
BlinkDB: Queries with Bounded Errors and
Bounded Response Times on Very Large Data

Sameer Agarwal†, Barzan Mozafari○, Aurojit Panda†, Henry Milner†, Samuel Madden○, Ion Stoica∗†

†University of California, Berkeley ○Massachusetts Institute of Technology ∗Conviva Inc.
{sameerag, apanda, henrym, istoica}@cs.berkeley.edu, {barzan, madden}@csail.mit.edu

Abstract
In this paper, we present BlinkDB, a massively parallel, ap-
proximate query engine for running interactive SQL queries
on large volumes of data. BlinkDB allows users to trade-
o� query accuracy for response time, enabling interactive
queries overmassive data by running queries on data samples
and presenting results annotated with meaningful error bars.
To achieve this, BlinkDB uses two key ideas: (1) an adaptive
optimization framework that builds and maintains a set of
multi-dimensional strati�ed samples from original data over
time, and (2) a dynamic sample selection strategy that selects
an appropriately sized sample based on a query’s accuracy or
response time requirements.We evaluateBlinkDB against the
well-known TPC-H benchmarks and a real-world analytic
workload derived from Conviva Inc., a company that man-
ages video distribution over the Internet. Our experiments
on a 100 node cluster show that BlinkDB can answer queries
on up to 17 TBs of data in less than 2 seconds (over 200× faster
than Hive), within an error of 2-10%.

1. Introduction
Modern data analytics applications involve computing aggre-
gates over a large number of records to roll-up web clicks,
online transactions, content downloads, and other features
along a variety of di�erent dimensions, including demo-
graphics, content type, region, and so on. Traditionally, such
queries have been executed using sequential scans over a
large fraction of a database. Increasingly, new applications
demand near real-time response rates. Examplesmay include
applications that (i) update ads on a website based on trends
in social networks like Facebook and Twitter, or (ii) deter-
mine the subset of users experiencing poor performance
based on their service provider and/or geographic location.
Over the past two decades a large number of approxima-

tion techniques have been proposed, which allow for fast pro-

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise, to republish, to post
on servers or to redistribute to lists, requires prior specific permission and/or a
fee.
Eurosys’13 April 15-17, 2013, Prague, Czech Republic
Copyright © 2013 ACM 978-1-4503-1994-2/13/04. . . $15.00

cessing of large amounts of data by trading result accuracy
for response time and space.�ese techniques include sam-
pling [10, 14], sketches [12], and on-line aggregation [15]. To
illustrate the utility of such techniques, consider the following
simple query that computes the average SessionTime over
all users originating in New York:

SELECT AVG(SessionTime)

FROM Sessions

WHERE City = ‘New York’

Suppose the Sessions table contains 100 million tuples for
New York, and cannot �t in memory. In that case, the above
querymay take a long time to execute, since disk reads are ex-
pensive, and such a query would need multiple disk accesses
to stream through all the tuples. Suppose we instead exe-
cuted the same query on a sample containing only 10, 000
New York tuples, such that the entire sample �ts in mem-
ory.�is would be orders of magnitude faster, while still pro-
viding an approximate result within a few percent of the ac-
tual value, an accuracy good enough for many practical pur-
poses. Using sampling theory we could even provide con�-
dence bounds on the accuracy of the answer [16].
Previously described approximation techniques make dif-

ferent trade-o�s between e�ciency and the generality of the
queries they support. At one end of the spectrum, exist-
ing sampling and sketch based solutions exhibit low space
and time complexity, but typically make strong assumptions
about the query workload (e.g., they assume they know the
set of tuples accessed by future queries and aggregation func-
tions used in queries). As an example, if we know all future
queries are on large cities, we could simply maintain random
samples that omit data about smaller cities.
At the other end of the spectrum, systems like online

aggregation (OLA) [15] make fewer assumptions about the
query workload, at the expense of highly variable perfor-
mance. Using OLA, the above query will likely �nish much
faster for sessions in New York (i.e., the user might be
satis�ed with the result accuracy, once the query sees the
�rst 10, 000 sessions from New York) than for sessions in
Galena, IL, a town with fewer than 4, 000 people. In fact,
for such a small town, OLAmay need to read the entire table
to compute a result with satisfactory error bounds.
In this paper, we argue that none of the previous solutions

are a good �t for today’s big data analytics workloads. OLA

provides relatively poor performance for queries on rare tu-
ples, while sampling and sketches make strong assumptions
about the predictability of workloads or substantially limit
the types of queries they can execute.
To this end, we propose BlinkDB, a distributed sampling-

based approximate query processing system that strives to
achieve a better balance between e�ciency and generality for
analytics workloads.BlinkDB allows users to pose SQL-based
aggregation queries over stored data, along with response
time or error bound constraints. As a result, queries overmul-
tiple terabytes of data can be answered in seconds, accom-
panied by meaningful error bounds relative to the answer
that would be obtained if the query ran on the full data. In
contrast to most existing approximate query solutions (e.g.,
[10]), BlinkDB supports more general queries as it makes no
assumptions about the attribute values in the WHERE, GROUP
BY, and HAVING clauses, or the distribution of the values used
by aggregation functions. Instead, BlinkDB only assumes that
the sets of columns used by queries in WHERE, GROUP BY,
and HAVING clauses are stable over time. We call these sets
of columns “query column sets” or QCSs in this paper.

