
Compact Histograms for Hierarchical Identifiers

Frederick Reiss∗ , Minos Garofalakis† and Joseph M. Hellerstein∗
∗U.C. Berkeley Department of Electrical Engineering and Computer Science and † Intel Research Berkeley

ABSTRACT
Distributed monitoring applications often involve streams of
unique identifiers (UIDs) such as IP addresses or RFID tag IDs.
An important class of query for such applications involves parti-
tioning the UIDs into groups using a large lookup table; the query
then performs aggregation over the groups. We propose using
histograms to reduce bandwidth utilization in such settings, using a
histogram partitioning function as a compact representation of the
lookup table. We investigate methods for constructing histogram
partitioning functions for lookup tables over unique identifiers that
form a hierarchy of contiguous groups, as is the case with network
addresses and several other types of UID. Each bucket in our
histograms corresponds to a subtree of the hierarchy. We develop
three novel classes of partitioning functions for this domain, which
vary in their structure, construction time, and estimation accuracy.

Our approach provides several advantages over previous work.
We show that optimal instances of our partitioning functions can
be constructed efficiently from large lookup tables. The partition-
ing functions are also compact, with each partition represented by
a single identifier. Finally, our algorithms support minimizing any
error metric that can be expressed as a distributive aggregate; and
they extend naturally to multiple hierarchical dimensions. In ex-
periments on real-world network monitoring data, we show that
our histograms provide significantly higher accuracy per bit than
existing techniques.

1. INTRODUCTION
One of the most promising applications for streaming query pro-

cessing is the monitoring of networks, supply chains, roadways,
and other large, geographically distributed entities. A typical dis-
tributed monitoring system consists of a large number of small
remote Monitors that stream intermediate query results to a cen-
tral Control Center. Declarative queries can greatly simplify the
task of gathering information with such systems, and stream query
processing systems like Borealis [1], HiFi, [7] and Gigascope [6]
aggressively target these applications with distributed implementa-
tions.

In many monitoring applications, the remote Monitors observe

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB 2006, September 12-15, 2006, Seoul, Korea.
Copyright 2006 VLDB Endowment, ACM 1-59593-385-9/06/09

Partitioning
functionUID[1]

UID[2]

Partition UID[1]
into buckets

Histogram

Monitor
Control
Center

f()

... Join Histogram
with Key Density Table

Lookup
Table

Aggregates
for window 1

Generate
partitioning function

Past history of
UID stream

Key Density
Table

...

Figure 1: The communication and process sequence for decoding a
stream of unique identifiers using a compact partitioning function.

streams of unique identifiers, such as network addresses, RFID tag
IDs, or UPC symbols. An important class of queries for such ap-
plications is the grouped windowed aggregation query:

select G.GroupId, AGG(...)
from UIDStream U [sliding window],

GroupTable G
where G.uid = U.uid
group by G.GroupId;

where AGG is an aggregate. Such a query might produce a periodic
breakdown of network traffic at each Monitor by source subnet;
or a listing of frozen chickens in the supply chain by source and
expiration date.

The join in this query arises because unique identifiers by them-
selves do not typically provide enough information to perform in-
teresting data analysis breakdowns via GROUP BY queries. A
distributed monitoring system must first “map” each unique iden-
tifier to a group that is meaningful to the application domain (e.g.,
a specific network subnet, a particular frozen-chicken wholesaler,
etc.). Most distributed monitoring systems deployed today perform
this mapping with lookup tables at the Control Center. A lookup
table typically contains an entry for every unique identifier in the
system. In large systems, such tables can easily grow to hundreds

of megabytes.
Of course, in order to apply the lookup table to a unique iden-

tifier, the system must have both items at the same physical loca-
tion. This requirement leads to two common approaches: Send
the raw streams of unique identifiers to the Control Center, or send
the lookup table to the Monitors. Unfortunately, both of these ap-
proaches greatly increase the bandwidth, CPU and storage require-
ments of the system.

We propose an alternative approach: “compress” the lookup ta-
ble into a smaller partitioning function. Using this function, the
Monitors can build compact histograms that allow the Control Cen-
ter to approximate the aggregation query. Figure 1 illustrates how
a monitoring system would work:

1. The Control Center uses its lookup table and the past history
of the UID stream to build a partitioning function1.

2. The Monitor uses the function to partition the UIDs it re-
ceives. It keeps aggregation state for each partition and sends
the resulting histogram back to the Control Center.

3. The Control Center uses the counters to reconstruct approxi-
mate aggregate values for the groups.

In order for such an approach to succeed, the partitioning func-
tion needs to have several properties. The Control Center must be
able to generate the function from very large lookup tables. The
function must be compact and quick to execute on a Monitor’s lim-
ited resources. And, the function’s output must be compact and
must contain enough information that the Control Center can re-
cover an accurate approximation of the aggregation query results.

If the lookup table contains a random mapping, then there is
little that can be done to decrease its size. In many problem do-
mains, however, the unique identifiers have an inherent structure
that we can exploit to compress lookup tables into compact parti-
tioning functions, while still answering aggregate queries with high
accuracy.

In this paper, we focus on one such class of problems: The class
in which in each table entry corresponds to a subtree in a hierarchy.
The unique identifiers form the leaves of the hierarchy, and each
subtree represents a contiguous range in the UID space. In general,
such a hierarchy results whenever organizations assign contiguous
blocks of unique identifiers to their sub-organizations. An obvious
application is the monitoring of Internet traffic, where network ad-
dresses form a hierarchy of nested IP address prefixes [8]. Such
hierarchies also appear in other domains, such as ISBN numbers
and RFID tag IDs.

1.1 Contributions
In this paper, we introduce the problem of performing GROUP

BY queries over distributed streams of unique identifiers. As a
solution to this problem, we develop histogram partitioning func-
tions that leverage a hierarchy to create a compact representation
of a lookup table. Our partitioning functions consist of sets of
bucket nodes drawn from the hierarchy. The subtrees rooted at these
bucket nodes define the partitions.

Within this problem space, we define three classes of partition-
ing functions: nonoverlapping, overlapping, and longest-prefix-
match. For the nonoverlapping and overlapping cases, we develop
algorithms that find the optimal partitioning function in O(n) and

1Past history of the UID stream is typically available from a data
warehouse that is loaded from Monitors’ logs on a non-real-time
basis.

O(n logn) time, respectively, where n is the size of the lookup ta-
ble. For the longest-prefix-match case, we develop an exact algo-
rithm that searches over a limited subset of longest-prefix-match
partitionings, requires at least cubic Ω(n3) time, and can provide
certain approximation guarantees for the final longest-prefix-match
histogram. We also propose novel sub-quadratic heuristics that are
shown to work well in practice for large data sets.

Unlike most previous work, our algorithms can optimize for
any error metric that can be expressed as a distributive aggregate.
Also, we extend our algorithms to multiple dimensions and obtain
O(dnd logn) running times for the extended algorithms, where d is
the number of dimensions and n is the size of the lookup table.

Finally, we present an experimental study that compares the his-
tograms arising from our techniques with two leading techniques
from the literature. Histograms based on our overlapping and
longest-prefix-match partitioning functions provide considerably
better accuracy in approximating grouped aggregation queries over
a real-life network monitoring data set.

1.2 Relationship to Previous Work
Histograms have a long history in the database literature. Poos-

ala et al. [21] give a good overview of one-dimensional histograms,
and Bruno et al. [3] provide an overview of existing work in multi-
dimensional histograms.

