
8/27/2014 MapReduce: A major step backwards - The Database Column

http://homes.cs.washington.edu/~billhowe/mapreduce_a_major_step_backwards.html 1/21

Textonly version

This is Google's cache of http://databasecolumn.vertica.com/2008/01/mapreduce_a_major_step_back.html. It
is a snapshot of the page as it appeared on Sep 27, 2009 00:24:13 GMT. The current page could have
changed in the meantime. Learn more

These search terms are highlighted: search These terms only appear in links pointing to this
page: hl en&safe off&q

The Database Column
A multi-author blog on database technology and innovation.

MapReduce: A major step backwards
By David DeWitt on January 17, 2008 4:20 PM | Permalink | Comments (44) | TrackBacks (1)
[Note: Although the system attributes this post to a single author, it was written by David J. DeWitt and
Michael Stonebraker]

On January 8, a Database Column reader asked for our views on new distributed database research
efforts, and we'll begin here with our views on MapReduce. This is a good time to discuss it, since the
recent trade press has been filled with news of the revolution of so-called "cloud computing." This
paradigm entails harnessing large numbers of (low-end) processors working in parallel to solve a
computing problem. In effect, this suggests constructing a data center by lining up a large number of
"jelly beans" rather than utilizing a much smaller number of high-end servers.

For example, IBM and Google have announced plans to make a 1,000 processor cluster available to a few
select universities to teach students how to program such clusters using a software tool called MapReduce
[1]. Berkeley has gone so far as to plan on teaching their freshman how to program using the MapReduce
framework.

As both educators and researchers, we are amazed at the hype that the MapReduce proponents have
spread about how it represents a paradigm shift in the development of scalable, data-intensive
applications. MapReduce may be a good idea for writing certain types of general-purpose computations,
but to the database community, it is:

1. A giant step backward in the programming paradigm for large-scale data intensive applications

2. A sub-optimal implementation, in that it uses brute force instead of indexing

3. Not novel at all -- it represents a specific implementation of well known techniques developed
nearly 25 years ago

4. Missing most of the features that are routinely included in current DBMS

5. Incompatible with all of the tools DBMS users have come to depend on

First, we will briefly discuss what MapReduce is; then we will go into more detail about our five
reactions listed above.

8/27/2014 MapReduce: A major step backwards - The Database Column

http://homes.cs.washington.edu/~billhowe/mapreduce_a_major_step_backwards.html 2/21

What is MapReduce?

The basic idea of MapReduce is straightforward. It consists of two programs that the user writes called
map and reduce plus a framework for executing a possibly large number of instances of each program on
a compute cluster.

The map program reads a set of "records" from an input file, does any desired filtering and/or
transformations, and then outputs a set of records of the form (key, data). As the map program produces
output records, a "split" function partitions the records into M disjoint buckets by applying a function to
the key of each output record. This split function is typically a hash function, though any deterministic
function will suffice. When a bucket fills, it is written to disk. The map program terminates with M output
files, one for each bucket.

In general, there are multiple instances of the map program running on different nodes of a compute
cluster. Each map instance is given a distinct portion of the input file by the MapReduce scheduler to
process. If N nodes participate in the map phase, then there are M files on disk storage at each of N nodes,
for a total of N * M files; Fi,j, 1 ≤ i ≤ N, 1 ≤ j ≤ M.

The key thing to observe is that all map instances use the same hash function. Hence, all output records
with the same hash value will be in corresponding output files.

The second phase of a MapReduce job executes M instances of the reduce program, Rj, 1 ≤ j ≤ M. The
input for each reduce instance Rj consists of the files Fi,j, 1 ≤ i ≤ N. Again notice that all output records
from the map phase with the same hash value will be consumed by the same reduce instance -- no matter
which map instance produced them. After being collected by the map-reduce framework, the input
records to a reduce instance are grouped on their keys (by sorting or hashing) and feed to the reduce
program. Like the map program, the reduce program is an arbitrary computation in a general-purpose
language. Hence, it can do anything it wants with its records. For example, it might compute some
additional function over other data fields in the record. Each reduce instance can write records to an
output file, which forms part of the "answer" to a MapReduce computation.

To draw an analogy to SQL, map is like the group-by clause of an aggregate query. Reduce is analogous
to the aggregate function (e.g., average) that is computed over all the rows with the same group-by
attribute.

We now turn to the five concerns we have with this computing paradigm.

1. MapReduce is a step backwards in database access

As a data processing paradigm, MapReduce represents a giant step backwards. The database community
has learned the following three lessons from the 40 years that have unfolded since IBM first released IMS
in 1968.

Schemas are good.

Separation of the schema from the application is good.

8/27/2014 MapReduce: A major step backwards - The Database Column

http://homes.cs.washington.edu/~billhowe/mapreduce_a_major_step_backwards.html 3/21

High-level access languages are good.

MapReduce has learned none of these lessons and represents a throw back to the 1960s, before modern
DBMSs were invented.

The DBMS community learned the importance of schemas, whereby the fields and their data types are
recorded in storage. More importantly, the run-time system of the DBMS can ensure that input records
obey this schema. This is the best way to keep an application from adding "garbage" to a data set.
MapReduce has no such functionality, and there are no controls to keep garbage out of its data sets. A
corrupted MapReduce dataset can actually silently break all the MapReduce applications that use that
dataset.

It is also crucial to separate the schema from the application program. If a programmer wants to write a
new application against a data set, he or she must discover the record structure. In modern DBMSs, the
schema is stored in a collection of system catalogs and can be queried (in SQL) by any user to uncover
such structure. In contrast, when the schema does not exist or is buried in an application program, the
programmer must discover the structure by an examination of the code. Not only is this a very tedious
exercise, but also the programmer must find the source code for the application. This latter tedium is
forced onto every MapReduce programmer, since there are no system catalogs recording the structure of
records -- if any such structure exists.

