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Abstract

Commercial databases support different isolation levels
to allow programmers to trade off consistency for a poten-
tial gain in performance. The isolation levels are defined in
the current ANSI standard, but the definitions are ambigu-
ous and revised definitions proposed to correct the problem
are too constrained since they allow only pessimistic (lock-
ing) implementations. This paper presents new specifica-
tions for the ANSI levels. Our specifications are portable;
they apply not only to locking implementations, but also to
optimistic and multi-version concurrency control schemes.
Furthermore, unlike earlier definitions, our new specifica-
tions handle predicates in a correct and flexible manner at
all levels.

1. Introduction

This paper gives new, precise definitions of the ANSI-
SQL isolation levels [6]. Unlike previous proposals [13, 6,
8], the new definitions are both correct (they rule out all
bad histories) and implementation-independent. Our spec-
ifications allow a wide range of concurrency control tech-
niques, including locking, optimistic techniques [20, 2, 5],
and multi-version mechanisms [9, 24]. Thus, they meet
the goals of ANSI-SQL and could be used as an isolation
standard.

The concept of isolation levels was first introduced in [13]
under the name Degrees of Consistency. The goal of this
work was to provide improved concurrency for workloads
by sacrificing the guarantees of perfect isolation. The work
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in [13] and some refinements suggested by [11] set the
stage for the ANSI/ISO SQL-92 definitions for isolation
levels [6], where the goal was to develop a standard that
was implementation-independent. However, a subsequent
paper [8] showed that the definitions provided in [6] were
ambiguous. That paper proposed different definitions that
avoided the ambiguity problems, but, as stated in [8], these
definitions were simply “disguised versions of locking”
and therefore disallow optimistic and multi-version mech-
anisms. Thus, these definitions fail to meet the goals of
ANSI-SQL with respect to implementation-independence.

Thus, we have a problem: the standard is intended to be
implementation-independent, but lacks a precise definition
that meets this goal. Implementation-independence is im-
portant since it provides flexibility to implementors, which
can lead to better performance. Optimism can outperform
locking in some environments, such as large scale, wide-
area distributed systems [2, 15]; optimistic mechanisms are
the schemes of choice for mobile environments; and Gem-
stone [22] and Oracle [24] provide serializability and Snap-
shot Isolation, respectively, using multi-version optimistic
implementations. It is undesirable for the ANSI standard
to rule out these implementations. For example, Gemstone
provides serializability even though it does not meet the
locking-based rules given in [8].

This paper presents new implementation-independent
specifications that correct the problems with the existing
definitions. Our definitions cover the weaker isolation lev-
els that are in everyday use: Most database vendors and
database programmers take advantage of levels below se-
rializability levels to achieve better performance; in fact,
READ COMMITTED is the default for some database products
and database vendors recommend using this level instead
of serializability if high performance is desired. Our defi-
nitions also enable database vendors to develop innovative
implementations of the different levels using a wide variety
of concurrency control mechanisms including locking, op-
timistic and multi-version mechanisms. Furthermore, our
specifications handle predicate-based operations correctly
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at all isolation levels.
Thus, the paper makes the following contributions:

� It specifies the existing ANSI isolation levels in an
implementation-independent manner. The definitions
are correct (they rule out all bad histories). They
are also complete (they allow all good histories) for
serializability; in particular, they provide conflict-
serializability [9]. It is difficult to prove completeness
for lower isolation levels, but we can easily show that
our definitions are more permissive than those given
in [8].

� Our specifications also handle predicates correctly in
a flexible manner; earlier definitions were either lock-
based or incomplete [8].

Our approach can be used to define additional levels as well,
including commercial levels such as Cursor Stability [11],
and Oracle’s Snapshot Isolation and Read Consistency [24],
and new levels; for example, we have developed an ad-
ditional isolation level called PL-2+, which is the weakest
level that guarantees consistent reads and causal consistency
with respect to transactions. Details can be found in [1].

Our definitions are given using a combination of con-
straints on transaction histories and graphs; we proscribe
different types of cycles in a serialization graph at each
isolation level. Our graphs are similar to those that have
been used before for specifying serializability [9, 19, 14],
semantics-based correctness criterion [4], and for defining
extended transaction models [10]. Our approach is the first
that applies these techniques to defining ANSI and commer-
cial isolation levels. Our specifications are different from the
multi-version theory presented in [9] since that work only
describes conditions for serializability whereas we specify
all ANSI/SQL-92 and other commercial isolation levels for
multi-version systems. Furthermore, unlike our specifica-
tions, their definitions do not take predicates into account.
Our work is also substantially different from the definitions
presented in [8] since our specifications handle multi-version
systems, optimistic systems and also deal with predicates in
a correct and flexible manner at all isolation levels.

Relaxed correctness conditions based on semantics and
extended transaction models have been suggested in the
past [10, 4, 17, 7]. By contrast, our work focuses on specify-
ing existing ANSI and commercial isolation levels that are
being used by large numbers of application programmers.

The rest of this paper is organized as follows. Section 2
discusses prior work in more detail. Section 3 shows that the
current definitions are inadequate and motivates the need for
our work. Section 4 describes our database model. Section 5
provides our definitions for the existing ANSI isolation lev-
els. We close in Section 6 with a discussion of what we have
accomplished.

2. Previous Work

The original proposal for isolation levels [13] introduced
four degrees of consistency, degrees 0, 1, 2 and 3, where de-
gree 3 was the same as serializability. That paper, however,
was concerned with locking schemes, and as a consequence
the definitions were not implementation-independent.

However, that work, together with the refinement of
the levels provided by Date [11], formed the basis for the
ANSI/ISO SQL-92 isolation level definitions [6]. The ANSI
standard had implementation-independence as a goal and the
definitions were supposed to be less constraining than ear-
lier ones. The approach taken was to proscribe certain types
of bad behavior called phenomena; more restrictive consis-
tency levels disallow more phenomena and serializability
does not permit any phenomenon. The isolation levels were
named READ UNCOMMITTED, READ COMMITTED, REPEAT-
ABLE READ, and SERIALIZABLE; some of these levels were
intended to correspond to the degrees of [13].

