Appears in the Proceedings of the | EEE International Conference on Data Engineering, San Diego, CA, March 2000

Generalized I solation L evel Definitions

Atul Adya

Microsoft Research,
1 Microsoft Way,
Redmond, WA 98007

adya@microsoft.com

Abstract

Commercial databases support different isolation levels
to allow programmers to trade off consistency for a poten-
tial gainin performance. Theisolation levelsare defined in
the current ANS standard, but the definitions are ambigu-
ous and revised definitions proposed to correct the problem
are too constrained since they allow only pessimistic (lock-
ing) implementations. This paper presents new specifica-
tions for the ANS levels. Our specifications are portable;
they apply not only to locking implementations, but also to
optimistic and multi-version concurrency control schemes.
Furthermore, unlike earlier definitions, our new specifica-
tions handle predicates in a correct and flexible manner at
all levels.

1. Introduction

This paper gives new, precise definitions of the ANSI-
SQL isolation levels [6]. Unlike previous proposals [13, 6,
8], the new definitions are both correct (they rule out all
bad histories) and implementation-independent. Our spec-
ifications allow a wide range of concurrency control tech-
niques, including locking, optimistic techniques [20, 2, 5],
and multi-version mechanisms [9, 24]. Thus, they mest
the goals of ANSI-SQL and could be used as an isolation
standard.

Theconcept of isolation level swasfirst introduced in [13]
under the name Degrees of Consistency. The goal of this
work was to provide improved concurrency for workloads
by sacrificing the guarantees of perfect isolation. The work

Research of A. Adya and B. Liskov was supported in part by the ARPA
of the Department of Defense under contract DABT63-95-C-0005, moni-
tored by Fort Huachuca US Army Intelligence Center, and by NSF under
Grant 11S-98-02066. This research was done when Atul Adyawasat MIT.
Research of P. O’ Neil was supported by the NSF under Grant IRI-97-11374.

Barbara Liskov

Laboratory for Computer Science,
Massachusetts Inst. of Technology,
Cambridge, MA 02139

liskov@lcs.mit.edu

Patrick O’ Nelil

Univ. of Massachusetts,
Boston, MA 02125-3393

poneil@cs.umb.edu

in [13] and some refinements suggested by [11] set the
stage for the ANSI/ISO SQL-92 definitions for isolation
levels [6], where the goal was to develop a standard that
was implementation-independent. However, a subsequent
paper [8] showed that the definitions provided in [6] were
ambiguous. That paper proposed different definitions that
avoided the ambiguity problems, but, as stated in [8], these
definitions were simply “disguised versions of locking”
and therefore disallow optimistic and multi-version mech-
anisms. Thus, these definitions fail to meet the goals of
ANSI-SQL with respect to implementation-independence.

Thus, we have a problem: the standard is intended to be
implementation-independent, but lacks a precise definition
that meets this goal. Implementation-independenceisim-
portant since it provides flexibility to implementors, which
can lead to better performance. Optimism can outperform
locking in some environments, such as large scale, wide-
area distributed systems[2, 15]; optimistic mechanisms are
the schemes of choice for mobile environments; and Gem-
stone[22] and Oracle [24] provide serializability and Snap-
shot Isolation, respectively, using multi-version optimistic
implementations. It is undesirable for the ANSI standard
to rule out these implementations. For example, Gemstone
provides serializability even though it does not meet the
locking-based rules givenin [8].

This paper presents new implementation-independent
specifications that correct the problems with the existing
definitions. Our definitions cover the weaker isolation lev-
els that are in everyday use: Most database vendors and
database programmers take advantage of levels below se-
riaizability levels to achieve better performance; in fact,
READ CoMMITTED isthe default for some database products
and database vendors recommend using this level instead
of serializability if high performanceis desired. Our defi-
nitions also enable database vendors to develop innovative
implementations of the different levels using awide variety
of concurrency control mechanisms including locking, op-
timistic and multi-version mechanisms. Furthermore, our
specifications handle predicate-based operations correctly

at all isolation levels.
Thus, the paper makes the following contributions:

o |t specifies the existing ANSI isolation levels in an
implementation-independent manner. The definitions
are correct (they rule out al bad histories). They
are also complete (they allow all good histories) for
seriadizability; in particular, they provide conflict-
seriaizability [9]. Itisdifficult to prove completeness
for lower isolation levels, but we can easily show that
our definitions are more permissive than those given
in[8].

e Our specifications also handle predicates correctly in
a flexible manner; earlier definitions were either lock-
based or incomplete[§].

Our approach can be used to define additional levelsaswell,
including commercial levels such as Cursor Stability [11],
and Oracl€’'s Snapshot | solation and Read Consistency [24],
and new levels;, for example, we have developed an ad-
ditional isolation level called PL-2+, which is the weakest
level that guarantees consistent reads and causal consistency
with respect to transactions. Details can be foundin[1].

Our definitions are given using a combination of con-
straints on transaction histories and graphs, we proscribe
different types of cycles in a serialization graph at each
isolation level. Our graphs are similar to those that have
been used before for specifying serializability [9, 19, 14],
semantics-based correctness criterion [4], and for defining
extended transaction models[10]. Our approachis the first
that appliesthese techniquesto defining ANSI and commer-
cial isolationlevels. Our specificationsaredifferent fromthe
multi-version theory presented in [9] since that work only
describes conditions for serializability whereas we specify
all ANSI/SQL-92 and other commercial isolation levels for
multi-version systems. Furthermore, unlike our specifica-
tions, their definitions do not take predicates into account.
Our work is also substantially different from the definitions
presentedin[8] since our specificationshandlemulti-version
systems, optimistic systems and also deal with predicatesin
acorrect and flexible manner at al isolation levels.

Relaxed correctness conditions based on semantics and
extended transaction models have been suggested in the
past [10, 4,17, 7]. By contrast, our work focuses on specify-
ing existing ANSI and commercial isolation levels that are
being used by large numbers of application programmers.

The rest of this paper is organized as follows. Section 2
discusses prior work inmoredetail. Section 3 showsthat the
current definitionsare inadequate and motivates the need for
our work. Section4 describesour databasemodel. Section5
provides our definitionsfor the existing ANSI isolation lev-
els. Weclosein Section 6 with adiscussion of what we have
accomplished.

2. Previous Wor k

The original proposal for isolation levels[13] introduced
four degrees of consistency, degreesO0, 1, 2 and 3, where de-
gree 3 was the same as serializability. That paper, however,
was concerned with locking schemes, and as a consequence
the definitions were not implementation-independent.

However, that work, together with the refinement of
the levels provided by Date [11], formed the basis for the
ANSI/ISO SQL-92isolationlevel definitions[6]. The ANSI
standard had i mplementation-independence asagoal andthe
definitions were supposed to be less constraining than ear-
lier ones. The approach taken was to proscribe certain types
of bad behavior called phenomena; more restrictive consis-
tency levels disallow more phenomena and serializability
does not permit any phenomenon. Theisolation levelswere
named READ UNCOMMITTED, READ COMMITTED, REPEAT-
ABLE READ, and SERIALIZABLE; some of these levels were
intended to correspond to the degrees of [13].