During the 1970s the DBMS community engaged in a "great debate" between the relational advocates and
the Codasyl advocates. One of the key issues was whether a DBMS access program should be written:

By stating what you want - rather than presenting an algorithm for how to get it (relational view)

By presenting an algorithm for data access (Codasyl view)

The result is now ancient history, but the entire world saw the value of high-level languages and relational
systems prevailed. Programs in high-level languages are easier to write, easier to modify, and easier for a
new person to understand. Codasyl was rightly criticized for being "the assembly language of DBMS
access." A MapReduce programmer is analogous to a Codasyl programmer -- he or she is writing in a
low-level language performing low-level record manipulation. Nobody advocates returning to assembly
language; similarly nobody should be forced to program in MapReduce.

MapReduce advocates might counter this argument by claiming that the datasets they are targeting have
no schema. We dismiss this assertion. In extracting a key from the input data set, the map function is
relying on the existence of at least one data field in each input record. The same holds for a reduce
function that computes some value from the records it receives to process.

Writing MapReduce applications on top of Google's BigTable (or Hadoop's HBase) does not really
change the situation significantly. By using a self-describing tuple format (row key, column name,
{values}) different tuples within the same table can actually have different schemas. In addition,
BigTable and HBase do not provide logical independence, for example with a view mechanism. Views
significantly simplify keeping applications running when the logical schema changes.

2. MapReduce is a poor implementation

8/27/2014 MapReduce: A major step backwards - The Database Column

http://homes.cs.washington.edu/~billhowe/mapreduce_a_major_step_backwards.html 4/21

All modern DBMSs use hash or B-tree indexes to accelerate access to data. If one is looking for a subset
of the records (e.g., those employees with a salary of 10,000 or those in the shoe department), then one
can often use an index to advantage to cut down the scope of the search by one to two orders of
magnitude. In addition, there is a query optimizer to decide whether to use an index or perform a brute-
force sequential search.

MapReduce has no indexes and therefore has only brute force as a processing option. It will be creamed
whenever an index is the better access mechanism.

One could argue that value of MapReduce is automatically providing parallel execution on a grid of
computers. This feature was explored by the DBMS research community in the 1980s, and multiple
prototypes were built including Gamma [2,3], Bubba [4], and Grace [5]. Commercialization of these
ideas occurred in the late 1980s with systems such as Teradata.

In summary to this first point, there have been high-performance, commercial, grid-oriented SQL engines
(with schemas and indexing) for the past 20 years. MapReduce does not fare well when compared with
such systems.

There are also some lower-level implementation issues with MapReduce, specifically skew and data
interchange.

One factor that MapReduce advocates seem to have overlooked is the issue of skew. As described in
"Parallel Database System: The Future of High Performance Database Systems," [6] skew is a huge
impediment to achieving successful scale-up in parallel query systems. The problem occurs in the map
phase when there is wide variance in the distribution of records with the same key. This variance, in turn,
causes some reduce instances to take much longer to run than others, resulting in the execution time for
the computation being the running time of the slowest reduce instance. The parallel database community
has studied this problem extensively and has developed solutions that the MapReduce community might
want to adopt.

There is a second serious performance problem that gets glossed over by the MapReduce proponents.
Recall that each of the N map instances produces M output files -- each destined for a different reduce
instance. These files are written to a disk local to the computer used to run the map instance. If N is 1,000
and M is 500, the map phase produces 500,000 local files. When the reduce phase starts, each of the 500
reduce instances needs to read its 1,000 input files and must use a protocol like FTP to "pull" each of its
input files from the nodes on which the map instances were run. With 100s of reduce instances running
simultaneously, it is inevitable that two or more reduce instances will attempt to read their input files
from the same map node simultaneously -- inducing large numbers of disk seeks and slowing the
effective disk transfer rate by more than a factor of 20. This is why parallel database systems do not
materialize their split files and use push (to sockets) instead of pull. Since much of the excellent fault-
tolerance that MapReduce obtains depends on materializing its split files, it is not clear whether the
MapReduce framework could be successfully modified to use the push paradigm instead.

Given the experimental evaluations to date, we have serious doubts about how well MapReduce
applications can scale. Moreover, the MapReduce implementers would do well to study the last 25 years
of parallel DBMS research literature.

3. MapReduce is not novel

8/27/2014 MapReduce: A major step backwards - The Database Column

http://homes.cs.washington.edu/~billhowe/mapreduce_a_major_step_backwards.html 5/21

The MapReduce community seems to feel that they have discovered an entirely new paradigm for
processing large data sets. In actuality, the techniques employed by MapReduce are more than 20 years
old. The idea of partitioning a large data set into smaller partitions was first proposed in "Application of
Hash to Data Base Machine and Its Architecture" [11] as the basis for a new type of join algorithm. In
"Multiprocessor Hash-Based Join Algorithms," [7], Gerber demonstrated how Kitsuregawa's techniques
could be extended to execute joins in parallel on a shared-nothing [8] cluster using a combination of
partitioned tables, partitioned execution, and hash based splitting. DeWitt [2] showed how these
techniques could be adopted to execute aggregates with and without group by clauses in parallel. DeWitt
and Gray [6] described parallel database systems and how they process queries. Shatdal and Naughton [9]
explored alternative strategies for executing aggregates in parallel.

Teradata has been selling a commercial DBMS utilizing all of these techniques for more than 20 years;
exactly the techniques that the MapReduce crowd claims to have invented.

While MapReduce advocates will undoubtedly assert that being able to write MapReduce functions is
what differentiates their software from a parallel SQL implementation, we would remind them that
POSTGRES supported user-defined functions and user-defined aggregates in the mid 1980s. Essentially,
all modern database systems have provided such functionality for quite a while, starting with the Illustra
engine around 1995.

4. MapReduce is missing features

All of the following features are routinely provided by modern DBMSs, and all are missing from
MapReduce:

Bulk loader -- to transform input data in files into a desired format and load it into a DBMS

Indexing -- as noted above

Updates -- to change the data in the data base

Transactions -- to support parallel update and recovery from failures during update

Integrity constraints -- to help keep garbage out of the data base

Referential integrity -- again, to help keep garbage out of the data base

Views -- so the schema can change without having to rewrite the application program

In summary, MapReduce provides only a sliver of the functionality found in modern DBMSs.