The work in [8] analyzed the ANSI-SQL standard and
demonstrated several problems in its isolation level defini-
tions: some phenomena were ambiguous, while others were
missing entirely. It then provided new definitions. As with
the ANSI-SQL standard, various isolation levels are defined
by having them disallow various phenomena. The phenom-
ena proposed by [8] are:

P0: w1[x] ... w2[x] ... (c1 or a1)
P1: w1[x] ... r2[x] ... (c1 or a1)
P2: r1[x] ... w2[x] ... (c1 or a1)
P3: r1[P] ... w2[y in P] ... (c1 or a1)

Proscribing P0 (which was missing in the ANSI-SQL defi-
nitions) requires that a transaction T2 cannot write an object
x if an uncommitted transaction T1 has already modified
x. This is simply a disguised locking definition, requiring
T1 and T2 to acquire long write-locks. (Long-term locks
are held until the transaction taking them commits; short-
term locks are released immediately after the transaction
completes the read or write that triggered the lock attempt.)
Similarly, proscribing P1 requires T1 to acquire a long write-
lock and T2 to acquire (at least) a short-term read-lock, and
proscribing P2 requires the use of long read and write locks.

Phenomenon P3 deals with the queries based on predi-
cates. Proscribing P3 requires that a transaction T2 cannot
modify a predicate P by inserting, updating, or deleting a
row such that its modification changes the result of a query
executed by an uncommitted transaction T1 based on pred-
icate P; to avoid this situation, T1 acquires a long phantom
read-lock [14] on predicate P.

Thus, these definitions only allow histories that would
occur in a system using long/short read/write item/predicate
locks. Since locking serializes transactions by preventing
certain situations (e.g., two concurrent transactions both
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Locking Isolation Level Proscribed
Phenomena

Read Locks on Data Items and
Phantoms (same unless noted)

Write Locks on Data Items and
Phantoms (always the same)

Degree 0 none none Short write locks
Degree 1 = Locking READ UNCOMMITTED P0 none Long write locks
Degree 2 = Locking READ COMMITTED P0, P1 Short read locks Long write locks
Locking REPEATABLE READ P0, P1, P2 Long data-item read locks,

Short phantom read locks
Long write locks

Degree 3 = Locking SERIALIZABLE P0, P1, P2, P3 Long read locks Long write locks

Figure 1. Consistency Levels and Locking ANSI-92 Isolation Levels

modifying the same object), we refer to this approach as
the preventative approach.

Figure 1 summarizes the isolation levels as defined in [8]
and relates them to a lock-based implementation. Thus
the READ UNCOMMITTED level proscribes P0; READ COM-
MITTED proscribes P0 and P1; the REPEATABLE READ level
proscribes P0 - P2; and SERIALIZABLE proscribes P0 - P3.

3. Restrictiveness of Preventative Approach

We now show that the preventative approach is overly
restrictive since it rules out optimistic and multi-version
implementations. As mentioned, this approach disallows
all histories that would not occur in a locking scheme and
prevents conflicting operations from executing concurrently.

The authors in [8] wanted to ensure that multi-object con-
straints (e.g., constraints like x+ y = 10) are not observed
as violated by transactions that request an isolation level
such as serializability. They showed that histories such as
H1 and H2 are allowed by one interpretation of the ANSI
standard (at the SERIALIZABLE isolation level) even though
they are non-serializable:
H1: r1(x, 5) w1(x, 1) r2(x, 1) r2(y, 5) c2 r1(y, 5) w1(y, 9) c1

H2: r2(x, 5) r1(x, 5) w1(x, 1) r1(y, 5) w1(y, 9) c1 r2(y, 9) c2

In both cases, T2 observes an inconsistent state (it observes
invariant x+ y = 10 to be violated). These histories are not
allowed by the preventative approach; H1 is ruled out by P1
and H2 is ruled out by P2.

Optimistic and multi-version mechanisms [2, 5, 9, 20, 22]
that provide serializability also disallow non-serializable
histories such as H1 and H2. However, they allow many
legal histories that are not permitted by P0, P1, P2, and P3.
Thus, the preventative approach disallows such implemen-
tations. Furthermore, it rules out histories that really occur
in practical implementations.

Phenomenon P0 can occur in optimistic implementations
since there can be many uncommitted transactions modify-
ing local copies of the same object concurrently; if neces-
sary, some of them will be forced to abort so that serializ-
ability can be provided. Thus, disallowing P0 can rule out
optimistic implementations.

Condition P1 precludes transactions from reading up-
dates by uncommitted transactions. Such reads are disal-
lowed by many optimistic schemes, but they are desirable

in mobile environments, where commits may take a long
time if clients are disconnected from the servers [12, 16];
furthermore, reads from uncommitted transactions may be
desirable in high traffic hotspots [23]. For example, in his-
tory H1, if T2 reads T1’s values for both x and y, it can be
serialized after T1:

H10 : r1(x, 5) w1(x, 1) r1(y, 5) w1(y, 9) r2(x, 1) r2(y, 9) c1 c2

The above history can occur in a mobile system, but P1
disallows it. In such a system, commits can be assumed to
have happened “tentatively” at client machines [12, 16]; later
transactions may observe modifications of those tentative
transactions. When the client reconnects with the servers,
its work is checked to determine if consistency has been
violated and the relevant transactions are aborted. Of course,
if dirty reads are allowed, cascading aborts can occur, e.g.,
in history H10 , T2 must abort if T1 aborts; this problem can
be alleviated by using compensating actions [18, 26, 19].

Proscribing phenomenon P2 disallows a modification to
an object that has been read by an uncommitted transaction
(P3 rules out a similar situation with respect to predicates).
As with P0, uncommitted transactions may read/write the
same object concurrently in an optimistic implementation.
There is no harm in allowing phenomenon P2 if transactions
commit in the right order. For example, in history H2 given
above, if T2 reads the old values of x and y, the transactions
can be serialized in the order T2; T1:

H20 : r2(x, 5) r1(x, 5) w1(x, 1) r1(y, 5) r2(y, 5) w1(y, 9) c2 c1

The real problem with the preventative approach is that
the phenomena are expressed in terms of single-object his-
tories. However, the properties of interest are often multi-
object constraints. To avoid problems with such constraints,
the phenomena need to restrict what can be done with indi-
vidual objects more than is necessary. Our approach avoids
this difficulty by using specifications that capture constraints
on multiple objects directly. Furthermore, the definitions in
the preventative approach are not applicable to multi-version
systems since they are described in terms of objects rather
than in terms of versions. On the other hand, our specifica-
tions deal with multi-version and single-version histories.

