
constructing queries, and provided minimal support for
developing visualizations of query results. A revised
design (Tioga-2 [1], implemented as the Tioga DataSplash
system [9]) discarded the boxes-and-arrows paradigm
(which was difficult to use), and focused on direct-
manipulation mechanisms for constructing and browsing
custom visualizations of query results. Users have found
that while DataSplash is very effective for the
interpretation of query results, it provides essentially no

support for query specification in its current
implementation.

This paper presents a technique called VIQING
(Visual Interactive QueryING) which extends DataSplash
with a visual, interactive interface for query specification.
VIQING differs from previous graphical query tools in
that it supports a "direct-manipulation" approach to
querying: users construct queries by manipulating visual
representations of entire data sets, as opposed to
representations of schemas or example records. The
combination of VIQING with the DataSplash architecture
results in a seamless and, we believe, intuitive system in
which querying and data browsing are unified into a single
metaphor: the direct manipulation of data visualizations.

1.1. Related Work

The goal of developing simple easy-to-use
relational query tools is an old one -- interesting work
goes back as far as the 1970’s [7,18], and is embodied in
modern products like Microsoft Access [8]. Tools for
developing data presentations form a more recent body of
research (e.g. Pad [10] and DEVise [6], as well as so-
called 4GLs and report writers). Outside of the relational
environment, tools like Khoros [11] and AVS [16] have
been developed to construct data manipulations roughly
analogous to queries; visualization concepts like Magic
Lenses [4,5] have been developed for viewing data.

To put VIQING and DataSplash into perspective
with previous work, it is useful to consider the matrix in
Figure 1, which categorizes a variety of ostensibly visual
tools for data analysis.

In the lower left cell we list systems that require
traditional textual specification (e.g. SQL) for composing
queries; the cell above it lists systems that provide visual
query interfaces. In the bottom of the center column, we
list systems that require traditional programming (e.g.
C++ and the MS Windows API) to construct data
visualizations; the upper center contains systems that
simplify this chore to varying extents.

2

Note that Tioga-1, AVS, Khoros, MS-Access,
and DEVise contain visual components for both querying
and visualization. However, in each of these examples the
visualization and query components operate under two
distinct metaphors. That is, there are two separate
graphical conceptions for querying and visualization, and
users must learn both and switch between them to design
an application. This complexity makes these systems
difficult to use for interactive querying and visualization.

The rightmost column in the matrix represents
systems that unify querying and visualization into a single
metaphor. The widget libraries available for
programming languages do this in the textual domain, but
the overhead of programming queries and visualizations
in a language like C++ is prohibitive. To our knowledge,
the VIQING/DataSplash environment is the first example
of a system in which querying and browsing are combined
in a seamless manner.

In Section 2, we describe the DataSplash
environment. Section 3 details the VIQING paradigm. In
Section 4, we present a direct-manipulation interface for
creating and modifying visual queries. Section 5
describes how VIQING generalizes other paradigms.
Status and future work is discussed in Section 6. We
conclude in Section 7.

2. DataSplash Background

The DataSplash system provides a direct-
manipulation interface for database visualization. Using a
simple paint program interface, users create graphical
objects on a 2-dimensional canvas. Each canvas is
associated with a database table. Users can create splash
objects, which are replicated for each tuple (record) in the
table (i.e., one instance of the object is drawn for each
tuple). Graphical properties of a splash object, such as its
location on the canvas, shape and color, can be functions
of attributes of the underlying tuple. Thus, splash objects
are graphical representations of database tuples.
DataSplash supports ad-hoc visualization of arbitrary data
fields, making it useful for spatial and non-spatial data.

Figure 2 shows a sample DataSplash
visualization of a table of states. Each state is an instance
of a splash object. Each state tuple is mapped to a
location on the canvas according to its geographical

position. The shape and color of each state is determined
by table attributes.

