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ABSTRACT

Recently, there has been increasing interest in extending relational
query processing to include data obtained from unstructured sources.
A common approach is to use stand-alone Information Extraction
(IE) techniques to identify and label entities within blocks of text;
the resulting entities are then imported into a standard database and
processed using relational queries. This two-part approach, how-
ever, suffers from two main drawbacks. First, IE is inherently prob-
abilistic, but traditional query processing does not properly han-
dle probabilistic data, resulting in reduced answer quality. Second,
performance inefficiencies arise due to the separation of IE from
query processing. In this paper, we address these two problems by
building on an in-database implementation of a leading IE model—
Conditional Random Fields using the Viterbi inference algorithm.
We develop two different query approaches on top of this imple-
mentation. The first uses deterministic queries over maximum-
likelihood extractions, with optimizations to push the relational op-
erators into the Viterbi algorithm. The second extends the Viterbi
algorithm to produce a set of possible extraction “worlds”, from
which we compute top-k probabilistic query answers. We describe
these approaches and explore the trade-offs of efficiency and effec-
tiveness between them using two datasets.

1 Introduction

The field of database management has traditionally focused on struc-
tured data, providing little or no help for the significantly larger
amounts of the world’s data that is unstructured. With the rise of
text-based applications on the web and elsewhere, there has been
significant progress in information extraction (IE) techniques, which
parse text and extract structured objects that can be integrated into
databases for querying.

In the database community, work on IE has centered on two ma-
jor architectural themes. First, there has been interest in the design
of declarative languages and systems to easily specify, optimize and
execute IE tasks [1, 2, 3]. Second, IE has been a primary motivating
application for the groundswell of work on Probabilistic Database
Systems (PDBS) [4, 5, 6, 7, 8, 9], which can model the uncertainty
inherent in IE outputs, and enable users to write declarative queries
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that deal with such uncertainty.
Given this context, our goal is to merge these two ideas into

a single architecture, and build the first unified database system
that provides a query-oriented language for specifying, optimizing,
and executing IE tasks, and that supports a principled probabilistic
framework for querying the outputs of those tasks.

In previous work, we described a DBMS-based implementation
of Conditional Random Fields (CRF)—a leading probabilistic IE
model, and Viterbi—the maximum-likelihood (ML) inference al-
gorithm over CRF [10]. Taking only the ML extraction results and
ignoring their associated probabilities, enables relational queries to
be performed in a straightforward manner. This approach, how-
ever, suffers from two important limitations: (1) as shown in [11],
restricting the queries to the ML extractions can result in incorrect
answers, and (2) since the IE inference is computed separately from
the queries over the extracted data, important optimization oppor-
tunities are lost.

In this paper, we aim to achieve a deeper integration of IE and in-
ference with relational queries to improve both run-time efficiency
and answer quality. We study two approaches.

In the first, we consider deterministic Select-Project-Join (SPJ)
queries over the ML results of Viterbi-based IE. For this case, we
develop query optimizations that reduce work by carefully pushing
relational operators into the Viterbi algorithm. Compared to pre-
vious approaches that treated the IE and query phases separately,
these optimizations can significantly improve efficiency.

The key problem with querying the ML extractions stems from
inaccuracies in IE models: even high-quality ML extractions con-
tain errors, which can be exacerbated in SPJ queries over such ex-
tractions. We illustrate this point with an example scenario.

EXAMPLE 1. Kristjansson et al. [12] used CRF-based IE to ex-
tract Contact information from the signature blocks in the Enron
email corpus [13]. One such block begins with the text:

Michelle L. Simpkins
Winstead Sechrest & Minick P.C.
100 Congress Avenue, Suite 800...

One of the fields we wish to extract from these email blocks is
companyname, which in this case should be “Winstead Sechrest
& Minick P.C.”. Unfortunately, the ML extraction from the CRF
model assigns the value NULL to companyname. This IE error
shows up more explicitly in the following relational queries:
Query 1. Find contacts with companyname containing ”Winstead”
SELECT *
FROM Contacts
WHERE companyname LIKE ’%Winstead%’

Query 2. Find all contact pairs with the same companyname
SELECT *
FROM Contacts C1, Contacts C2
WHERE C1.companyname = C2.companyname



The first query provides an empty result, since “Winstead Sechrest
& Minick P.C.” is not identified as a companyname. The second
query is perhaps more vexing and counterintuitive: the erroneous
NULL parse for Michelle Simpkins’ companyname means that she
does not even match herself, hence, she is again absent from the
output. In general, due to the inherent uncertainty in IE, the an-
swers to queries over ML extractions can contain false negatives
and/or false positives. �

To address this answer quality problem, we develop an alterna-
tive to the ML-based approach using Probabilistic Database tech-
niques, where probabilistic SPJ queries are computed over the set
of possible “worlds” (PWs) induced from the CRF-based distribu-
tion.

We show that, by allowing us to look beyond ML extractions,
this probabilistic database approach can significantly reduce false
negatives (by as much as 80% in our experiments) with only marginal
increase in false positives. As expected, the improvement in answer
quality comes at a performance cost due to the consideration of the
full CRF distribution instead of only the ML extraction. For prob-
abilistic selection, we show how to reduce this overhead to a small
fixed-cost per document over the optimized ML-based queries. For
probabilistic join, however, the performance penalty can be much
higher. Thus, the two approaches we develop, while both improve-
ments over the state-of-the-art, provide a design space where per-
formance or answer quality can be emphasized based on the re-
quirements of the application.

Our key contributions in developing an integrated approach to
querying and IE can be summarized as follows:
• We present novel optimizations for SPJ queries over the maximum-

likelihood world of the CRF distribution that improve perfor-
mance through the effective integration of relational operators
and Viterbi-style inference;

• We propose new algorithms, that substantially extend vanilla-
Viterbi inference to enable effective probabilistic SPJ queries
over the full CRF distribution, and, thus, improved answer qual-
ity by considering the full set of possible extraction “worlds”;

• We evaluate our proposed approaches and algorithms, demon-
strating the scalability of our solutions and exploring the trade-
off between efficiency and answer quality using data collections
from the Enron and DBLP datasets.

2 Background

This section covers the concept of a probabilistic database and the
different types of inference operations over a CRF model, particu-
larly in the context of information extraction.

2.1 Probabilistic Databases

A probabilistic database DBpconsists of two key components: (1)
a collection of incomplete relations R with missing or uncertain
data, and (2) a probability distribution F on all possible database
instances, which we call possible worlds, and denote by pwd(Dp).
The attributes of an incomplete relation R ∈R include a subset
that are probabilistic attributes Ap, whose values may be present,
missing or uncertain. Each possible database instance is a possible
completion of the missing and uncertain data in R.

2.2 Conditional Random Fields (CRF)

The linear-chain CRF [14, 15], similar to the Hidden Markov Model,
is a leading probabilistic model for solving IE tasks. In the context
of IE, a CRF model encodes the probability distribution over a set
of label random variables (RVs) Y, given the value of a set of to-
ken RVs X. We denote an assignment to X by x and to Y by y.
In a linear-chain CRF model, label yi is correlated only with label



     





   

  

  

   

   

    

    

   

  

  

  

   

   

  



      

        

         

Figure 1: (a) Example CRF model; (b) Example TOKENTBL table; (c)

Example FACTORTBL table; (d) Two possible segmentations y1, y2.

yi−1 and token xi. Such correlations are represented by the feature
functions {fk(yi, yi−1, xi)}Kk=1.

EXAMPLE 2. Figure 1(a) shows an example CRF model over
an address string x ’2181 Shattuck North Berkeley CA USA’. Ob-
served (known) variables are shaded nodes in the graph. Hidden
(unknown) variables are unshaded. Edges in the graph denote sta-
tistical correlations. The possible labels are Y = {apt.num, street-
num, streetname, city, state, country}. Two possible feature func-
tions of this CRF are:

f1(yi, yi−1, xi) = [xi appears in a city list] · [yi = city]
f2(yi, yi−1, xi) = [xi is an integer] · [yi = apt.num]

·[yi−1 = streetname]

A segmentation y = {y1, ..., yT } is one possible way to tag each
token in x with one of the labels in Y . Figure 1(d) shows two
possible segmentations of x and their probabilities. �

DEFINITION 2.1. Let {fk(yi, yi−1, xi)}Kk=1 be a set of real-
valued feature functions, and Λ = {λk} ∈ R

K be a vector of
real-valued parameters, a CRF model defines the probabilistic dis-
tribution of segmentations y given a specific token sequence x:

p(y | x) =
1

Z(x)
exp{

T�

i=1

K�

k=1

λkfk(yi, yi−1, xi)}, (1)

where Z(x) is a standard normalization function that guarantees
probability values between 0 and 1. �

2.3 Inference Queries over a CRF Model

There are three types of inference queries over the CRF model [15].
Top-k Inference: The top-k inference computes the segmentations
with the top-k highest probabilities given a token sequence x from
a text-string d. The Viterbi dynamic programming algorithm [16]
is the key algorithmic technique for CRF top-k inference.