The work in [8] analyzed the ANSI-SQL standard and
demonstrated severa problems in its isolation level defini-
tions: some phenomenawere ambiguous, while otherswere
missing entirely. It then provided new definitions. Aswith
the ANSI-SQL standard, variousisolation levelsare defined
by having them disallow various phenomena. The phenom-
ena proposed by [8] are:

PO: wq[X] ... wa[X] ... (C1 Or &)
PL: wy[X] ... r2[X] ... (cp Or &)
P2: ri[X] ... w2[X] ... (C1 Or &)
P3: ri[P] ... wo[yinP] ... (c1 or &)

Proscribing PO (which was missing in the ANSI-SQL defi-
nitions) requiresthat a transaction T, cannot write an object
x if an uncommitted transaction T1 has already modified
X. Thisis simply a disguised locking definition, requiring
T, and T, to acquire long write-locks. (Long-term locks
are held until the transaction taking them commits; short-
term locks are released immediately after the transaction
completes the read or write that triggered the lock attempt.)
Similarly, proscribing P1 requiresT; to acquirealongwrite-
lock and T, to acquire (at least) a short-term read-lock, and
proscribing P2 requiresthe use of long read and write locks.

Phenomenon P3 deals with the queries based on predi-
cates. Proscribing P3 requires that a transaction T, cannot
modify a predicate P by inserting, updating, or deleting a
row such that its modification changes the result of a query
executed by an uncommitted transaction T, based on pred-
icate P; to avoid this situation, T acquires along phantom
read-lock [14] on predicate P.

Thus, these definitions only allow histories that would
occur in asystem using long/short read/write item/predicate
locks. Since locking serializes transactions by preventing
certain situations (e.g., two concurrent transactions both

Proscribed
Phenomena

Locking Isolation Level

Write Locks on Data Items and
Phantoms (always the same)

Read Locks on Data Items and
Phantoms (same unless noted)

Degree 0 none

none Short write locks

Degree 1 = Locking READ UNCOMMITTED | PO

none Long write locks

Degree 2 = Locking READ COMMITTED PO, P1 Short read locks Long write locks

Locking REPEATABLE READ PO, P1, P2 Long dataritem read locks, | Long writelocks
Short phantom read locks

Degree 3 = Locking SERIALIZABLE PO, P1, P2, P3 Long read locks Long write locks

Figure 1. Consistency Levels and Locking ANSI-92 Isolation Levels

modifying the same object), we refer to this approach as
the preventative approach.

Figure 1 summarizestheisolation levelsasdefinedin [8]
and relates them to a lock-based implementation. Thus
the READ UNCOMMITTED level proscribes PO; READ Com-
MITTED proscribes PO and P1; the REPEATABLE READ level
proscribes PO - P2; and SERIALIZABLE proscribes PO - P3.

3. Restrictiveness of Preventative Approach

We now show that the preventative approach is overly
restrictive since it rules out optimistic and multi-version
implementations. As mentioned, this approach disallows
all histories that would not occur in a locking scheme and
prevents conflicting operationsfrom executing concurrently.

Theauthorsin [8] wanted to ensure that multi-object con-
straints (e.g., constraintslike z + y = 10) are not observed
as violated by transactions that request an isolation level
such as seriaizability. They showed that histories such as
H; and H; are allowed by one interpretation of the ANSI
standard (at the SERIALIZABLE isolation level) even though
they are non-seriaizable:

Hi:ri(x,5) wa(x, 1) r2(x, 1) r2(y,5) ¢ ri(y,5) wi(y,9) &
Hy: ra(X, 5) ri(x,5) wi(x,1) ri(y,5) wi(y,9) c1 rz2(y,9) ¢

In both cases, T, observes an inconsistent state (it observes
invariant + y = 10to beviolated). These historiesare not
allowed by the preventative approach; H; isruled out by P1
and H; isruled out by P2.

Optimistic and multi-versionmechanisms[2, 5, 9, 20, 22]
that provide serializability also disallow non-seriaizable
histories such as H; and H,. However, they allow many
legal histories that are not permitted by PO, P1, P2, and P3.
Thus, the preventative approach disallows such implemen-
tations. Furthermore, it rules out histories that really occur
in practical implementations.

Phenomenon PO can occur in optimistic implementations
since there can be many uncommitted transactions modify-
ing local copies of the same object concurrently; if neces-
sary, some of them will be forced to abort so that serializ-
ability can be provided. Thus, disallowing PO can rule out
optimistic implementations.

Condition P1 precludes transactions from reading up-
dates by uncommitted transactions. Such reads are disal-
lowed by many optimistic schemes, but they are desirable

in mobile environments, where commits may take a long
time if clients are disconnected from the servers [12, 16];
furthermore, reads from uncommitted transactions may be
desirable in high traffic hotspots [23]. For example, in his-
tory Hy, if T, reads T1's values for both x and y, it can be
serialized after Tq:

Hyi:ri(x,5) wa(x, 1) ri(y, 5) wa(y, 9) ra(x, 1) r2(y,9) ¢ ¢

The above history can occur in a mobile system, but P1
disalowsit. In such a system, commits can be assumed to
have happened “ tentatively” at client machines[12, 16]; later
transactions may observe modifications of those tentative
transactions. When the client reconnects with the servers,
its work is checked to determine if consistency has been
violated and the relevant transactionsareaborted. Of course,
if dirty reads are allowed, cascading aborts can occur, e.g.,
in history Hy/, T, must abort if T, aborts; this problem can
be aleviated by using compensating actions[18, 26, 19].

Proscribing phenomenon P2 disallows a modification to
an object that has been read by an uncommitted transaction
(P3 rules out a similar situation with respect to predicates).
As with PO, uncommitted transactions may read/write the
same object concurrently in an optimistic implementation.
Thereisno harmin alowing phenomenon P2 if transactions
commit in the right order. For example, in history H, given
above, if T, readsthe old values of x and y, the transactions
can be seriadlized inthe order To; T1:

Hy: ra(X, 5) ri(x, 5) wa(x, 1) ri(y, 5) ra(y,5) wi(y,9) ¢z ¢

The real problem with the preventative approach is that
the phenomena are expressed in terms of single-object his-
tories. However, the properties of interest are often multi-
object constraints. To avoid problemswith such constraints,
the phenomena need to restrict what can be done with indi-
vidual objects morethan is necessary. Our approach avoids
thisdifficulty by using specificationsthat capture constraints
on multiple objects directly. Furthermore, the definitionsin
the preventativeapproach are not applicableto multi-version
systems since they are described in terms of objects rather
than in terms of versions. On the other hand, our specifica-
tions deal with multi-version and single-version histories.