5. MapReduce is incompatible with the DBMS tools

A modern SQL DBMS has available all of the following classes of tools:

Report writers (e.g., Crystal reports) to prepare reports for human visualization

8/27/2014 MapReduce: A major step backwards - The Database Column

http://homes.cs.washington.edu/~billhowe/mapreduce_a_major_step_backwards.html 6/21

Business intelligence tools (e.g., Business Objects or Cognos) to enable ad-hoc querying of large
data warehouses

Data mining tools (e.g., Oracle Data Mining or IBM DB2 Intelligent Miner) to allow a user to
discover structure in large data sets

Replication tools (e.g., Golden Gate) to allow a user to replicate data from on DBMS to another

Database design tools (e.g., Embarcadero) to assist the user in constructing a data base.

MapReduce cannot use these tools and has none of its own. Until it becomes SQL-compatible or until
someone writes all of these tools, MapReduce will remain very difficult to use in an end-to-end task.

In Summary

It is exciting to see a much larger community engaged in the design and implementation of scalable query
processing techniques. We, however, assert that they should not overlook the lessons of more than 40
years of database technology -- in particular the many advantages that a data model, physical and logical
data independence, and a declarative query language, such as SQL, bring to the design, implementation,
and maintenance of application programs. Moreover, computer science communities tend to be insular
and do not read the literature of other communities. We would encourage the wider community to
examine the parallel DBMS literature of the last 25 years. Last, before MapReduce can measure up to
modern DBMSs, there is a large collection of unmet features and required tools that must be added.

We fully understand that database systems are not without their problems. The database community
recognizes that database systems are too "hard" to use and is working to solve this problem. The database
community can also learn something valuable from the excellent fault-tolerance that MapReduce provides
its applications. Finally we note that some database researchers are beginning to explore using the
MapReduce framework as the basis for building scalable database systems. The Pig[10] project at Yahoo!
Research is one such effort.

References

[1] "MapReduce: Simplified Data Processing on Large Clusters," Jeff Dean and Sanjay Ghemawat,
Proceedings of the 2004 OSDI Conference, 2004.

[2] "The Gamma Database Machine Project," DeWitt, et. al., IEEE Transactions on Knowledge and Data
Engineering, Vol. 2, No. 1, March 1990.

[4] "Gamma - A High Performance Dataflow Database Machine," DeWitt, D, R. Gerber, G. Graefe, M.
Heytens, K. Kumar, and M. Muralikrishna, Proceedings of the 1986 VLDB Conference, 1986.

[5] "Prototyping Bubba, A Highly Parallel Database System," Boral, et. al., IEEE Transactions on
Knowledge and Data Engineering,Vol. 2, No. 1, March 1990.

[6] "Parallel Database System: The Future of High Performance Database Systems," David J. DeWitt and

8/27/2014 MapReduce: A major step backwards - The Database Column

http://homes.cs.washington.edu/~billhowe/mapreduce_a_major_step_backwards.html 7/21

Jim Gray, CACM, Vol. 35, No. 6, June 1992.

[7] "Multiprocessor Hash-Based Join Algorithms," David J. DeWitt and Robert H. Gerber, Proceedings
of the 1985 VLDB Conference, 1985.

[8] "The Case for Shared-Nothing," Michael Stonebraker, Data Engineering Bulletin, Vol. 9, No. 1,
1986.

[9] "Adaptive Parallel Aggregation Algorithms," Ambuj Shatdal and Jeffrey F. Naughton, Proceedings
of the 1995 SIGMOD Conference, 1995.

[10] "Pig", Chris Olston, http://research.yahoo.com/project/90

[11] "Application of Hash to Data Base Machine and Its Architecture," Masaru Kitsuregawa, Hidehiko
Tanaka, Tohru Moto-Oka, New Generation Comput. 1(1): 63-74 (1983)

Categories

Database architecture , Database history , Database innovation

Tags

database performance
DeWitt
MapReduce
Stonebraker

1 TrackBacks
Listed below are links to blogs that reference this entry: MapReduce: A major step backwards.

TrackBack URL for this entry: http://www.databasecolumn.com/blog/mt-tb.cgi/26

» This is one of the web's most interesting stories on Fri 18th Jan 2008 from purrl.net |** urls that purr **|

These are the web's most talked about URLs on Fri 18th Jan 2008. The current winner is .. Read More

Tracked on January 18, 2008 12:09 AM

44 Comments
Ronn Brashear said:

As an MR advocate, I can agree with several of the above points. Certainly, MR development shouldn't
ignore previous research, nor should it be constrained by it. MR is directed at a different problem from
the modern DBMS.

For example, using MR to rapidly identify small subsets of data is a bad idea. However MR is a good

8/27/2014 MapReduce: A major step backwards - The Database Column

http://homes.cs.washington.edu/~billhowe/mapreduce_a_major_step_backwards.html 8/21

large-data manipulation tool - something for which DBs are notoriously bad. A grid DB's indexing offers
no advantage when computing page rank of the internet for example. Indices are pure overhead in that
situation.

I am concerned the authors are suggesting that introducing MR into academia is a bad idea since that is
where most of the previous literature is well understood. Some of the best improvements to MR lately
have been based on distributing reductions ala Monet's continuous near-neighbor load distribution. To say
MR doesn't have high level languages/tools/optimizations is short-sighted. Pig, Sawzall, and others
functional languages are in development. Additional tools, research, and optimization will follow.
Presenting MR as a research topic will enable that growth.

For engineers, the underlying issue is picking the right tool for the job. RDB versus Flat Files versus
MQL versus MR smacks of the same "religious" debates between Java versus C++ versus Ruby versus
assembly and is generally a waste of effort. A good engineer understands the specific problem space,
examines the potential solutions, and picks the right tool for the job.

January 17, 2008 6:52 PM
ade said:

You seem to be under the impression that MapReduce is a database. It's merely a mechanism for using
lots of machines to process very large data sets. You seem to be arguing that MapReduce would be better
(for some value of better) if it were a data warehouse product along the lines of TeraData. Unfortunately
the resulting tool would be less effective as a general purpose mechanism for processing very large data
sets.