Previous work has identified histogram construction problems
for queries over hierarchies in data warehousing applications,
where histogram buckets can be arbitrary contiguous ranges.
Koudas et al. first presented the problem and provided an
O(n6) solution [16]. Guha et al. developed an algorithm that
obtains “near-linear” running time but requires more histogram
buckets than the optimal solution [12]. Both papers focus only
on Root-Mean-Squared (RMS) error metrics. In our work, we
consider a different version of the problem in which the histogram
buckets consist of nodes in the hierarchy, instead of being arbitrary
ranges; and the selection ranges form a partition of the space. This
restriction allows us to devise efficient optimal algorithms that
extend to multiple dimensions and allow nested histogram buckets.
Also, we support a wide variety of error metrics.

The STHoles work of Bruno et al. introduced the idea of nested
histogram buckets [3]. The “holes” in STHoles histograms create a
structure that is similar to our longest-prefix-match histogram buck-
ets. However, we present efficient and optimal algorithms to build
our histograms, whereas Bruno et al. used only heuristics (based on
query feedback) for histogram construction. Our algorithms take
advantage of hierarchies of identifiers, whereas the STHoles work
assumed no hierarchy.

Bu et al. study the problem of describing 1-0 matrices using
hierarchical Minimum Description Length summaries with special
“holes” to handle outliers [4]. This hierarchical MDL data structure
has a similar flavor to the longest-prefix-match partitioning func-
tions we study, but there are several important distinctions. First of
all, the MDL summaries construct an exact compressed version of
binary data, while our partitioning functions are used to find an ap-
proximate answer over integer-valued data. Furthermore, the holes
that Bu et al. study are strictly located in the leaf nodes of the MDL
hierarchy, whereas our hierarchies involve nested holes.

Wavelet-based histograms [17, 18] are another area of related
work. The error tree in a wavelet decomposition is analogous to
the UID hierarchies we study. Also, recent work has studied build-
ing wavelet-based histograms for distributive error metrics [9, 15].
Our overlapping histograms are somewhat reminiscent of wavelet-
based histograms, but our concept of a bucket (and its contribu-
tion to the histogramming error) is simpler than that of a Haar

Root

0xx 1xx

11x

000 001 010 011 100 101 110 111000 001 010 011 100 101 110 111111000 001 010 011 100 101 110 111

Group Nodes

Bucket Nodes

Unique Identifier Nodes

Figure 2: A 3-level binary hierarchy of unique identifiers.

wavelet coefficient. This results in simpler and more efficient al-
gorithms (in the case of non-RMS error metrics), especially for
multi-dimensional data sets [9]. In addition, our histogramming al-
gorithms can work over arbitrary hierarchies rather than assuming
the fixed, binary hierarchical construction employed by the Haar
wavelet basis.

Our longest-prefix-match class of functions is based on the tech-
nique used to map network addresses to destinations in Internet
routers [8]. Networking researchers have developed highly effi-
cient hardware and software methods for computing longest-prefix-
match functions over IP addresses [20] and general strings [5].

2. PROBLEM DEFINITION
The algorithms in this paper choose optimal partitioning func-

tions over a hierarchy of unique identifiers. In this section, we give
a description of the theoretical problem that we solve in the rest of
the paper. We start by specifying the classes of partitioning func-
tion that our algorithms generate. Then we describe the criteria that
we use to rank partitioning functions.

Our partitioning functions operate over streams of unique iden-
tifiers (UIDs). These unique identifiers form the leaves of a hierar-
chy, which we call the UID hierarchy. Figure 2 illustrates a simple
binary UID hierarchy. Our work handles arbitrary hierarchies, as
we show in Section 4.1, but we limit our discussion here to binary
hierarchies for ease of exposition.

As Figure 2 shows, certain nodes within the UID hierarchy will
have special significance in our discussion:

• Group nodes (shown as squares in Figure 2) define the
groups within the user’s GROUP BY query. In particular,
each group node resides at the top of a subtree of the
hierarchy. The UIDs at the leaves of this subtree are the
members of the group. In our problem definition, these
subtrees cannot overlap.

• Bucket nodes (large circles in Figure 2) define the partitions
of our partitioning functions. During query execution, each
of these partitions defines a bucket of a histogram. The se-
mantics of the bucket nodes vary for different classes of par-
titioning functions, as we discuss in the next section.

In a nutshell, our goal is to approximate many squares using just
a few circles; that is, to estimate aggregates at the group nodes
by instead computing aggregates for a carefully-chosen (and much
smaller) collection of bucket nodes.

2.1 Classes of Partitioning Functions
The goal of our algorithms is to choose optimal histogram parti-

tioning functions. We represent our partitioning functions with sets
of bucket nodes within the hierarchy. In this paper, we study three

Root

0xx 1xx

11x

000 001 010 011 100 101 110 111

Cut o
f T

re
e

Partition 2Partition 1

Partition 3

Figure 3: A partitioning function consisting of nonoverlapping sub-
trees. The roots of the subtrees form a cut of the main tree. In this
example, the UID 010 is in Partition 2.

Root

1xx1xx1xx

11x11x11x

100 101 110 111

Partition 1

Partition 2

Partition 3

Figure 4: An overlapping partitioning function. Each unique identi-
fier maps to the buckets of all bucket nodes above it in the hierarchy.
In this example, the UID 010 is in Partitions 1, 2, and 3.

different methods of interpreting a set of bucket nodes: Nonover-
lapping, Overlapping, and Longest-Prefix-Match. The sections that
follow define the specifics of each of these interpretations.

2.1.1 Nonoverlapping Partitioning Functions
Our simplest class of partitioning functions is for nonoverlap-

ping partitionings. A nonoverlapping partitioning function divides
the UID hierarchy into disjoint subtrees, as illustrated by Figure 3.
We call the hierarchy nodes at the roots of these subtrees the bucket
nodes. Note that the bucket nodes form a cut of the hierarchy. Each
unique identifier maps to the bucket of its ancestor bucket node.
For example, in Figure 3, the UID 010 maps to Partition 2.

Nonoverlapping partitioning functions have the advantage that
they are easy to compute. In Section 3.2.2, we will present a very
efficient algorithm to compute the optimal nonoverlapping parti-
tioning function for a variety of error metrics. Compared with
our other types of partitioning functions, nonoverlapping partition-
ing functions produce somewhat inferior histograms in our experi-
ments. However, the speed with which these functions can be cho-
sen makes them an attractive choice for lookup tables that change
frequently.

2.1.2 Overlapping Partitioning Functions
The second class of functions we consider is the overlapping

partitioning functions. Figure 4 shows an example of this kind of

Root

0xx 1xx1xx1xx

11x11x11x

000 001 010 011 100 101 110 111

Partition 1

Partition 2

Figure 5: A longest-prefix-match partitioning function over a 3-
level hierarchy. The highlighted nodes are called bucket nodes.
Each leaf node maps to its closest ancestor’s bucket. In this ex-
ample, node 010 is in Partition 1.

Figure 6: A more complex longest-prefix-match partitioning func-
tion, showing some of the ways that partitions can nest.

function. Like a nonoverlapping function, an overlapping partition-
ing function divides the UID hierarchy into subtrees. However, the
subtrees in an overlapping partitioning function may overlap. As
before, the root of each subtree is called a bucket node. In this
case, “partitioning function” is something of a misnomer, since a
unique identifier maps to the “partitions” of all the bucket nodes
between it and the root. In the example illustrated in the diagram,
the UID 010 maps to Partitions 1, 2, and 3.

Overlapping partitioning functions provide a strictly larger so-
lution space than nonoverlapping functions. These additional so-
lutions increase the “big O” running times of our algorithms by a
logarithmic factor. This increase in running time is offset by a de-
crease in error. In our experiments, overlapping partitioning func-
tions produce histograms that more efficiently represent network
traffic data, compared with existing techniques.