BlinkDB consists of two main modules: (i) Sample Cre-
ation and (ii) Sample Selection.�e sample creation module
creates strati�ed samples on themost frequently usedQCSs to
ensure e�cient execution for queries on rare values. By strat-
i�ed, we mean that rare subgroups (e.g., Galena, IL) are
over-represented relative to a uniformly random sample.�is
ensures that we can answer queries about any subgroup, re-
gardless of its representation in the underlying data.
We formulate the problem of sample creation as an opti-

mization problem. Given a collection of past QCS and their
historical frequencies, we choose a collection of strati�ed
sampleswith total storage costs below someuser con�gurable
storage threshold.�ese samples are designed to e�ciently
answer queries with the same QCSs as past queries, and to
provide good coverage for future queries over similar QCS.
If the distribution of QCSs is stable over time, our approach
creates samples that are neither over- nor under-specialized
for the query workload. We show that in real-world work-
loads fromFacebook Inc. andConviva Inc.,QCSs do re-occur
frequently and that strati�ed samples built using historical
patterns of QCS usage continue to perform well for future
queries. �is is in contrast to previous optimization-based
sampling systems that assume complete knowledge of the tu-
ples accessed by queries at optimization time.
Based on a query’s error/response time constraints, the

sample selection module dynamically picks a sample on
which to run the query. It does so by running the query
on multiple smaller sub-samples (which could potentially be
strati�ed across a range of dimensions) to quickly estimate
query selectivity and choosing the best sample to satisfy spec-
i�ed response time and error bounds. It uses anError-Latency
Pro�le heuristic to e�ciently choose the sample that will best
satisfy the user-speci�ed error or time bounds.

We implemented BlinkDB1 on top of Hive/Hadoop [22]
(as well as Shark [13], an optimized Hive/Hadoop framework
that caches input/ intermediate data). Our implementation
requiresminimal changes to the underlying query processing
system.We validate its e�ectiveness on a 100 node cluster, us-
ing both the TPC-H benchmarks and a real-world workload
derived from Conviva. Our experiments show that BlinkDB
can answer a range of queries within 2 seconds on 17 TB of
data within 90-98% accuracy, which is two orders of magni-
tude faster than running the same queries on Hive/Hadoop.
In summary, we make the following contributions:
• We use a column-set based optimization framework to
compute a set of strati�ed samples (in contrast to ap-
proaches like AQUA [6] and STRAT [10], which compute
only a single sample per table). Our optimization takes
into account: (i) the frequency of rare subgroups in the
data, (ii) the column sets in the past queries, and (iii) the
storage overhead of each sample. (§4)
• We create error-latency pro�les (ELPs) for each query at
runtime to estimate its error or response time on each
available sample.�is heuristic is then used to select the
most appropriate sample to meet the query’s response
time or accuracy requirements. (§5)
• We show how to integrate our approach into an existing
parallel query processing framework (Hive) withminimal
changes. We demonstrate that by combining these ideas
together, BlinkDB provides bounded error and latency for
a wide range of real-world SQL queries, and it is robust to
variations in the query workload. (§6)

2. Background
Any sampling based query processor, including BlinkDB,
must decide what types of samples to create.�e sample cre-
ation process must make some assumptions about the nature
of the future query workload. One common assumption is
that future queries will be similar to historical queries. While
this assumption is broadly justi�ed, it is necessary to be pre-
cise about the meaning of “similarity” when building a work-
load model. A model that assumes the wrong kind of sim-
ilarity will lead to a system that “over-�ts” to past queries
and produces samples that are ine�ective at handling future
workloads.�is choice of model of past workloads is one of
the key di�erences between BlinkDB and prior work. In the
rest of this section, we present a taxonomy of workloadmod-
els, discuss our approach, and show that it is reasonable using
experimental evidence from a production system.

2.1 Workload Taxonomy

O�ine sample creation, caching, and virtually any other type
of database optimization assumes a target workload that can
be used to predict future queries. Such a model can either
be trained on past data, or based on information provided by

1 http://blinkdb.org

http://blinkdb.org

users.�is can range from an ad-hocmodel, whichmakes no
assumptions about future queries, to a model which assumes
that all future queries are known a priori. As shown in Fig. 1,
we classify possible approaches into one of four categories:

Flexibility

Efficiency
Low flexibility /
High Efficiency

High flexibility /
Low Efficiency

Predictable	 	
Queries	

Predictable	 	
Query	
Predicates	

Predictable	 	
Query	
Column	 Sets	

Unpredictable	 	
Queries	

Figure 1. Taxonomy of workload models.