The approach in [8] only allows schemes that provide
the same guarantees for running and committed transac-
tions (a lock-based implementation does indeed have this
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property). However, many optimistic mechanisms provide
weak guarantees to transactions as they run while provid-
ing strong guarantees such as serializability for committed
transactions. Our definitions allow different isolation guar-
antees for committed and running transactions; in this paper,
we only present guarantees for committed transactions.

4. Database Model and Transaction Histories

We now describe our database model, transaction histo-
ries, and serialization graphs. We use a multi-version model
similar to the one presented in [9]. However, unlike [9], our
model incorporates predicates also. Furthermore, we al-
low predicate behavior that is possible in non-locking based
systems.

4.1. Database Model

The database consists of objects that can be read or writ-
ten by transactions; in a relational database system, each
row or tuple is an object. Each transaction reads and writes
objects and indicates a total order in which these operations
occur.

An object has one or more versions. However, trans-
actions interact with the database only in terms of objects;
the system maps each operation on an object to a specific
version of that object. A transaction may read versions
created by committed, uncommitted, or even aborted trans-
actions; constraints imposed by some isolation levels will
prevent certain types of reads, e.g., reading versions created
by aborted transactions.

When a transaction writes an object x, it creates a new
version of x. A transaction Ti can modify an object multiple
times; its first modification of object x is denoted by xi:1,
the second by xi:2, and so on. Version xi denotes the final
modification of x performed by Ti before it commits or
aborts. A transaction’s last operation, commit or abort,
indicates whether its execution was successful or not; there
is at most one commit or abort operation for each transaction.

The committed state reflects the modifications of com-
mitted transactions. When transaction Ti commits, each
version xi created by Ti becomes a part of the committed
state and we say that Ti installs xi; the system determines
the ordering of xi relative to other committed versions of x.
If Ti aborts, xi does not become part of the committed state.

Conceptually, the initial committed state comes into ex-
istence as a result of running a special initialization trans-
action, Tinit. Transaction Tinit creates all objects that will
ever exist in the database; at this point, each object x has
an initial version, xinit, called the unborn version. When
an application transaction creates an object x (e.g., by in-
serting a tuple in a relation), we model it as the creation of
a visible version for x. Thus, a transaction that loads the

database creates the initial visible versions of the objects
being inserted. When a transaction Ti deletes an object x
(e.g., by deleting a tuple from some relation), we model it
as the creation of a special dead version, i.e., in this case,
xi is a dead version. Thus, object versions can be of three
kinds — unborn, visible, and dead; the ordering relationship
between these versions is discussed in Section 4.2.

If an object x is deleted from the committed database
state and inserted later, we consider the two incarnations of
x to be distinct objects. When a transaction Ti performs an
insert operation, the system selects a unique object x that
has never been selected for insertion before and Ti creates a
visible version of x if it commits.

We assume object versions exist forever in the committed
state to simplify the handling of inserts and deletes, i.e., we
simply treat inserts/deletes as write (update) operations. An
implementation only needs to maintain visible versions of
objects, and a single-version implementation can maintain
just one visible version at a time. Furthermore, application
transactions in a real system access only visible versions.

4.2. Transaction Histories

We capture what happens in an execution of a database
system by a history. A history H over a set of transactions
consists of two parts — a partial order of events E that
reflects the operations (e.g., read, write, abort, commit) of
those transactions, and a version order, �, that is a total
order on committed versions of each object.

Each event in a history corresponds to an operation of
some transaction, i.e., read, write, commit, or abort. A write
operation on object x by transaction Ti is denoted by wi(xi)
(or wi(xi:m)); if it is useful to indicate the value v being
written into xi, we use the notation, wi(xi, v). When a
transaction Tj reads a version of x that was created by Ti,
we denote this as rj(xi) (or rj(xi:a)). If it is useful to indicate
the value v being read, we use the notation rj(xi, v).

The partial order of events E in a history obeys the fol-
lowing constraints:

� It preserves the order of all events within a transaction
including the commit and abort events.

� If an event rj(xi:m) exists in E, it is preceded by
wi(xi:m) in E, i.e., a transaction Tj cannot read ver-
sion xi:m of object x before it has been produced by
Ti. Note that the version read by Tj is not necessarily
the most recently installed version in the committed
database state; also, Ti may be uncommitted when
rj(xi:m) occurs.

� If an event wi(xi:m) is followed by ri(xj) without an
intervening event wi(xi:n) in E, xj must be xi:m. This
condition ensures that if a transaction modifies object
x and later reads x, it will observe its last update to x.
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� The history must be complete: if E contains a read
or write event that mentions a transaction Ti, E must
contains a commit or abort event for Ti.

A history that is not complete can be completed by append-
ing abort events for uncommitted transactions in E. Adding
these events is intuitively correct since any implementation
that allows a commit of a transaction that reads from an
uncommitted transaction Ti can do so only if it is legal for
Ti to abort later.

For convenience, we will present event histories in ex-
amples as a total order (from left to right) that is consistent
with the partial order.

The second part of a history H is the version order,�, that
specifies a total order on versions of each object created by
committed transactions in H; there is no ordering of versions
due to uncommitted or aborted transactions. We also refer
to versions due to committed transactions in H as committed
versions. We impose two constraints on a history’s version
order for different kinds of committed versions:

� the version order of each object x contains exactly one
initial version, xinit, and at most one committed dead
version, xdead.

� xinit is x’s first version in its version order and xdead
is its last version (if it exists); all committed visible
versions are placed between xinit and xdead.

We additionally constrain the system to allow reads only
of visible versions:

� if rj(xi) occurs in a history, then xi is a visible version.