You seem to have made a category error in this article: http://en.wikipedia.org/wiki/Category_mistake

January 17, 2008 7:37 PM
Joe Hellerstein said:

As a wise philosopher once said, Be a lover, not a fighter!

Technically, I agree with much of this article, especially the history lesson on parallel data processing.
(I'd even go one further on you w.r.t.the fault-tolerance aspects of MapReduce, where I wish they had
acknowledged Mehul Shah's work on FLuX, which provides fault-tolerance, load balancing and pipelined
processing.)

But none of that matters. It's all about hearts and minds, and if the DB industry adopts the attitude in this
article, it's back to what I said at HPTS back in 2001: We Lose. See especially slides 5-10.

January 17, 2008 8:19 PM
Toby DiPasquale said:

I would point out that Google created MapReduce because some (most?) of the inputs into the GFS to be
used with MapReduce were already "garbage", in that they are semi-structured data (e.g. the Web). As
such, a schema would have been too restrictive for them to have made the progress in data mining that
they have. (this ignores their entry into the column-oriented database space, BigTable) Also, the "key"
you speak of in Web data turns out to be the URL of the document, something not inherent to the data at
all.

8/27/2014 MapReduce: A major step backwards - The Database Column

http://homes.cs.washington.edu/~billhowe/mapreduce_a_major_step_backwards.html 9/21

For Google and others like them, a custom solution is sometimes preferable to what the industry standard
practice is doing. Recall the time during which Google created this model: the storage on commodity PCs
was much smaller than it was today, especially in relation to the size of the Web, and they needed
considerably more horsepower to perform the machinations of a search engine than was available on
even the largest machines of the day. Thus, they were forced them to create a system that managed large
numbers of machines to work effectively in concert. No such system existed at that time in the database
world. Oracle was limited to 32 nodes at that time.

Also, MapReduce is an extremely simple programming model and allows even interns to produce useful
programs for data mining and reporting. But, those same interns are likely *not* working on the inputs to
said system. This works for them because the data MapReduce is working on is read-only.

GFS + MapReduce is missing a lot of the features you mention on purpose but some are available in
BigTable (views, in particular, just like your Vertica database). The entire point of the GFS/MapReduce
system from its original design was to build the inverted index of the Web, so I'd hardly say that it lacks
indexing. Google itself is the index. As well, you can update data in GFS after writing, although this is
discouraged. (its right there in the GFS paper)

As to your "doubts" as to how well MapReduce can scale, I'm having trouble believing that you could
honestly have such doubts. Google has dozens of clusters in the tens of thousands of machines, all of
which crawl and index the Web independently of each other at regular intervals with GFS, MapReduce
and BigTable. MapReduce was designed with horizontal scalability in mind, first and foremost. You can
complain legitimately about the performance (of Hadoop, anyway) but the scalability is there in spades.

Finally, Google has a high-level language to access this data called Sawzall and the Hadoop community
is forging its own language for this purpose called Pig. (http://incubator.apache.org/pig/)

I feel as if this post has misrepresented the MapReduce model and the problems it was designed to solve.
No one at Google or working on Hadoop would tell you that MapReduce is a replacement for a generic
RDBMS but is rather designed for a specific set of issues and constraints. This is a valid method of doing
work and does not deserve to be criticized out of context.

January 17, 2008 11:11 PM
JS said:

While I don't want to sound critical, how can you make such an absurd claim as: "Given the experimental
evaluations to date, we have serious doubts about how well MapReduce applications can scale." The most
recent information from Google is that they're running MapReduce on 20 petabytes of data a day(1).
That's larger than any other data sets I'm aware of. MapReduce is also designed to deal with
heterogeneous data sets, something not compatible with the relational data model where uniformity of
records is expected.

(1) "MapReduce: simplified data processing on large clusters" in Communications of the ACM Volume
51 , Issue 1 (January 2008)

January 17, 2008 11:18 PM
Daniel said:

So what do YOU propose as a valid schema and index system, using Teradata or a similar DBMS, for
what is essentially a full-text indexing system? And how much would such a system cost (including
yearly support contracts) Google?

8/27/2014 MapReduce: A major step backwards - The Database Column

http://homes.cs.washington.edu/~billhowe/mapreduce_a_major_step_backwards.html 10/21

They're looking through unstructured data for specific words that match a query, and they're doing it
under pretty strict OLTP constraints. Nevermind that mapReduce is run all the time to update the
pagerank.

So what do you propose, other than hand waving? This is a entirely different problem domain than DBs
solve. Page searching doesn't even require most of ACID or worry about constraints or foreign keys.

January 17, 2008 11:35 PM
Greg Jorgensen said:

When I finished reading the article I was thinking that the authors did not understand MapReduce or the
idea of data in the cloud ... if you change "MapReduce" to "SimpleDB" the original article almost makes
sense.

More at Relational Database Experts Jump The MapReduce Shark.

January 18, 2008 12:10 AM
Sorin Gherman said:

> Missing most of the features that are routinely included in current DBMS
> Incompatible with all of the tools DBMS users have come to depend on

With really large datasets and distributed sytems the RDBMS paradigms stop working, and that's where a
system like Mapreduce is needed.
Distributed systems *interfaces* are dumb and simple-minded on purpose: there is no way to index data
arbitrarily as in DBMS, and do arbirary joins on data like in SQL.
With really large and open data, one has to shift their paradigm away from DBMS and SQL and arbirary
indexes: these simply don't work in distributed systems.

January 18, 2008 12:16 AM
DAR said:

Hmmmm ... although I appreciate you guys addressing this topic (I was the one who suggested it), frankly
this column left me scratching my head a bit. It looks to me like there's some incorrect information here
about some key aspects of these distributed DB's.

First off, from everything I've read, it appears that they are a completely separate technology from
map/reduce. (For example, if you read the Google BigTable paper at
http://labs.google.com/papers/bigtable-osdi06.pdf, the only place they even seem to mention map/reduce
is where they state that a BigTable database can be used as a data source for an external map/reduce job.)