2.1.3 Longest-Prefix-Match Partitioning Functions
Our final class of partitioning functions is called the longest-

prefix-match partitioning functions. A longest-prefix-match parti-
tioning function uses bucket nodes to define partition subtrees, as
with an overlapping partitioning function. However, in the longest-
prefix-match case, each UID maps only to the partition of its clos-
est ancestor bucket node (selected in the histogram). Figure 5 il-
lustrates a simple longest-prefix-match function. In this example,
UID 010 maps to Partition 1. Figure 6 illustrates a more complex
longest-prefix-match partitioning function. As the figure shows,
partitions can be arbitrarily nested, and a given partition can have
multiple “holes”.

Longest-prefix-match functions are inspired by the routing tables
for inter-domain routers on the Internet. These routing tables map
prefixes of the IP address space to destinations, and each address is
routed to the destination of the longest prefix that matches it. This
routing algorithm not only reflects the inherent structure of Internet

addresses, it reinforces this structure by making it efficient for an
administrator to group similar hosts under a single prefix.

Longest-prefix-match partitioning has the potential to produce
histograms that give very compact and accurate representations
of network traffic. However, choosing an optimal longest-prefix-
match partitioning function turns out to be a difficult problem.
We propose an algorithm that explores a limited subset of
longest-prefix-match partitionings and requires at least cubic time
(while offering certain approximation guarantees for the resulting
histogram), as well as two sub-quadratic heuristics that can scale
to large data sets. In our experiments, longest-prefix-match
partitioning functions created with these heuristics produce better
histograms in practice than optimal partitioning functions from the
other classes.

2.2 Measuring Optimality
Having described the classes of partitioning functions that our

algorithms produce, we can now present the metric we use to mea-
sure the relative “goodness” of different partitioning functions.

2.2.1 The Groups
Our target monitoring applications divide unique identifiers into

groups and aggregate within each group. In this paper, we focus on
groups that consist of non-overlapping subtrees of the UID hierar-
chy. We call the root of each such subtree a group node. Note that,
since the subtrees cannot overlap, no group node can be an ancestor
of another group node.

2.2.2 The Query
If the groups are represented by a table of group nodes, the gen-

eral form of the aggregation query we target is:

select G.gid , count(∗)
from UIDStream U [sliding window],

GroupHierarchy G
where G.uid = U.uid

−− GroupHierarchy places all UIDs below
−− a group node in the same group.

group by G.node;

This query joins UIDStream, a stream of unique identifiers, with
GroupHierarchy, a lookup table that maps every UID below a given
group node to a single group ID that is unique to that group node.
For ease of exposition, we consider only count aggregates here; the
extension of our work to other SQL aggregates is straightforward.

2.2.3 The Query Approximation
Our algorithms generate partitioning functions for the purposes

of approximating a query like the one in Section 2.2.2. The input of
this approximation scheme is a window’s worth of tuples from the
UIDStream stream. We use the partitioning function to partition
the UIDs in the window into histogram buckets, and we keep a
count for each bucket. Within each bucket, we assume that the
counts are uniformly distributed among the groups that map to the
bucket. This uniformity assumption leads to an estimated count for
each group. For overlapping partitioning functions, only the closest
enclosing bucket is used to estimate the count for each group.

2.2.4 The Error Metric
The query approximation in the previous section produces an

estimated count for each group in the original query (using the
conventional uniformity assumptions for histogram buckets [21]).
There are many ways to quantify the effectiveness of such an ap-
proximate answer, and different metrics are appropriate to different

applications. Our algorithms work for a general class of error met-
rics that we call distributive error metrics.

A distributive error metric is a distributive aggregate [10]
〈start,⊕,finalize〉, where:

• start is a function on groups that converts the actual and esti-
mated counts for a group into a “partial state record” (PSR);

• ⊕ is a function that merges the two PSRs; and,
• finalize is a function that converts a PSR into a numeric error.

In addition to being distributive, the aggregate that defines a dis-
tributive error metric must also satisfy the following “monotonic-
ity” properties for any PSRs A, B, and C2:

finalize(B) > finalize(C)→ finalize(A⊕B)≥ finalize(A⊕C) (1)
finalize(B) = finalize(C)→ finalize(A⊕B) = finalize(A⊕C) (2)

As an example, consider the common average error metric:

Error =
∑g∈G |g.actual−g.approx|

|G|
(3)

where G is the set of groups in the query result. We can define
average error as:

start(g) = 〈|g.actual−g.approx| ,1〉 (4)
〈s1,c1〉⊕〈s2,c2〉 = 〈s1 + s2,c1 + c2〉 (5)

finalize(〈s,c〉) =
s
c

(6)

Note that this metric uses an intermediate representation of
〈sum,count〉 while summing across buckets. A distributive error
metric can use any fixed number of counters in a PSR.

In addition to the average error metric defined above, many other
useful measures of approximation error can be expressed as dis-
tributive error metrics. Some examples include:

• RMS error:

Error =

√
∑g∈G (g.actual−g.approx)2

|G|
(7)

• Average relative error:

Error =
∑g∈G

|g.actual−g.approx|
max(g.actual,b)

|G|
(8)

where b is a constant to prevent division by zero (typically
chosen as a low-percentile actual value from historical
data [9]).

• Maximum relative error:

Error = maxG∈G

(
|g.actual−g.approx|

max(g.actual,b)

)
(9)

We use all four of these error metrics in our experiments.

3. ALGORITHMS
Having defined the histogram construction problems we solve

in this paper, we now present dynamic programming algorithms
for solving them. Section 3.1 gives a high-level description of our
general dynamic programming approach. Then, Section 3.2 gives
specific recurrences for choosing partitioning functions.

2These properties ensure that the principle of local optimality
needed by our dynamic programs holds.

Variable Description

U The universe of unique identifiers.
H The UID hierarchy, a set of nodes h1,h2, . . . ,hn.

we order nodes such that the children of hi are h2i
and h2i+1.

G The group nodes; a subset of H.
b The given budget of histogram buckets.
start The starting function of the error aggregate (see

Section 2.2.4).
⊕ The function that merges error PSRs (Sec-

tion 2.2.4).
finalize The function that converts the intermediate error

PSRs to a numeric error value (Section 2.2.4).
grperr(i) The result of applying start and ⊕ to the groups

below hi (see Section 3.2).

Table 1: Variable names used in our equations.

3.1 High-Level Description
Our algorithms perform dynamic programming over the UID hi-

erarchy. In our application scenario, the Control Center runs one of
these algorithms periodically on data from the recent past history
of the UID stream (Section 1). The results of each run parameterize
the partitioning function that is then sent to the Monitors.

We expect that the number of groups, |G|, will be very large. To
keep the running time for each batch tractable, we focus on making
our algorithms efficient in terms of |G|.

For ease of exposition, we will assume for the time being that the
hierarchy is a binary tree; later on, we will relax this assumption.
For convenience, we number the nodes of the hierarchy 1 through
n, such that the children of the node with index i are nodes 2i and
2i+1. Node 1 is the root.

The general structure of all our algorithms is to traverse the hier-
archy bottom-up, building a dynamic programming table E. Each
entry in E will hold the smallest error for the subtree rooted at node
i, given that B nodes in that subtree are bucket nodes. (In some of
our algorithms, there will be additional parameters beyond i and B,
increasing the complexity of the dynamic program.) We also an-
notate each entry E with the set of bucket nodes that produce the
chosen solution. In the end, we will look for the solution that pro-
duces the least error at the root (for any number of buckets ≤ b, the
specified space budget for the histogram).

3.2 Recurrences
For each type of partitioning function, we will introduce a re-

currence relation (or “recurrence”) that defines the relationship be-
tween entries of the table E. In this section, we present the recur-
rence relations that allow us to find optimal partitioning functions
using the algorithm in the previous section. We start by describing
the notation we use in our equations.

3.2.1 Notation
Table 1 summarizes the variable names we use to define our re-

currences. For ease of exposition, we also use the following short-
hand in our equations:

• If A and B are PSRs, we say that A < B if finalize(A) <
finalize(B).