For convenience, we will only show the version order for
visible versions in our example histories; in cases where
unborn or dead versions help in illustrating an issue, we will
show some of these versions as well.

The version order in a history H can be different from
the order of write or commit events in H. This flexibility is
needed to allow certain optimistic and multi-version imple-
mentations where it is possible that a version xi is placed
before version xj in the version order (xi� xj) even though
xi is installed in the committed state after version xj was
installed. For example, in history Hwrite�order,

Hwrite�order: w1(x1) w2(x2) w2(y2) c1 c2

r3(x1) w3(x3) w4(y4) a4 [x2 � x1]

the database system has chosen the version order x2 � x1

even though T1 commits before T2. Note that there are no
constraints on x3 (yet) or y4 since these versions correspond
to uncommitted and aborted transactions, respectively. Note
also that the naming of transactions does not indicate their
commit order, e.g., in history Hwrite�order, T2 is serialized
before T1.

4.3. Predicates

We now discuss how predicates are handled in our model.
We assume that predicates are used with relations in a rela-
tional database system. There are three types of modification
operations on relations: updates, inserts and deletes; inserts
and deletes change the number of tuples in a relation.

In our model, the database is divided into relations and
each tuple (and all its versions) exists in some relation. As
before, unborn and dead versions exist for a tuple before the
tuple’s insertion and after its deletion. An important point
to note here is that a tuple’s relation is known in our model
when the database is initialized by Tinit, i.e., before the
tuple is inserted by an application transaction. Of course,
this assumption is needed only at a conceptual level. In an
implementation, the system need not know the relation of
all tuples that will be created in the system; it just needs to
know a tuple x’s relation when x is inserted in the database.

A predicate P identifies a Boolean condition (e.g., as in
the WHERE clause of a SQL statement) and the relations on
which the condition has to be applied; one or more relations
can be specified in P. All tuples that match this condition are
read or modified depending on whether a predicate-based
read or write is being considered.

Definition 1 : Version set of a predicate-based operation.
When a transaction executes a read or write based on a
predicate P, the system selects a version for each tuple in
P’s relations. The set of selected versions is called the
Version set of this predicate-based operation and is denoted
by Vset(P).

The version set defines the state that is observed to eval-
uate a predicate P; as discussed later, P’s Boolean condition
is applied on the versions in Vset(P) to determine which
tuples satisfy P. Since we select a version for all possible
tuples in P’s relations, this set will be very large (it includes
unborn and possibly dead versions of some tuples). For
convenience, in our examples we will only show visible ver-
sions in a version set; to better explain some examples, we
will sometimes also show some unborn and dead versions.

Our approach of observing some version of each tuple
allows us to handle the phantom problem [14] in a simple
manner. Of course, this does not constrain implementations
to perform these observations; e.g., an implementation could
use an index.

4.3.1 Predicate-based Reads

If a transaction Ti performs reads based on a predicate P
(e.g., in a SQL statement), the system (conceptually) ac-
cesses all versions in Vset(P). Then, the system determines
which tuples match predicate P by evaluating P’s Boolean
condition on the versions in Vset(P); tuples whose unborn
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and dead versions were selected in the previous step do not
match. If the system reads the matched versions as part
of the query, these reads show up as separate events in the
history. Thus, a query based on a predicate P by Ti is repre-
sented in a history as ri(P: Vset(P)) ri(xj) ri(yk) : : :, where
xj , yk are the versions in Vset(P) that match P, and Ti reads
these versions. If Ti does not read the matched objects, the
events ri(xj) and ri(yk) do not show up in the history, e.g.,
Ti could simply use the count of tuples that matched P.

For example, suppose transaction Ti executes the follow-
ing SQL query:

SELECT * FROM EMPLOYEE WHERE DEPT = SALES;

This query (conceptually) accesses a version of every visible
tuple in the Employee relation (e.g., x1 and y2) and the
unborn/dead versions of other tuples in this relation (e.g.,
zinit). Suppose that version x1 matches the predicate and
y2 does not match; recall that unborn versions such as zinit
cannot match the predicate. This predicate-based read could
be shown in a history as ri(Dept=Sales: x1; y2) ri(x1); here,
we do not show unborn or dead versions in the version set.
Note that the read of x1 shows up as a separate event in
the history; if Ti had just determined the number of tuples
matching the predicate (using SELECT COUNT), the event
ri(x1) would not have been included.Thus, the history only
shows reads of versions that were actually observed by Ti.

4.3.2 Predicate-based Modifications

A modification based on a predicate P is modeled as a
predicate-based read followed by write operations on tuples
that match P. (Although this approach is weaker than the one
used in [1], it models the behavior of commercial databases.)
For example, suppose transaction Ti executes the following
code for the employee database discussed above:
UPDATE EMPLOYEE SAL = SAL + $10 WHERE DEPT=SALES;

Suppose that the system selects versions, x1, y2, and zinit
for this operation. If x1 matches the predicate but y2 and
zinit do not, the following events are added to the history:
ri(Dept=Sales: x1; y2) wi(xi).

If the predicate-based write deletes objects, dead versions
are installed for all the matching tuples (i.e., these tuples are
deleted). Thus, if a transaction Ti deletes all employees from
the Sales department in the above scenario, the following
events are added to the history: ri(Dept=Sales: x1; y2) wi(xi,
dead). Note that the events for deletes and updates are
similar. However, there is a difference: in the deletion
example, xi is a dead version (for illustrative purposes, we
have shown the value “dead” being put in xi) and cannot be
used further whereas in the update case, xi can be used later.

Inserts are handled in a similar manner. For exam-
ple, consider the following statement that copies employ-
ees whose commission exceeds 25% of their salary into the
BONUS table (this statement is executed by transaction T1):

T1: INSERT INTO BONUS SELECT NAME, SAL, COMM

FROM EMP WHERE COMM > 0.25 * SAL;

Here is a possible history for T1’s execution in our model:

Hinsert: r1(comm > 0.25 * sal: x0, z0) r1(x0) w1(y1) c1

In this history, x0 matches the predicate-based query; there-
fore it is read by T1 to generate tuple y1 that is inserted into
the Bonus table.