Once a user has created a collection of canvases,
s/he can create portals to visually link them. A portal is a
sub-area within one canvas (the parent canvas) that
contains a second canvas (the child canvas). To illustrate
the concept of portals, we ask that you skip ahead
momentarily to Figure 4, which shows a canvas that
contains four portals. Portals serve two purposes. First,
they display the child canvas within the parent canvas,
allowing for nested visualizations. Second, portals can be
used to navigate between DataSplash canvases in the same
way that hyperlinks are used to go between World-Wide-
Web pages. DataSplash displays an outermost canvas,
which may contain portals. Users click on a portal to “go
through” it. At that point, the child canvas inside the
portal becomes the outermost canvas. A history
mechanism allows users to return to the parent canvas. As
is the case for all DataSplash objects, portals can be
replicated per tuple; such portals are called splash
portals.

DataSplash canvases are infinitely pannable in
the X and Y dimensions. In addition, canvases can be
zoomed in and out to adjust the level of magnification.
Thus, arbitrarily large data sets can be represented, and
different portions can be accessed via panning and
zooming. The same applies to portals, because child
canvases can be panned and zoomed independently from
their parent canvases.

DataSplash provides no explicit query
composition capabilities. However, projections are
supported implicitly in the DataSplash environment. If
graphical properties of splash objects only reflect certain
table attributes, then the table is effectively projected onto
only those attributes in the visualization.

3. The VIQING Paradigm

In this section, we describe how VIQING
extends DataSplash by providing a query manipulation
paradigm. In our initial discussion we focus on the way
that DataSplash presents the results of queries. We defer
discussion of how VIQING queries are actually specified
until Section 4. For the remainder of this paper, we refer
to VIQING queries as “visual queries.”

Visual
Programming

QBE, Cupid, Tioga-1, AVS,
Khoros, Access, DEVise

4GLs, Tioga-1, AVS, Khoros, Access,
DEVise, Magic Lenses

DataSplash/VIQING

Traditional
Programming

4GLs, Magic Lenses QBE, Cupid PLs + widget libraries

Query Component Visualization Component Unified Query/Visualization

Figure 1. Categorization of visual programming tools for databases.

3

3.1. Visual Selections

A visual selection query is represented as a portal
that performs a selection on the graphical tuples in the
child canvas. Thus, a canvas viewed through a selection
portal contains a subset of its tuples. This functionality
serves two purposes. First, it allows the user to eliminate
uninteresting tuples from a canvas, thus reducing data
density and isolating data of interest to the user interested.
Second, it allows the user to explore trends that occur in
specific subsets of the data.

Figure 2 shows a visualization of U.S. states
colored according to the party a state has voted for most
often in presidential elections between 1952 and 1992.
The dark colored states favored the Republican Party
while the light colored states favored the Democratic
Party. Figure 3 shows the same visualization, but with
only the states that voted Democratic in 1992 selected.
This reveals that all the states that favored the Democratic
Party from 1952 to 1992 voted Democratic in 1992. In
addition, we see that many states that traditionally vote
Republican voted Democratic in 1992.

The following database schema is used:

states (sname, shape, latitude,
longitude, favored_party)

parties (party_abrev, party_name)
candidates (cname, party, year,

won_or_lost)
votes (year, sname, party)

The state table contains each state’s name (sname), shape,
latitude and longitude, and the party it has voted for most
often in recent elections (favored_party). The parties
table contains the abbreviations (party_abrev) and names
of each party. The candidates table contains each
candidate’s name (cname) and party affiliation, along with
his year of candidacy and whether he won or lost
(won_or_lost). Finally, the votes table contains one tuple
for each vote cast for a party in each year by each state
(sname). For the purpose of illustration we define a view
called state_votes that contains states joined with votes
with the join predicate votes.sname =
states.sname. Section 4 presents a direct-

manipulation operation that can be used to generate the
state_votes view.

To support visual selections, we associate a
selection filter with portals. The selection filter limits
which tuples of the child canvas appear inside the portal.
The SQL query that retrieves these tuples has the form:

SELECT *
 FROM <child table>
 WHERE <filter>

The selection filter used in Figure 3 to display only those
states that voted Democratic in 1992 was:

state_votes.year = 92 AND
state_votes.party = ‘D’

In Section 4 we present a visual technique for specifying
these filters

3.2. Visual Joins

Splash portals can be used to visually join two
DataSplash canvases. A database join combines
information from two tables by correlating tuples in one
table with tuples in the other. Similarly, a visual join
correlates graphical representations of tuples.