1. Predictable Queries: At the most restrictive end of the
spectrum, one can assume that all future queries are known in
advance, and use data structures specially designed for these
queries. Traditional databases use such a model for lossless
synopsis [12] which can provide extremely fast responses for
certain queries, but cannot be used for any other queries.
Prior work in approximate databases has also proposed using
lossy sketches (including wavelets and histograms) [14].
2. Predictable Query Predicates: A slightly more �exi-

ble model is one that assumes that the frequencies of group
and �lter predicates — both the columns and the values in
WHERE, GROUP BY, and HAVING clauses — do not change
over time. For example, if 5% of past queries include only
the �lter WHERE City = ‘New York’ and no other group
or �lter predicates, then this model predicts that 5% of future
queries will also include only this �lter. Under this model,
it is possible to predict future �lter predicates by observing
a prior workload. �is model is employed by materialized
views in traditional databases. Approximate databases, such
as STRAT [10] and SciBORQ [21], have similarly relied on
prior queries to determine the tuples that are likely to be used
in future queries, and to create samples containing them.
3. Predictable QCSs: Even greater �exibility is provided

by assuming a model where the frequency of the sets of
columns used for grouping and �ltering does not change over
time, but the exact values that are of interest in those columns
are unpredictable. We term the columns used for grouping
and �ltering in a query the query column set, or QCS, for the
query. For example, if 5% of prior queries grouped or �ltered
on the QCS {City}, this model assumes that 5% of future
queries will also group or �lter on this QCS, though the par-
ticular predicate may vary.�is model can be used to decide
the columns on which building indices would optimize data
access. Prior work [20] has shown that a similar model can
be used to improve caching performance in OLAP systems.
AQUA [4], an approximate query database based on sam-
pling, uses theQCSmodel. (See §8 for a comparison between
AQUA and BlinkDB).
4. Unpredictable Queries: Finally, the most general

model assumes that queries are unpredictable. Given this as-
sumption, traditional databases can do little more than just
rely on query optimizers which operate at the level of a single
query. In approximate databases, this workload model does

not lend itself to any “intelligent” sampling, leaving one with
no choice but to uniformly sample data.�ismodel is used by
On-Line Aggregation (OLA) [15], which relies on streaming
data in random order.
While the unpredictable query model is the most �exible

one, it provides little opportunity for an approximate query
processing system to e�ciently sample the data. Further-
more, prior work [11, 19] has argued that OLA performance’s
on large clusters (the environment on which BlinkDB is in-
tended to run) falls short. In particular, accessing individual
rows randomly imposes signi�cant scheduling and commu-
nication overheads, while accessing data at the HDFS block2
level may skew the results.
As a result, we use the model of predictable QCSs. As we

will show, this model provides enough information to enable
e�cient pre-computation of samples, and it leads to samples
that generalize well to future workloads in our experiments.
Intuitively, such a model also seems to �t in with the types
of exploratory queries that are commonly executed on large
scale analytical clusters. As an example, consider the oper-
ator of a video site who wishes to understand what types
of videos are popular in a given region. Such a study may
require looking at data from thousands of videos and hun-
dreds of geographic regions.While this study could result in a
very large number of distinct queries, most will use only two
columns, video title and viewer location, for grouping and
�ltering. Next, we present empirical evidence based on real
world query traces from Facebook Inc. and Conviva Inc. to
support our claims.

2.2 Query Patterns in a Production Cluster

To empirically test the validity of the predictable QCS model
we analyze a trace of 18, 096 queries from 30 days of queries
from Conviva and a trace of 69, 438 queries constituting a
random, but representative, fraction of 7 days’ workload from
Facebook to determine the frequency of QCSs.
Fig. 2(a) shows the distribution of QCSs across all queries

for bothworkloads. Surprisingly, over 90%of queries are cov-
ered by 10% and 20% of uniqueQCSs in the traces fromCon-
viva and Facebook respectively. Only 182 unique QCSs cover
all queries in the Conviva trace and 455 uniqueQCSs span all
the queries in the Facebook trace. Furthermore, if we remove
the QCSs that appear in less than 10 queries, we end up with
only 108 and 211 QCSs covering 17, 437 queries and 68, 785
queries from Conviva and Facebook workloads, respectively.
�is suggests that, for real-world production workloads,
QCSs represent an excellent model of future queries.
Fig. 2(b) shows the number of unique QCSs versus the

queries arriving in the system. We de�ne unique QCSs as
QCSs that appear in more than 10 queries. For the Con-
viva trace, a�er only 6% of queries we already see close to
60% of all QCSs, and a�er 30% of queries have arrived, we
see almost all QCSs — 100 out of 108. Similarly, for the Face-

2 Typically, these blocks are 64 − 1024 MB in size.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

Fr
a
ct

io
n
 o

f
Q

u
e
ri

e
s

(C
D

F)

Unique Query Templates (%)

Conviva Queries (2 Years)
Facebook Queries (1 week)

(a) QCS Distribution

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100

N
e
w

 U
n
iq

u
e

Te
m

p
la

te
s

S
e
e
n
 (

%
)

Incoming Queries (%)

Conviva Queries (2 Years)
Facebook Queries (1 week)

(b) QCS Stability

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.001 0.01 0.1 1 10 100 1000 10000 100000 1e+06

Fr
a
ct

io
n
 o

f
Jo

in
 Q

u
e
ri

e
s

(C
D

F)

Size of Dimension Table(s) (GB)

Facebook Queries (1 Week)

(c) Dimension table size CDF
Figure 2. 2(a) and 2(b) show the distribution and stability of QCSs respectively across all queries in the Conviva and Face-
book traces. 2(c) shows the distribution of join queries with respect to the size of dimension tables.

book trace, a�er 12% of queries, we see close to 60% of all
QCSs, and a�er only 40% queries, we see almost all QCSs —
190 out of 211.�is shows that QCSs are relatively stable over
time, which suggests that the past history is a good predictor
for the future workload.

3. System Overview

Sample'Selection'

TABLE'

Distributed'
Cache'

Distributed'
Filesystem'

Original''
Data'

Shark'

'
SELECT COUNT(*)!
 FROM TABLE!
WHERE (city=“NY”)!
LIMIT 1s;!