• For any set of group nodes G = {g1, · · · ,gk}, grperr(G) de-
notes the result of applying the starting and transition func-
tions of the error aggregate to G:

grperr(G) = start(g1)⊕ start(g2)⊕·· ·⊕ start(gk) (10)

3.2.2 Nonoverlapping Partitioning Functions
Recall from Figure 3 that a nonoverlapping partitioning function

consists of a set of nodes that form a cut of the UID hierarchy.
Each node in the cut maps the UIDs in its child subtrees to a single
histogram bucket.

Let E[i,B] denote the minimum total error possible using B nodes
to bucketize the subtree rooted at hi. Then, we have:

E[i,B] =

{
grperr(i) if B = 1,

min1≤c≤B (E[2i,c]⊕E[2i+1,B− c]) otherwise
(11)

where ⊕ represents the appropriate operation for merging errors for
the error measure and grperr(i) denotes the result of applying the
start and ⊕ components of the error metric to the groups below hi.

Intuitively, this recurrence consists of a base case (B = 1) and a
recursive case (B > 1). In the base case, the only possible solution
is to make node node i a bucket node. For the recursive case, the
algorithm considers all possible ways of dividing the current bucket
budget B among the left and right subtrees of hi, and simply selects
the one resulting in the smallest error.

We observe that the algorithm does not need to consider mak-
ing any node below a group node into a bucket node. So the al-
gorithm only needs to compute entries of E for nodes that are ei-
ther group nodes or their ancestors. The number of such nodes is
O(|G|), where G is the set of group nodes. Not counting the com-
putation of grperr, the algorithm does at most O(b2) work for each
node it touches (O(b) work for each of O(b) table entries), where b
is the number of buckets. A binary-search optimization is possible
for certain error metrics (e.g., maximum relative error), resulting in
a smaller per-node cost of O(b logb).

For RMS error, we can compute all the values of grperr(i)
in O(|G|) amortized time by taking advantage of the fact that
the approximate value for a group is simply the average of the
actual values within, which can be computed by carrying sums
and counts of actual values up the tree. So, our algorithm runs
in O(|G|b2) time overall for RMS error. For other error metrics,
it takes O(|G| log |U |) amortized time to compute the values of
grperr, so the algorithm requires O(|G|(b2 + log |U |)) time.

3.2.3 Overlapping Partitioning Functions
In this section, we extend the recurrence of the previous section

to generate overlapping partitioning functions, as illustrated in Fig-
ure 5. As the name suggests, overlapping partitioning functions
allow configurations of bucket nodes in which one bucket node’s
subtree overlaps another’s. To cover these cases of overlap, we add
a third parameter, j to the table E from the previous section to cre-
ate a table E[i,B, j]. Parameter j represents the index of the lowest
ancestor of node i that has been selected as a bucket node. We add
the j parameter because we need to know about the enclosing parti-
tion to decide whether to make node i a bucket node. In particular,
if node i is not a bucket node, then the groups below node i in the
hierarchy will map to node j’s partition.

Similarly, we augment grperr with a second argument:
grperr(i, j) computes the error for the groups below node i when
node j is the closest enclosing bucket node. The new dynamic
programming recurrence can be expressed as:

E[i,B, j] =

grperr(i, j) if B = 0,

min0≤c≤B (E[2i,c, i]⊕E[2i+1,B− c−1, i])
if B ≥ 1 and i = j, (i is a bucket node)

min0≤c≤B−1 (E[2i,c, j]⊕E[2i+1,B− c, j])
otherwise (i is not a bucket node)

(12)

A

C
B

Figure 7: Illustration of the interdependence that makes choosing
a longest-prefix-match partitioning function difficult. The benefit
of making node B a bucket node depends on whether node A is a
bucket node – and also on whether node C is a bucket node.

Intuitively, the recurrence considers all the ways to divide a bud-
get of B buckets among node i and its left and right subtrees, given
that the next bucket node up the hierarchy is node j. For the cases
in which node i is a bucket node, the recurrence conditions on node
i being its children’s closest bucket node.

This algorithm computes O(|G|bh) table entries, where h is the
height of the tree, and each entry takes (at most) O(b) time to com-
pute. Assuming that the UID hierarchy forms a balanced tree, our
algorithm will run in O(|G|b2 log |U |) time.

3.2.4 Longest-Prefix-Match Partitioning Functions
Longest-prefix-match partitioning functions are similar to the

overlapping partitioning functions that we discussed in the previous
section. Both classes of functions consist of a set of bucket nodes
that define nested partitions. The key difference is that, in a longest-
prefix-match partitioning, these partitions are strictly nested, as op-
posed to overlapping. This renders the optimal histogram construc-
tion problem significantly harder, making it seemingly impossible
to make “localized” decisions at nodes of the hierarchy.

An algorithm that finds a longest-prefix-match partitioning func-
tion must decide whether each node in the hierarchy is a bucket
node. Intuitively, this choice is hard to make because it must be
made for every node at once. A given partition can have several
(possibly nested) subpartitions that act as “holes”, removing chunks
of the UID space from the parent partition. Each combination of
holes produces a different amount of error both within the holes
themselves and also in the parent partition.

For example, consider the example in Figure 7. Assume for the
sake of argument that node A is a bucket node. Should node B
also be a bucket node? This decision depends on what other nodes
below A are also bucket nodes. For example, making node C a
bucket node will remove C’s subtree from A’s partition. This choice
could change the error for the groups below B, making B a more or
less attractive candidate to also be a bucket node. At the same time,
the decision whether to make node C a bucket node depends on
whether node B is a bucket node. Indeed, the decision for each
node in the subtree could depend on decisions made at every other
subtree node.

In the sections that follow, we describe an exact algorithm that
explores a limited subset of longest-prefix-match partitionings, by
essentially restricting the number of holes in each bucket to a small
constant. The resulting algorithm can offer certain approximation
guarantees, but requires at least Ω(n3) time. Since cubic running
times are essentially prhibitive for the scale of data sets we con-
sider, we also develop two sub-quadratic heuristics.

3.2.5 k-Holes Technique
We can reduce the longest-prefix-match problem’s search space

Bucket Node

“Holes”“Holes”

New Bucket NodeNew Bucket Node

Figure 8: Illustration of the process of splitting a partition with n
“holes” into smaller partitions, each of which has at most k holes,
where k < n. In this example, a partition with 3 holes is converted
into two partitions, each with two holes.

by limiting the number of holes per bucket to a constant k. This
reduction yields a polynomial-time algorithm for finding longest-
prefix-match partitioning functions.

We observe that, if k ≥ 2, we can convert any longest-prefix-
match partition with m holes into the union of several k-hole parti-
tions. Figure 9 illustrates how this conversion process works for an
example. In the example, adding a bucket node converts a partition
with 3 holes into two partitions, each with 2 holes. Given any set of
b bucket nodes, we can apply this process recursively to all the par-
titions to produce a new set of partitions, each of which has at most
k holes. In general, this conversion adds at most b b

k−1 c additional
bucket nodes to the original solution.

Consider what happens if we apply this conversion to the opti-
mal set of b bucket nodes. If the error metric satisfies the “super-
additivity” property [19]:

Error(P1)+Error(P2)≤ Error(P1 ∪P2) (13)

for any partitions P1 and P2, the conversion will not increase the
overall error. (Note that several common error metrics, e.g., RMS
error, are indeed super-additive [19].) So, if the optimal b-partition
solution has error E, there must exist a k-hole solution with at most
b(1+ b b

k−1 c) partitions and an error of at most E.
We now give a polynomial-time dynamic programming algo-

rithm that finds the best longest-prefix-match partitioning function
with k holes in each bucket. The dynamic programming table for
this algorithm is in the form:

E [i,B, j,H]

where i is the current hierarchy node, B is the number of partitions
at or below node i, j is the closest ancestor bucket node, and H =
{h1, . . . ,hl} , l ≤ k are the holes in the node j’s partition.