The Viterbi algorithm computes a two dimensional V matrix,
where each cell V (i, y) stores a ranked list of entries e = {score,
prev(label, idx)} ordered by score. Each entry contains (1) the
score of a top-k (partial) segmentation ending at position i with
label y; and, (2) a pointer to the previous entry prev on the path
that led to top-k score’s in V (i, y). The pointer e.prev consists of
the label label and the list index idx of the previous entry on the
path to e. Based on Equation (1), the recurrence to compute the
ML (top-1) segmentation is as follows:

V (i, y) =






maxy� (V (i− 1, y�)
+

�K
k=1 λkfk(y, y�, xi)), if i � 0

0, if i = −1.
(2)



The ML segmentation y
∗, backtracked from the maximum entry in

V (T, yT ) (where T is the length of the token sequence x) through
prev pointers, is shown in bold arrows in Figure 2(a). The com-
plexity of the Viterbi algorithm is O(T · |Y |2), where |Y | is the
number of possible labels.
Constrained Top-k Inference: Constrained top-k inference [12]
is a special case of top-k inference. It is used when a subset of
the token labels has been provided (e.g., via a user interface). Let
s be the evidence vector {s1, ..., sT }, where si is either NULL

(i.e., no evidence) or the evidence label for yi. Constrained top-
k inference can be computed by a variant of the Viterbi algorithm
which restricts the chosen labels y to conform with the evidence s.
Marginal Inference: Marginal inference computes a marginal prob-
ability p(yt, yt+1, ..., yt+k|x) over a single label or a sub-sequence
of labels [15]. The backward-forward algorithm, a variation of the
Viterbi algorithm, is used for such marginal inference tasks.

3 Setup

This section describes the setup of the system. Unstructured text is
represented by a set of documents or text-strings D, and each docu-
ment d ∈D is represented by a set of token records in TOKENTBL.
The CRF-based distribution over documents D is stored in FAC-
TORTBL. The TOKENTBL and FACTORTBL are pre-materialized.
Based on TOKENTBL and FACTORTBL, each document is parsed
into one probabilistic record in an entity table. Two families of
queries over the probabilistic entity tables are explored.
Token Table: The token table TOKENTBL is an incomplete rela-
tion R in DBp, which stores text-strings as relations in a database,
in a manner akin to the inverted files commonly used in information
retrieval. The TOKENTBL contains one probabilistic attribute—
labelp, whose values need to be inferred. As shown in Figure 1(b),
each tuple in TOKENTBL records a unique occurrence of a token,
which is identified by the text-string ID (strID) and the position
(pos) the token is taken from.

TOKENTBL (strID, pos, token, labelp)

Factor Table: The probability distribution F over all possible “worlds”
of TOKENTBL can be computed from the FACTORTBL. The FAC-
TORTBL is a materialization of the factor tables in the CRF model
for all the tokens in the corpus D. A factor table φ[yi, yi−1 | xi],
which represents the correlation between xi, yi, and yi−1, is com-
puted by the weighted sum of a set of feature functions in the CRF
model: φ[yi, yi−1 | xi] =

�K
k=1 λkfk(yi, yi−1, xi).

An example of the FACTORTBL is shown in Figure 1(c). A more
efficient representation for FACTORTBL is to store the factor table
for each token xi as an array data type, where the array contains a
set of scores ordered by {prevLabel, label} [10].

FACTORTBL (token, score ARRAY[])

Entity Table: An entity table contains a set of probabilistic at-
tributes, one for each label in Y . Each tuple in the entity table
has an independent distribution, defined by the CRF model over
the corresponding text-string d. Figure 3(a) shows the maximum-
likelihood (ML) view of the entity table with three address strings.

The entity table is defined and generated by a pivot operation
over the possible labelings in the TOKENTBL and their distribu-
tion. For each possible labeling of a text-string, the pivot operation
generates one possible world of the corresponding record in the en-
tity table. For example, the labeling corresponding to segmentation
y1 in Figure 1(d) generates the first tuple in the entity table in Fig-
ure 3(a).
Two Families of SPJ Queries: There are two families of queries
we consider computing on the extracted data in the entity tables.
Given that the ML view of an entity table can be defined as:

pos street
num

street
name

city state country pos street
num

street
name

city state country

0 5 1 0 1 1

1 2 15 7 8 7

0 5 1 0 1 1

1 2 15 7 8 7

2 12 24 21 18 17

3 21 32 34 30 26

4 29 40 38 42 35

2 XXX 24 XXX XXX XXX

3 XXX 32 XXX XXX XXX

4 29 40 38 41 334 29 40 38 42 35

5 39 47 46 46 50

4 29 40 38 41 33

5 36 47 46 46 49

(a) (b)(a) (b)

Figure 2: Illustration of the computation of V matrix in the following

algorithms: (a) Viterbi; (b) ConstrainedViterbi.

CREATE VIEW entityTbl1-ML as
SELECT *, rank() OVER (ORDER BY prob(*) DESC) r
FROM entityTbl1
WHERE r = 1;

one family is the set of deterministic SPJ queries over the ML views
of the entity tables. The other family computes the top-k results of
probabilistic SPJ queries over entity tables using the set of possible
worlds (i.e., segmentations) induced by the CRF distribution. Op-
tionally, a prescribed threshold can be applied to the result proba-
bilities. The queries in this family have the following general form,
where SQLQuery is a view using a standard SPJ query:

SELECT *, rank() OVER (ORDER BY prob(*) DESC) r
FROM SQLQuery
WHERE r <= k [ AND prob(*) > threshold ]

4 Querying the ML World

In this section, we focus on the deterministic SPJ queries over the
ML views of the entity tables. The naive way to compute this type
of queries is to first compute the ML extraction for each document,
then execute the SPJ queries over the result. We show that for se-
lection and join, conditions can be pushed into the Viterbi infer-
ence process to achieve significant speed-up. This performance
improvement demonstrates the benefit of a deep integration of IE
and relational operators.

4.1 Optimized Selection over ML World

An example of a selection query over the ML view of an entity
table is to find all the Address tuples whose streetname contains
’Sacramento’ in the ML extraction:

SELECT * FROM Address-ML
WHERE streetname like ’%Sacramento%’

The selection condition over the ML view of the Address ta-
ble is rewritten into two selection conditions over the underlying
TOKENTBL and FACTORTBL: (1) test if the text-string d contains
the token sequence in the selection condition xcond (e.g., ’Sacra-
mento’); (2) test if the position(s) where xcond appears in d are
assigned the label in the selection condition ycond (e.g., street-
name). The first condition can be simply pushed down over the
TOKENTBL, only picking the documents that contain the token se-
quence xcond. The second condition can be pushed into the Viterbi
inference computation of a particular text-string d with condition
{i, len, y�} ensuring that the label at positions from i to (i+len−1)
is y�. In general, condition (2) may span multiple tokens. Next, we
describe SELVITERBI, a novel variant of the Viterbi algorithm that
pushes the condition {i, len, y�} into the Viterbi computation.

Recall the Viterbi algorithm described in Section 2.3 which com-
putes a V matrix as in Figure 2(a): The condition {i, len, y�} is
satisfied if and only if the ML segmentation path backtracks to
all the entries in V (i, y�) .. V ((i + len − 1), y�). The intuition
behind the SELVITERBI algorithm is as follows. Given condition
{i, 1, y�} and a text-string d, if none of the top-1 (partial) segmen-
tations ending at position j where T � j > i backtrack to cell



strID apt. nump street nump street namep cityp statep countryp

1 null 2181 Shattuck North Berkeley CA USA

2 12B 331 Fillmore St Seattle WA USA
(a)

2 12B 331 Fillmore St. Seattle WA USA

3 224B null Ford South St. Louis MO USA

strID company namep cityp statepp y y

1 Google Mountain View CA

2 Yahoo! Santa Clara CA
(b)

3 Microsoft Seattle WA

Figure 3: Examples of the ML views of entity tables: (a) address

strings (b) company location strings.

V (i, y�), then we can stop the inference and conclude that this text-
string does not satisfy the condition. We call such a position j a
pruning position, and we would like to detect a pruning position as
early as possible to stop the inference computation. Similar intu-
ition holds for the general case where len > 1. Our SELVITERBI
algorithm follows a Viterbi dynamic program which calls a User
Defined Function (UDF) to compute the top (partial) segmentations
in V (i, yi) with additional logic to check if i is a smallest pruning
position (thus stopping the recurrence). Variants of SELVITERBI
can be employed for increased efficiency based on criteria such as
the position and selectivity of a selection condition (which can be
incorporated into a cost-based optimizer). A more detailed discus-
sion on SELVITERBI() can be found in Appendix A.