Figure 4 shows a visual join. By joining a parent
table of presidential candidates with a child table of states,
we have replicated the visualization of Figure 3 for the
candidates in election years between 1952 and 1992.
Each candidate has a portal instance that contains the
states that voted for him. (The other candidates can be
seen by zooming out or panning to the left or right.) The
layout of the candidates canvas is as follows. The X-axis
represents the election year and Y-axis represents the
result of the election – the winner of each election is on
top.

A join parameter specifies the relationship
between the parent and child tables. In a visual join, it
determines which child tuples relate to each parent tuple.
The join parameter used in Figure 4 is:

State_votes.year = candidates.year
AND state_votes.party =
candidates.party

Figure 2. A basic DataSplash visualization. Figure 3. A visual selection.

4

In this case, the relationship is that states vote for
candidates.

A visual join portal is a visual selection portal
that is replicated for each tuple of the parent canvas (i.e. a
splash portal). Each instance of the splash portal has a
different selection filter. Each selection filter must
retrieve the child tuples that relate (via the join parameter)
to the parent tuple. We determine the selection filter for
each parent tuple by “plugging in” data from the parent
tuple into the join parameter. This results in an SQL
query of the form:

SELECT <child>.*
 FROM <child>, <parent>
 WHERE <join parameter>
 AND <parent>.<primary key>
 = ___________

We submit this query once for each parent tuple to
retrieve the contents of its portal instance. Each time, we
replace the blank with the parent tuple’s primary key (a
set of attributes that uniquely identifies a tuple). 1

For the lower left portal instance in Figure 4, we
plugged “Dukakis ‘88” into the selection filter. The SQL
query to retrieve the child tuples (states) for that portal
instance is:

SELECT state_votes.*
 FROM states_votes, candidates
 WHERE (state_votes.year =
 candidates.year
 AND state_votes.party =
 candidates.party)
 AND (candidates.name = ‘Dukakis’
 AND candidates.year = 1988)

Recall that the child canvas is a view that contains states
joined with votes. If such a view did not exist, it could be
composed as we describe in Section 4.

Visualizing a join in this manner offers several
benefits over simply visualizing a single canvas
representing the entire join space. First, a visual join joins
two existing canvases by simply adding a portal between
them. On the other hand, specifying the join separately
and visualizing the result on a single canvas would require
creating a new visualization from scratch. Second,
because a visual join contains several nested canvases,
more attributes can be represented than on a single flat
canvas. This is due to the fact that each canvas has a
limited number of graphical attributes (i.e.: x, y, shape,
color, etc.).

Joins of more than two tables are common and
can be represented with visual joins. By joining the child

1 Note that this is a naïve algorithm presented for illustrative purposes.
Our implementation only submits one join query, with the join order
determined by the DBMS.

or parent canvas of a visual join with a third canvas, we
can create a three-table visual join.

4. Specifying Visual Queries

In this section, we present a direct-manipulation
interface for creating and modifying VIQING queries.
Then we discuss how users specify join predicates.

4.1. User Interface

We now introduce a direct-manipulation
interface for specifying VIQING queries. We present
three operations which provide extensive functionality for
creating and modifying visual queries: visual select, visual
join, and reorder.

4.1.1 Visual Selection. First, we describe the visual
select operation. While using the visual selection tool,
“rubber-banding” an area of the canvas creates a selection
portal. The selection filter of the new portal is a range
selection on the x and y attributes. The endpoints of this
range are defined by the rubber band. Selections can be

Figure 4. A visual join.

Figure 5. The visual select operation.

5

performed on any two attributes because users can change
the x and y attributes via simple pull-down menus. In
addition, zooming allows users to rubber-band a range of
any size. Once the portal has been generated, it can be
easily transferred to another canvas using the cut and
paste features provided by DataSplash.

Figure 5 shows the immediate result of a visual
selection on candidates who ran for office in the 1960’s.
The selection portal can now be used to visually join
another canvas with just the 1960’s candidates. The
selection filter associated with the selection portal is:

Candidates.year > 1958 AND
candidates.year < 1970

As another example, consider specifying the
visual selection described in Section 3 (Figure 3). To do
so, we first change the x attribute to the party voted for in
1992. This results in a visualization with states that voted
Democratic on the left and states that voted Republican on
the right. Then, we rubber-band the states that voted
Democratic. This generates a selection portal containing
only those states. Then, we enter the portal (to make it the
outermost canvas). Finally, we change the x and y
attributes back to longitude and latitude, respectively.