HiveQL/SQL'
Query'

Result:(
1,101,822(±(2,105&&
(95%(confidence)(

Sa
m
pl
e'
Cr
ea

tio
n'
&
'

M
ai
nt
en

an
ce

'

Figure 3. BlinkDB architecture.

Fig. 3 shows the overall architecture of BlinkDB. BlinkDB
extends the Apache Hive framework [22] by adding two ma-
jor components to it: (1) an o�ine sampling module that cre-
ates and maintains samples over time, and (2) a run-time
sample selection module that creates an Error-Latency Pro-
�le (ELP) for queries. To decide on the samples to create, we
use the QCSs that appear in queries (we present a more pre-
cise formulation of this mechanism in §4.) Once this choice
is made, we rely on distributed reservoir sampling3 [23] or bi-
nomial sampling techniques to create a range of uniform and
strati�ed samples across a number of dimensions.
At run-time, we employ ELP to decide the sample to run

the query.�e ELP characterizes the rate at which the error
(or response time) decreases (or increases) as the size of the
sample on which the query operates increases.�is is used
to select a sample that best satis�es the user’s constraints. We
describe ELP in detail in §5.BlinkDB also augments the query
parser, optimizer, and a number of aggregation operators to
allow queries to specify bounds on error, or execution time.

3 Reservoir sampling is a family of randomized algorithms for creating �xed-
sized random samples from streaming data.

3.1 Supported Queries

BlinkDB supports a slightly constrained set of SQL-style
declarative queries, imposing constraints that are similar to
prior work [10]. In particular, BlinkDB can currently provide
approximate results for standard SQL aggregate queries in-
volving COUNT, AVG, SUM and QUANTILE. Queries involv-
ing these operations can be annotated with either an error
bound, or a time constraint. Based on these constraints, the
system selects an appropriate sample, of an appropriate size,
as explained in §5.
As an example, let us consider querying a table

Sessions, with �ve columns, SessionID, Genre, OS,
City, and URL, to determine the number of sessions
in which users viewed content in the “western” genre,
grouped by OS.�e query:

SELECT COUNT(*)

FROM Sessions

WHERE Genre = ‘western’

GROUP BY OS

ERROR WITHIN 10% AT CONFIDENCE 95%

will return the count for each GROUP BY key, with each count
having relative error of at most ±10% at a 95% con�dence
level. Alternatively, a query of the form:

SELECT COUNT(*)

FROM Sessions

WHERE Genre = ‘western’

GROUP BY OS

WITHIN 5 SECONDS

will return the most accurate results for each GROUP BY key
in 5 seconds, along with a 95% con�dence interval for the
relative error of each result.
While BlinkDB does not currently support arbitrary joins

and nested SQL queries, we �nd that this is usually not a hin-
drance.�is is because any query involving nested queries or
joins can be �attened to run on the underlying data. How-
ever, we do provide support for joins in some settings which
are commonly used in distributed data warehouses. In par-
ticular, BlinkDB can support joining a large, sampled fact
table, with smaller tables that are small enough to �t in the
main memory of any single node in the cluster.�is is one

Notation Description
T fact (original) table
Q a query
t a time bound for query Q
e an error bound for query Q
n the estimated number of rows that can be

accessed in time t
ϕ the QCS for Q, a set of columns in T
x a ∣ϕ∣-tuple of values for a column set ϕ, for

example (Berkeley, CA) for ϕ =(City, State)
D(ϕ) the set of all unique x-values for ϕ in T
Tx , Sx the rows in T (or a subset S ⊆ T) having the

values x on ϕ (ϕ is implicit)
S(ϕ,K) strati�ed sample associated with ϕ, where

frequency of every group x in ϕ is capped by K
∆(ϕ,M) the number of groups in T under ϕ having

size less thanM — a measure of sparsity of T

Table 1. Notation in §4.1

of the most commonly used form of joins in distributed data
warehouses. For instance, Fig. 2(c) shows the distribution of
the size of dimension tables (i.e., all tables except the largest)
across all queries in a week’s trace from Facebook. We ob-
serve that 70%of the queries involve dimension tables that are
less than 100 GB in size.�ese dimension tables can be easily
cached in the cluster memory, assuming a cluster consisting
of hundreds or thousands of nodes, where each node has at
least 32 GB RAM. It would also be straightforward to extend
BlinkDB to deal with foreign key joins between two sampled
tables (or a self join on one sampled table) where both ta-
bles have a strati�ed sample on the set of columns used for
joins. We are also working on extending our query model to
support more general queries, speci�cally focusing on more
complicated user de�ned functions, and on nested queries.

4. Sample Creation
BlinkDB creates a set of samples to accurately and quickly an-
swer queries. In this section, we describe the sample creation
process in detail. First, in §4.1, we discuss the creation of a
strati�ed sample on a given set of columns. We show how a
query’s accuracy and response time depends on the availabil-
ity of strati�ed samples for that query, and evaluate the stor-
age requirements of our strati�ed sampling strategy for vari-
ous data distributions. Strati�ed samples are useful, but carry
storage costs, so we can only build a limited number of them.
In §4.2 we formulate and solve an optimization problem to
decide on the sets of columns on which we build samples.