4.4. Conflicts and Serialization Graphs

We first define the different types of read/write conflicts
that can occur in a database system and then use them to
specify serialization graphs. We define three kinds of di-
rect conflicts that capture conflicts of two different commit-
ted transactions on the same object or intersecting predi-
cates. For convenience, we have separated the definitions of
predicate-based conflicts and regular conflicts.

4.4.1 Read Dependencies

Read dependencies occur when one transaction reads a rel-
evant version produced by some other transaction. We use
the following definition for specifying read-dependencies:

Definition 2 : Change the Matches of a Predicate-Based
Read. We say that a transaction Ti changes the matches
of a predicate-based read rj(P: Vset(P)) if Ti installs xi, xh
immediately precedes xi in the version order,and xh matches
P whereas xi does not or vice-versa. In this case, we also
say that xi changes the matches of the predicate-based read.

The above definition identifies Ti to be a transaction where
a change occurs for the matched set of rj(P: Vset(P)).

Definition 3 : Directly Read-Depends. We say that Tj

directly read-depends on transaction Ti if it directly item-
read-depends or directly predicate-read-depends on Ti.

Directly item-read-depends: We say that Tj directly item-
read-depends on Ti if Ti installs some object version
xi and Tj reads xi.

Directly predicate-read-depends: Transaction Tj directly
predicate-read-depends on Ti if Tj performs an oper-
ation rj(P: Vset(P)), xk 2 Vset(P), i = k or xi � xk,
and xi changes the matches of rj(P: Vset(P)).

If Tj performs a predicate-based read rj(P: Vset(P)), it
read depends on Ti if Ti performs a write that is “relevant” to
Tj’s read, i.e., Ti is a transaction before Tj that changed the
matches of Tj’s read. Note that all tuples in the version set
of a predicate-based read are considered to be accessed, in-
cluding tuples that do not match the predicate. The versions
that are actually read by transaction Tj show up as normal
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read events. Other versions in the version set are essen-
tially ghost reads, i.e., their values are not observed by the
predicate-based read but read-dependencies are established
for them as well.

The rule for predicate-read-dependencies captures the
idea that what matters for a predicate is the set of tuples that
match or do not match and not their values. Furthermore, of
all the transactions that have caused the tuples to match (or
not match) for rj(P: Vset(P)), we use the latest transaction
where a change to Vset(P) occurs rather than using the latest
transaction that installed the versions in Vset(P). This rule
ensures that we capture the minimum possible conflicts for
predicate-based reads. For example, consider the history:

Hpred�read: w0(x0) c0 w1(x1) c1 w2(x2)
r3(Dept=Sales: x2, y0) w2(y2) c2 c3 [x0 � x1 � x2, y0 � y2]

Here, transaction T0 inserts object x in the Sales department,
T1 changes x’s department to Legal, and T2 changes the
phone number of x but not its department. Transaction T3

selects all employees in the Sales department. In this case,
even though T3’s version set contains x2, we add a predicate-
read-dependency from T1 to T3 because T2’s update of x is
irrelevant for T3’s read. Note that this history is serializable
in the order T0, T1, T3, T2.

4.4.2 Anti-Dependencies

An anti-dependency occurs when a transaction overwrites a
version observed by some other transaction.

To define anti-dependencies, it is useful to define what it
means to overwrite a predicate-based operation.

Definition 4 : Overwriting a predicate-based read.
We say that a transaction Tj overwrites an operation
ri(P: Vset(P)) if Tj installs xj such that xk 2 Vset(P),
xk � xj , and xj changes the matches of ri(P: Vset(P)).

Now we can define anti-dependencies.

Definition 5 : Directly Anti-Depends. Transaction Tj di-
rectly anti-depends on transaction Ti if it directly item-anti-
depends or directly predicate-anti-depends on Ti.

Directly item-anti-depends: We say that Tj directly item-
anti-depends on transaction Ti if Ti reads some object
version xk and Tj installs x’s next version (after xk)
in the version order. Note that the transaction that
wrote the later version directly item-anti-depends on
the transaction that read the earlier version.

Directly predicate-anti-depends: We say that Tj directly
predicate-anti-depends on Ti if Tj overwrites an oper-
ation ri(P: Vset(P)), i.e., Tj installs a later version of
some object that changes the matches of a predicate-
based read performed by Ti.

Read-dependencies and anti-dependencies are treated
similarly for predicates, i.e., we add an edge whenever a
predicate’s matched set is changed. The difference between
item-anti-depends and predicate-anti-depends is also simi-
lar. For item-anti-depends, the overwriting transaction must
produce the very next version of the read object, while for
predicate-anti-depends it simply produces a later version
that changes the matched tuples of the predicate.

The definition for predicate-anti-depends handles inserts
and deletes. For example, consider the employee database
scenario described in Section 4.3 that contains visible ver-
sions of two tuples x and y. Suppose Ti executes a query
that selects all Employees in the Sales department, and the
query’s version set contains versions x1 and y2 (along with
unborn/dead versions of other tuples), and x1 is in Sales
and y2 is not. A later transaction Tj will directly predicate-
anti-depend on Ti if Tj adds a new employee to the Sales
department, moves y to Sales, removes x from Sales, or
deletes x from the database.

In a two-phase locking implementation (for providing
serializability), if a transaction T1 performs a read based on
predicate P and T2 tries to insert an object x covered by P’s
predicate lock, T2 is delayed till T1 finishes. In our model,
T1 reads xinit and T2 creates a later version x2. If T2 changes
the matches by T1’s read, T2 predicate-anti-depends on T1.
Note that T1’s predicate read-locks delay T2 even if T2 does
not change the objects matched by P. Our definitions are
more flexible and permit implementations that allow T2 to
proceed in such cases, e.g., precision locks and granular
locks [14].

4.4.3 Write Dependencies

Write dependencies occur when one transaction overwrites
a version written by another transaction.

Definition 6 : Directly Write-Depends. A transaction Tj

directly write-depends on Ti if Ti installs a version xi and
Tj installs x’s next version (after xi) in the version order.

Note that there is no notion of predicate-write-depends since
predicate-based modifications are modeled as queries fol-
lowed by writes on individual tuples.