EXAMPLE 3. Using the example in Figure 2(a), suppose the
condition {1, 1,streetnumber} is generated from a selection condi-
tion for a specific text-string d: return text-string d with streetnum-
ber as the label of token #2 (counting from 0) in the ML segmen-
tation. In the second recursive step, only the partial segmentation
in V (1,streetnumber) satisfies the condition. In the third recursive
step, because no partial segmentations in V (2, y), y ∈ Y come
from cell V (1,streetnumber) as shown in Figure 2(a), j = 2 is
the smallest pruning position. Thus, we stop the dynamic program-
ming algorithm and conclude that d does not satisfy the condition
{1, 1,streetnumber}.

4.2 Optimized Join over ML World

An example of a join query over the ML views of two entity tables
is to find all (Address, Company) entity pairs (as in Figure 3) with
the same city value.

SELECT * FROM Address-ML, Company-ML
WHERE Address-ML.city = Company-ML.city

The naive join algorithm over the ML world is: first, compute
the Viterbi inference on the two input document sets independently;
second, perform the pivot operations to compute the ML views of
the Address and Company entity tables – Address-ML and Company-
ML; finally, compute the deterministic join over the city attribute.

The intuition behind the optimization is that we do not need to
compute the Viterbi inference over a text-string in the outer docu-
ment set if it contains none of the join-key values computed from
the inference over the inner document set. The optimized algorithm
for join-over-ML follows these steps: (1) compute the Viterbi in-
ference over the smaller of the two input document sets, we call
this the inner set and the other the outer set; (2) build a hash-table
of the join-attribute values computed from the ML extraction of the
inner set; (3) perform Viterbi inference only on the documents in
the outer set that contain at least one of the hashed values; and (4)
perform the pivot operation to compute the ML views of the entity
tables and compute the deterministic join over them. This opti-
mization reduces the number of documents on which the Viterbi
inference is performed, which improves the performance of join-
over-ML queries (by more than a factor of 5 in our experiments).

5 Querying the Full Distribution

In this section, we discuss novel probabilistic query processing
strategies to compute the top-k results of SPJ queries over the possi-
ble worlds of CRF-based entity tables. In contrast to the techniques
in Section 4, the algorithms here do not focus on the single ML seg-
mentation, but rather compute results from the CRF-induced distri-
bution of possible segmentation worlds. As a first step, we present
an incremental Viterbi algorithm that supports efficient sorted ac-
cess to the possible segmentations of a document by descending
probabilities. This ordering is critical for efficiently computing the
top-k results of SPJ queries, especially probabilistic joins.

Due to space constraints, detailed descriptions (e.g., at the pseudo-
code level) and analyses for the algorithms in this section can be
found in Appendix A.

5.1 Incremental Viterbi Inference

The conventional Viterbi top-k inference algorithm is a straightfor-
ward adaptation of the dynamic programming recurrence in Equa-
tion (2). The idea is to maintain, in each V (i, y) cell, a list of the
top-k partial segmentations ending at position i with label y. This,
of course, assumes that the “depth” parameter k is known a priori.

We present a variant of the Viterbi algorithm that can incremen-
tally (through a GET-NEXT-SEG() call) compute the next highest-
probability segmentation of a document. Our algorithm is similar
in spirit to the theoretical framework of Huang et al. [17] for finding
k-best trees in the context of hypergraph traversals.

Recall the V matrix computed by the Viterbi algorithm, where
each cell V (i, y) contains a list of top-k entries e = {score, prev(label,
idx)} ordered by score. The key idea in our incremental algorithm
is to enumerate this list lazily: only on the path of the last extracted
segmentation.

Since all the V (T ) (T is the length of the document) entries in
already-extracted (i.e., “consumed”) segmentation paths cannot be
used to compute the next highest-probability segmentation, they re-
cursively trigger (through a GET-NEXT() call) the computation for
the next “unconsumed” entry using Equation (2) from their prede-
cessor V cells. The key observation here is that these recursive
GET-NEXT() calls can only occur along the path of the last ex-
tracted segmentation. More specifically, assume y

∗ denotes the
ML segmentation discovered through Viterbi. To build the next-
best segmentation, we start from entry V (T, y∗[T ]). Since that
entry is already “consumed” (in the ML segmentation), we trigger
a GET-NEXT() call to compute the next-best entry using the entries
in row V (T − 1); this, in turn, can trigger a GET-NEXT() call at
V (T −1, y∗[T −1]), and so on. Thus, GET-NEXT() calls are recur-
sively invoked on the path y

∗ from T down to 1 (or, until we find a
V (i, y∗[i]) cell with an already-computed “unconsumed” entry).

Complexity: The first GET-NEXT-SEG() call reverts to simple Vi-
terbi ML inference with a complexity of O(T |Y |2). Then, each
incremental call of GET-NEXT-SEG() for the (L + 1)th highest-
probability segmentation (L > 0) has a complexity of O(T (|Y |+
L) log(|Y |+ L)).

EXAMPLE 4. The Viterbi V matrix in Figure 2(a) shows the
ML segmentation in bold. In order to compute the second highest-
probability segmentation, GET-NEXT() is triggered recursively from
GET-NEXT-SEG() to compute the next probable (partial) segmenta-
tions entry for cells V (5,country), V (4,state), V (3,city), V (2,street-
name) and V (1,streetname) on the ML path. The second highest-
probability segmentation is then computed by backtracking the en-
try in V (T, yT ) with the second highest score. �



5.2 Probabilistic Selection

The following query computes the top-1 result of probabilistic se-
lection with condition streetname contains ’Sacramento’ over the
probabilistic Address entity table:

SELECT *, rank() OVER (ORDER BY prob(*) DESC) r
FROM ( SELECT *

FROM Address
WHERE streetname like ’%Sacramento%’

) as Address
WHERE r = 1 AND prob(*) > threshold

Setting a threshold on probability can effectively filter out false
positive results with very low probabilities that could be introduced
by considering additional non-ML worlds. Please refer to Sec-
tion 6.3 for a discussion on threshold setting.

The probabilistic selection condition is translated into domain
constraints that the labels at the positions where xcond (e.g., “Sacra-
mento”) appear in the text-string d can only be ycond (e.g., street-
name). For example, with string “123 Sacramento Street San Fran-
cisco CA“ and condition streetname contains ’Sacramento’, the do-
main constrains are D(y2) = {streetname} and D(yi) = Y for
y1, y3, .., y6. The domain constraints D(y1), ..., D(yn) generated
from the probabilistic selection condition are used as input to the
constrained Viterbi algorithm, described in Section 2.3, to compute
the top-1 result of probabilistic selection. We illustrate the algo-
rithm using the following example.

EXAMPLE 5. Consider the V matrix in Figure 2(b) with do-
main constraints such that y2 and y3 can only be streetname: D(y2) =
D(y3) = {streetname}. Thus, we can cross out all the cells in
V (2) and V (3) where y �= streetname as shown in Figure 2(b).
These domain constraints result in a top-1 constrained path that
is different from the result of the vanilla Viterbi algorithm. The
top-1 constrained path satisfies the selection condition, and will
be returned as a result if its probability is higher than a certain
threshold. This constrained top-1 path is the non-ML extraction
computed for the probabilistic selection queries. �

5.3 Probabilistic Join

The following query computes the top-1 (ML) result of a proba-
bilistic join operation over the probabilistic entity tables Address
and Company, with an equality join condition on city.

SELECT *, rank() OVER (ORDER BY prob(*) DESC) r
FROM ( SELECT *

FROM Address A, Company C
WHERE A.city = C.city

) as AddrComp WHERE r = 1

A naive probabilistic join algorithm is: first compute the top-k
extractions (for a sufficiently large k) from each input document
then deterministically join over the top-k views of the entity tables.
The complexity of this algorithm is dominated by the expensive
computation of the top-k extractions. Computing a fixed number
of top-k extractions for every input document is wasteful, because
most top-1 probabilistic join results can be computed from the first
few highest-probability extractions. Thus, a more efficient way is
to compute the top-1 join results incrementally.