Second, BigTable *does* have indexes ("The map is indexed by a row key, column key, and a
timestamp") and therefore *doesn't* require brute force.

So although some of your criticisms might be valid here (e.g., lack of schemas, lack of high level
language, lack of advanced features and tool support, etc.) several others seem somewhat off-base.

I have no axe to grind here. (I don't work for Google or anything.) I'm just a developer who finds this
stuff interesting and wants to learn more about it. But it just feels to me like these DB's didn't really get a
fair comparison here.

January 18, 2008 12:43 AM

8/27/2014 MapReduce: A major step backwards - The Database Column

http://homes.cs.washington.edu/~billhowe/mapreduce_a_major_step_backwards.html 11/21

Robert Weisman said:

MapReduce is not a DBMS. It is a framework for developing distributed systems. I can't quite imagine
why such a framework would have indexes, or why the concepts of updates, integrity, transactions, views,
or bulk loaders would even be meaningful. God forbid, one could even write a MapReduce to read from a
DBMS. Some of these criticisms may be valid with Bigtable, but then Bigtable is probably the only
DBMS designed to handle petabytes of data.

January 18, 2008 1:25 AM
Ilya Haykinson said:

I think your arguments are solid in that MapReduce represents a step backwards compared to a traditional
DBMS. However, I believe that your overall point is severely off the mark, since I believe that your
comparison is not entirely fair.

MapReduce is not a database framework. Instead, it's a computational framework. Unlike a database, it
does not offer storage of data, or transactions, or indeed any sort of a query language. To see MapReduce
as a database system is to seriously miscategorize its use.

Additionally, you write that there's a question of MapReduce's ability to scale. I think that Google's track
record here is a great testament to the system's abilities: with hundreds of thousands of nodes, the system
seems to be battle-tested.

Instead of looking at MapReduce you may want to look at BigTable -- Google's database technology. I
think that it's a more fair comparison and probably deserves a thorough review.

January 18, 2008 2:33 AM
Joe Developer said:

Mapreduce's charm is, I gather, a combination of
excellent fault tolerance and utter
simplicity. There isn't a whiff of database
about it, it's more like a simple pipe.
And sometimes a pipe is all you need.

January 18, 2008 3:57 AM
gasper_k said:

Hi,

MapReduce isn't meant to replace a RDB; it doesn't need indices, ordering, grouping and practically
everything you wrote in items 4 and 5. MapReduce is design to work by iterating over data in the given
order and producing an output. Also, you can have a schema and data validation just as well, so again it
doesn't fall short.

As for item 3, MapReduce not being novel is hardly an argument against it, is it?

Basically, what you're saying is, you should use MapReduce because:
- it doesn't have features it doesn't need,
- it isn't a new concept,
- some databases (not many, though) can do what it does,
- requires a lower level view of the application and data (this one being the only solid argument).

8/27/2014 MapReduce: A major step backwards - The Database Column

http://homes.cs.washington.edu/~billhowe/mapreduce_a_major_step_backwards.html 12/21

Not being an advocate for MapReduce, but your argumentation fails on many levels.

Best regards,
Gasper

January 18, 2008 4:14 AM
James A. said:

By stating what you want - rather than presenting an algorithm for how to get it (relational view)

We use mapreduce to obtain results and perform computation that RDBMS cannot perform. For example,
what relational command would you use to extract all urls from four billion documents then collect into
separate lists all urls matching certain patterns (movie-like urls, image-like urls, html-like urls) by site?
The site should be determined by host-level chunking the rules of which are a combination of data and
programming logic.

This hypothetical task (no mapreduce in Google that I know of performs it, although there are ones like it
but much more complex) is simple for a mapreduce, would be impossible to write in a relational query-
language. What would be more impossible for an RDBMS is performing this calculation on 30 TB of
input data in under three hours for less than $5 million capital invested.

[Section on skew]

As if we don't have devices that solve this problem. Simply selecting a uniformly distributed key scheme
is enough to get around it.

Given the experimental evaluations to date, we have serious doubts about how well MapReduce
applications can scale.

Have you experimentally evaluated mapreduce at all? If so, how?

The MapReduce community seems to feel that they have discovered an entirely new paradigm for
processing large data sets.

This would be a wonderful thing to have a citation for. Mostly the sense I get is that MapReduce allows
complex processing on large datasets without the programming difficulty required in other mediums.
Novelty is not on the feature list.

MapReduce is missing features

You seem to not have noticed that mapreduce is not a DBMS. Same goes for section five.

Overall this article represents a profound and surprising misunderstanding of what MapReduce is.
Perhaps next time they evaluate a product the authors could be bothered to learn what that product is?

January 18, 2008 5:36 AM
steppres said:

Perhaps you guys should read this...

Relational Database Experts Jump The MapReduce Shark

At least somebody know what they're talking about when it comes to MapReduce.

8/27/2014 MapReduce: A major step backwards - The Database Column

http://homes.cs.washington.edu/~billhowe/mapreduce_a_major_step_backwards.html 13/21

January 18, 2008 6:09 AM
masukomi said:

Our friend the Typical Programmer points out why this article shows a complete mis-understanding of
what MapReduce is or is for. Amongst other things, that it's not intended, in any way, to be a system for
storing and managing structured data, and thus not a database.

http://typicalprogrammer.com/programming/mapreduce/

January 18, 2008 8:02 AM
Tom Ritchford said:

I respectfully disagree. I use MapReduce every day and *for what it does* it's the best.

There are two advantages that you missed.

1. If you set it up properly, the records get sorted and appear in the reducer in sorted order, for free!

but even more important:

2. MapReduce is extremely light.

It doesn't mean that a MapReduce won't use a lot of machines -- it means that you can run a MapReduce
you already have on brand-new data in a few minutes, and you can write a brand-new one, run it and get
good output in an afternoon -- because you don't have to load up a database.