To simplify the notation and avoid repeated computation, we use
a second table F [i,B] to tabulate the best error for the subtree rooted
at i, given that node i is a bucket node.

To handle base cases, we extend grperr with an a third parameter.
grperr(i, j,H) computes the error for the zero-bucket solution to
the subtree rooted at i, given that node j is a bucket node with the
holes in H.

The recurrence for the k-holes case is similar to that of our
overlapping-partitions algorithm, with the addition of the second
table F , as illustrated in Figure 9. Intuitively, the first two cases
of the recurrence for E are base cases, and the remaining ones are
recursive cases. The first base case prunes solutions that consider
impossible sets of holes. The second base case computes the error
when there are no bucket nodes (and, by extension, no elements of
H) below node i.

The first recursive case looks at all the ways that the bucket bud-
get B could be divided among the left and right subtrees of node i,

E[i,B, j,H] =

∞ if |H|> k
or |H ∩ subtree(i)|> B
or ∃h1,h2 ∈ H.h1 ∈ subtree(h2),

grperr(i, j,H) if B = 0,

min

min0≤c≤B (E[2i,c, j,H]⊕E[2i+1,B− c, j,H])

(i is not a bucket node)
F [i,B] (only if i ∈ H)

(i is a bucket node)
if B ≥ 1

F [i,B] = min
H⊆subtree(i)

0≤c≤B−1

E[2i,c, i,H]+E[2i+1,B−c−1, i,H]

Figure 9: The recurrence for our k-holes algorithm.

given that node i is not a bucket node. The second recursive case
finds the best solution for i’s subtree in which node i is a bucket
node with B−1 bucket nodes below it. Keeping the table F avoids
needing to recompute the second recursive case of E for every com-
bination of j and H.

The table E has O(b|G|k+1 log |U |) entries, and each entry takes
O(b) time to compute. Table F has O(b|G|) entries, and each entry
takes O(b|G|k) time to compute. The overall running time of the
algorithm is O(b2|G|k+1 log |G|).

Although the above algorithm runs in polynomial time, its run-
ning time (for k ≥ 2) is at least cubic in the number of groups,
making it impractical for monitoring applications with thousands
of groups. In the sections that follow, we describe two heuristics
for finding good longest-prefix-match partitioning functions in sub-
quadratic time.

3.2.6 Greedy Heuristic
As noted earlier, choosing a longest-prefix-match partitioning

function is hard because the choice must be made for every node at
once. One way around this problem is to choose each bucket node
independently of the effects of other bucket nodes. Intuitively, mak-
ing a node into a bucket node creates a hole in the partition of the
closest bucket node above it in the hierarchy. The best such holes
tend to contain groups whose counts are very different from the
counts of the rest of the groups in the parent bucket. So, if a node
makes a good hole for a partition, it is likely to still be a good hole
after the contents of other good holes have been removed from the
partition.

Our overlapping partitioning functions are defined such that
adding a hole to a partition has no effect on error for groups outside
the hole. Consider the example in Figure 7. For an overlapping
partitioning function, the error for B’s subtree only depends on
what is the closest ancestor bucket node; making C a bucket
node does not change the contents of A’s overlapping partition.
In other words, overlapping partitioning functions explicitly
codify the independence assumption in the previous paragraph.
Assuming that this intuition holds, the overlapping partitioning
function algorithm in Section 3.2.3 will find bucket nodes that are
also good longest-prefix-match bucket nodes. Thus, our greedy
algorithm simply runs the overlapping algorithm and then selects
the best b buckets (in terms of bucket approximation error) from
the overlapping solution. As our experiments demonstrate, this
turns out to be an effective heuristic for longest-prefix-match

E [i,B,g, t,d] =

grperr(i,d) if B = 0
and g = number of group nodes below i
and t = number of tuples below i

∞ if B = 0
and (t 6= number of tuples below i

or g 6= number of group nodes below i)

minb,g′,t ′

{
E [2i,b,g′, t ′,d]
+E [2i+1,B−b,g−g′, t − t ′,d]

(Node i is not a bucket node)
E [2i,b,g′, t ′,d]
+E [2i+1,B−b−1,g−g′, t − t ′,d]
if d = t

g
(Node i is a bucket node)

if B ≥ 1

Figure 10: The recurrence for our pseudopolynomial algorithm.

partitionings.

3.2.7 Quantized Heuristic
Our second heuristic for the longest-prefix-match case is a quan-

tized version of a pseudopolynomial algorithm. In this section,
we start by describing a pseudopolynomial dynamic programming
algorithm for finding longest-prefix-match partitioning functions.
Then, we explain how we quantize the table entries in the algo-
rithm to make it run in polynomial time.

Our pseudopolynomial algorithm uses a dynamic programming
table E [i,B,g, t,d] where:

• i is the current node of the UID hierarchy;
• B is the current bucket node budget;
• g is the number of group nodes in the subtree rooted at node

i;
• t is the number of tuples whose UIDs are in the subtree rooted

at node i; and,
• d, the bucket density, is the ratio of tuples to groups in the

smallest selected ancestor bucket containing node i.
The algorithm also requires a version of grperr that takes a subtree
of groups and a bucket density as arguments. This aggregate uses
the density to estimate the count of each group, then compares each
of these estimated counts against the group’s actual count.

We can compute E by using the recurrence in Figure 10. Intu-
itively, the density of the enclosing partition determines the benefit
of making node i into a bucket node. Our recurrence chooses the
best solution for each possible density value. In this way, the recur-
rence accounts for every possible configuration of bucket nodes in
the rest of the hierarchy. The algorithm is polynomial in the total
number of tuples in the groups, but this number is itself exponential
in the size of the problem.

More precisely, the recurrence will find the optimal partitioning
if we let the values of g and t range from 0 to the total number
of groups and tuples, respectively; with d taking on every possible
value of t

g . The number of entries in the table will be O(|G|3T 2b),
where T is the number of tuples in the All the base cases can be
computed in O(|G|2T) amortized time, but the recursive cases each
take O(|G|T b) time. So, the overall running time of this algorithm

d
cb

a
{a,b} {c,d}

{a,b,c,d}

ba dc

Figure 11: Diagram of the technique to extend our algorithms to
arbitrary hierarchies by converting them to binary hierarchies. We
label each node of the binary hierarchy with its children from the
old hierarchy.

is O(|G|4T 3b2). Note that T is exponential in the size of the prob-
lem.

We can approximate the above algorithm by considering only
quantized values of the counters g, t and d. That is, we round the
values of each counter to the closest of a set of k exponentially-
distributed values (1 + Θ)i. (Of course, k is logarithmic in the to-
tal “mass” of all group nodes.) The quantized algorithm creates
O(k3b) table entries for each node of the hierarchy. For each table
entry, the algorithm does O(k2b) work. The overall running time
for the quantized algorithm is O(k5|G|b2).

4. REFINEMENTS
Having defined our core algorithms for finding our three classes

of partitioning functions, we now present useful refinements to our
techniques. The first of these refinements extends our algorithms
to hierarchies with arbitrary fanout. The second of these refine-
ments focuses on choosing partitioning functions for approximat-
ing multidimensional GROUP BY queries. The third makes our
algorithms efficient when most groups have a count of zero. Our
final refinement greatly reduces the space requirements of our al-
gorithms. All of these techniques apply to all of the algorithms we
have presented thus far.