4.1.2 Visual Join. We now introduce a drag and drop
interface for creating join portals. Consider dragging a
canvas S over another canvas R, and dropping S into R.
This results in a modified version of canvas R, containing
a join portal over canvas S. Note that canvases R and S
could be portals themselves. Once a join predicate has

been determined,2 the join parameter of the new join
portal becomes the conjunction of the join predicate with
the selection filter of canvas S. Thus, if canvas S
performs a selection, then the new join portal only joins
with the selected canvas S tuples.

2 We discuss how join predicates are inferred or specified in Section
4.2.

Figure 7. The result of the visual join operation.

Figure 6. The visual join operation.

6

Figure 6 illustrates the visual join operation.
(The dashed line represents the position of the dragged
canvas when it is dropped.) Picking up the 1960’s
candidates canvas and dropping it into a canvas which
visualizes political parties results in the three-level visual
join shown in Figure 7. We now have information about
the party affiliation of the candidates. In addition, we can
see the election result trends for each party over time.
Recall that the winning candidate for each election year is
on top. The join parameter for the portal in the parties
canvas containing to the candidates canvas is

candidates.party =
parties.party_abrev.

4.1.3 Visual Reordering. In VIQING, joins of more than
two canvases have an ordering associated with them. If
canvas R joins with canvas S which in turn joins with
canvas T, then canvas R is the outermost canvas, canvas S
is in the middle, and canvas T is the innermost canvas in
the join hierarchy. This ordering affects important nesting
properties of the VIQING query. We introduce a reorder
operation, which permits the user to alter the ordering of a
VIQING query once it has been constructed. If the user
drags and drops a portal onto a tuple of its child canvas,
the relative ordering of the parent and child canvases is
reversed.

Figure 8 illustrates the reorder operation on the
three-level visual join from parties to candidates to states.
In this example, an arbitrarily chosen candidate portal
(Kennedy ‘60) is being dropped on an arbitrary tuple of
its child states (Minnesota), as illustrated by the dashed
line. Figure 9 shows the resulting visualization in which

the new ordering is <parties, states, candidates>. States
are now joined with their traditionally favored parties. As
before, the candidates are arranged by year on the X-axis
and the victors on top. From this new ordering, we can
see that Georgia, a state that has generally favored
Democrats, was one of the few states that voted for
Goldwater, the Republican candidate in 1964.

Note that reordering in this context has direct
effect on the visualization, but no effect on the query
specification itself. In particular, this implies that the
reordering of the tables in the visualization has no effect
on query optimization or performance.

4.1.4 Discussion. We believe that VIQING queries are
easier to formulate than SQL for several reasons. First,
users do not have to know exactly what they want in
advance because VIQING lets them incrementally build
and refine queries. At each step, the user gets useful
feedback that guides the next query manipulation action.
In this way, complex queries can be built by combining
simpler query pieces. Second, VIQING integrates
querying with visualization. Query manipulations are
performed on graphical representations of data that are
generally easier to understand than text representations.
Finally, VIQING eliminates the need to learn any SQL for
most query formulation by providing a simple direct-
manipulation interface. The drag and drop visual join
operation requires no understanding of SQL or the
database schema to formulate most queries. Figure 10
presents a summary of VIQING support for the base
relational operations.

Figure 9. The result of the reorder operation.Figure 8. The reorder operation.

7

4.2. Join Predicates

We now address the manner in which join
predicates are specified. In most cases, two tables join via
a single equality predicate. The system can infer the join
predicate by inspecting the key/foreign key associations
between the tables. Alternatively, the user can manually
specify a more general join (i.e., a range join). We could
implement a tool like the one provided by MS Access [8]
to make manual specification of the join predicate more
natural.

Often, two tables join via an intermediate table.
The intermediate table may not be interesting to visualize.
For example, the candidates table joins with the states
table via the votes table. The visualization in Figure 4 has
candidates joining directly with states, bypassing a votes
canvas. Since this is a common case, we introduce a new
operation to allow the user to eliminate an intermediate
canvas from a visual join. To perform the remove
intermediate operation, the user simply clicks on the
intermediate canvas’ handle (black rectangle in the upper
left corner) while in remove intermediate mode. Use of
this operation eliminates the need to create the state_votes
view in advance.