The approach in [8] only allows schemes that provide
the same guarantees for running and committed transac-
tions (a lock-based implementation does indeed have this

property). However, many optimistic mechanisms provide
weak guarantees to transactions as they run while provid-
ing strong guarantees such as serializability for committed
transactions. Our definitions allow different isolation guar-
anteesfor committed and running transactions; in this paper,
we only present guarantees for committed transactions.

4. Database M odel and Transaction Histories

We now describe our database model, transaction histo-
ries, and serialization graphs. We use amulti-version model
similar to the one presented in [9]. However, unlike [9], our
model incorporates predicates also. Furthermore, we al-
low predicate behavior that is possible in non-locking based
systems.

4.1. Database M odel

The database consists of objects that can be read or writ-
ten by transactions; in a relational database system, each
row or tupleis an object. Each transaction reads and writes
objectsand indicates atotal order in which these operations
occur.

An object has one or more versions. However, trans-
actions interact with the database only in terms of objects;
the system maps each operation on an object to a specific
version of that object. A transaction may read versions
created by committed, uncommitted, or even aborted trans-
actions; constraints imposed by some isolation levels will
prevent certain types of reads, e.g., reading versions created
by aborted transactions.

When a transaction writes an object x, it creates a new
version of x. A transaction T; can modify an object multiple
times; its first modification of object x is denoted by x; 1,
the second by x; ., and so on. Version x; denotes the final
modification of x performed by T; before it commits or
aborts. A transaction’s last operation, commit or abort,
indicates whether its execution was successful or not; there
isat most one commit or abort operation for each transaction.

The committed state reflects the modifications of com-
mitted transactions. When transaction T, commits, each
version x; created by T,; becomes a part of the committed
state and we say that T; installs x;; the system determines
the ordering of x; relative to other committed versions of z.
If T; aborts, x; does not become part of the committed state.

Conceptually, the initial committed state comes into ex-
istence as a result of running a specia initialization trans-
action, T;,;:. Transaction T;,;; creates all objects that will
ever exist in the database; at this point, each object x has
an initial version, X;,;:, called the unborn version. When
an application transaction creates an object x (e.g., by in-
serting atuple in arelation), we model it as the creation of
avisible version for x. Thus, a transaction that l1oads the

database creates the initial visible versions of the objects
being inserted. When a transaction T; deletes an object x
(e.g., by deleting a tuple from some relation), we model it
as the creation of a special dead version, i.e,, in this case,
X; is adead version. Thus, object versions can be of three
kinds— unborn, visible, and dead; the ordering relationship
between these versionsis discussed in Section 4.2.

If an object x is deleted from the committed database
state and inserted later, we consider the two incarnations of
x to be distinct objects. When atransaction T; performsan
insert operation, the system selects a unique object x that
has never been selected for insertion beforeand T; creates a
visible version of xif it commits.

We assume obj ect versionsexist forever inthe committed
state to simplify the handling of inserts and deletes, i.e., we
simply treat inserts/del etes as write (update) operations. An
implementation only needs to maintain visible versions of
objects, and a single-version implementation can maintain
just one visible version at atime. Furthermore, application
transactionsin areal system access only visible versions.

4.2. Transaction Histories

We capture what happens in an execution of a database
system by a history. A history H over a set of transactions
consists of two parts — a partial order of events E that
reflects the operations (e.g., read, write, abort, commit) of
those transactions, and a version order, <, that is a total
order on committed versions of each object.

Each event in a history corresponds to an operation of
sometransaction, i.e., read, write, commit, or abort. A write
operation on object x by transaction T is denoted by w;(x;)
(or w;(X;.m)); if it is useful to indicate the value v being
written into x;, we use the notation, w;(x;, v). When a
transaction T; reads a version of x that was created by T;,
wedenotethisasr;(x;) (or r;(X;.q)). If itisuseful toindicate
the value v being read, we use the notation r ;(x;, v).

The partial order of events E in a history obeys the fol-
lowing constraints:

e |t preservesthe order of all eventswithin atransaction
including the commit and abort events.

o If an event r;(x;.») exists in E, it is preceded by
w;(X;.m) in E, i.e, atransaction T; cannot read ver-
sion Xx;.,,, of object x before it has been produced by
T;. Note that the version read by T; is not necessarily
the most recently installed version in the committed
database state; also, T; may be uncommitted when
r;(X;.m) OCCUIS.

o If an event w;(x;.,) is followed by r;(x;) without an
intervening event w;(x;.,) in E, x; must be X;.,,. This
condition ensures that if a transaction modifies object
x and later reads x, it will observeits last update to x.

e The history must be complete: if E contains a read
or write event that mentions a transaction T;, E must
contains a commit or abort event for T;.

A history that is not compl ete can be compl eted by append-
ing abort events for uncommitted transactionsin E. Adding
these eventsis intuitively correct since any implementation
that alows a commit of a transaction that reads from an
uncommitted transaction T; can do so only if itislegal for
T, to abort later.

For convenience, we will present event histories in ex-
amples as atotal order (from left to right) that is consistent
with the partial order.

Thesecond part of ahistory Histheversion order, <, that
specifies atotal order on versions of each object created by
committed transactionsin H; thereis no ordering of versions
due to uncommitted or aborted transactions. We also refer
to versions due to committed transactionsin H as committed
versions. We impose two constraints on a history’s version
order for different kinds of committed versions:

o theversion order of each object x contains exactly one
initial version, X;,i:, and at most one committed dead
VEersion, Xgead-

® X;nit iISX'sfirst version inits version order and Xgeqq
isits last version (if it exists); all committed visible
versions are placed between X;,,;: and Xgeaq-

We additionally constrain the system to allow reads only
of visible versions:

e if rj(x;) occursin ahistory, thenx; isavisible version.

For convenience, we will only show the version order for
visible versions in our example histories; in cases where
unbornor dead versionshelp inillustrating an issue, we will
show some of these versions as well.

The version order in a history H can be different from
the order of write or commit eventsin H. Thisflexibility is
needed to allow certain optimistic and multi-version imple-
mentations where it is possible that a version x; is placed
beforeversionx; intheversionorder (x; < ;) eventhough
X; isinstalled in the committed state after version x; was
installed. For example, in history Ho,,.ite — order

Huyrite—order: W1(X1) W2(X2) Wa(y2) €1 C2

ra(x1) wa(xa) Wa(ys) as [X2 < X4

the database system has chosen the version order X, < X3
even though T, commits before T,. Note that there are no
constraints on xs (yet) or y,4 since these versions correspond
to uncommitted and aborted transactions, respectively. Note
also that the naming of transactions does not indicate their
commit order, e.g., in history H.,rite—order, T2 1S Seriaized
before T;.

4.3. Predicates

We now discuss how predicatesare handledin our model.
We assume that predicates are used with relationsin arela-
tional database system. Therearethreetypesof modification
operationson relations: updates, inserts and deletes; inserts
and deletes change the number of tuplesin arelation.