4.1 Extension to Arbitrary Hierarchies
Extending our algorithms to arbitrary hierarchies is straightfor-

ward. Conceptually, we can convert any hierarchy to a binary
tree, using the technique illustrated in Figure 11. As the diagram
shows, we label each node in the binary hierarchy with the set of
child nodes from the original hierarchy that are below it. We can
then rewrite the dynamic programming formulations in terms of
these lists of nodes. For nonoverlapping buckets, the recurrence
becomes:

E[{i},B] = E[{ j1, . . . , jn},B] if j1, . . . , jn were i’s children

E[{ j1, . . . , jn},B] =

grperr({ j1, . . . , jn}) if B = 1,

min1≤c≤B

(
E[{ j1, . . . , jn/2},c]
⊕E[{ jn/2+1, . . . , jn},B− c]

)
otherwise

A similar transformation converts grperr(i) to grperr({ j1, . . . , jn}).
The same transformation also applies to the dynamic programming
tables for the other algorithms.

The number of interior nodes in the graph is still O(|G|) after
the transformation, so the transformation does not increase the
order-of-magnitude running time of the nonoverlapping buckets
algorithm. For the overlapping and longest-prefix-match algo-
rithms, the longest path from the root to the leaves increases
by a multiplicative factor of O(log(fanout)), increasing “big-O”
running times by a factor of log2(fanout)).

Root

0xx 1xx

11x

000 001 010 011 100 101 110 111
R
oo
t

0x
x

1x
x

11
x

00
0

00
1

01
0

01
1

10
0

10
1

11
0

11
1

Bucket
Nodes

0xxBucket

0x
x

1x
x

11
x

Bucket

src_ip

de
st

_i
p

Figure 12: Diagram of a single bucket in a two-dimensional hierar-
chical histogram. The bucket occupies the rectangular region at the
intersection of the ranges of its bucket nodes.

4.2 Extension to Multiple Dimensions
Our histograms extend naturally to multiple dimensions while

still computing optimal histograms in polynomial time for a given
dimensionality. In d dimensions, we define a bucket as an d-tuple
of hierarchy nodes. We assume that there is a separate hierar-
chy for each of the d dimensions. Each bucket covers the rect-
angular region of space defined by the ranges of its constituent
hierarchy nodes. Figure 12 illustrates a single bucket of a two-
dimensional histogram built using this method. We denote the rect-
angular bucket region for nodes i1 through id as r(i1, . . . , id).

The extension of the non-overlapping buckets algorithm to d di-
mensions uses a dynamic programming table with entries in the
form E[(i1, . . . , id),B], where i1 through id are nodes of the d UID
hierarchies. Each entry holds the best possible error for r(i1, . . . , id)
using a total of B buckets. We also define a version of grperr that
aggregates over the region r(i1, · · · , id): grperr(i1, . . . , id)

E[(i1, . . . , id),B] is computed based on the entries for all subre-
gions of r(i1, . . . , id), in all combinations that add up to B buck-
ets. For a two-dimensional binary hierarchy, the dynamic program-
ming recurrence is shown below. Intuitively, the algorithm consid-
ers each way to split the region (i, j) in half along one dimension.
For each split dimension, the algorithm considers every possible
allocation of the B bucket nodes between the two halves of the re-
gion.

E[(i1, i2),B] =

grperr(i1, i2) if B = 1,

min

{
min1≤c≤BE[(i1,2i2),c]⊕E[(i1,2i2 +1),B− c]
min1≤c≤BE[(2i1, i2),c]⊕E[(2i1 +1, i2),B− c]

otherwise
The extension of the overlapping buckets algorithm to multi-

ple dimensions is similar to the extension of the nonoverlapping
algorithm. We make explicit the constraint, implicit in the one-
dimensional case, that every bucket region in a given solution be
strictly contained inside its parent region, with no partial overlap.
For the two-dimensional case, the recurrence is given in Figure 13.

Our algorithms for finding longest-prefix-match buckets can be
extended to multiple dimensions by applying the same transforma-
tion. We omit the recurrences for these algorithms due to lack of
space.

Unlike other classes of optimal multidimensional histograms,
the multidimensional extensions of our algorithms run in polyno-
mial time for a given dimensionality. The running time of the ex-

E[(i1, i2),B,(j1, j2)] =

grperr((i1, i2),(j1, j2)) if B = 0,

min

min0≤c≤B−1 (E[(2i1, i2),c,(i1, i2)]⊕E[(2i1 +1, i2),B− c−1,(i1, i2)])
min0≤c≤B−1 (E[(i1,2i2),c,(i1, i2)]⊕E[(i1,2i2 +1),B− c−1,(i1, i2)])

((i1, i2) is a bucket region)
min0≤c≤B (E[(2i1, i2),c,(j1, j2)]⊕E[(2i1 +1, i2),B− c,(j1, j2)])
min0≤c≤B (E[(i1,2i2),c,(j1, j2)]⊕E[(i1,2i2 +1),B− c,(j1, j2)])

((i1, i2) is not a bucket region)
otherwise

Figure 13: Recurrence for finding overlapping partitioning func-
tions in two dimensions.

Empty
Subtree

Single-Group
Bucket

zero
count

zero
count

nonzero
count

Figure 14: One of the sparse buckets that allow our overlapping his-
tograms to represent sparse group counts efficiently. Such a bucket
produces zero error and can be represented in O(log log |U |) more
bits than a conventional bucket.

tended nonoverlapping algorithm is O(|G|ddb2) for RMS error, and
the running time of the extended overlapping buckets algorithm is
O(db2|G|d logd |U |), where d is the number of dimensions. Simi-
larly, the multidimensional version of our quantized heuristic runs
in O(db2|G|d) time.

4.3 Sparse Group Counts
For our target monitoring applications, it is often the case that

the counts of most groups are zero. There is generally a very large
universe of UIDs, and the number of groups tends to be very large
as well. During a given time window, a given Monitor will only
observe tuples from a fraction of the groups. With some straight-
forward optimizations, our algorithms can take advantage of cases
when the group counts are sparse. These optimizations make the
running time of our algorithms depend only on the height of the
hierarchy and the number of nonzero groups.

To improve the performance of the nonoverlapping buckets al-
gorithm in Section 3.2.2, we observe that the error for a subtree
whose groups have zero count will always be zero. This observa-
tion means that the algorithm can ignore any subtree whose leaf
nodes all have a count of zero. Furthermore, the system does not
need to store any information about buckets with counts of zero, as
these buckets can be easily inferred from the non-empty buckets on
the fly.

For overlapping and longest-prefix-match buckets, we introduce
a new class of bucket, the sparse bucket. A sparse bucket consists
of a single-group sub-bucket and an empty subtree that contains it,
as shown in Figure 14. As a result, the approximation error within
a sparse bucket is always zero. Since the empty subtree has zero
count and can be encoded as a distance up the tree from the sub-
bucket, a sparse bucket takes up only O(log log |U |) more space
than a single normal bucket.

A sparse bucket dominates any other solution that places bucket
nodes in its subtree. As a result, our overlapping buckets algorithm
does not need to consider any such solutions when it can create a
sparse bucket. Dynamic programming can start at the upper node
of each sparse bucket. Since there is one sparse bucket for each
nonzero group, the algorithm runs in O(gb2 log |U |) time.

For our target monitoring applications, it is important to note that
the time required to produce an approximate query answer from
one of our histograms is proportional to the number of groups the
histogram predicts will have nonzero count. Because of this rela-
tionship, the end-to-end running time of the system can be sensitive
to how aggressively the histogram marks empty ranges of the UID
space as empty. Error metrics that penalize giving a zero-count
group a nonzero count will make the approximate group-by query
run much more quickly.