4.4.4 Serialization Graphs

Now we can define the Direct Serialization Graph or DSG.
This graph is called “direct” since it is based on the direct
conflicts discussed above. In the graph we will denote direct

read-dependencies by
wr

Ti �! Tj , direct write-dependencies

by
ww

Ti �! Tj , and direct anti-dependencies by
rw

Ti �! Tj .
Figure 2 summarizes this notation and reviews the defini-
tions for direct dependencies.
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Conflicts Name Description (Tj conflicts on Ti) Notation in DSG

Directly write-depends Ti installs xi and Tj installs x’s next version
ww

Ti ! Tj

Directly read-depends Ti installs xi, Tj reads xi or Tj performs a predicate-based
read, xi changes the matches of Tj’s read, and xi is the same
or an earlier version of x in Tj ’s read

wr

Ti ! Tj

Directly anti-depends Ti reads xh and Tj installs x’s next version or Ti performs a
predicate-based read and Tj overwrites this read

rw

Ti �� ! Tj

Figure 2. Definitions of direct conflicts between transactions.

Definition 7 : Direct Serialization Graph.
We define the direct serialization graph arising from a

history H, denoted by DSG(H), as follows. Each node in the
graph corresponds to a committed transaction and directed
edges correspond to different types of direct conflicts. There
is a read/write/anti-dependency edge from transaction Ti to
transaction Tj if Tj directly read/write/anti-depends on Ti.

A DSG does not capture all information in a history and
hence it does not replace the history,e.g., a DSG only records
information about committed transactions. The history is
still available if needed, and in fact, we use the history
instead of the DSG for some conditions.

As an example, consider the following history:

Hserial: w1(z1) w1(x1) w1(y1) w3(x3) c1 r2(x1) w2(y2)
c2 r3(y2) w3(z3) c3 [x1 � x3, y1 � y2, z1 � z3]

Figure 3 shows the DSG for this history. As we can see,
these transactions are serializable in the order T1; T2; T3.

T2

ww
T1 T3

rw

wr

ww

wr

Figure 3. DSG for history Hserial

It is also useful to have additional dependency relations:

Definition 8 : Depends. A transaction Tj directly depends
on Ti if Tj directly write-depends or directly read-depends
on Ti. We say that Tj depends on Ti in H if there is a
path from Ti to Tj in DSG(H) consisting of one or more
dependency edges.

5. New Generalized Isolation Specifications

We now present our specifications for the existing ANSI
isolation levels. We developed our conditions by studying
the motivation of the original definitions [13] and the prob-
lems that were addressed by the phenomena in [8]. This
enabled us to develop implementation-independent specifi-
cations that capture the essence of the ANSI definitions, i.e.,

we disallow undesirable situations while allowing histories
that are permitted by a variety of implementations.

Like the previous approaches, we will define each iso-
lation level in terms of phenomena that must be avoided at
each level. Our phenomena are prefixed by “G” to denote
the fact that they are general enough to allow locking and op-
timistic implementations; these phenomena are named G0,
G1, and so on (by analogy with P0, P1, etc of [6]). We will
refer to the new levels as PL levels (where PL stands for
“portable level”) to avoid the possible confusion with the
degrees of isolation given in [8, 13].

5.1. Isolation Level PL-1

Disallowing phenomenon P0 ensures that writes per-
formed by T1 are not overwritten by T2 while T1 is still
uncommitted. There seem to be two reasons why this pro-
scription might be desirable:

1. It simplifies recovery from aborts. In the absence of this
proscription, a system that allows writes to happen in
place cannot recover the pre-states of aborted transac-
tions using a simple undo log approach. For example,
suppose T1 updates x (i.e., w1(x1)), T2 overwrites x,
and then T1 aborts. The system must not restore x to
T1’s pre-state. However, if T2 aborts later, x must be
restored to T1’s pre-state and not to x1.

2. It serializes transactions based on their writes alone.
For example, if T2 updates an object x and T1 overwrites
x, there should not be another object y in which the
reverse occurs, i.e., all writes of T2 must be ordered
before or after all writes of T1.

The first reason does not seem relevant to all systems.
Instead, it is based on a particular implementation of recov-
ery, and other implementations are possible. For example,
the Thor system [21] maintains temporary versions of ob-
jects for an uncommitted transaction Ti and discards these
versions if Ti aborts.

Serializing transactions based on writes is a useful prop-
erty since it ensures that updates of conflicting transactions
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are not interleaved. This property is captured by phe-
nomenon G0 and we define PL-1 as the level in which
G0 is disallowed:

G0: Write Cycles. A history H exhibits phenomenon
G0 if DSG(H) contains a directed cycle consisting
entirely of write-dependency edges.

For example, history Hwcycle

Hwcycle: w1(x1, 2) w2(x2, 5) w2(y2, 5) c2 w1(y1, 8) c1

[x1 � x2, y2 � y1]

is disallowed by PL-1 because the updates on x and y occur
in opposite orders, causing a cycle in the graph. Figure 4
shows the DSG for this history.

T T1

ww

2

ww

Figure 4. DSG for history Hwcycle

Our PL-1 specification is more permissive than Degree 1
of [8] since G0 allows concurrent transactions to modify the
same object whereas P0 does not. Thus, non-serializable
interleaving of write operations is possible among uncom-
mitted transactions as long as such interleavings are dis-
allowed among committed transactions (e.g., by aborting
some transactions).

The lock-based implementation of PL-1 (long write-
locks) disallows G0 since two concurrent transactions, Ti

and Tj , cannot modify the same object; therefore, all writes
of Tj either precede or follow all writes of Ti.

Note that since predicate-based modifications are mod-
eled as queries followed by normal writes, PL-1 provides
weak guarantees for such updates. For example, consider
the following history in which transaction T2 increments the
salaries of all employees for which “Dept = Sales”, and T1

adds two employees, x and y, to the Sales department.
Hpred�update: w1(x1) r2(Dept=Sales: x1; yinit) w1(y1)

w2(x2) c1 c2 [xinit� x1 � x2, yinit � y1]

The updates of transactions T1 and T2 are interleaved in this
history (x’s salary is updated but y’s salary is not). This inter-
leaving is allowed at PL-1 since there is no write-dependency
cycle in the DSG (there is a write-dependency edge from T1

to T2 since x1 � x2).