An incremental join algorithm is the rank-join algorithm described
in [18]. It takes two ranked inputs and computes the top-k join re-
sults incrementally without consuming all inputs. The algorithm
maintains a priority queue for buffering all join results that cannot
yet be produced, and an upper-bound of the score of all “unseen”
join results. Using the buffer and the upper-bound, the rank-join al-
gorithm can decide if one of the produced join results is guaranteed
to be among the top-k answers.

pos street
num

street
name

city state country pos street
num

street
name

city state country

Equation(3)
0 5 1 0 1 1

1 10 18 10 11 10

1 10 18 10 11 10

2 18 30 27 24 23

Equation(3)

Equation(4)

2 18 30 27 24 23

3 30 41 43 39 35

4 43 54 52 56 49

3 30 41 43 39 35

4 41 52 50 54 47

5 54 62 61 61 574 43 54 52 56 49

5 54 62 61 61 57

5 54 62 61 61 57

6 U (6, 1) = 73

V matrix U matrixV matrix U matrix

Equation(4)

Equation(5)

Figure 5: Illustration of the data structures in probabilistic projection.

The key idea behind our probabilistic join algorithm is that, given
the incremental Viterbi algorithm, which gives us ordered access to
the possible extractions of a string d—a ranked list by probability—
we can compute the top-1 join result for a pair of strings using the
rank-join algorithm. Thus, our probabilistic join is a set of rank-
join computations—one for each string pair that is “joinable” (i.e.,
can potentially lead to join results). If most “joinable” string pairs
compute the top-1 most probable join result from the top-1 extrac-
tions, then GET-NEXT-SEG() is called far fewer than k times per
document. For the remaining “joinable” string pairs, more extrac-
tions are computed incrementally to look for join results in non-ML
worlds. In order to bound the search, we set k to be the maximum
number of extractions from a document.

If a string pair does not join within the top-k extractions, then
rank-join incurs extra overhead. Thus, an effective filter for non-
“joinable” string pairs is crucial to the efficiency of the probabilis-
tic join algorithm. We find that an effective such filter is to first
compute the top-k extractions for inner (the smaller) entity table,
build a hash-table for all the join-key values, and for each string in
outer, probe the join-key hash-table for the “joinable” inner strings.

5.4 Probabilistic Projection

The following projection query computes the ML city value for
each record in the entity table Address.

SELECT *, rank() OVER (ORDER BY prob(*) DESC) r
FROM ( SELECT city

FROM Address ) as Address
WHERE r = 1

A naive strategy would be to first compute the full result distri-
bution of a partial marginalization over a sub-domain χ ⊂ Y for
each label yi in the CRF model (using the distribution of all possi-
ble segmentations) 1; then, the ML world from the distribution can
be returned. In this manner, however, significant effort is wasted in
calculating the non-ML worlds of the marginal distribution.

Next, we describe a novel probabilistic projection algorithm that
integrates the top-1 Viterbi inference and the marginal inference.
The key idea underlying our probabilistic projection technique is to
extend the Viterbi dynamic program to compute top-1 segmentation
paths with labels that are either projected on (i.e., in Y \χ) or ’don’t
care’s marginalizing over all the projected-out labels in chi.

Similar to vanilla Viterbi, our probabilistic projection algorithm
(for projecting out a sub-domain χ ⊂ Y ) also follows a dynamic
programming paradigm, computing ML (partial) segmentations end-
ing at position i from those ending at position i − 1. There are,
however, two crucial differences. First, the (partial) segmentations
{y1, ..., yi}, i � T computed for probabilistic projection only have
labels yj , 1 � j � i in Y \χ or ’don’t care’. yj =’don’t care’
means that the segmentation path is marginalized over χ at posi-
tion j (i.e., yj could be any label in χ). A dynamic programming
matrix V (i, y) stores such top-k (partial) segmentations that end in
1Note that, in contrast to conventional marginal inference (Section 2.3), which
marginalizes to eliminate RVs in y, partial marginalization here marginalizes to re-
strict the domains of RVs in y.



U(i+ 1, yi+1).score = log(max
prev

{Σyi∈χ(��prev (exp(V (i, yi).score+ FactorTbl(xi+1, yi, yi+1))))}) (3)

V (i+ 1, yi+1).score = max{ max
yi∈Y \χ

{(V (i, yi).score+ FactorTbl(xi+1, yi, yi+1))}, U(i+ 1, yi+1).score} (4)

Figure 4: Equations for computing U and V matrix for probabilistic projection algorithm.

label y ∈ Y at position i. Second, in order to compute the top-k
(partial) segmentations in V (i+1, yi+1), in addition to the V (i, yi)
entries, we also need to account for the possibility of a ‘don’t care’
in position i. This is accomplished by explicitly maintaining an
auxiliary matrix U(i + 1, yi+1) that stores the (partial) top-k seg-
mentations ending at position i+ 1 with label yi+1 ∈ Y and yi =
’don’t care’. Example V and U matrices for the above example
probabilistic projection query are shown in Figure 5.

Next, we describe how the entries in the V and U matrices are
computed. Our probabilistic projection algorithm is a variation of
the Viterbi technique, where a dynamic programming recurrence
computes both V and U simultaneously. Equation (4) in Figure 4
computes the top-1 partial segmentation in cell V (i + 1, yi+1)
by selecting either the best extension of a partial segmentation in
V (i, yi), yi ∈ Y \χ or U(i + 1, yi+1), depending which choice
gives the maximum score. Equation (3) in Figure 4 computes the
top-1 partial segmentation for cell U(i + 1, yi+1), marginalizing
over χ at position i, given label yi+1 ∈ Y . If we think of each
V (i, y), y ∈ Y as a ranked list of tuples {score, label, prev} or-
dered by descending score, then computing the top-ranked U(i +
1, yi+1) entry is a multi-way rank-join with an equality join con-
dition on prev over ranked lists V (i, y), y ∈ χ. The multi-way
rank-join aggregates the entries (i.e., partial segmentations) in mul-
tiple lists V (i, y), y ∈ χ, which agree on prev. The join condition
(equality on prev) ensures that the joined (partial) segmentations
share the same path up to position i − 1. The score of the result-
ing partial segmentation is the summation over the score’s of the
joined partial segmentations in V (i, y), y ∈ χ.

The top-1 result for probabilistic projection can be computed by
backtracking the prev pointers from either an entry in V (T, yT ), yT ∈
Y \χ or an aggregated entry U(T + 1,−1) computed by aggregat-
ing V (T, yT ), yT ∈ χ (to account for a final label of ’don’t care’).

Complexity: Due to the added cost of rank-join aggregations for
the U matrix computation, the complexity of our probabilistic pro-
jection algorithm is O(T 3|Y |3l), where l denotes the depth of the
rank-join search.

EXAMPLE 6. Suppose the query is probabilistic projection over
city on Address. Figure 5 illustrates the computation of the entries
in the V and U matrices. Equation (3) is used to compute U(i +
1, y�), y� ∈ Y matrix entries from a rank-join over all the V (i, y)
lists except when y =city. Equation (4) is used to compute V (i +
1, y) matrix entries from the maximum of V (i, city) and U(i +
1, y). The top-1 result of probabilistic projection is backtracked
from the maximum of V (5, city) and U(6,−1) (T = 5) through
prev pointers. In this example, the most probable segmentation af-
ter probabilistic projection (i.e., partial marginalization) is {’don’t
care’,’don’t care’,’don’t care’,city,’don’t care’,’don’t care’}.

6 Evaluation

Having described two families of approaches for integrating query
processing and IE, we now present the results of a set of exper-
iments aimed to evaluate them in terms of efficiency and answer
quality.
Setup and Dataset: We implemented the optimizations for select-
over-ML (sel-ML) and join-over-ML (join-ML) queries as described
in Section 4, and the algorithms for computing the top-1 result for
probabilistic selection (prob-sel) and probabilistic join (prob-join)

as described in Section 5. These implementations were done on
PostgreSQL 8.4.1. We conducted the experiments reported here on
a 2.4 GHz Intel Pentium 4 Linux system with 1GB RAM.

For the accuracy experiments, we use the Contact dataset [19]
and the CRF model developed at the University of Massachusetts [12].
The Contact dataset contains 182 signature blocks from the Enron
email dataset annotated with contact record tags (e.g., phonenum-
ber, city, firstname, etc.). For ground truth, we rely upon manual
tagging performed in prior work [12]. We use false positives (i.e.,
the number of computed results not in the ground truth) and false
negatives (i.e., the number of results in ground truth not computed)
as the two measures of accuracy.

For the efficiency and scalability experiments we use the DBLP

dataset [20] and a CRF model with similar features to those of [12].
The DBLP database contains more than 700k papers with attributes,
such as conference, year, etc. We generate bibliography strings
from DBLP by concatenating all the attribute values of each paper
record. Perhaps because it was generated from structured data, the
ML extraction accuracy on the DBLP dataset is as high as 97%,
making it not useful for the accuracy experiments. But it serves as
an excellent stress test for the scalability of the algorithms.