In our model, the database is divided into relations and
each tuple (and all its versions) exists in somerelation. As
before, unborn and dead versions exist for atuple beforethe
tuple's insertion and after its deletion. An important point
to note here is that atuple’s relation is known in our model
when the database is initialized by T;,, i.e., before the
tuple is inserted by an application transaction. Of course,
this assumption is needed only at a conceptual level. Inan
implementation, the system need not know the relation of
all tuplesthat will be created in the system; it just needs to
know atuple x's relation when x is inserted in the database.

A predicate P identifies a Boolean condition (e.g., asin
the WHERE clause of a SQL statement) and therelationson
which the condition hasto be applied; one or morerelations
can be specified in P. All tuplesthat match this condition are
read or modified depending on whether a predicate-based
read or write is being considered.

Definition 1: Version set of a predicate-based operation.
When a transaction executes a read or write based on a
predicate P, the system selects a version for each tuple in
P's relations. The set of selected versions is called the
\ersion set of this predicate-based operation and is denoted
by Vset(P).

The version set defines the state that is observed to eval-
uate a predicate P; as discussed later, P's Boolean condition
is applied on the versions in Vset(P) to determine which
tuples satisfy P. Since we select a version for all possible
tuplesin P'srelations, this set will be very large (it includes
unborn and possibly dead versions of some tuples). For
convenience, in our exampleswewill only show visible ver-
sionsin aversion set; to better explain some examples, we
will sometimes also show some unborn and dead versions.

Our approach of observing some version of each tuple
allows us to handle the phantom problem [14] in a simple
manner. Of course, this does not constrain implementations
to performthese observations; e.g., animplementation could
use an index.

4.3.1 Predicate-based Reads

If atransaction T; performs reads based on a predicate P
(e.g., in a SQL statement), the system (conceptually) ac-
cesses all versionsin Vset(P). Then, the system determines
which tuples match predicate P by evaluating P's Boolean
condition on the versions in Vset(P); tuples whose unborn

and dead versions were selected in the previous step do not
match. If the system reads the matched versions as part
of the query, these reads show up as separate eventsin the
history. Thus, aquery based on apredicate Pby T; isrepre-
sented in a history as r;(P: Vset(P)) r;(x;) ri(y) ..., where
X;j, Yi aretheversionsin Vset(P) that match P, and T; reads
these versions. If T; does not read the matched objects, the
events r;(x;) and r;(yx) do not show up in the history, e.g.,
T; could simply use the count of tuples that matched P.

For exampl e, supposetransaction T; executesthefollow-
ing SQL query:
SELECT * FROM EMPLOYEE WHERE DEPT = SALES;

Thisquery (conceptually) accessesaversion of every visible
tuple in the Employee relation (e.g., x; and y,) and the
unborn/dead versions of other tuples in this relation (e.g.,
Zinit). Suppose that version x; matches the predicate and
y2 does not match; recall that unborn versions such as z;,,¢
cannot matchthe predicate. Thispredicate-based read could
be shownin ahistory asr;(Dept=Sales: x1; y2) r;(X1); here,
we do not show unborn or dead versions in the version set.
Note that the read of x; shows up as a separate event in
the history; if T; had just determined the number of tuples
matching the predicate (using SELECT COUNT), the event
r;(x1) would not have been included.Thus, the history only
shows reads of versionsthat were actually observed by T;.

4.3.2 Predicate-based M odifications

A modification based on a predicate P is modeled as a
predicate-based read followed by write operations on tuples
that match P. (Although this approachisweaker than theone
usedin[1], it model sthe behavior of commercial databases.)
For example, suppose transaction T; executesthe following
code for the empl oyee database discussed above:

UPDATE EMPLOYEE SAL = SAL + $10 WHERE DEPT=SALES;

Suppose that the system selects versions, X1, Y2, and z;,;;
for this operation. If x; matches the predicate but y, and
Zini¢ do not, the following events are added to the history:
ri(Dept=Sales: X1; y2) W;(X;).

If the predicate-based write del etes objects, dead versions
areinstalled for all the matching tuples(i.e., thesetuplesare
deleted). Thus, if atransaction T; deletesall employeesfrom
the Sales department in the above scenario, the following
eventsare added tothehistory: r;(Dept=Sales: X1; y2) w;(X;,
dead). Note that the events for deletes and updates are
similar. However, there is a difference: in the deletion
example, x; is adead version (for illustrative purposes, we
have shown the value “dead” being put in x;) and cannot be
used further whereasin the update case, x; can be used | ater.

Inserts are handled in a similar manner. For exam-
ple, consider the following statement that copies employ-
ees whose commission exceeds 25% of their salary into the
BONUStable (this statement is executed by transaction T,):

T1: INSERT INTO BONUS SELECT NAME, SAL, COMM
FrROM EMP WHERE COMM > 0.25* sAL;

Hereisapossible history for T;'s executionin our model:
Hipsert: ri(comm > 0.25* sal: Xo, 2o) r1(Xo) Wi(y1) ¢

In this history, xo matches the predicate-based query; there-
foreitisread by T; to generatetupley; that isinserted into
the Bonus table.

4.4, Conflictsand Serialization Graphs

We first define the different types of read/write conflicts
that can occur in a database system and then use them to
specify seriadlization graphs. We define three kinds of di-
rect conflictsthat capture conflicts of two different commit-
ted transactions on the same object or intersecting predi-
cates. For convenience, we have separated the definitions of
predicate-based conflicts and regular conflicts.

4.4.1 Read Dependencies

Read dependencies occur when one transaction reads arel-
evant version produced by some other transaction. We use
the following definition for specifying read-dependencies:

Definition 2: Change the Matches of a Predicate-Based
Read. We say that a transaction T; changes the matches
of a predicate-based read r;(P: Vset(P)) if T; installs x;, Xy,
immediately precedesx; intheversion order,and X, matches
P whereas x; does not or vice-versa. In this case, we also
say that x; changesthe matches of the predicate-based read.

The above definition identifies T; to be a transaction where
achange occurs for the matched set of r;(P: Vset(P)).

Definition 3: Directly Read-Depends. We say that T;
directly read-depends on transaction T; if it directly item-
read-depends or directly predicate-read-dependson T ;.

Directly item-read-depends: We say that T; directly item-
read-depends on T; if T; installs some object version
X; and Tj readsxi.

Directly predicate-read-depends: Transaction T; directly
predicate-read-dependson T; if T; performs an oper-
ationr;(P: Vset(P)), X € Vset(P), ¢ = k or X; < X,
and x; changes the matches of r;(P: Vset(P)).

If T; performs a predicate-based read r;(P: Vset(P)), it
read dependson T, if T; performsawritethat is“relevant” to
T,'sread, i.e, T, isatransaction before T; that changed the
matches of T;'sread. Notethat all tuplesin the version set
of apredicate-based read are considered to be accessed, in-
cluding tuplesthat do not match the predicate. Theversions
that are actually read by transaction T; show up as normal

read events. Other versions in the version set are essen-
tially ghost reads, i.e., their values are not observed by the
predicate-based read but read-dependencies are established
for them as well.