5. Generalizing Other Work

We believe that VIQING is easy to use, and
provides a powerful metaphor for presenting relational
queries. To illustrate the latter point, this section
describes how VIQING generalizes some commonly-used
data presentation metaphors. Space constraints prevent us
from illustrating these points with detailed examples,
though such examples are quite easy to construct.

VIQING generalizes the functionality of nested
report writers. Each level of nesting of a nested report is
represented as a canvas. A join portal connects each
category with a set of sub-categories represented in
another canvas. The drill-down operation is performed by
entering an instance of the join portal. Roll-up is
performed by going back in the portal history to a higher
level in the nesting hierarchy.

Master/detail forms [12] are generalized in the
same way. A parent canvas of a VIQING join represents
the master and the child canvas represents the detail.
Users navigate between master and detail forms via

portals. Data-entry with master/detail forms could be
supported by extending DataSplash to allow users to
update the underlying data by manipulating its graphical
representation.

VIQING can be used without modification to
create small multiple [15] visualizations. These
visualizations consist of several views of the same data,
indexed by changes in a separate data element. In
VIQING, this is essentially a visual join of the original
data and a table of groups. To generate such a small
multiple visualization using VIQING queries, we first
create a data canvas, which graphs all the data. This data
set should contain an attribute or set of attributes that will
be used to group the data into the desired “small
multiples.” Then, we create a group canvas, which
visualizes the set of all groups; this can be done with a
visual selection on the grouping attributes. Finally, we
create a VIQING join portal in the group canvas that
contains the data canvas with an equality predicate on the
grouping attributes. The result is that each instance of the
join portal contains the data for its group.

Using VIQING to create small multiple
visualizations generalizes the functionality of the
CrossGraphs [3] commercial system for graph replication.
While CrossGraphs supports many built-in visualization
types, DataSplash with VIQING supports ad-hoc
visualizations without programming.

6. Status and Future Work

An implementation of VIQING as an extension
to DataSplash is complete. The resulting system is a
unified direct-manipulation interface that combines query
specification and data visualization. To our knowledge
this is the only system that provides a single high-level
metaphor for both of these operations. We believe that
the result is natural and easy to use. However, we feel
that several improvements could be made.

First, in terms of expressibility, VIQING
currently supports only selection, projection and join; it
does not support aggregates or nested subqueries.
Extending VIQING to support a larger class of queries
could be beneficial. In addition, a direct-manipulation
method for performing visual selections on graphical
attributes other than x and y would improve functionality.

Second, the current implementation of VIQING
lacks an automatic way to expose important meta-data

Figure 10. Summary of how VIQING supports the base relational operations.

Relational Operation Equivalent VIQING Operation
Projection Simply assigning a graphical representation to the desired attributes.
Selection Rubber-banding a set of tuples.
Join Dragging and dropping one canvas into another to create a set of splash portals.

8

(e.g., the database schema) to the user. Meta-data would
help users understand the meaning of a visual query.

Finally, direct-manipulation querying relies on an
effective and efficient system for visualizing large data
sets. The techniques of this paper are largely orthogonal to
the techniques for visualizing large amounts of data, but
the latter set of techniques are a subject of active research
in our group [2,17]. As the technology for visualizing
massive data sets matures, we intend to integrate VIQING
with it.

7. Conclusions

We have introduced VIQING, a direct-
manipulation replacement for the query component of the
Tioga boxes-and-arrows environment. By combining
querying with visualization, VIQING simplifies and
generalizes nested reports and master/detail relationships.
VIQING can also be used to generate small multiple
visualizations. This generalizes the functionality of
CrossGraphs.

The VIQING/DataSplash environment supports
the three commonly-used relational operators. Projections
can be performed in DataSplash simply by not mapping
certain attributes to graphical representations. VIQING
supports selections via the rubber-band visual selection
operation. Joins are specified visually by dragging and
dropping canvases to form join portals.

We discussed VIQING as an extension to
DataSplash, but VIQING could also be implemented on
other database visualization systems that have portals and
a direct-manipulation interface such as Pad.