6.1 Selection over ML world (sel-ML): opt vs. naive

In the first experiment, we use the DBLP dataset to compare the ef-
ficiency of optimized and naive algorithms for select-over-ML over
100k randomly picked documents (there is no answer quality dif-
ference between them — they provide exactly the same answers).
We expect the optimized algorithm sel-ML.opt (using SELVITERBI())
to outperform the naive algorithm sel-ML.naive for selection con-
ditions on token sequences that can have different labels in different
documents (e.g., ’algorithm’ can be in a paper title or a conference
name). Figure 6 shows performance results for sel-ML.naive and
sel-ML.opt as the left two bars of each selection condition. It can
be seen that the optimized approach can achieve a speedup of 2 to
3 times for 6 selection conditions in Figure 6 2.

We also ran experiments comparing the two approaches for cases
where there is no expected benefit to the sel-ML.opt algorithm (i.e.,
where there is no pruning position for sel-ML.opt to exploit). As
we can see in the three middle selection conditions in Figure 6, the
performance of the two approaches was nearly identical, demon-
strating that the optimized approach imposes negligible overhead
(10% in the worst case) on the selection algorithm.

6.2 Join over ML World (join-ML): opt vs. naive

In the second experiment, we compare the efficiency of the opti-
mized and naive algorithms for join-over-ML. We ran a query over
two sets of documents from DBLP to find all pairs in the same pro-
ceeding. Figure 7 shows the results for different input sizes (x× y

denotes a join of a set of x documents as the inner with a set of y
documents as the outer). As can be seen in the figure, join-ML.opt

is more than 5 times faster than join-ML.naive when the input sizes
are 5k × 50k. The speedup of join-ML.opt decreases as the inner
size approach the outer size.

Two statistics determine the relative performance of join-ML.opt

compared to join-ML.naive: the number of join-keys computed
from the inner, and the selectivity of those join-keys over the outer.

2It is 10-fold more expensive to evaluate the three right selection conditions, because
they appear much more frequently in our dataset.









































Figure 6: Performance comparison (DBLP) between sel-ML.naive,

sel-ML.opt and prob-sel with difference selection conditions.











































Figure 7: Performance comparison (DBLP) between join-ML.naive
and join-ML.opt with different input sizes.

The query joining on “proceeding” (shown in Figure 7) is a good
case, where it generates a small set of join-keys, which in turn have
low selectivity. As the inner size increases, both the number of join-
keys and the selectivity increases, hence the speedup decreases.

Other join queries with different values of these two statistics
have different performance curves, as shown in Appendix B. There
are cases, when the cost of filtering the outer documents using
the inner join-keys outweigh the cost of inference over the filtered
documents, the join-ML.opt becomes more expensive than join-

ML.naive. A query optimizer can estimate the statistics on the size
and selectivity of the inner join-keys and determine when it is ben-
eficial to apply join-ML.opt.

In the previous two sections, we showed that the optimizations
for SPJ-over-ML queries can achieve significant performance ben-
efits. In the following sections, we turn to probabilistic SPJ queries.

6.3 Probabilistic Selection: prob-sel vs. sel-ML
In this experiment, we compare the answer quality and performance
of the probabilistic selection prob-sel and the optimized selection
over the ML world sel-ML.opt. We use a set of selection condi-
tions on each of the five labels in the Contact dataset: company-
name, firstname, lastname, jobtitle and department. For each label
we use all the values for that label in the ground truth to construct
the set of selection conditions, and measure the average false pos-
itive and false negative rates. This way, we avoid the randomness
due to a particular selection condition.

The table in Figure 8 shows the false negative and false posi-
tive rates for the two approaches over the five selection condition
sets. As can be seen in the table, the prob-sel algorithm achieves
much lower false negatives. For example, the false negatives for

(False -) company firstname lastname jobtitle department
sel-ML 0.074 0.012 0.036 0.102 0.286
prob-sel 0.014 0 0.006 0.037 0.079
(False +) company firstname lastname jobtitle department
sel-ML 0.010 0 0 0.010 0
prob-sel 0.009 0.006 0.006 0.010 0

Figure 9: False negative, false positive rates and performance comparison between sel-ML and sel-PW queries.

techniques is certainly worthwhile.

APPENDIX

A Related Work

Information extraction (IE) from text has received a lot of attention
from both the database and the Machine Learning (ML) commu-
nities (see recent tutorials [20, 21]). The vast majority of works in
ML focuses on improving extraction accuracy using state-of-the-art
probabilistic techniques, including different variants of HMM [22]
and CRF [15, 11, 13] models. Probabilistic IE models provide high-
accuracy extraction results and a principled way to reason about the
uncertainty of the IE process.

Recently, a lot of effort has been devoted on exploring frame-
works that manage the state of the IE process, and provide support
to easily specify, optimize and execute IE tasks. The most promis-
ing approach in this effort is based on declarative specifications of
the IE tasks. The AVATAR project [2] at IBM Almaden Research de-
veloped an algebraic, rule-based IE system. Through the use of an
SQL variant, IE programs can be declaratively expressed and opti-
mized. PSOX project [4] at Yahoo! research is building a pipelined
IE system based on ML models. Shen et al. [3] also consider opti-
mizing declarative IE programs specified in DataLog. These earlier
efforts in declarative IE do not have a unified framework supporting
both a declarative interface as well as the state-of-the-art probabilis-
tic IE models.

There have been efforts to consider uncertainties in IE, but only
in limited settings. For example, Avatar project [23] explored ef-
ficient maximum-entropy algorithms to generate probabilities in
their rule-based IE system. Shen et. al. [24] developed best-effort
IE considers uncertainties but not probabilities.

At the same time, the ML community has also been moving in
the direction of declarative IE. Eisner et. al. [25] adopts a pure first-
order logic perspective by extending Prolog to provide support for
dynamic programming. Markov Logic [26] represents a very pow-
erful graphical model that marries the declarativeness of first-order
logic with the popular Markov Network model, and successfully
exemplifies how their model can handle the task of citation match-
ing. In contrast to the systems come from database community,
this framework natively supports uncertainty modeling, however,
no database optimizations are considered.

Since the early 80’s, a number of PDBSs have been proposed
in an effort to offer a declarative, SQL-like interface for managing
large uncertain-data repositories [5, 6, 7, 8, 9, 10]. This work ex-
tends the relational model with probabilistic information captured
at the level of individual tuple existence [5, 8] or individual tuple-
value uncertainty [6, 9]. The Trio [6] and MayBMS [9] efforts, try
to adopt both types of uncertainty, with Trio focusing on promoting
data lineage as a first-class citizen in PDBSs and MayBMS aiming
at more efficient tuple-level uncertainty representations through ef-
fective relational table decompositions. Recent PDBS efforts like
BAYESSTORE [10] and the work of Sen and Deshpande [8] rep-
resent probabilistic models (based on Bayesian networks) as first-
class citizens in relational database, and support in-database queries
and reasoning over the the model.

The issue of offering database support for managing IE through
state-of-the-art probabilistic models has not been addressed in ex-

isting PDBSs. Closer to our work, Gupta and Sarawagi [12] give
tools for storing coarse approximations of a CRF model inside a
simple PDBS supporting limited forms of dependencies. Instead,
our work aims to support the full expressive power of CRF models
and inference operations as a first-class PDBS citizen.
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Figure 8: False negative, false positive rates (Contact) between sel-
ML.opt and prob-sel queries.

(False -) k=1 k=5 k=10 k=15 k=20
join-ML 0.373 0.373 0.373 0.373 0.373

probjoin.naive 0.373 0.253 0.245 0.216 0.191
probjoin.opt 0.373 0.312 0.283 0.260 0.251

(False +) k=1 k=5 k=10 k=15 k=20
join-ML 0.082 0.082 0.082 0.082 0.082

probjoin.naive 0.082 0.259 0.437 0.515 0.567
probjoin.opt 0.082 0.091 0.093 0.097 0.110

Figure 9: False negative, false positive rates and performance comparison between sel-ML and sel-PW queries.
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Figure 10: (a) False negative, (b) false positive rates (Contact), and (c) performance comparison (DBLP) between join-ML and prob-join queries.

of the IE process, and simplify the specification, optimization and
execution of IE tasks. A promising approach in this line of work
is to use declarative specifications of the IE tasks [1, 2, 3]. These
earlier efforts in declarative IE, however, lack a unified framework
supporting both a declarative interface as well as the state-of-the-
art probabilistic IE models. There have been efforts to consider
uncertainties in IE, but only in limited settings [23, 24].

The vast majority of IE work in Machine Learning focuses on
improving extraction accuracy using probabilistic techniques, in-
cluding variants of HMM [25] and CRF [12, 14, 15] models. At the
same time, the Machine Learning community has also been moving
in the direction of declarative IE [26, 27] using first-order logic.