4.1 Strati�ed Samples

In this section, we describe our techniques for constructing a
sample to target queries using a given QCS. Table 1 contains
the notation used in the rest of this section.
Queries that do not �lter or group data (for example, a SUM

over an entire table) o�en produce accurate answers when
run on uniform samples. However, uniform sampling o�en

does notworkwell for a queries on �ltered or grouped subsets
of the table. When members of a particular subset are rare,
a larger sample will be required to produce high-con�dence
estimates on that subset. A uniform sample may not contain
any members of the subset at all, leading to a missing row in
the �nal output of the query.�e standard approach to solv-
ing this problem is strati�ed sampling [16], which ensures that
rare subgroups are su�ciently represented. Next, we describe
the use of strati�ed sampling in BlinkDB.

4.1.1 Optimizing a strati�ed sample for a single query

First, consider the smaller problem of optimizing a strati�ed
sample for a single query. We are given a query Q specifying
a table T , a QCS ϕ, and either a response time bound t or
an error bound e. A time bound t determines the maximum
sample size on which we can operate, n; n is also the opti-
mal sample size, since larger samples produce better statisti-
cal results. Similarly, given an error bound e, it is possible to
calculate the minimum sample size that will satisfy the error
bound, and any larger sample would be suboptimal because
it would take longer than necessary. In general n is monoton-
ically increasing in t (or monotonically decreasing in e) but
will also depend on Q and on the resources available in the
cluster to processQ.Wewill show later in §5 howwe estimate
n at runtime using an Error-Latency Pro�le.
Among the rows in T , let D(ϕ) be the set of unique values

x on the columns in ϕ. For each value x there is a set of rows
in T having that value, Tx = {r ∶ r ∈ T and r takes values x
on columns ϕ}. We will say that there are ∣D(ϕ)∣ “groups” Tx
of rows in T under ϕ. We would like to compute an aggregate
value for each Tx (for example, a SUM). Since that is expensive,
instead we will choose a sample S ⊆ T with ∣S∣ = n rows.
For each group Tx there is a corresponding sample group
Sx ⊆ S that is a subset of Tx , which will be used instead of
Tx to calculate an aggregate. �e aggregate calculation for
each Sx will be subject to error that will depend on its size.
�e best sampling strategy will minimize some measure of
the expected error of the aggregate across all the Sx , such as
the worst expected error or the average expected error.
A standard approach is uniform sampling — sampling n

rows from T with equal probability. It is important to un-
derstand why this is an imperfect solution for queries that
compute aggregates on groups. A uniform random sample
allocates a random number of rows to each group.�e size
of sample group Sx has a hypergeometric distribution with n
draws, population size ∣T ∣, and ∣Tx ∣ possibilities for the group
to be drawn.�e expected size of Sx is n ∣Tx ∣

∣T ∣ , which is propor-
tional to ∣Tx ∣. For small ∣Tx ∣, there is a chance that ∣Sx ∣ is very
small or even zero, so the uniform sampling scheme canmiss
some groups just by chance.�ere are 2 things going wrong:

1. �e sample size assigned to a group depends on its size in
T . If we care about the error of each aggregate equally, it
is not clear why we should assign more samples to Sx just
because ∣Tx ∣ is larger.

2. Choosing sample sizes at random introduces the possibil-
ity of missing or severely under-representing groups.�e
probability of missing a large group is vanishingly small,
but the probability of missing a small group is substantial.

�is problem has been studied before. Brie�y, since error
decreases at a decreasing rate as sample size increases, the
best choice simply assigns equal sample size to each groups.
In addition, the assignment of sample sizes is deterministic,
not random. A detailed proof is given by Acharya et al. [4].
�is leads to the following algorithm for sample selection:
1. Compute group counts: To each x ∈

x0 , ..., x∣D(ϕ)∣−1, assign a count, forming a ∣D(ϕ)∣-
vector of counts N∗

n . Compute N∗

n as follows: Let
N(n′) = (min(⌊ n′

∣D(ϕ)∣ ⌋, ∣Tx0 ∣), min(⌊ n′
∣D(ϕ)∣ ⌋, ∣Tx1 ∣, ...),

the optimal count-vector for a total sample size n′. �en
choose N∗

n = N(max{n′ ∶ ∣∣N(n′)∣∣1 ≤ n}). In words, our
samples cap the count of each group at some value ⌊ n′

∣D(ϕ)∣ ⌋.
In the future we will use the name K for the cap size ⌊ n′

∣D(ϕ)∣ ⌋.
2. Take samples: For each x, sample N∗

nx rows uniformly
at randomwithout replacement from Tx , forming the sample
Sx . Note that when ∣Tx ∣ = N∗

nx , our sample includes all the
rows of Tx , and there will be no sampling error for that group.

V(φ) S(φ)

K K

φ

Figure 4. Example of a strati�ed sample associated with a set
of columns, ϕ.

�e entire sample S(ϕ,K) is the disjoint union of the Sx .
Since a strati�ed sample on ϕ is completely determined by the
group-size cap K, we henceforth denote a sample by S(ϕ,K)
or simply S when there is no ambiguity.K determines the size
and therefore the statistical properties of a strati�ed sample
for each group.
For example, consider query Q grouping by QCS ϕ, and

assume we use S(ϕ,K) to answer Q. For each value x on ϕ,
if ∣Tx ∣ ≤ K, the sample contains all rows from the original
table, so we can provide an exact answer for this group. On
the other hand, if ∣Tx ∣ > K, we answer Q based on K random
rows in the original table. For the basic aggregate operators
AVG, SUM, COUNT, and QUANTILE, K directly determines the
error of Q’s result. In particular, these aggregate operators
have standard error inversely proportional to

√
K [16].