Acknowledgements

We would especially like to thank Allison
Woodruff for extremely valuable discussion and draft
editing. Mybrid Spalding also provided numerous helpful
comments. We would also like to thank Raghu
Ramakrishnan for helpful information about DEVise.

This work was sponsored by the NSF under
grants IRI-9400773 and IRI-9411334.

References

[1] Aiken, A., J. Chen, M. Stonebraker and A. Woodruff,
“Tioga-2: A Direct Manipulation Database Visualization
Environment,” Data Engineering 1996, New Orleans,
Louisiana, February 1996, pp. 208-217.

[2] Avnur, R., J. M. Hellerstein, B. Lo, C. Olston, V. Raman,
T. Roth, K. Wylie. “CONTROL: Continuous Output at
Navigation Technology with Refinement Online”.
SIGMOD 1998, Seattle, Washington, June 1998.

[3] Belmont Research, Inc., “CrossGraphs: Multidimensional
Graphical Reporting and Data Visualization,” white paper.

[4] Bier, E., M. Stone, K. Pier, W. Buxton, T. DeRose,
“Toolglasses and Magic Lenses: The See-through
Interface,” SIGGRAPH 1993, Anaheim, California, August
1993, pp. 73-80.

[5] Fishkin, K., and M. Stone, “Enhanced Dynamic Queries
via Movable Filters,” ACM Conference on Human Factors
in Computing Systems, Denver, Colorado, May 1995, pp.
415-420.

[6] Livny, M., R. Ramakrishnan, K. Beyer, G, Chen, D.
Donjerkovic, S. Lawande, J Myllymaki and K. Wenger,
“DEVise: Integrated Querying and Visual Exploration of
Large Data sets,” ACM SIGMOD 1997, Tucson, Arizona,
May 1997, pp. 301-312.

[7] McDonald, N., M. Stonebraker, “Cupid – The Friendly
Query Language,” Electronics Research Laboratory,
University of California at Berkeley Technical Report No.
ERL-M487, Berkeley, California, 1974.

[8] Microsoft Access Relational Database Management
System, Microsoft Corp., Redmond, Washington.

[9] Olston, C., A. Woodruff, A. Aiken, M. Chu, V. Ercegovac,
M. Lin, M. Spalding, M. Stonebraker, “DataSplash,”
SIGMOD 1998, Seattle, Washington, June 1998.

[10] Perlin, K., and S. Fox, “Pad: An alternative approach to the
computer interface,” ACM SIGGRAPH 1993, Anaheim,
CA, August 1993, pp. 57-64.

[11] Rasure, J., M. Young, “An Open Environment for Image
Processing Software Development,” The 1992 SPIE
Symposium on Electronic Image Processing, San Jose,
California, February 1992.

[12] Rowe, L., “’Fill-in-the-Form’ Programming,” VLDB 1985,
Stockholm, Sweden, August 1985, pp. 394-404.

[13] Stonebraker, M., J. Chen, N. Nathan, C. Paxson, J. Wu,
“Tioga: Providing Data Management Support for Scientific
Visualization Applications,” VLDB 1993, Dublin, Ireland,
August 1993, pp. 25-38.

[14] The Tioga Database Visualization Research Group, “Tioga
Project Home Page: http://datasplash.cs.berkeley.edu,”
Electronics Research Laboratory, University of California
at Berkeley, Berkeley, California.

[15] Tufte, E. R., The Visual Display of Quantitative
Information, Graphics Press, Cheshire, Connecticut, 1983.

[16] Upson, C., T. Faulhaber Jr., D. Kamins, D. Laidlaw, D.
Schlegel, J. Vroom, R. Gurwitz, A. VanDam, “The
Application Visualization System: A Computational
Environment for Scientific Visualization,” IEEE Computer
Graphics and Applications, 9(4), July 1989, pp. 32-40.

[17] Woodruff, A., J. Landay. and M. Stonebraker. “Constant
Information Density in Zoomable Interfaces,” Advanced
Visual Interfaces 1998, May 1998.

[18] Zloof, M., “Query-by-Example: A Data Base Language,”
IBM Systems Journal, 16(4), 1977, pp. 324-343.