Since the early 80’s, a number of PDBSs have been proposed
in an effort to offer a declarative, SQL-like interface for managing
large uncertain-data repositories [4, 5, 6, 7, 8, 9]. Recent PDBS
efforts such as BAYESSTORE [9] and the work of Sen and Desh-
pande [7] represent probabilistic models (based on Bayesian net-
works) as first-class citizens in a relational database, and support
in-database queries and reasoning over the model.

The issue of providing database support for managing IE based
on probabilistic models has not been addressed in existing PDBSs.
Closer to our work, Gupta and Sarawagi [11] give tools for stor-
ing coarse approximations of a CRF model inside a simple PDBS
supporting limited forms of dependencies. Instead, our work aims
to support the full expressive power of CRF models and inference
operations as a first-class PDBS citizen.

8 Conclusions

The need for query processing over data extracted from unstruc-
tured sources is becoming increasingly acute. Previous approaches
to integrating IE with database systems suffered from both perfor-
mance and accuracy limitations. In this paper we proposed two
families of queries over CRF-based IE results. The first uses de-
terministic queries over maximum-likelihood extractions, with op-
timizations to push the relational operators into the Viterbi algo-
rithm. The second extends the Viterbi algorithm to produce a set of
possible extraction “worlds”, from which we compute top-k proba-
bilistic query answers. These approaches provide a design space in
which answer quality and performance can be traded off according
to the needs of the application. As future work, we intend to ex-
plore additional performance enhancements via parallelization of
the algorithms and the development of a cost-based optimizer.
Acknowledgements: This work was supported by the NSF, under
grant NSF IIS-0415175 and IIS-0803690, and a Google Faculty
Research Award. We wish to thank Prof. Aron Culotta of SELU,

who provided assistance with the Contact dataset and the corre-
sponding CRF model [19].

9 References

[1] F. Reiss, S. Raghavan, R. Krishnamurthy, H. Zhu, and S. Vaithyanathan, “An
Algebraic Approach to Rule-Based Information Extraction,” in ICDE, 2008.

[2] W. Shen, A. Doan, J. Naughton, and R. Ramakrishnan, “Declarative
Information Extraction Using Datalog with Embedded Extraction Predicates,”
in VLDB, 2007.

[3] A. Doan, R. Ramakrishnan, F. Chen, P. DeRose, Y. Lee, R. McCann,
M. Sayyadian, and W. Shen, “Community information management,” 2006.

[4] N. Dalvi and D. Suciu, “Efficient Query Evaluation on Probabilistic Databases,”
in VLDB, 2004.

[5] O. Benjelloun, A. Sarma, A. Halevy, and J. Widom, “ULDB: Databases with
Uncertainty and Lineage,” in VLDB, 2006.

[6] A. Deshpande and S. Madden, “MauveDB: Supporting Model-based User
Views in Database Systems,” in SIGMOD, 2006.

[7] P. Sen and A. Deshpande, “Representing and Querying Correlated Tuples in
Probabilistic Databases,” in ICDE, 2007.

[8] L. Antova, T. Jansen, C. Koch, and D. Olteanu, “Fast and Simple Relational
Processing of Uncertain Data,” in ICDE, 2008.

[9] D. Wang, E. Michelakis, M. Garofalakis, and J. Hellerstein, “BayesStore:
Managing Large, Uncertain Data Repositories with Probabilistic Graphical
Models,” in VLDB, 2008.

[10] D. Wang, E. Michelakis, M. Franklin, M. Garofalakis, and J. Hellerstein,
“Probabilistic Declarative Information Extraction,” in ICDE, 2010.

[11] R. Gupta and S. Sarawagi, “Creating Probabilistic Databases from Information
Extraction Models,” in VLDB, 2006.

[12] T. Kristjansson, A. Culotta, P. Viola, and A. McCallum, “Interactive
Information Extraction with Constrained Conditional Random Fields,” in
AAAI’04, 2004.

[13] “Enron email dataset, http://www.cs.cmu.edu/ enron/.”
[14] J. Lafferty, A. McCallum, and F. Pereira, “Conditional Random Fields:

Probabilistic Models for Segmenting and Labeling Sequence Data,” in ICML,
2001.

[15] C. Sutton and A. McCallum, “Introduction to Conditional Random Fields for
Relational Learning,” in Introduction to Statistical Relational Learning, 2008.

[16] G. D. Forney, “The Viterbi Algorithm,” IEEE, 1973.
[17] L. Huang and D. Chiang, “Better k-best Parsing,” in IWPT, 2005.
[18] I. F. Ilyas, R. Shah, W. G. Aref, J. S. Vitter, and A. K. Elmagarmid,

“Rank-aware Query Optimization,” in SIGMOD, 2004.
[19] “Contact record extraction data,

http://www2.selu.edu/academics/faculty/aculotta/data/contact.html.”
[20] “Dblp dataset, http://kdl.cs.umass.edu/data/dblp/dblp-info.html.”
[21] E. Agichtein and S. Sarawagi, “Scalable Information Extraction and

Integration,” in KDD, 2006.
[22] A. Doan, R. Ramakrishnan, and S. Vaithyanathan., “Managing Information

Extraction: State of the Art and Research Directions,” in SIGMOD, 2006.
[23] E. Michelakis, P. Haas, R. Krishnamurthy, and S. Vaithyanathan, “Uncertainty

Management in Rule-based Information Extraction Systems,” in SIGMOD,
2009.

[24] W. Shen, P. DeRose, R. McCann, A. Doan, and R. Ramakrishnan, “Toward
best-effort information extraction,” in SIGMOD, 2008.

[25] M. Skounakis, M. Craven, and S. Ray, “Hierarchical Hidden Markov Models

Figure 9: False negative, false positive rates (Contact) between join-
ML.opt and prob-join algorithms.




























  













Figure 10: Performance comparison (DBLP) between join-ML.opt
and prob-join algorithms.

department is reduced to 30%. The results also show that prob-sel

maintains a false positive rate � 0.01 for all the cases.
In many IE application scenarios false negatives are more prob-

lematic than false positives because the former means losing an-
swers, and the latter means extra answers, which can be remedied
by further processing. Our goal is to reduce the false negative rate
without significantly increasing the false positive rate.

Note that in the results shown here, The probability threshold
in prob-sel algorithm was set to 0.001—the estimated lowest prob-
ability of the ML extractions based on a sample documents. In-
creasing this thresholdwould exclude some ML extractions, which
would then increase the false negatives. Decreasing the threshold
has minimal effect on the false negatives, while increasing the false
positive rate slightly. For the queries used in this experiment, all the
false positive rates remain below 0.05 even when the threshold
is set as low as 10−6.

The right most bars for each selection condition in Figure 6
shows the execution time of prob-sel algorithm, compared to sel-

ML.naive and sel-ML.opt over 100k documents from DBLP. It
can be seen that while significantly reducing the false negative rates,
the execution time of the prob-sel algorithm is 2 to 5 times that of
the corresponding sel-ML.opt algorithm. The is the trade-off be-
tween the answer quality and execution time.

We argue that a probabilistic IE system should support both al-
gorithms, so that the right choice can be made based on the require-
ments of the application.

6.4 Probabilistic Join: prob-join vs. join-ML

Finally, we describe a set of experiments comparing the answer
quality and performance of the probabilistic join (prob-join) and
the optimized join over the ML world (join-ML.opt). Two prob-

join algorithms are prob-join.naive, which joins over top-k worlds,
and prob-join.opt, which performs an incremental join as described
in Section 5.3.

The experiments for answer quality are conducted on the Con-

tact dataset, and the query is to find all Contact pairs with the same
companyname. The table in Figure 9 shows that, for both prob-

join.opt and prob-join.naive, the false negative rate decreases, and
the false positive rate increases as we increase the maximum extrac-
tion depth k. prob-join.opt achieves a substantial (slightly over
33%) reduction in false negatives when k = 20, with only a mod-
erate increase of the false positive rate. On the other hand, prob-

join.naive, although achieving a more significant reduction of the



false negative rate, incurs 5 times increase in the false positive rate
compared to join-ML.opt. Thus, for most purposes, join-ML.opt

achieves the best answer quality among the three algorithms.
The performance experiments are conducted for join queries on

title and proceeding attributes between two document sets with 10k
and 1k documents respectively randomly picked from the DBLP

dataset. As shown in Figure 10, for the two join queries with vary-
ing settings of k, the join-ML.opt performs significantly better than
both prob-join.naive and prob-join.opt when k > 1. The opti-
mized algorithm prob-join.opt with the incremental join achieves
a significant 2 to 3 times speedup compared to the naive algorithm
prob-join.naive. The execution time of both prob-join.naive and
prob-join.opt grows linearly with k. Thus, k provides a tuning
knob that can be used to adjust the accuracy/performance tradeoff
of the prob-join approach.