4.1.2 Optimizing a set of strati�ed samples for all
queries sharing a QCS

Now we turn to the question of creating samples for a set
of queries that share a QCS ϕ but have di�erent values of n.
Recall that n, the number of rows we read to satisfy a query,
will vary according to user-speci�ed error or time bounds. A
WHERE query may also select only a subset of groups, which

allows the system to read more rows for each group that is
actually selected. So in general we want access to a family of
strati�ed samples (Sn), one for each possible value of n.
Fortunately, there is a simple method that requires main-

taining only a single sample for the whole family (Sn). Ac-
cording to our sampling strategy, for a single value of n,
the size of the sample for each group is deterministic and
is monotonically increasing in n. In addition, it is not nec-
essary that the samples in the family be selected indepen-
dently. So given any sample Snmax , for any n ≤ nmax there
is an Sn ⊆ Snmax that is an optimal sample for n in the sense
of the previous section. Our sample storage technique, de-
scribed next, allows such subsets to be identi�ed at runtime.

�e rows of strati�ed sample S(ϕ,K) are stored sequen-
tially according to the order of columns in ϕ. Fig. 5(a) shows
an example of storage layout for S(ϕ,K). B i j denotes a data
block in the underlying �le system, e.g., HDFS. Records cor-
responding to consecutive values in ϕ are stored in the same
block, e.g., B1. If the records corresponding to a popular value
do not all �t in one block, they are spread across several
contiguous blocks e.g., blocks B41, B42 and B43 contain rows
from Sx . Storing consecutive records contiguously on the
disk signi�cantly improves the execution times or range of
the queries on the set of columns ϕ.
When Sx is spread over multiple blocks, each block con-

tains a randomly ordered random subset from Sx , and, by
extension, from the original table.�is makes it possible to
e�ciently run queries on smaller samples. Assume a query
Q, that needs to read n rows in total to satisfy its error
bounds or time execution constraints. Let nx be the num-
ber of rows read from Sx to compute the answer. (Note nx ≤
max {K , ∣Tx ∣} and ∑x∈D(ϕ),x selected by Q nx = n.) Since the
rows are distributed randomly among the blocks, it is enough
for Q to read any subset of blocks comprising Sx , as long as
these blocks contain at least nx records. Fig. 5(b) shows an ex-
ample whereQ reads only blocks B41 and B42, as these blocks
contain enough records to compute the required answer.
Storage overhead. An important consideration is the over-
head of maintaining these samples, especially for heavy-
tailed distributions with many rare groups. Consider a table
with 1 billion tuples and a column set with a Zipf distribution
with an exponent of 1.5.�en, it turns out that the storage
required by sample S(ϕ,K) is only 2.4% of the original table
for K = 104, 5.2% for K = 105, and 11.4% for K = 106.

�ese results are consistent with real-world data from
Conviva Inc., where for K = 105, the overhead incurred for a
sample on popular columns like city, customer, autonomous
system number (ASN) is less than 10%.

4.2 Optimization Framework

We now describe the optimization framework to select sub-
sets of columns on which to build sample families. Un-
like prior work which focuses on single-column strati�ed
samples [9] or on a single multi-dimensional (i.e., multi-
column) strati�ed sample [4], BlinkDB creates several multi-

K

B1

B21

B22

B31

B32

B33

B41

B42

B51

B52

B6 B7 B8

B43

x

(a)

K

B1

B21

B22

B31

B32

B33

B51

B52

B6 B7 B8

B43

K1
B42

B41

x

(b)
Figure 5. (a) Possible storage layout for strati�ed sample S(ϕ,K).

dimensional strati�ed samples. As described above, each
strati�ed sample can potentially be used at runtime to im-
prove query accuracy and latency, especially when the orig-
inal table contains small groups for a particular column set.
However, each stored sample has a storage cost equal to its
size, and the number of potential samples is exponential in
the number of columns. As a result, we need to be careful
in choosing the set of column-sets on which to build strati-
�ed samples.We formulate the trade-o� between storage cost
and query accuracy/performance as an optimization prob-
lem, described next.

4.2.1 Problem Formulation

�e optimization problem takes three factors into account in
determining the sets of columns on which strati�ed samples
should be built: the “sparsity” of the data,workload character-
istics, and the storage cost of samples.

Sparsity of the data. A strati�ed sample on ϕ is useful when
the original table T contains many small groups under ϕ.
Consider aQCS ϕ in table T . Recall thatD(ϕ) denotes the set
of all distinct values on columns ϕ in rows of T . We de�ne a
“sparsity” function ∆(ϕ,M) as the number of groups whose
size in T is less than some numberM4:

∆(ϕ,M) = ∣{x ∈ D(ϕ) ∶ ∣Tx ∣ < M}∣
Workload.A strati�ed sample is only useful when it is bene-
�cial to actual queries. Under our model for queries, a query
has a QCS q j with some (unknown) probability p j - that is,
QCSs are drawn from aMultinomial (p1 , p2 , ...) distribution.
�e best estimate of p j is simply the frequency of queries with
QCS q j in past queries.