January 18, 2008 11:13 AM
Chris Olston said:

It is unfortunate that so many people are focusing on superficial distinctions between map-reduce and
databases. The point here is that if you examine the underlying techniques, there are very strong
similarities (although there are some key differences as well).

If we can focus on the areas of overlap, we can foster a much more productive relationship. There's no
need to be adversarial on this, as Joe Hellerstein points out. Both communities bring ideas and
experiences that can benefit the other.

January 18, 2008 12:21 PM
NAC said:

This is the basic problem with database people. They view everything
as a database, and that everything must be done in/with a database.

MapReduce is for a different class of problems. eg if you were
using MR to process large quantities of small image tiles, how
would you forumulate that in teradata, what advantage does an
RDBMS bring?

Relational databases are as much an inhibitor to modern application
development as they are an asset. Hence the massive use of
complex object relational mappers to work around their problems.

All technologies have strengths and weaknesses, MR and databases

8/27/2014 MapReduce: A major step backwards - The Database Column

http://homes.cs.washington.edu/~billhowe/mapreduce_a_major_step_backwards.html 14/21

included. These are two different things, don't confuse them.

January 18, 2008 4:32 PM
Chris G said:

I think you could write an equivalent article:
"Airplanes: A major step backward"
You could say something like, "roads are good, everyone knows that, why would you throw them away?"
You could talk about fuel consumption, possible crashes, etc.
For the knock out punch, give an example why cars are definitely better. Describe taking your kids to
school in a plane would be ridiculous; a car is so much better.
I don't think anyone seriously suggests replacing all databases with MR. It'd be a terrible solution for a
small database. Seems your trying to sell it for something it's not. I do mean "selling" too. I see that
Vertica Systems is behind the page. When Vertica is running Google, let me know. I'll get in line for the
product.

January 18, 2008 5:05 PM
Greg Grasmehr said:

Interesting opinion and set of comments thus far; thanks to everyone who has provided input. Interesting
reading to say the least.

January 18, 2008 5:19 PM
Stephan Wehner said:

Could one of the bonus points of MapReduce be that "It works" or "It doesn't cost much"?

Stephan

January 18, 2008 6:24 PM
mypalmike said:

Some interesting quotes from the article that show what I think is a fundamental misunderstanding of the
subject matter:

"To draw an analogy to SQL, map is like the group-by clause of an aggregate *query*."

"[Relational databases have] a *query* optimizer to decide whether to use an index or perform a brute-
force sequential search... MapReduce has no indexes and therefore has only brute force as a processing
option."

"...skew is a huge impediment to achieving successful scale-up in parallel *query* systems"

"It is exciting to see a much larger community engaged in the design and implementation of scalable
query processing techniques."

Apparently, the authors of this article believe that MapReduce is a process for *querying* unstructured
data. It is not, or at least, I've never heard it being touted as such. It is a process for categorizing (Map)
and aggregating (Reduce) the records in an unindexed data stream. In common use, the MapReduce
process is run exactly *once* on a set of data. Really, the Google paper on the subject is quite clear on
this.

8/27/2014 MapReduce: A major step backwards - The Database Column

http://homes.cs.washington.edu/~billhowe/mapreduce_a_major_step_backwards.html 15/21

January 18, 2008 7:17 PM
Steve Severance said:

Even google does not claim that the idea of map/reduce is novel. If you read the paper and watch the
videos they have for interns it is clear that is grounded in functional programming. Map/reduce is simply
an elegant implementation of those concepts that accomplish something very useful.

I agree with about all the other criticisms so I will not opine.

Steve

January 18, 2008 7:30 PM
ajfabb said:

Your statement that the MapReduce community claims to have invented this stuff is obviously wrong:
anyone with a decent computer science background knows that Map and Reduce are ancient funtional
programming primitives for operating on lists. The MR people are simply taking advantage of the trivial
parallelization these primitives offer--which has been well known for decades.

January 18, 2008 7:38 PM
Alex Rasmussen said:

As one of the authors of Berkeley's MR-based curriculum, let me say that the choice of MapReduce as a
framework was primarily motivated by its simplicity and its public exposure (OK, and the fact that
Google was sponsoring it, but that's beside the point). We wanted to introduce students to the general idea
of parallelism in a way that would get their attention - saying "Google uses this" definitely gets their
attention.

We have implemented a glue layer between Berkeley's Scheme interpreter and Hadoop that allows
students to express mapreductions in Scheme, a language with which they become familiar during the
course. Just as we use Scheme as a tool for teaching students about the power of recursion, we use
MapReduce as a tool for teaching students who don't know a whole ton about computer science yet about
the power of parallelism. We don't present MapReduce as anything shockingly innovative - far from it.
We show that MapReduce represents an application of operations with which students are already
familiar (map and reduce) over a bunch of data in parallel, which makes both what they learned and what
they're learning seem a lot more relevant.

January 19, 2008 12:03 AM
Ashwin said:

This article, coming as it does from such eminent folks from academia, just goes on to show how
dogmatic some of the academic community has become. Or is it just that the earlier world / status-quo has
been shattered so much that you can't bear the success of a newer system? This is truly what academia
should NOT be.

To my knowledge (and I'm a CS PhD student at a very reputable university), the MapReduce folks have
never claimed it is applicable to a wide variety of systems, even though in reality, it very well could be.
This article starts with the assumption that MapReduce is a new DBMS, which has never been a claim.
They seem to be genuinely trying to explore a new paradigm... At the same time, a lot of folks out in the
real world are beginning to realize that relational schemas aren't really the cure for all diseases either as
you seem to claim.

8/27/2014 MapReduce: A major step backwards - The Database Column

http://homes.cs.washington.edu/~billhowe/mapreduce_a_major_step_backwards.html 16/21

Or, as the cynic in me says, maybe this is a ploy to advance some of your other business ambitions?

January 19, 2008 12:27 AM
Mats Helander said:

I'm afraid I don't get it.

I must begin by stating that I have no clue on MapReduce other than what I grabbed from your blog post.
Now, given that:

You say that a problem with MapReduce is that there's no schema. Then you go on to say that
MapReduce is like Group By plus aggregates in SQL.