4.4 Space Requirements
A naive implementation of our algorithms would require large

in-memory tables. However, a simple technique developed by
Guha [11] reduces the memory overhead of the algorithms to very
manageable sizes. The basic strategy is to compute only the error
and number of buckets on the left and right children at the root
of the tree. Once entry E[i, · · ·] has been used to compute all the
entries for node b i

2 c, it can be garbage-collected.
To reconstruct the entire bucket set, we apply dynamic program-

ming recursively to the children of the root. This multi-pass ap-
proach does not change the order-of-magnitude running times of
our algorithms, though it can increase the running time by a signif-
icant factor in practice. In our actual implementation, we store a set
of bucket nodes along with each entry of E in memory. With the
bucket nodes encoded in E, we only need one pass to recover the
solution.

The number of table entries that must be kept in memory at a
given time is also a function of the order in which the algorithm
processes the nodes of the UID hierarchy. Our implementation
processes nodes in the order of a preorder traversal, keeping the
memory footprint to a minimum. To further reduce memory re-
quirements, the nodes themselves could be stored on disk in this
order and read into memory as needed.

Applying the above optimizations reduces the memory footprint
of our nonoverlapping algorithm to O(b log |U |) for a balanced
hierarchy. Similarly, our overlapping partitions algorithm re-
quires O(b log2 |U |) space. Our quantized heuristic requires
O(k3b log2 |U |) space, where k is the number of quanta for each
counter.

5. EXPERIMENTAL EVALUATION
To measure the effectiveness of our techniques, we conducted a

series of evaluations on real network monitoring data and metadata.
The WHOIS databases store ownership information on publicly

accessible subnets of the Internet. Each database serves a different
set of addresses, though WHOIS providers often mirror each oth-
ers’ entries. We downloaded publicly-available dumps of the RIPE
and APNIC WHOIS databases [22, 2] and merged them, removing
duplicate entries. We then used this table of subnets to generate a
table of 1.1 million nonoverlapping IP address prefixes that com-
pletely cover the IP address space. Each prefix corresponds to a
different subnet. The prefixes ranged in length from 3 bits (536
million addresses) to 32 bits (1 address), with the larger address
ranges denoting unused portions of the IP address space. Figure 15
shows the distribution of prefix lengths.

We obtained a large trace of “dark address” traffic on a slice of
the global Internet. The destinations of packets in this trace are

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 4 8 12 16 20 24 28 32

Nu
m

be
r o

f S
ub

ne
ts

(L
og

 S
ca

le
)

Prefix Length

Maxi
mum

 Poss
ible

Figure 15: The distribution of IP prefix lengths in our experimental
set of subnets. The dotted line indicates the number of possible IP
prefixes of a given length (2length). Jumps at 8, 16, and 24 bits are
artifacts of an older system of subnets that used only three prefix
lengths.

Figure 16: The distribution of network traffic in our trace by source
subnet. Due to quantization effects, most ranges appear wider than
they actually are. Note the logarithmic scale on the Y axis.

IP addresses that are not assigned to any active subnet. The trace
contains 7 million packets from 187866 unique source addresses.
Figure 16 gives a breakdown of this traffic according to the subnets
in our subnet table.

We chose a query that counts the number of packets in each sub-
net:

select S. id , count(∗)
from

Packet P,
Subnet S

where
−− Adjacent table entries with the same subnet
−− are merged into a single table entry
P. src ip ≥ I . id and P. src ip ≤ I . id

group by S.id

We used six kinds of histogram to approximate the results of this
query:

• Hierarchical histograms with nonoverlapping buckets
• Hierarchical histograms with overlapping buckets
• Hierarchical histograms with longest-prefix-match buckets,

generated with the greedy heuristic
• Hierarchical histograms with longest-prefix-match buckets,

generated with the quantized heuristic
• End-biased histograms [13]
• V-Optimal histograms [14]

An end-biased histogram consists of a set of single-group buck-
ets for the b−1 groups with the highest counts and a single multi-
group bucket containing the count for all remaining groups. We
chose to compare against this type of histogram for several reasons.
End-biased histograms are widely used in practice. Also, construc-
tion of these histograms is tractable for millions of groups, and our
data set contained 1.1 million groups. Additionally, end-biased his-
tograms model skewed distributions well, and the traffic in our data
set was concentrated in a relatively small number of groups.

A V-Optimal histogram is an optimal histogram where each
bucket corresponds to an arbitrary contiguous range of values. For
RMS error, the V-Optimal algorithm of Jagadish et al. [14] can
be adapted to run in O(|G|2) time, where G is the set of nonzero
groups. For an arbitrary distributive error metric, the algorithm
takes O(|G|3) time, making it unsuitable for the sizes of data set
we considered. We therefore used RMS error to construct all the
V-Optimal histograms in our study.

We studied the four different error metrics discussed in Sec-
tion 2.2.4:

• Root Mean Square (RMS) error
• Average error
• Average relative error
• Maximum relative error

Note that these errors are computed across vectors of groups in
the result of the grouped aggregation query, not across vectors of
histogram buckets.

For each error metric, we constructed hierarchical histograms
that minimize the error metric. We compared the error of the hier-
archical histograms with that of an end-biased histogram using the
same number of buckets. We repeated the experiment at histogram
sizes ranging from 10 to 20 buckets in increments of 1 and from 20
to 1000 buckets in increments of 10.

5.1 Experimental Results
We divide our experiment results according to the type of error

metric used. For each error metric, we give a graph of query result
estimation error as a function of the number of histogram buckets.
The dynamic range of this error can be as much as two orders of
magnitude, so the y axes of our graphs have logarithmic scales.

5.1.1 RMS Error

 100

 1000

 0 50 100 150 200 250 300 350 400 450 500

R
M

S
 E

rr
o
r

(L
o
g
 S

c
a
le

)

Number of Buckets

Nonoverlapping

Overlapping

Greedy

Discretized

End-Biased
V-Optimal

Figure 17: RMS error in estimating the results of our query with
the different histogram types.

Our first experiment measured RMS error. The RMS error for-
mula emphasizes larger deviations, making it sensitive to the accu-
racy of the groups with the highest counts. Longest-prefix-match
histograms produced with the greedy heuristic were the clear win-
ner, by virtue of their ability to isolate these “outlier” groups inside

nested partitions. Interestingly, the quantized heuristic fared rela-
tively poorly in this experiment, finishing at the middle of the pack.
The heuristic’s logarithmically-distributed counters were unable to
capture sufficiently fine-grained information to produce more ac-
curate results than the greedy heuristic.

5.1.2 Average Error

 10

 100

 1000

 0 50 100 150 200 250 300 350 400 450 500

A
v
e
ra

g
e
 E

rr
o
r

(L
o
g
 S

c
a
le

)

Number of Buckets

Nonoverlapping

Overlapping

Greedy

Discretized

End-Biased

V-Optimal

Figure 18: Average error in estimating the results of our query with
the different histogram types.

Our second experiment used average error as an error metric.
Figure 18 shows the results of this experiment. As with RMS error,
the greedy heuristic produced the lowest error, but the V-Optimal
histograms and the quantized heuristic produced results that were
almost as good. Average error puts less emphasis on groups with
very high counts The other types of histogram produced signifi-
cantly higher error. As before, we believe this performance dif-
ference is mainly due to the ability of longest-prefix-match and V-
Optimal histograms to isolate outliers by putting them into separate
buckets.

5.1.3 Average Relative Error

 1

 10

 100

 0 50 100 150 200 250 300 350 400 450 500

A
v
e
ra

g
e
 R

e
la

ti
v
e
 E

rr
o
r

(L
o
g
 S

c
a
le

)

Number of Buckets

Nonoverlapping

Overlapping

Greedy

Discretized

End-Biased

V-Optimal

Figure 19: Average relative error in estimating the results of our
query with the different histogram types. Longest-prefix-match his-
tograms significantly outperformed the other two histogram types.