Storage cost. Storage is the main constraint against build-
ing too many strati�ed samples, and against building strat-
i�ed samples on large column sets that produce too many
groups.�erefore, we must compute the storage cost of po-
tential samples and constrain total storage. To simplify the
formulation, we assume a single value of K for all samples;
a sample family ϕ either receives no samples or a full sam-
ple with K elements of Tx for each x ∈ D(ϕ). ∣S(ϕ,K)∣ is the
storage cost (in rows) of building a strati�ed sample on a set
of columns ϕ.
4Appropriate values for M will be discussed later in this section. Alterna-
tively, one could plug in di�erent notions of sparsity of a distribution in our
formulation.

Given these three factors de�ned above, we now introduce
our optimization formulation. Let the overall storage capacity
budget (again in rows) be C. Our goal is to select β column
sets from among m possible QCSs, say ϕ i1 ,⋯, ϕ iβ , which can
best answer our queries, while satisfying:

β

∑
k=1

∣S(ϕ ik ,K)∣ ≤ C

Speci�cally, inBlinkDB, wemaximize the followingmixed
integer linear program (MILP) in which j indexes over all
queries and i indexes over all possible column sets:

G =∑
j
p j ⋅ y j ⋅ ∆(q j ,M) (1)

subject to
m
∑
i=1

∣S(ϕ i ,K)∣ ⋅ z i ≤ C (2)

and

∀ j ∶ y j ≤ max
i∶ϕ i⊆q j∪i∶ϕ i⊃q j

(z i min 1,
∣D(ϕ i)∣
∣D(q j)∣

) (3)

where 0 ≤ y j ≤ 1 and z i ∈ {0, 1} are variables.
Here, z i is a binary variable determiningwhether a sample

family should be built or not, i.e., when z i = 1, we build a
sample family on ϕ i ; otherwise, when z i = 0, we do not.

�e goal function (1) aims to maximize the weighted sum
of the coverage of the QCSs of the queries, q j . If we create a
strati�ed sample S(ϕ i ,K), the coverage of this sample for q j
is de�ned as the probability that a given value x of columns q j
is also present among the rows of S(ϕ i ,K). If ϕ i ⊇ q j , then q j
is covered exactly, but ϕ i ⊂ q j can also be useful by partially
covering q j . At runtime, if no strati�ed sample is available that
exactly covers a theQCS for a query, a partially-coveringQCS
may be used instead. In particular, the uniform sample is a
degenerate case with ϕ i = ∅; it is useful for many queries but
less useful than more targeted strati�ed samples.
Since the coverage probability is hard to compute in prac-

tice, in this paper we approximate it by y j , which is deter-
mined by constraint (3).�e y j value is in [0, 1], with 0mean-
ing no coverage, and 1 meaning full coverage.�e intuition
behind (3) is that when we build a strati�ed sample on a
subset of columns ϕ i ⊆ q j , i.e. when z i = 1, we have par-
tially covered q j , too. We compute this coverage as the ra-
tio of the number of unique values between the two sets, i.e.,

∣D(ϕ i)∣/∣D(q j)∣. When ϕ i ⊂ q j , this ratio, and the true cov-
erage value, is at most 1.When ϕ i = q j , the number of unique
values in ϕ i and q j are the same, we are guaranteed to see all
the unique values of q j in the strati�ed sample over ϕ i and
therefore the coverage will be 1. When ϕ i ⊃ q j , the coverage
is also 1, so we cap the ratio ∣D(ϕ i)∣/∣D(q j)∣ at 1.
Finally, we need to weigh the coverage of each set of

columns by their importance: a set of columns q j is more im-
portant to cover when: (i) it appears inmore queries, which is
represented by p j , or (ii) when there are more small groups
under q j , which is represented by ∆(q j ,M).�us, the best
solution is when we maximize the sum of p j ⋅ y j ⋅ ∆(q j ,M)
for all QCSs, as captured by our goal function (1).

�e size of this optimization problem increases exponen-
tially with the number of columns in T , which looks worry-
ing. However, it is possible to solve these problems in prac-
tice by applying some simple optimizations, like considering
only column sets that actually occurred in the past queries,
or eliminating column sets that are unrealistically large.
Finally, we must return to two important constants we

have le� in our formulation, M and K. In practice we set
M = K = 100000. Our experimental results in §7 show that
the system performs quite well on the datasets we consider
using these parameter values.

5. BlinkDB Runtime
In this section, we provide an overview of query execution in
BlinkDB and present our approach for online sample selec-
tion. Given a queryQ, the goal is to select one (ormore) sam-
ple(s) at run-time that meet the speci�ed time or error con-
straints and then compute answers over them. Picking a sam-
ple involves selecting either the uniform sample or one of the
strati�ed samples (none of which may stratify on exactly the
QCS ofQ), and then possibly executing the query on a subset
of tuples from the selected sample.�e selection of a sample
(i.e., uniform or strati�ed) depends on the set of columns in
Q’s clauses, the selectivity of its selection predicates, and the
data placement and distribution. In turn, the size of the sam-
ple subset on which we ultimately execute the query depends
on Q’s time/accuracy constraints, its computation complex-
ity, the physical distribution of data in the cluster, and avail-
able cluster resources (i.e., empty slots) at runtime.
As with traditional query processing, accurately predict-

ing the selectivity is hard, especially for complex WHERE and
GROUP BY clauses.�is problem is compounded by the fact
that the underlying data distribution can change with the ar-
rival of new data. Accurately estimating the query response
time is even harder, especially when the query is executed in
a distributed fashion.�is is (in part) due to variations inma-
chine load, network throughput, as well as a variety of non-
deterministic (sometimes time-dependent) factors that can
cause wide performance �uctuations.
Furthermore, maintaining a large number of samples