The rule for predicate-read-dependencies captures the
ideathat what mattersfor a predicateis the set of tuplesthat
match or do not match and not their values. Furthermore, of
all the transactions that have caused the tuples to match (or
not match) for r;(P: Vset(P)), we use the latest transaction
whereachangeto Vset(P) occursrather than using the latest
transaction that installed the versions in Vset(P). This rule
ensures that we capture the minimum possible conflicts for
predicate-based reads. For example, consider the history:

Hpred—read: Wo(Xo) Co Wi(X1) C1 Wa(X2)
r3(Dept=Sales: X2, Yo) Wa(Y2) C2 C3 [Xo € X1 < X2, Yo < V2]

Here, transaction Ty inserts object x in the Sales department,
T, changes x's department to Legal, and T, changes the
phone number of x but not its department. Transaction T3
selects all employeesin the Sales department. In this case,
eventhough T3'sversion set containsx,, we add apredicate-
read-dependency from T, to T3 because T,'s update of x is
irrelevant for T3'sread. Notethat thishistory is seriaizable
intheorder Tg, T1, T3, To.

4.4.2 Anti-Dependencies

An anti-dependency occurs when atransaction overwritesa
version observed by some other transaction.

To define anti-dependencies, it is useful to define what it
meansto overwrite a predicate-based operation.

Definition4: Overwriting a predicate-based read.
We say that a transaction T; overwrites an operation
r;(P: Vset(P)) if T; installs x; such that x;, € Vset(P),
Xp < Xj, and x; changes the matches of r;(P: Vset(P)).

Now we can define anti-dependencies.

Definition 5: Directly Anti-Depends. Transaction T; di-
rectly anti-dependson transaction T; if it directly item-anti-
depends or directly predicate-anti-dependson T;.

Directly item-anti-depends: We say that T; directly item-
anti-dependson transaction T; if T; reads some object
version x;, and T; installs x's next version (after x;,)
in the version order. Note that the transaction that
wrote the later version directly item-anti-depends on
the transaction that read the earlier version.

Directly predicate-anti-depends: We say that T; directly
predicate-anti-dependson T; if T; overwrites an oper-
ation r;(P: Vset(P)), i.e,, T; installs a later version of
some object that changes the matches of a predicate-
based read performed by T;.

Read-dependencies and anti-dependencies are treated
similarly for predicates, i.e.,, we add an edge whenever a
predicate’s matched set is changed. The difference between
item-anti-depends and predicate-anti-dependsis also simi-
lar. For item-anti-depends, the overwriting transaction must
produce the very next version of the read object, while for
predicate-anti-depends it simply produces a later version
that changes the matched tuples of the predicate.

The definition for predicate-anti-depends handles inserts
and deletes. For example, consider the employee database
scenario described in Section 4.3 that contains visible ver-
sions of two tuples x and y. Suppose T; executes a query
that selects all Employees in the Sales department, and the
guery’s version set contains versions x; and y, (along with
unborn/dead versions of other tuples), and x; is in Sales
andy, isnot. A later transaction T; will directly predicate-
anti-depend on T; if T; adds a new employee to the Sales
department, moves y to Sales, removes x from Sales, or
deletes x from the database.

In a two-phase locking implementation (for providing
seriaizability), if atransaction T1 performsaread based on
predicate P and T, triesto insert an object x covered by P's
predicate lock, T, is delayed till T; finishes. In our model,
T1 readsx;,;; and T, createsalater versionx,. If T, changes
the matches by T;'sread, T, predicate-anti-dependson T;.
Notethat T;'s predicate read-locksdelay T, evenif T, does
not change the objects matched by P. Our definitions are
more flexible and permit implementations that allow T, to
proceed in such cases, e.g., precision locks and granular
locks[14].

4.4.3 Write Dependencies

Write dependencies occur when one transaction overwrites
aversion written by another transaction.

Definition 6: Directly Write-Depends. A transaction T;
directly write-depends on T; if T, installs a version x; and
T, installs x's next version (after x;) in the version order.

Notethat thereisno notion of predicate-write-dependssince
predicate-based modifications are modeled as queries fol-
lowed by writes on individual tuples.

444 Serialization Graphs

Now we can define the Direct Serialization Graph or DSG.
This graph is called “direct” since it is based on the direct
conflictsdiscussed above. Inthegraphwewill denotedirect

read-dependenciesby T; ﬂ) Ty, direct write-dependencies

by T; iﬂ) T;, and direct anti-dependencies by T; g T;.
Figure 2 summarizes this notation and reviews the defini-
tionsfor direct dependencies.

| Conflicts Name || Description (T; conflictson T;) | Notationin DSG |
Directly write-depends || T; installsx; and T; installsx's next version Ti—— T
Directly read-depends || T; installs x;, T; reads x; or T; performs a predicate-based | Ti—— T}
read, x; changes the matches of T;’s read, and x; is the same
or an earlier version of xin T;'sread
Directly anti-depends T; reads x;, and T; installs X's next version or T; performsa | T; — ., T;
predicate-based read and T; overwrites this read

Figure 2. Definitions of direct conflicts between transactions.

Definition 7: Direct Serialization Graph.

We define the direct serialization graph arising from a
history H, denoted by DSG(H), asfollows. Each nodeinthe
graph corresponds to a committed transaction and directed
edges correspondto different typesof direct conflicts. There
is aread/write/anti-dependency edge from transaction T; to
transaction T if T; directly read/write/anti-dependson T;.

A DSG does not capture al information in a history and
henceit doesnot replacethehistory, e.g., aDSG only records
information about committed transactions. The history is
still available if needed, and in fact, we use the history
instead of the DSG for some conditions.

As an example, consider the following history:

Hocriar: W1(z1) Wi(X1) Wi(y1) Ws(Xs) €1 ra(xa) wa(yz)
C2 r3(y2) wa(zs) C3 [X1 K X3,¥1 K Y2, 21 K Z3]

Figure 3 shows the DSG for this history. As we can see,
these transactions are serializablein the order Tq; T»; Ts.

wr rw
/\I\NV\\ - wr ~
T
W

Figure 3. DSG for history Hgeyia
Itisalso useful to have additional dependency relations:

Definition 8: Depends. A transaction T; directly depends
onT; if T; directly write-depends or directly read-depends
on T;. We say that T; depends on T; in H if there is a
path from T; to T; in DSG(H) consisting of one or more
dependency edges.

5. New Generalized | solation Specifications

We now present our specifications for the existing ANSI
isolation levels. We developed our conditions by studying
the motivation of the original definitions[13] and the prob-
lems that were addressed by the phenomena in [8]. This
enabled us to devel op implementati on-independent specifi-
cationsthat capture the essence of the ANSI definitions, i.e.,

we disallow undesirable situations while allowing histories
that are permitted by a variety of implementations.