Our third experiment compared the three histogram types using
average relative error as an error metric. Compared with the pre-
vious two metrics, relative error emphasizes errors on the groups
with smaller counts. Figure 19 shows the results of this experiment.
The quantized heuristic produced the best histograms for this error
metric. The heuristic’s quantized counters were better at tracking
low-count groups than they were at tracking the larger groups that
dominated the other experiments. V-Optimal histograms produced
low error at smaller bucket counts, but fell behind as the number of
buckets increased.

5.1.4 Maximum Relative Error

 10

 100

 1000

 10000

 100000

 0 50 100 150 200 250 300 350 400 450 500

M
a
x
im

u
m

 R
e
la

ti
v
e
 E

rr
o
r

(L
o
g
 S

c
a
le

)

Number of Buckets

Nonoverlapping

Overlapping

Greedy

Discretized
End-Biased

V-Optimal

Figure 20: Maximum relative error in estimating the results of our
query with the different histogram types.

Our final experiment used maximum relative error. This error
metric measures the ability of a histogram to produce low error for
every group at once. Results are shown in Figure 20. Histograms
with overlapping partitioning functions produced the lowest result
error for this error measure. Interestingly, the greedy heuristic was
unable to find good longest-prefix-match partitioning functions for
the maximum relative error measure. Intuitively, the heuristic as-
sumes that removing a hole from a partition has no effect on the
mean count of the partition. Most of the time, this assumption is
true; however, when it is false, the resulting histogram can have
a large error in estimating the counts of certain groups. Since the
maximum relative error metric finds the maximum error over the
entire set of groups, a bad choice anywhere in the UID hierarchy
will corrupt the entire partitioning function.

6. CONCLUSION
In this paper, we motivate a new class of hierarchical histograms

based on our experience with a typical operation in distributed
stream monitoring. Our new histograms are quick to compute, and
in our experiments on Internet traffic data they provide significantly
better accuracy than prior techniques across a broad range of error
metrics. In particular, we show that a simple greedy heuristic for
constructing longest-prefix-match histograms produces excellent
results for most error metrics, while our optimal overlapping
histograms excel for minimizing maximum relative error. In
addition to our basic techniques, we also provide a set of natural
extensions to our basic histograms that accomodate multiple
dimensions, arbitrary hierarchies, and sparse data distributions.

Our work raises some interesting open questions for further in-
vestigation. On the algorithmic side, the complexity of the opti-
mal longest-prefix-match histogram remains to be resolved. On the
more practical side, we are pursuing two thrusts. First, we are cur-
rently deploying our algorithms in a live network monitoring envi-
ronment, which will raise practical challenges in terms of when and
how to recalibrate the histograms based on the history of the UID
stream. Second, we conjecture that these techniques are useful in a
broad range of applications. We have conducted early experiments
on several data sets, and preliminary results indicate that our hierar-
chical histograms provide better accuracy than existing techniques,
even when dealing with data that lacks an inherent hierarchy.

7. REFERENCES
[1] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel,

M. Cherniack, J.-H. Hwang, W. Lindner, A. S. Maskey,
A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing, , and S. Zdonik.

The design of the borealis stream processing engine. In
CIDR, 2005.

[2] APNIC. Whois database, Oct. 2005.
ftp://ftp.apnic.net/apnic/whois-data/APNIC/apnic.RPSL.db.gz.

[3] N. Bruno, S. Chaudhuri, and L. Gravano. STHoles: a
multidimensional workload-aware histogram. SIGMOD
Record, 30(2):211–222, 2001.

[4] S. Bu, L. V. Lakshmanan, and R. T. Ng. Mdl summarization
with holes. In VLDB, 2005.

[5] A. Buchsbaum, G. Fowler, B. Krishnamurthy, K. Vo, and
J. Wang. Fast prefix matching of bounded strings. In
ALENEX, 2003.

[6] C. Cranor, Y. Gao, T. Johnson, V. Shkapenyuk, and
O. Spatscheck. Gigascope: high performance network
monitoring with an sql interface. In SIGMOD, 2002.

[7] M. Franklin, S. Jeffery, S. Krishnamurthy, F. Reiss, S. Rizvi,
E. Wu, O. Cooper, A. Edakkunni, and W. Hong. Design
considerations for high fan-in systems: The HiFi approach.
In CIDR, 2005.

[8] V. Fuller, T. Li, J. Yu, and K. Varadhan. RFC 1519: Classless
inter-domain routing (CIDR): an address assignment and
aggregation strategy, Sept. 1993.
ftp://ftp.internic.net/rfc/rfc1519.txt.

[9] M. Garofalakis and A. Kumar. Deterministic wavelet
thresholding for maximum-error metrics. In PODS, 2004.

[10] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart,
M. Venkatrao, F. Pellow, and H. Pirahesh. Data cube: A
relational aggregation operator generalizing group-by,
cross-tab, and sub-totals. J. Data Mining and Knowledge
Discovery, 1(1):29–53, 1997.

[11] S. Guha. Space efficiency in synopsis construction
algorithms. In VLDB, 2005.

[12] S. Guha, N. Koudas, and D. Srivastava. Fast algorithms for
hierarchical range histogram construction. In PODS, 2002.

[13] Y. E. Ioannidis and V. Poosala. Balancing histogram
optimality and practicality for query result size estimation. In
SIGMOD, 1995.

[14] H. V. Jagadish, N. Koudas, S. Muthukrishnan, V. Poosala,
K. C. Sevcik, and T. Suel. Optimal histograms with quality
guarantees. In VLDB, pages 275–286, 1998.

[15] P. Karras and N. Mamoulis. One-pass wavelet synopses for
maximum-error metrics. In VLDB, 2005.

[16] N. Koudas, S. Muthukrishnan, and D. Srivastava. Optimal
histograms for hierarchical range queries (extended abstract).
In PODS, pages 196–204, 2000.

[17] Y. Matias, J. S. Vitter, and M. Wang. Wavelet-based
histograms for selectivity estimation. In SIGMOD, 1998.

[18] Y. Matias, J. S. Vitter, and M. Wang. Dynamic maintenance
of wavelet-based histograms. In VLDB, 2000.

[19] S. Muthukrishnan, V. Poosala, and T. Suel. “On Rectangular
Partitionings in Two Dimensions: Algorithms, Complexity,
and Applications”. In ICDT, Jerusalem, Israel, Jan. 1999.

[20] P. Newman, G. Minshall, T. Lyon, L. Huston, and Ipsilon
Networks Inc. Ip switching and gigabit routers. IEEE
Communications Magazine, 1997.

[21] V. Poosala, P. J. Haas, Y. E. Ioannidis, and E. J. Shekita.
Improved histograms for selectivity estimation of range
predicates. In SIGMOD, 1996.

[22] RIPE. Whois database, Sept. 2005.
ftp://ftp.ripe.net/ripe/dbase/ripe.db.gz.

	Introduction
	Contributions
	Relationship to Previous Work

	Problem Definition
	Classes of Partitioning Functions
	Nonoverlapping Partitioning Functions
	Overlapping Partitioning Functions
	Longest-Prefix-Match Partitioning Functions

	Measuring Optimality
	The Groups
	The Query
	The Query Approximation
	The Error Metric

	Algorithms
	High-Level Description
	Recurrences
	Notation
	Nonoverlapping Partitioning Functions
	Overlapping Partitioning Functions
	Longest-Prefix-Match Partitioning Functions
	k-Holes Technique
	Greedy Heuristic
	Quantized Heuristic

	Refinements
	Extension to Arbitrary Hierarchies
	Extension to Multiple Dimensions
	Sparse Group Counts
	Space Requirements

	Experimental Evaluation
	Experimental Results
	RMS Error
	Average Error
	Average Relative Error
	Maximum Relative Error

	Conclusion
	REFERENCES -9pt