But a view or a stored procedure with Group By and aggregates have no schemas in an RDBMS either -
right?? I agree that the definition of a view in SQL (a bunch of SQL statements) can be considered
declarative (what) rather than imperative (how) in nature, but there's really no schema for it, is there? This
may only go to reveal my poor understanding of RDBMS, but...you'd have to go in and check the SQL in
the view to see what columns it returns, right? And so if we see MapReduce as a function over the data,
much like stored procedures, there's really no issue with missing schema...or what am I missing?

Put another way, couldn't the MapReduce function work over an RDBMS that used a strict schema for all
its data even while no such schema exists for describing neither the group by + aggregate functions in the
stored procedures/views in the RDBMS nor the equivalent operations in the MapReduce layer?

/Mats

January 19, 2008 4:14 AM
Jim White said:

Which RDBMS allows computations to complete successfully in the presence of nodes that catch fire?

January 19, 2008 9:40 AM
Jim Kellerman said:

Quite a change in position for the authors. As recently as October 2007, Michael Stonebraker presented
his paper The End of an Architectural Era (It's time for a Complete Rewrite at HPTS.

With respect to other comments about performance, Google's Map/Reduce framework has been around
since 2003, and work on Bigtable started in 2004. Google's Distributed File System predated
Map/Reduce. Since the initial publication of their papers on these topics, development of these systems
has continued and Google now uses Bigtable to serve live data on their site which has changed the
performance and availability requirements significantly. Hadoop is considerably younger (the project
started in March of 2005) and HBase did not even exist a year ago.

January 19, 2008 12:12 PM
Denis Altudov said:

Kudos to the authors for providing a well-researched article. The point itself is debatable as evidenced by
heated comments, but I think it is important for us to get both historical and adjacent field perspectives on
modern technologies - reusing other people research is the cornerstone of progress. I also think that
people who have been in the industry for a long time are uniquely positioned to give us this perspective

8/27/2014 MapReduce: A major step backwards - The Database Column

http://homes.cs.washington.edu/~billhowe/mapreduce_a_major_step_backwards.html 17/21

and this article is one of the best ways Michael and his friends can contribute to advancement of the art.

I have certainly enjoyed it, more than the usual praises sung to column stores on this blog and posts like
these is what is needed to turn this blog into wider new db technologies discussion forum.

January 19, 2008 2:23 PM
xbar said:

You are right that GFS + BigTable + MapReduce are not equivalent to an RDMBS + SQL + its
ecosystem of tools and applications.

However, there is NO database out there (whether academic or commercial) that can scale to tens of
thousands of processors and petabytes of unstructured/semi-structured data, and can run on commodity
hardware (without any RAID/SAN etc), and can do so efficiently and cost-effectively without costing a
fortune for licensing and support and administration. Not to mention the fact that it will take more than
just some pie-in-the-sky academic research to actually engineer and implement a reliable query executor
and optimizer that can translate arbitrary SQL into an efficient plan for this scale of operation.

You can quote the last 25 years of parallel database literature all you want, but the reality is that while
GFS + BigTable + MapReduce may not be the ultimate answer, it is induced by the constraints of the
problem that Google is working on: processing large datasets efficiently and cheaply.

January 19, 2008 4:02 PM
Rob McCool said:

What I don't quite understand is why these sorts of "damn kids better get off my lawn" essays keep
getting written. Tenenbaum vs Torvalds is one example. Tenenbaum was both correct and irrelevant.

The views expressed here are both correct and irrelevant. If MapReduce is seeing widespread excitement
and adoption, it's either because the 20 year old efforts described in this essay were before their time, or
because the market rejected them for some reason.

It would be much more productive to either suggest how these techniques could be applied to
MapReduce, in specific terms, or alternatively it would be productive to examine why the market has
rejected solutions as described in this essay. Cost and complexity are two factors I think are worth a
debate.

I worked in academia for a while, and I really liked Feigenbaum's approach to these sorts of things. His
group was doing things in the 80's that are only today being widely understood and adopted. But instead
of arguing about how primitive modern techniques were compared to his work, he always worked with
the young upstarts who were exploring an area that was new to them but old to academia, and gently
guided them in the right direction without judging or bragging.

January 20, 2008 12:58 PM
Ali Dasdan said:

MapReduce was not developed to replace DBMSs at all; it was developed to satisfy a need. As we
reviewed in the map-reduce-merge paper,
search engine companies (ask, google, and yahoo) independently developed similar frameworks for
simple, fast, and reliable processing of huge data sets. It is not the end, just a useful enabler.

MapReduce may have lots of deficiencies when viewed under a different light but we cannot ignore the

8/27/2014 MapReduce: A major step backwards - The Database Column

http://homes.cs.washington.edu/~billhowe/mapreduce_a_major_step_backwards.html 18/21

fact that it works so successfully. In fact, the reasons for its success are very similar to the points made in
Stonebroker's 2nd paper on "one size fits all?".

I think with more constructive support from the database and systems communities, it will mature into a
better framework. There is already lots of work on improving and generalizing it, e.g., see dryad from
microsoft, sawzall from google, pig from yahoo, hadoop from apache, map-reduce-merge (the paper cited
above) from yahoo, and phoenix from stanford.

January 20, 2008 6:23 PM
Gordon Linoff said:

My background is in parallel processing, parallel databases, and data mining. I have recently written a
book called "Data Analysis Using SQL and Excel", because I do strongly believe that relational databases
can be used for sophisticated data analysis, even for non-programmers.

I found this posting because one company that I know of is in the process of deciding to use Hadoop and
MapReduce for their data warehouse. For many of the reasons outlined by Profs Stonebreaker and
Dewitt, I remain skeptical about this approach, although the particular company is determined to follow
this path.

I do observe that there is considerable agreement between the original article and many of the critics.
Everyone, including the original authors, state emphatically that the MapReduce framework is not a
replacement, nor intended as a replacement, for relational databases.