Like the previous approaches, we will define each iso-
lation level in terms of phenomenathat must be avoided at
each level. Our phenomena are prefixed by “G” to denote
thefact that they are general enoughto allow locking and op-
timistic implementations; these phenomena are named GO,
G1, and so on (by analogy with PO, P1, etc of [6]). We will
refer to the new levels as PL levels (where PL stands for
“portable level”) to avoid the possible confusion with the
degrees of isolation givenin [8, 13].

5.1. Isolation Level PL-1

Disallowing phenomenon PO ensures that writes per-
formed by T, are not overwritten by T, while T; is till
uncommitted. There seem to be two reasons why this pro-
scription might be desirable;

1. Itsimplifiesrecovery fromaborts. Intheabsenceof this
proscription, a system that allows writes to happen in
place cannot recover the pre-states of aborted transac-
tions using a simple undo log approach. For example,
suppose T, updates x (i.e., wi(X1)), T» overwrites X,
and then T; aborts. The system must not restore x to
T,'s pre-state. However, if T, aborts later, x must be
restored to T,'s pre-state and not to x;.

2. It serializes transactions based on their writes alone.
For example, if T, updatesan object xand T, overwrites
X, there should not be another object y in which the
reverse occurs, i.e., all writes of T must be ordered
before or after all writes of T;.

The first reason does not seem relevant to al systems.
Instead, it is based on a particular implementation of recov-
ery, and other implementations are possible. For example,
the Thor system [21] maintains temporary versions of ob-
jects for an uncommitted transaction T; and discards these
versionsif T; aborts.

Serializing transactions based on writes is a useful prop-
erty since it ensures that updates of conflicting transactions

are not interleaved. This property is captured by phe-
nomenon GO and we define PL-1 as the level in which
GO is disalowed:

GO: WriteCycles. A history H exhibitsphenomenon
GO if DSG(H) contains a directed cycle consisting
entirely of write-dependency edges.

For example, history Hcycre
Huycycie: Wi(X1, 2) W2(X2, 5) Wa(yz, 5) ¢2 wi(y1, 8) &

[X1 < X2, y2 < y1]
is disallowed by PL-1 because the updates on x and y occur
in opposite orders, causing a cycle in the graph. Figure 4
shows the DSG for this history.

ww

T~

—_—
Tl T2

Figure 4. DSG for history Hycycte

Our PL-1 specification is more permissive than Degree 1
of [8] since GO allows concurrent transactionsto modify the
same object whereas PO does not. Thus, non-serializable
interleaving of write operations is possible among uncom-
mitted transactions as long as such interleavings are dis-
allowed among committed transactions (e.g., by aborting
some transactions).

The lock-based implementation of PL-1 (long write-
locks) disallows GO since two concurrent transactions, T;
and T ;, cannot modify the same object; therefore, al writes
of T; either precede or follow all writes of T;.

Note that since predicate-based modifications are mod-
eled as queries followed by normal writes, PL-1 provides
weak guarantees for such updates. For example, consider
thefollowing history in which transaction T, incrementsthe
salaries of all employees for which “Dept = Sales’, and T
adds two employees, x and y, to the Sales department.

Hpred—update: Wi(X1) r2(Dept=Sales: Xi; Yinit) Wi(y1)
Wa(X2) C1 C2 [Xinit K X1 K X2, Yinit K Y1]
The updates of transactions T, and T, areinterleavedin this
history (xX'ssalary isupdatedbut y'ssalary isnot). Thisinter-
leavingisallowed at PL-1 sincethereisno write-dependency
cycleinthe DSG (thereis awrite-dependency edgefrom T,
to T, sincex; < Xo).

5.2. Isolation Level PL-2

If asystem disallows only GO, it places no constraintson
reads. atransaction is alowed to read modifications made
by committed, uncommitted, or even aborted transactions.
Proscribing phenomenon P1 in [6] was meant to ensure that
T1 updates could not be read by T, while T; was still un-
committed. There seem to bethreereasonswhy disallowing
P1 (in addition to PO) might be useful:

1. It prevents atransaction T, from committing if T, has
read the updates of a transaction that might later abort.

2. It preventstransactionsfrom readingintermediate mod-
ifications of other transactions.

3. It seridizes committed transactions based on
their read/write-dependencies (but not their anti-
dependencies). That is, if transaction T, depends on
T1, T1 cannot depend on To.

Disallowing P1 (together with PO) capturesall three of these
issues, but does so by preventing transactions from reading
or writing objects written by transactions that are still un-
committed. Instead, we address these three issues by the
following three phenomena, G1a, G1b, and G1c.

Gla: Aborted Reads. A history H shows phe-
nomenon Gla if it contains an aborted transaction
T, and a committed transaction T» such that T» has
read some object (maybe viaa predicate) modified by
T1. Phenomenon Gla can be represented using the
following history fragments:

W1(X1i) «.. r2(Xwi) ... (a1 and ¢, in any order)
Wi(X1.;) ... r2(P: Xy, ...) ... (& and ¢ in any order)

Proscribing Gla ensures that if T, reads from T, and T,
aborts, T, must also abort; these aborts are also called cas-
caded aborts [9]. In areal implementation, the condition
also implies that if T, reads from an uncommitted transac-
tion T1, T,'s commit must be delayed until T,'s commit has
succeeded [9, 14].

G1b: Intermediate Reads. A history H shows phe-
nomenon G1b if it contains a committed transaction
T, that has read a version of object x (maybe via a
predicate) written by transaction T; that wasnot T1's
final modification of x. The following history frag-
ments represent this phenomenon:

W1(X1,l‘) I’z(XLi) W1(X1,j) ... C
Wi1(X1.s) «.. (P Xwg,) oo Wi(Xej) ... C2

Proscribing G1b ensures that transactions are allowed to
commit only if they have read final versions of objects cre-
ated by other transactions. Note that disallowing Gla and
G1b ensures that a committed transaction has read only ob-
ject states that existed (or will exist) at some instant in the
committed state.

Glc: Circular Information Flow. A history H ex-
hibits phenomenon G1cif DSG(H) containsadirected
cycle consisting entirely of dependency edges.

Intuitively, disallowing G1c ensuresthat if transaction T, is
affected by transaction T4, it does not affect Ty, i.e., there
isaunidirectiona flow of information from T1 to T,. Note

that G1c includes GO. We could have defined a weaker
version of G1c that only concerned cycles with at least one
read-dependency edge, but it seemed simpler not to do this.

Phenomenon G1 captures the essence of no-dirty-reads
and is comprised of G1la, G1b and G1c. We defineisolation
level PL-2 as onein which phenomenon G1 is disallowed.
Proscribing Gl is clearly weaker than proscribing P1 since
G1 dlows reads from uncommitted transactions. The lock-
based implementation of PL-2 disalows G1 because the
combination of long write-locks and short read-locks en-
sures that if T; reads a version produced by T';, T; must
have committed already (i.e., Gla, G1b not possible) and
therefore T; cannot read aversion produced by 77 (i.e., G1c
not possible).