5.2. Isolation Level PL-2

If a system disallows only G0, it places no constraints on
reads: a transaction is allowed to read modifications made
by committed, uncommitted, or even aborted transactions.
Proscribing phenomenon P1 in [6] was meant to ensure that
T1 updates could not be read by T2 while T1 was still un-
committed. There seem to be three reasons why disallowing
P1 (in addition to P0) might be useful:

1. It prevents a transaction T2 from committing if T2 has
read the updates of a transaction that might later abort.

2. It prevents transactions from reading intermediate mod-
ifications of other transactions.

3. It serializes committed transactions based on
their read/write-dependencies (but not their anti-
dependencies). That is, if transaction T2 depends on
T1, T1 cannot depend on T2.

Disallowing P1 (together with P0) captures all three of these
issues, but does so by preventing transactions from reading
or writing objects written by transactions that are still un-
committed. Instead, we address these three issues by the
following three phenomena, G1a, G1b, and G1c.

G1a: Aborted Reads. A history H shows phe-
nomenon G1a if it contains an aborted transaction
T1 and a committed transaction T2 such that T2 has
read some object (maybe via a predicate) modified by
T1. Phenomenon G1a can be represented using the
following history fragments:

w1(x1:i) : : : r2(x1:i) : : : (a1 and c2 in any order)
w1(x1:i) : : : r2(P: x1:i, ...) : : : (a1 and c2 in any order)

Proscribing G1a ensures that if T2 reads from T1 and T1

aborts, T2 must also abort; these aborts are also called cas-
caded aborts [9]. In a real implementation, the condition
also implies that if T2 reads from an uncommitted transac-
tion T1, T2’s commit must be delayed until T1’s commit has
succeeded [9, 14].

G1b: Intermediate Reads. A history H shows phe-
nomenon G1b if it contains a committed transaction
T2 that has read a version of object x (maybe via a
predicate) written by transaction T1 that was not T1’s
final modification of x. The following history frag-
ments represent this phenomenon:

w1(x1:i) : : : r2(x1:i) : : : w1(x1:j ) : : : c2

w1(x1:i) : : : r2(P: x1:i; :::) : : : w1(x1:j) : : : c2

Proscribing G1b ensures that transactions are allowed to
commit only if they have read final versions of objects cre-
ated by other transactions. Note that disallowing G1a and
G1b ensures that a committed transaction has read only ob-
ject states that existed (or will exist) at some instant in the
committed state.

G1c: Circular Information Flow. A history H ex-
hibits phenomenon G1c if DSG(H) contains a directed
cycle consisting entirely of dependency edges.

Intuitively, disallowing G1c ensures that if transaction T2 is
affected by transaction T1, it does not affect T1, i.e., there
is a unidirectional flow of information from T1 to T2. Note
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that G1c includes G0. We could have defined a weaker
version of G1c that only concerned cycles with at least one
read-dependency edge, but it seemed simpler not to do this.

Phenomenon G1 captures the essence of no-dirty-reads
and is comprised of G1a, G1b and G1c. We define isolation
level PL-2 as one in which phenomenon G1 is disallowed.
Proscribing G1 is clearly weaker than proscribing P1 since
G1 allows reads from uncommitted transactions. The lock-
based implementation of PL-2 disallows G1 because the
combination of long write-locks and short read-locks en-
sures that if Ti reads a version produced by Tj , Tj must
have committed already (i.e., G1a, G1b not possible) and
therefore Tj cannot read a version produced by Ti (i.e., G1c
not possible).

Our PL-2 definition treats predicate-based reads like nor-
mal reads and provides no extra guarantees for them; we
believe this approach is the most useful and flexible. Other
approaches, such as requiring that each predicate-based op-
eration is atomic with respect to other predicate-based oper-
ations, are discussed in [1].

5.3. Isolation Level PL-3

In a system that proscribes only G1, it is possible for a
transaction to read inconsistent data and therefore to make
inconsistent updates. Although disallowing phenomenon P2
prevents such situations (e.g., H2 presented in Section 3),
it also prevents legal histories such as H20 (which is also
discussed in Section 3) and hence,disallows many optimistic
and multi-version concurrency control schemes. What we
need is to prevent transactions that perform inconsistent
reads or writes from committing. This is accomplished by
the following condition:

G2: Anti-dependency Cycles. A history H exhibits
phenomenon G2 if DSG(H) contains a directed cycle
with one or more anti-dependency edges.

We define PL-3 as an isolation level that proscribes G1 and
G2. Thus, all cycles are precluded at this level. Of course,
the lock-based implementation of PL-3 (long read/write-
locks) disallows phenomenon G2 also since two-phase lock-
ing is known to provide complete serializability.

Proscribing G2 is weaker than proscribing P2, since we
allow a transaction Tj to modify object x even after another
uncommitted transaction Ti has read x. Our PL-3 definition
allows histories such as H10 and H20 (presented in Section 3)
that were disallowed by the preventative definitions.

The conditions given in [9] provides view-serializability
whereas our specification for PL-3 provides conflict-
serializability (this can be shown using theorems presented
in [9]). All realistic implementations provide conflict-
serializability; thus, our PL-3 conditions provide what is
normally considered as serializability.

T T1

wr

2
predicate - rw

Figure 5. Direct serialization graph for history
Hphantom (T0 is not shown)

5.4. Isolation Level PL-2.99

The level called REPEATABLE READ or Degree 2.99
in [6] provides less than full serializability with respect to
predicates. In particular, it uses long locks for all operations
except predicate reads for which it used short locks, i.e.,
it ensures serializability with respect to regular reads and
provides guarantees similar to degree 2 for predicate reads.
Thus, anti-dependency cycles due to predicates can occur at
this level.

We define level PL-2.99 as one that proscribes G1 and
G2-item:

G2-item: Item Anti-dependency Cycles. A his-
tory H exhibits phenomenon G2-item if DSG(H) con-
tains a directed cycle having one or more item-anti-
dependency edges.