And that may be true technically. However, in the marketplace, both are trying to solve the problem of
analyzing large amounts of data. That is, both technologies compete in the market, even though they are
quite different. In a similar way, when we have free time and money, we can play a computer game, go to
a movie, read a book, or dine in a restaurant -- even though computer games, movies, books and
restaurants are not traditionally thought of as "competing" against each other.

I do think that Profs Stonebreaker and Dewitt do miss some important points:

(1) For most analytic purposes, indexes are not useful. Full table scans should simply be assumed.

(2) The transactional integrity parts of relational technology are not generally useful for complex queries,
since SELECT (as opposed to UPDATE or INSERT) is the most common SQL statement for analysis
purposes.

(3) Although some databases do have analytic tools built-in, serious analysis generally use more serious
statistical tools such as SAS, SPSS, S-Splus, or R.

MapReduce is a new paradigm (even if it is an old technology). Undoubtedly, it can solve many
problems, in a fault tolerant way on large amounts of data. It is not a replacement for relational databases.
It is a paradigm for developing parallel programs, not a general purpose solution for managing and
querying data.

--gordon
Gordon S. Linoff, Founder
Data Miners, Inc.
gordon@data-miners.com
Author of:
"Data Analysis Using SQL and Excel"

8/27/2014 MapReduce: A major step backwards - The Database Column

http://homes.cs.washington.edu/~billhowe/mapreduce_a_major_step_backwards.html 19/21

"Data Mining Techniques for Marketing, Sales, and Customer Support"
"Mastering Data Mining: The Art and Science of Customer Relationship Management"
"Mining the Web"

January 22, 2008 2:40 PM
D L Childs said:

Its rather sad that such dialogues protecting the myth of index structure performance still persist. If one is
ignorant of jet-engine technology then advocating prop-engine technology over hot-air-balloon
technology should be expected. Though Selective Set Retrieval I/O (with 90-98% informationally dense
I/Os) provides better performance than index structures (with 2-3% informationally dense I/O's) under
ALL conditions, the following statement has to be true.

"Any system that has no indexes and therefore has only brute force as a processing option, will be
creamed whenever an index is the better access mechanism."

The operative word here is "whenever". Notice also that the "therefore" depends on a selection from two
choices, not a selection from three choices.

For a paper of possible interest on index structure antiquity, see http://xsp.xegesis.org/Pebbles.pdf.

January 23, 2008 12:40 PM
Zach said:

I think maybe you want to replace all instances of "MapReduce" with "SimpleDB" in this article. As Greg
Jorgensen said, it almost makes sense that way.

January 23, 2008 3:16 PM
M. Ibrahim said:

Who said Map/Reduce is meant to be a relational database? Where did you get this idea from?

January 24, 2008 9:03 AM
Admin said:

Thanks for all your comments. If you are just reading this post, or are planning a comment, you might
want to first read the authors' follow up post here and submit your comments to that post.

- The Database Column Editors

January 25, 2008 4:38 PM
K. Wu said:

I had a first-hand experience where MapReduce and BigTable was used to justify the choice of
abandoning schema. This is definitely a unintended consequence of the rising awareness of MapReduce --
at least I hope it is just a unintended consequence. Having a schema for data is very important for
efficiency of data processing. Abandoning schema will invariably require the client software somehow
rediscover it.

8/27/2014 MapReduce: A major step backwards - The Database Column

http://homes.cs.washington.edu/~billhowe/mapreduce_a_major_step_backwards.html 20/21

March 16, 2008 12:42 AM
Anonymous said:

Not all MPP database vendors agree with Dewitt and Stonebraker. For example, Aster Data just launched
the world's first In-Database MapReduce:

http://www.asterdata.com/product/mapreduce.html

August 25, 2008 8:44 PM
Michael Mullany said:

Here at Aster, we've just launched a sneak peek of our In-Database Map-Reduce capability with a
whitepaper and demo.

Our firm belief is that the attractive thing about MapReduce is the programming model -- far superior to
traditional database user-defined functions & PL/SQL because it's easy to learn but conceptually
powerful/flexible. Why not put that programming model to work within an MPP relational database --
retaining the familiarity and powerful of SQL & the other benefits of RDBMS.

Love to hear your thoughts:
http://www.asterdata.com/blog/index.php/2008/08/25/announcing-in-database-mapreduce/

August 25, 2008 8:53 PM
Anonymous said:

See CloudBase-
http://cloudbase.sourceforge.net

It is a data warehouse system built on top of Hadoop's Map Reduce architecture that allows one to query
Terabyte and Petabyte of data using ANSI SQL. It comes with a JDBC driver so one can use third party
BI tools, reporting frameworks to directly connect to CloudBase.

CloudBase creates database system directly on flat files and converts input ANSI SQL expressions into
map-reduce programs for processing flat files. It has an optimized algorithm to handle Joins and plans to
support table indexing in next release.

December 29, 2008 1:45 PM
Horia Margarit said:

Map and Reduce are indeed general purpose functions, which means they can be implemented in a high-
level language as well as a low-level language. So the paradigm itself is not akin to programming in
Assembly, because you can write a MapReduce database in a high-level language if you so choose.

Furthermore, even if you pick a *very* high-level, general purpose language like Common Lisp, you can
still control your data types and variable declarations by the use of a dedicated function, which you may
call Schema.

This Schema function would be passed as an argument to the function which is in turn Mapped onto the
Keys in your MapReduce example.

In short, I do not see any validity to your claims in point 1.

8/27/2014 MapReduce: A major step backwards - The Database Column

http://homes.cs.washington.edu/~billhowe/mapreduce_a_major_step_backwards.html 21/21

June 17, 2009 9:12 PM

Leave a comment

Name
Email Address
URL

 Remember personal info?
Comments (You may use HTML tags for style)

Preview Submit

Search

 Search

About this Entry

This page contains a single entry by David DeWitt published on January 17, 2008 4:20 PM.

Relational databases for storing and querying RDF was the previous entry in this blog.

MapReduce II is the next entry in this blog.

Find recent content on the main index or look in the archives to find all content.

 Subscribe to this blog's feed

Powered by Movable Type Publishing Platform