Our PL-2 definition treats predicate-based reads like nor-
mal reads and provides no extra guarantees for them; we
believe this approach is the most useful and flexible. Other
approaches, such as requiring that each predicate-based op-
eration is atomic with respect to other predicate-based oper-
ations, are discussed in [1].

5.3. Isolation Level PL-3

In a system that proscribes only G1, it is possible for a
transaction to read inconsistent data and therefore to make
inconsistent updates. Although disallowing phenomenon P2
prevents such situations (e.g., H, presented in Section 3),
it also prevents legal histories such as Hy (which is aso
discussedin Section 3) and hence, disallowsmany optimistic
and multi-version concurrency control schemes. What we
need is to prevent transactions that perform inconsistent
reads or writes from committing. This is accomplished by
the following condition:

G2: Anti-dependency Cycles. A history H exhibits
phenomenon G2 if DSG(H) contains a directed cycle
with one or more anti-dependency edges.

We define PL-3 as anisolation level that proscribes G1 and
G2. Thus, all cycles are precluded at this level. Of course,
the lock-based implementation of PL-3 (long read/write-
locks) disallows phenomenon G2 al so since two-phaselock-
ing is known to provide complete serializability.

Proscribing G2 is wesker than proscribing P2, since we
alow atransaction T to modify object x even after another
uncommitted transaction T; has read x. Our PL-3 definition
allowshistories such asHy: and Hyr (presented in Section 3)
that were disallowed by the preventative definitions.

The conditions given in [9] provides view-serializability
whereas our specification for PL-3 provides conflict-
serializability (this can be shown using theorems presented
in [9]). All redistic implementations provide conflict-
seriaizability; thus, our PL-3 conditions provide what is
normally considered as seriaizability.

10

wr

o precicate - w ™
T predicate - rw

1 =2

Figure 5. Direct serialization graph for history
Hphantom (To IS not shown)

5.4. |solation Level PL-2.99

The level called REPEATABLE READ or Degree 2.99
in [6] provides less than full serializability with respect to
predicates. In particular, it useslong locksfor all operations
except predicate reads for which it used short locks, i.e.,
it ensures seriaizability with respect to regular reads and
provides guarantees similar to degree 2 for predicate reads.
Thus, anti-dependency cycles dueto predicates can occur at
thislevel.

We define level PL-2.99 as one that proscribes G1 and
G2-item:

G2-item: Item Anti-dependency Cycles. A his-
tory H exhibits phenomenon G2-item if DSG(H) con-
tains a directed cycle having one or more item-anti-
dependency edges.

For example, consider the following history:

Hphantom: ri(Dept=Sales: Xo, 10; Yo, 10) r1(Xo, 10) r2(yo, 10)
r2(Sumg, 20) wz(z2, 10) wo(Sumy, 30) ¢ ri(Sumy, 30) ¢1
[Sumo < SuMy, Zini: <K Z2]

When T, performsits query, there are exactly two employ-
ees, X and y, both in Sales (we show only visible versions
in the history). T1 sums up the salaries of these employees
and comparesit with the sum-of-salariesmaintained for this
department. However, beforeit performsthefinal check, T,
insertsanew employee, z,, in the Sales department, updates
the sum-of-salaries, and commits. Thus, when T4 reads the
new sum-of-salaries value it finds an inconsistency.

The DSG for Hppantom 1S shown in Figure 5. This his-
tory isruled out by PL-3 but permitted by PL-2.99 because
the DSG containsa cycle only if predicate anti-dependency
edges are considered.

5.5. Mixing of I solation Levels

Sofar, wehaveonly discussed systemsinwhich al trans-
actions are provided the same guarantees. However, in gen-
eral, applicationsmay runtransactionsat different levelsand
wewould like to understand how these transactions interact
with each other. This section discusses how we model such
mixed systems.

In real database systems, each SQL statement in atrans-
action T; may be executed atomically even though T; is

Level Phenomena Informal Description (T; can commit only if:)
disallowed

PL-1 GO T;’swrites are completely isolated from the writes of other transactions

PL-2 Gl T; has only read the updates of transactions that have committed by thetime T;
commits (along with PL-1 guarantees)

PL-2.99 || G1, G2-item T; is completely isolated from other transactions with respect to data items and
has PL-2 guarantees for predicate-based reads

PL-3 Gl1, G2 T; is completely isolated from other transactions, i.e., all operations of T; are
before or after all operations of any other transaction

Figure 6. Summary of portable ANSI isolation levels

executed at alower isolation level. Mixed systemsinwhich
individual SQL statements are executed atomically are dis-
cussed in [1].

In a mixed system, each transaction specifies its level
when it starts and this information is maintained as part of
the history and used to construct amixed serialization graph
or MSG. Like aDSG, the M SG contains nodes correspond-
ing to committed transactions and edges corresponding to
dependencies, but only dependencies relevant to a transac-
tion'slevel or obligatory dependencies show up as edgesin
the graph. Transaction T; has an obligatory conflict with
transaction T; if T; is running at a higher level than T,
T, conflicts with T;, and the conflict is relevant at T;'s
level. For example, an anti-dependency edge from a PL-3
transactionto a PL-1 transaction is an obligatory edge since
overwriting of reads matters at level PL-3.

Edges are added as follows: Since write-dependencies
are relevant at all levels, we retain all such edges. For
a PL-2 or PL-3 node T;, since reads are important, read-
dependencies coming into T; are added. Similarly, we add
all outgoing anti-dependency edges from PL-3 transactions
to other nodes.

Now we can define correctness for a mixed history:

Definition 9: Mixing-Correct. A history H is mixing-
correct if MSG(H) is acyclic and phenomena Gla and G1b
do not occur for PL-2 and PL -3 transactions.

It is possible to restate the above definition as an analog
of the Isolation Theorem [14]:

Mixing Theorem: If ahistory is mixing-correct,
each transaction is provided the guarantees that
pertaintoitslevel.

The above theorem holds at the level of a history andisin-
dependent of how synchronization is implemented *. Note
that the guarantees provided to each level are with respect

1As stated in [14], this does not imply that a PL-3 transaction observes
a consistent state since lower level transactions may have modified the
database inconsistently; if we want a PL-3 transaction to observe aconsis-
tent state, lower level transactions must update the database consistently
even if they observe an inconsistent state.

11

tothe MSG. Thereasonisthat an MSG considersthe pres-
ence of transactions at other levelswhereasaDSG issimply
constructed with all edges. An MSG is useful for determin-
ing correctnessif PL-1 and PL-2 transactions “know” what
they are doing whereas a DSG ensures correctness without
making any assumptions about the operations of lower level
transactions.

A mixed system can be implemented using locking (with
the standard combination of short and long read/writelocks).
But it can also be implemented using other techniques. For
example an optimistic implementation would attempt to fit
each committing transaction into the serial order based on
its own requirements (for its level) and its obligations to
transactions running at higher levels, and would abort the
transaction if thisis not possible. An optimistic implemen-
tation that is mixing-correct is presented in [1].