For example, consider the following history:

Hphantom: r1(Dept=Sales: x0, 10; y0, 10) r1(x0, 10) r2(y0, 10)
r2(Sum0, 20) w2(z2, 10) w2(Sum2, 30) c2 r1(Sum2, 30) c1

[Sum0 � Sum2, zinit� z2]

When T1 performs its query, there are exactly two employ-
ees, x and y, both in Sales (we show only visible versions
in the history). T1 sums up the salaries of these employees
and compares it with the sum-of-salaries maintained for this
department. However, before it performs the final check, T2

inserts a new employee, z2, in the Sales department, updates
the sum-of-salaries, and commits. Thus, when T1 reads the
new sum-of-salaries value it finds an inconsistency.

The DSG for Hphantom is shown in Figure 5. This his-
tory is ruled out by PL-3 but permitted by PL-2.99 because
the DSG contains a cycle only if predicate anti-dependency
edges are considered.

5.5. Mixing of Isolation Levels

So far, we have only discussed systems in which all trans-
actions are provided the same guarantees. However, in gen-
eral, applications may run transactions at different levels and
we would like to understand how these transactions interact
with each other. This section discusses how we model such
mixed systems.

In real database systems, each SQL statement in a trans-
action Ti may be executed atomically even though Ti is
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Level Phenomena
disallowed

Informal Description (Ti can commit only if:)

PL-1 G0 Ti’s writes are completely isolated from the writes of other transactions
PL-2 G1 Ti has only read the updates of transactions that have committed by the time Ti

commits (along with PL-1 guarantees)
PL-2.99 G1, G2-item Ti is completely isolated from other transactions with respect to data items and

has PL-2 guarantees for predicate-based reads
PL-3 G1, G2 Ti is completely isolated from other transactions, i.e., all operations of Ti are

before or after all operations of any other transaction

Figure 6. Summary of portable ANSI isolation levels

executed at a lower isolation level. Mixed systems in which
individual SQL statements are executed atomically are dis-
cussed in [1].

In a mixed system, each transaction specifies its level
when it starts and this information is maintained as part of
the history and used to construct a mixed serialization graph
or MSG. Like a DSG, the MSG contains nodes correspond-
ing to committed transactions and edges corresponding to
dependencies, but only dependencies relevant to a transac-
tion’s level or obligatory dependencies show up as edges in
the graph. Transaction Ti has an obligatory conflict with
transaction Tj if Tj is running at a higher level than Ti,
Ti conflicts with Tj , and the conflict is relevant at Tj’s
level. For example, an anti-dependency edge from a PL-3
transaction to a PL-1 transaction is an obligatory edge since
overwriting of reads matters at level PL-3.

Edges are added as follows: Since write-dependencies
are relevant at all levels, we retain all such edges. For
a PL-2 or PL-3 node Ti, since reads are important, read-
dependencies coming into Ti are added. Similarly, we add
all outgoing anti-dependency edges from PL-3 transactions
to other nodes.

Now we can define correctness for a mixed history:

Definition 9 : Mixing-Correct. A history H is mixing-
correct if MSG(H) is acyclic and phenomena G1a and G1b
do not occur for PL-2 and PL-3 transactions.

It is possible to restate the above definition as an analog
of the Isolation Theorem [14]:

Mixing Theorem: If a history is mixing-correct,
each transaction is provided the guarantees that
pertain to its level.

The above theorem holds at the level of a history and is in-
dependent of how synchronization is implemented 1. Note
that the guarantees provided to each level are with respect

1As stated in [14], this does not imply that a PL-3 transaction observes
a consistent state since lower level transactions may have modified the
database inconsistently; if we want a PL-3 transaction to observe a consis-
tent state, lower level transactions must update the database consistently
even if they observe an inconsistent state.

to the MSG. The reason is that an MSG considers the pres-
ence of transactions at other levels whereas a DSG is simply
constructed with all edges. An MSG is useful for determin-
ing correctness if PL-1 and PL-2 transactions “know” what
they are doing whereas a DSG ensures correctness without
making any assumptions about the operations of lower level
transactions.

A mixed system can be implemented using locking (with
the standard combination of short and long read/write locks).
But it can also be implemented using other techniques. For
example an optimistic implementation would attempt to fit
each committing transaction into the serial order based on
its own requirements (for its level) and its obligations to
transactions running at higher levels, and would abort the
transaction if this is not possible. An optimistic implemen-
tation that is mixing-correct is presented in [1].

5.6. Discussion

We summarize the isolation levels discussed in this sec-
tion in Figure 6.

These levels are defined to impose constraints only when
transactions commit; they do not constrain transactions as
they run, although if something bad happens (e.g., a PL-
3 transactions observes an inconsistency), they do force
aborts. Analogs of the levels that constrain executing trans-
actions are given in [1]; these definitions use slightly dif-
ferent graphs, containing nodes for committed transactions
plus a node for the executing transaction.

6. Conclusions

This paper has presented new, precise specifications of
the ANSI-SQL isolation levels. Unlike previous propos-
als, the new definitions are implementation-independentand
allow a wide range of concurrency control techniques, in-
cluding locking and optimism. Furthermore, our definitions
handle predicates in a correct and flexible manner at all iso-
lation levels. Thus, they meet the goals of the ANSI-SQL
standard.
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The paper also specified the behavior of systems that
allow mixing of levels: users are allowed to choose the level
for each transaction they run, and the system guarantees that
each transaction is provided with the constraints of its own
level, even when some transactions are running at lower
levels.

Our approach is applicable to other levels in addition
to the ones discussed in the paper. We have developed
implementation-independent specifications of commercial
isolation levels such as Snapshot Isolation and Cursor Sta-
bility, and we have defined a new level called PL-2+; the
details can be found in [1]. PL-2+ is the the weakest level
that guarantees consistent reads and causal consistency; it is
useful in client-server systems [3, 1] and broadcast environ-
ments [25].

All of our definitions are implementation independent.
This makes them suitable for use as an industry standard,
since they do not preclude clever but unconventional imple-
mentations that either exist today or may be developed in
the future. Instead they provide implementors with the op-
portunity to choose the best performing concurrency control
mechanism for their environment.
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