To summarize, the experiments reported in Section 6.1 and 6.2
demonstrated that integrating the Viterbi inference and relational
operators can significantly improve performance of SPJ-over-ML
queries without loss of answer quality. The results in Section 6.3
and 6.4 showed that the answer quality (i.e. false negatives) can
be improved significantly by probabilistic SPJ queries. The answer
quality comes in some cases (e.g., probabilistic selection) at a mod-
erate cost, and in others (e.g., probabilistic join) at a higher cost.
One advantage of representing the IE model and inference algo-
rithms in database is that a cost-based query optimizer can choose
between the different execution techniques explored by this paper.

7 Related Work

Information extraction (IE) has received a lot of attention from both
the database and the Machine Learning communities (see recent
tutorials [21, 22]). In the database community, significant effort
has been devoted to exploring frameworks that manage the state
of the IE process, and simplify the specification, optimization and
execution of IE tasks. A promising approach in this line of work
is to use declarative specifications of the IE tasks [1, 2, 3]. These
earlier efforts in declarative IE, however, lack a unified framework
supporting both a declarative interface as well as the state-of-the-
art probabilistic IE models. There have been efforts to consider
uncertainties in IE, but only in limited settings [23, 24].

The vast majority of IE work in Machine Learning focuses on
improving extraction accuracy using probabilistic techniques, in-
cluding variants of HMM [25] and CRF [12, 14, 15] models. At the
same time, the Machine Learning community has also been moving
in the direction of declarative IE [26, 27] using first-order logic.

Since the early 80’s, a number of PDBSs have been proposed
in an effort to offer a declarative, SQL-like interface for managing
large uncertain-data repositories [4, 5, 6, 7, 8, 9]. Recent PDBS
efforts such as BAYESSTORE [9] and the work of Sen and Desh-
pande [7] represent probabilistic models (based on Bayesian net-
works) as first-class citizens in a relational database, and support
in-database queries and reasoning over the model.

The issue of providing database support for managing IE based
on probabilistic models has not been addressed in existing PDBSs.
Closer to our work, Gupta and Sarawagi [11] give tools for stor-
ing coarse approximations of a CRF model inside a simple PDBS
supporting limited forms of dependencies. Instead, our work aims
to support the full expressive power of CRF models and inference
operations as a first-class PDBS citizen.

8 Conclusions

The need for query processing over data extracted from unstruc-
tured sources is becoming increasingly acute. Previous approaches
to integrating IE with database systems suffered from both perfor-

mance and accuracy limitations. In this paper we proposed two
families of queries over CRF-based IE results. The first uses de-
terministic queries over maximum-likelihood extractions, with op-
timizations to push the relational operators into the Viterbi algo-
rithm. The second extends the Viterbi algorithm to produce a set of
possible extraction “worlds”, from which we compute top-k proba-
bilistic query answers. These approaches provide a design space in
which answer quality and performance can be traded off according
to the needs of the application. As future work, we intend to ex-
plore additional performance enhancements via parallelization of
the algorithms and the development of a cost-based optimizer.
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APPENDIX

A Pseudo-codes and Complexity Analysis

In this section, we include the detailed descriptions of the pseudo-
code and the complexity analysis for some of the key query pro-
cessing algorithms discussed in the paper, including SELVITERBI
(Figure 12), incremental Viterbi algorithm (Figure 13), probabilis-
tic join algorithm (Figure 16), and probabilistic projection algo-
rithm (Figures 14, 15).

A.1 SELVITERBI

The SELVITERBI algorithm in Figure 12 follows the vanilla Vi-
terbi dynamic programming algorithm, which calls a User Defined
Function (UDF), at each recursive step i, to compute the top-1 (par-
tial) segmentations in V (i, yi) using Equation (2), with additional
logic to check if i is the smallest pruning position. It stops the re-
currence and returns null if a pruning position is found.

Generalized Selection-Aware Viterbi: The SELVITERBI algorithm
can be used with any {i, len, y�} condition. However, for condi-
tions with i being the last few positions, a variant of the Viterbi al-
gorithm, which computes the top-k segmentations from the end to
the start of a text-string, should be used for efficiency. Furthermore,
the Viterbi algorithm can be modified to start the dynamic program-
ming from any position i, by expanding the intermediate result of
the partial segmentations in two directions, rather than just one (left
to right) in Viterbi. As future work, a cost-based optimizer can be
developed to decide where/how to execute SELVITERBI, based on
the position and selectivity of a selection condition.

A.2 Incremental Viterbi Algorithm

The incremental Viterbi algorithm in Figure 13 takes the document
doc, the current V matrix, the last top segmentation y

∗, and the
number of top segmentations generated so far L, to compute the
next highest-probability segmentation y

∗
new. If L = 0, then GET-

NEXT-SEG() calls VITERBI() to compute the ML segmentation. If
L > 0, then recursive GET-NEXT() calls are triggered for V cells
on the y

∗ path. The chain of GET-NEXT() calls stops either at row
1 or when y

∗[i] is not the last entry in cell V (i, y∗[i]). Equa-
tion (2) is used to compute the next probable (partial) segmentation
in V (i, y∗[i]) after computing the new entry for V (i−1, y∗[i−1]).
Finally, GET-NEXT-SEG() backtracks the next highest-probability
segmentation y

∗
new from the (L+1)th maximal entry in row V (T ).

Complexity: When L = 0, GET-NEXT-SEG() calls VITERBI(),
thus the complexity is O(T |Y |2). When L > 0, the complexity of
the incremental Viterbi algorithm GET-NEXT-SEG() is O(T (|Y | +
L)log(|Y |+L)), because GET-NEXT() is called maximum T times,
where T is the length of the document. Each GET-NEXT() call
needs to sort at most (|Y |+L) entries, because each cell in V (i, yi)
contains 1 entry after the VITERBI() ML inference, and at most 1
entry is added to 1 cell in V (i, yi) for each GET-NEXT-SEG() call.

A.3 Probabilistic Join Algorithm

The probabilistic equijoin algorithm in Figure 16 takes two joining
relations: inner, outer, two joining columns: incol and outcol,
and a parameter k indicating an upper bound on the number of
extractions allowed per document. The algorithm first computes
the top-k segmentations for each inner document, which overlaps
with at least one document in outer, using the incremental Viterbi
algorithm.

For each string odoc ∈ outer, which contains at least one join-
key from an inner extraction, we compute the corresponding joinable

set—a set of inner documents that have a join-key contained in

odoc. Then, the rank-join loop starts simultaneously for all idoc ∈
joinable and odoc pairs. The next highest-probability segmenta-
tion yout

∗ for odoc is computed. All inner segmentations that
have join-key value yout

∗
.outcol are retrieved, and the joined re-

sults are inserted into matched—a hash-table containing all the
matching {idoc, odoc} pairs and their corresponding rank-join buffer
containing matching segmentations {yin∗

, yout
∗}. Next, the upper-

bound upper for each {idoc, odoc} pair in matched is computed,
and the segmentation pairs {yin∗

, yout
∗} that have probability no

less than upper are returned. Finally, idoc and {idoc, odoc} are
deleted from joinable and matched, respectively. The rank-join
loop stops when either the joinable set becomes empty or the ex-
traction depth exceeds k.

A.4 Probabilistic Projection Algorithm

The detailed pseudo-code descriptions of probabilistic projection
algorithm can be found in Figure 14.

Complexity: The complexity of the probabilistic projection algo-
rithm is O(T 3|Y |3l), where l is the average depth of the rank-
join algorithm in GET-NEXT-U(). The additional complexity comes
from computing the U matrix. The computation of each entry in the
U(i, yi+1) matrix may recursively triggers up to T number of GET-
NEXT-U() calls. And each GET-NEXT-U() is a rank-join algorithm,
which calls MARGINALIZATION() with complexity O(T |Y |2) in
each iteration. Thus, we have the complexity being O(T 3|Y |3l).

B Additional Evaluation

Join-ML.naive vs. Join-ML.opt: This is the additional results
for the experiment comparing the efficiency of the optimized and
naive algorithms for join-over-ML. We ran a query over two sets of
documents from the DBLP to find all pairs with the same authors.
Figure 11(a) shows the results for different input sizes. As can be
seen in the figure, join-ML.opt is more efficient than join-ML.naive

when the inner size is much lower than outer size, and join-ML.opt

grows to be more expensive as the inner size increases. For this
join query, the size of inner join-keys is large and the selectivity of
those join-keys is high.

Similarly, we ran the query joining on publisher. Since there
are not many publishers, the size of the inner join-keys remain
small as the size of the inner increases, while the selectivity of
those join-keys is high. Thus, as can be seen in Figure 11(b),
join-ML.opt have similar or slightly better performance compare
to join-ML.naive for all inner sizes.



















 










































 

























Figure 11: Performance comparison (DBLP) between join-ML.naive
and join-ML.opt with different input sizes.