5.6. Discussion

We summarize the isolation levels discussed in this sec-
tionin Figure 6.

These levels are defined to impose constraints only when
transactions commit; they do not constrain transactions as
they run, athough if something bad happens (e.g., a PL-
3 transactions observes an inconsistency), they do force
aborts. Analogs of the levels that constrain executing trans-
actions are given in [1]; these definitions use dlightly dif-
ferent graphs, containing nodes for committed transactions
plus a node for the executing transaction.

6. Conclusions

This paper has presented new, precise specifications of
the ANSI-SQL isolation levels. Unlike previous propos-
als, the new definitionsareimplementati on-independent and
allow a wide range of concurrency control techniques, in-
cluding locking and optimism. Furthermore, our definitions
handle predicatesin a correct and flexible manner at al iso-
lation levels. Thus, they meet the goals of the ANSI-SQL
standard.

The paper also specified the behavior of systems that
allow mixing of levels: usersareallowed to choosethelevel
for each transaction they run, and the system guaranteesthat
each transaction is provided with the constraints of its own
level, even when some transactions are running at lower
levels.

Our approach is applicable to other levels in addition
to the ones discussed in the paper. We have developed
implementation-independent specifications of commercial
isolation levels such as Snapshot Isolation and Cursor Sta-
bility, and we have defined a new level called PL-2+; the
details can be found in [1]. PL-2+ is the the weakest level
that guarantees consistent reads and causal consistency; itis
useful in client-server systems|[3, 1] and broadcast environ-
ments [25].

All of our definitions are implementation independent.
This makes them suitable for use as an industry standard,
since they do not preclude clever but unconventional imple-
mentations that either exist today or may be developed in
the future. Instead they provide implementors with the op-
portunity to choose the best performing concurrency control
mechanism for their environment.

Acknowledgements

We would like to thank Chandra Boyapati, Miguel Castro, An-
drew Myers, and other members of the Programming M ethodol ogy
Group for their comments. We are grateful to Dimitris Liarokapis
and Elizabeth O’ Neil for carefully reading the paper and helping us
improve the specifications. We would also like to thank Phil Bern-
stein, Jim Gray, and David Lomet, for their helpful comments.

References

[1] A.Adya Weak Consistency: A Generalized Theory and Op-
timistic Implementations for Distributed Transactions. PhD
thesis, MIT, Cambridge, MA, Mar. 1999.

[2] A. Adya, R. Gruber, B. Liskov, and U. Maheshwari. Ef-

ficient Optimistic Concurrency Control using Loosely Syn-

chronized Clocks. In SGMOD, San Jose, CA, May 1995.

A. Adya and B. Liskov. Lazy Consistency Using Loosely

Synchronized Clocks. In Proc. of ACM Principles of Dist.

Computing, Santa Barbara, CA, Aug. 1997.

D. Agrawal, A. E. Abbadi, and A. K. Singh. Consistency

and Orderability: Semantics-Based Correctness Criteriafor

Databases. ACM TODS, 18(3), Sept. 1993.

D. Agrawal, A. J. Bernstein, P. Gupta, and S. Sengupta.

Distributed Multi-version Optimistic Concurrency Control

with Reduced Rollback. Distributed Computing, 2(1), 1987.

ANS X3.135-1992, American National Sandard for Infor-

mation Systems — Database Language — SQL, Nov 1992.

B. R. Badrinath and K. Ramamritham. Semantics-Based

Concurrency Control: Beyond Commutativity. ACM TODS,

17(1), Mar. 1992.

(3]

(4

(5]

(6l

12

[8] H.Berenson, P.Bernstein, J. Gray, J. Melton, E. O’ Neil, and
P. O'Neil. A Critique of ANSI SQL Isolation Levels. In
Proc. of SGMOD, San Jose, CA, May 1995.

P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concur-
rency Control and Recovery in Database Systems. Addison
Wesley, 1987.

P. Chrysanthis and K. Ramamritham. Synthesis of Extended
Transaction Models using ACTA. ACM TODS, 19(3), Sept.
1994.

C. J. Date. An Introduction to Database Systems. Addison-
Wesley, Fifth edition, 1990.

J. Gray, P. Helland, P. O'Neil, and D. Shasha. The Dangers of
Replication and a Solution. In Proc. of SGMOD, Montreal,
Canada, June 1996.

J. Gray, R. Lorie, G. Putzolu, and |. Traiger. Granularity of
Locks and Degrees of Consistency in a Shared Database. In
Modeling in Data Base Management Systems. Amsterdam:
Elsevier North-Holland, 1976.

J.N. Gray and A. Reuter. Transaction Processing: Concepts
and Techniques. Morgan Kaufmann Publishers Inc., 1993.
R. Gruber. Optimismvs. Locking: A Sudy of Concurrency
Control for Client-Server Object-Oriented Databases. PhD
thesis, M.1.T., Cambridge, MA, 1997.

R. Gruber, F. Kaashoek, B. Liskov, and L. Shrira. Dis-
connected Operation in the Thor Object-Oriented Database
System. In IEEE Workshop on Mobile Comp. Systems, 1994.
M. P. Herlihy. Apologizing Versus Asking Permission: Op-
timistic Concurrency Control for Abstract Data Types. ACM
TODS, 15(1), March 1990.

J. J. Kistler and M. Satyanarayanan. Disconnected Operation
in the Coda File System. In Proc of the ACM Symp. on
Operating Sys. Principles, Pacific Grove, CA., Oct. 1991.
H. Korth, A. Silberschatz, and S. Sudarshan. Database Sys-
tem Concepts. McGraw Hill, 1997.

H. T. Kung and J. T. Robinson. On Optimistic Methods for
Concurrency Control. ACM TODS, 6(2), June 1981.

B. Liskov, A. Adya, M. Castro, M. Day, S. Ghemawat,
R. Gruber, U. Maheshwari, A. Myers, and L. Shrira. Safe
and Efficient Sharing of Persistent Objectsin Thor. In Proc.
of SGMOD, Montreal, Canada, June 1996.

D. Maier, J. Stein, A. Otis, and A. Purdy. Development of an
Object-Oriented dDBMS. In Proc. of OOPSLA, Sept 1986.
P. O'Neil. The Escrow Transactional Method. ACM TODS,
11(4), Dec. 1986.

Oracle Corporation. Concurrency Control, Transaction Iso-
lation and Serializability in SQL92 and Oracle7, July 1995.
J. Shanmugasundaram, A. Nithrakashyap, R. Sivasankaran,
and K. Ramamritham. Efficient Concurrency Control for
Broadcast Environments. In SGMOD, Philadelphia, PA,
June 1999.

D. Terry et d. Managing Update Conflicts in Bayou, a
Weakly Connected Replicated Storage System. In Proc. of
SOSP, Copper Mountain Resort, CO, Dec. 1995.

(9

[10]

[11]

[12]

[13]

[14]

[19]

[16]

[17]

[18]

[19]
[20]

[21]

[22]
[23]
[24]

[29]

[26]