1 CREATE FUNCTION selViterbi (id, i, len, y’) RETURN VOID AS
2 $$
3 -- compute the V matrix from tokenTbl and factorTbl
4 INSERT INTO V
5 WITH RECURSIVE Vtop1(pos, entries, filter) AS (
6 SELECT st.pos,
7 mr.score[1:|Y|]||array-fill(-1,ARRAY[|Y|]) entries,
8 array-fill(0,ARRAY[|Y|]) filter
9 FROM tokenTbl st, factorTbl mr
10 WHERE st.strID=id AND st.pos=0 AND mr.segID=st.segID
11 UNION ALL
12 SELECT st.pos,
13 top1-array(v.score, mr.score) entries,
14 update-filter(i,len,y’,v.pos,v.filter,v.score) filter
15 FROM tokenTbl st, Vtop1 v, factorTbl mr
16 WHERE st.strID=id AND st.pos = v.pos+1 AND
17 mr.segID=st.segID AND (pos<=i or nonzero(v.filter))
18 ) SELECT pos, entries FROM Vtop1,
19 -- backtrack the ML segmentation from V
20 INSERT INTO Ptop1
21 WITH RECURSIVE P(pos,entry) AS (
22 SELECT pos, get-max(entries) entry
23 FROM Vtop1 WHERE pos=T-1
24 UNION ALL
25 SELECT V.pos, V.entries[P.prevLabel]
26 FROM Vtop1 V, P WHERE V.pos = P.pos-1
27 ) SELECT id as strID, pos, entry.label FROM Ptop1
28 $$
29 LANGUAGE SQL;

UPDATE-FILTER (i, len, y�, j, filter, V (j, y))
1 for each l ∈ Y do

2 if j � (i+ len)&&filter[V (j, l).prev] = 1 then

3 newFilter[l] = 1;
4 else if j > i&&l = y�&&filter[V (i− 1, l).prev] = 1 then

5 newFilter[l] = 1;
6 else if j = i&&l = y� then

7 newFilter[l] = 1;
8 else newFilter[l] = 0;
9 endif endfor

10 return newFilter

Figure 12: SELVITERBI(): optimized algorithm for select-over-

ML queries, which stores the ML segmentation in Ptop1. UPDATE-

FILTER(): auxiliary function for checking pruning position.

GET-NEXT-SEG (doc, V, y∗, L)
1 if L = 0 then

2 y∗new ← VITERBI(doc);
3 else

4 T ← doc.length;
5 // compute the next best entry for cell V (T, y∗[T ])
6 GET-NEXT(V, T, y∗[T ]);
7 Tmp ← ∪yT∈Y V (T, yT );
8 sort Tmp by score desc;
9 y∗new[n] ← Tmp[L+ 1];
10 for i = n− 1; i > 0; i−− do

11 y∗new[i] ← y∗new[i+ 1].prev;
12 endfor endif

13 return y∗new
GET-NEXT (V, i, e)
1 maxidx ← V (i, e.label).length; l ← e.label;
2 if e = V (i, l)[maxidx] then

3 GET-NEXT(V, i− 1, y∗[i− 1]);
4 Tmp ← ∪yi−1∈Y V (i− 1, yi−1);
5 for each te = {score, label, prev} ∈ Tmp do

6 te.score ← te.score+ FACTORTBL(l, te.label, xi);
7 endfor

8 sort Tmp by score desc;
9 V (i, l) ← V (i, l) ∪ Tmp[maxidx+ 1];
10 endif

Figure 13: The incremental Viterbi algorithm for getting the next

highest-probability segmentation.

TOP1PROBPROJECT (doc,χ)
1 V (1, y1)[1].score ← FACTORTBL(doc.x1, y1,−1);
2 V (1, y1)[1].prev = {−1,−1};
3 for each token doc.xi(i = 2, ..., T ) do

4 for each cur label y ∈ Y do

5 GET-NEXT-U(V, i, y,χ);
6 GET-NEXT-V(V, i, y,χ);
7 endfor endfor

8 Tmp ← ∪yT∈Y V (T, yT );
9 Tmp ← Tmp ∪ GET-NEXT-U(V, T + 1,−1,χ);
10 sort Tmp by score desc; y∗[T ] ← Tmp[1];
11 for i = T − 1; i >= 0; i−− do

12 label ← y∗[i+ 1].prev.label;
13 if label = ’don’t care’ then

14 y∗[i] ← U(i, y∗[i+ 1].label)[1];
15 else y∗[i] ← V (i, label)[1];
16 endif endfor

17 return y∗

GET-NEXT-V (V, i, y,χ)
1 maxidx ← V (i, y).length;
2 if maxidx > 0 then

3 py ← V (i, y).prev.label; pidx ← V (i, y).prev.idx;
4 if py = ’don’t care’&&pidx = U(i, y).length then

5 GET-NEXT-U(V, i, y,χ);
6 else if py �= ’don’t care’&&pidx = V (i− 1, py).length then

7 GET-NEXT-V(V, i− 1, py,χ);
8 endif endif

9 Tmp ← ∪y�∈Y \χV (i− 1, y�);
10 for each te = {score, label, prev} ∈ Tmp do

11 te.score ← te.score+ FACTORTBL(xi, te.label, y�);
12 endfor

13 Tmp ← Tmp ∪ U(i, y);
14 sort Tmp by score desc;
15 V (i, y) ← V (i, y) ∪ Tmp[maxidx+ 1];

Figure 14: Algorithm for computing top-1 result for probabilistic pro-

jection queries.



GET-NEXT-U (V, i, y,χ)
1 maxidx ← U(i, y).length; labels[i] ← χ;
2 for l = 1; true; l ++ do

3 upper ← Σy∈χV (i, y�).GET-LAST().score;
4 // UT is the rank-join buffer
5 score ← UT (i, y)[1].score;
6 if upper � score then

7 U(i, y)[maxidx+ 1] ← {score, y, UT (i, y)[1].prev};
8 UT (i, y) ← UT (i, y)− UT (i, y)[1]; break;
9 endif

10 Tmp ← ∪y�∈χV (i− 1, y�).GET-LAST();
11 for each te = {score, label, prev} ∈ Tmp do

12 te.score ← te.score+ FACTORTBL(xi, te.label, y�);
13 endfor

14 sort Tmp by score desc;max ← Tmp[1];
15 for j = i− 2; j >= 0; j −− do

16 if max.prev.label = ’don’t care’ then

17 max ← U(j,max.label)[max.prev.idx];
18 label[j] ← χ;
19 else

20 max ← V (j,max.prev.label)[max.prev.idx];
21 label[j] ← max.prev.label;
22 endif endfor

23 score ← MARGINALIZE(i, labels);
24 UT (i, y) ← UT (i, y) ∪ {score, y, Tmp[1].prev};
25 GET-NEXT-V(V, i− 1, Tmp[1].label,χ);
26 endfor

Figure 15: Algorithm for computing the next highest-probability en-

try in U(i, y) used in TOP1PROBPROJECT().

TOP1PROBJOIN (inner, outer, k, incol, outcol)
1 for each idoc ∈ inner that overlap with at least one odoc ∈ outer do

2 V ← null; yin∗ ← null;
3 for i = 0; i < k; i++ do

4 yin∗ ← GET-NEXT-SEG(idoc, V, yin∗, i);
5 inTopk.PUT({idoc, i}, yin∗);
6 inKeys.PUT(yin∗.incol, {idoc, i});
7 endfor endfor

8 for each odoc ∈ outer that contains at least one inKeys.keys do

9 V ← null; yout∗ ← null;
10 joinable ← all idoc that has inKeys.keys contained in odoc
11 for i = 0; i < k; i++ do

12 yout∗ ← GET-NEXT-SEG(odoc, V, yout∗, i)
13 outTopk.PUT({odoc, i}, yout∗);
14 for each {idoc, idx} ∈ inKeys.GET(yout∗.outcol) do

15 if idoc ∈ joinable then

16 yin∗ ← inTopk.LOOKUP({idoc, idx});
17 matched.PUT({idoc, odoc}, {yin∗, yout∗})
18 endif endfor

19 for each doc pair {idoc, odoc} ∈ matched do

20 upper ← outTopk(odoc).maxprob× inTopk(idoc).minprob;
21 upper ← max(yout∗.prob× inTopk(idoc).maxprob, upper);
22 prob ← yin∗.prob× yout∗.prob
23 if prob � upper then

24 return next {idoc, odoc, yin∗, yout∗}
25 matched.DELETE({idoc, odoc});
26 joinable.DELETE(idoc);
27 endif endfor

28 if joinable = ∅ then break;
29 endif endfor endfor

Figure 16: Algorithm for computing the top-1 result for probabilistic

join queries.