(which are cached in memory to di�erent extents), allows

BlinkDB to generate many di�erent query plans for the same
query that may operate on di�erent samples to satisfy the
same error/response time constraints. In order to pick the
best possible plan,BlinkDB’s run-time dynamic sample selec-
tion strategy involves executing the query on a small sample
(i.e., a subsample) of data of one or more samples and gath-
ering statistics about the query’s selectivity, complexity and
the underlying distribution of its inputs. Based on these re-
sults and the available resources, BlinkDB extrapolates the re-
sponse time and relative error with respect to sample sizes to
construct an Error Latency Pro�le (ELP) of the query for each
sample, assuming di�erent subset sizes. An ELP is a heuris-
tic that enables quick evaluation of di�erent query plans in
BlinkDB to pick the one that can best satisfy a query’s er-
ror/response time constraints. However, it should be noted
that depending on the distribution of underlying data and the
complexity of the query, such an estimatemight not always be
accurate, in which case BlinkDBmay need to read additional
data to meet the query’s error/response time constraints.
In the rest of this section, we detail our approach to query

execution, by �rst discussing our mechanism for selecting a
set of appropriate samples (§5.1), and then picking an appro-
priate subset size from one of those samples by constructing
the Error Latency Pro�le for the query (§5.2). Finally, we dis-
cuss how BlinkDB corrects the bias introduced by executing
queries on strati�ed samples (§5.4).

5.1 Selecting the Sample

Choosing an appropriate sample for a query primarily de-
pends on the set of columns q j that occur in its WHERE and/or
GROUP BY clauses and the physical distribution of data in the
cluster (i.e., disk vs. memory). If BlinkDB �nds one or more
strati�ed samples on a set of columns ϕ i such that q j ⊆ ϕ i , we
simply pick the ϕ i with the smallest number of columns, and
run the query on S(ϕ i ,K). However, if there is no strati�ed
sample on a column set that is a superset of q j , we run Q in
parallel on in-memory subsets of all samples currently main-
tained by the system. �en, out of these samples we select
those that have a high selectivity as compared to others, where
selectivity is de�ned as the ratio of (i) the number of rows se-
lected by Q, to (ii) the number of rows read by Q (i.e., num-
ber of rows in that sample).�e intuition behind this choice
is that the response time of Q increases with the number of
rows it reads, while the error decreases with the number of
rows Q’s WHERE/GROUP BY clause selects.
5.2 Selecting the Right Sample/Size

Once a set of samples is decided, BlinkDB needs to select
a particular sample ϕ i and pick an appropriately sized sub-
sample in that sample based on the query’s response time
or error constraints. We accomplish this by constructing an
ELP for the query.�e ELP characterizes the rate at which
the error decreases (and the query response time increases)
with increasing sample sizes, and is built simply by running
the query on smaller samples to estimate the selectivity and

project latency and error for larger samples. For a distributed
query, its runtime scales with sample size, with the scaling
rate depending on the exact query structure (JOINS, GROUP

BYs etc.), physical placement of its inputs and the underlying
data distribution [7].�e variation of error (or the variance
of the estimator) primarily depends on the variance of the
underlying data distribution and the actual number of tuples
processed in the sample, which in turn depends on the selec-
tivity of a query’s predicates.

Error Pro�le: An error pro�le is created for all queries with
error constraints. IfQ speci�es an error (e.g., standard devia-
tion) constraint, the BlinkDB error pro�le tries to predict the
size of the smallest sample that satis�es Q’s error constraint.
Variance and con�dence intervals for aggregate functions are
estimated using standard closed-form formulas from statis-
tics [16]. For all standard SQL aggregates, the variance is pro-
portional to ∼ 1/n, and thus the standard deviation (or the
statistical error) is proportional to ∼ 1/

√
n, where n is the

number of rows from a sample of size N that match Q’s �lter
predicates. Using this notation. the selectivity sq of the query
is the ratio n/N .
Let n i ,m be the number of rows selected by Q when run-

ning on a subset m of the strati�ed sample, S(ϕ i ,K). Fur-
thermore, BlinkDB estimates the query selectivity sq , sample
variance Sn (for AVG/SUM) and the input data distribution f
(for Quantiles) by running the query on a number of small
sample subsets. Using these parameter estimates, we calcu-
late the number of rows n = n i ,m required to meet Q’s error
constraints using standard closed form statistical error esti-
mates [16].�en, we run Q on S(ϕ i ,K) until it reads n rows.

Latency Pro�le: Similarly, a latency pro�le is created for all
queries with response time constraints. If Q speci�es a re-
sponse time constraint, we select the sample on which to run
Q the same way as above. Again, let S(ϕ i ,K) be the selected
sample, and let n be themaximumnumber of rows thatQ can
read without exceeding its response time constraint.�en we
simply run Q until reading n rows from S(ϕ i ,K).

�e value of n depends on the physical placement of input
data (disk vs. memory), the query structure and complexity,
and the degree of parallelism (or the resources available to the
query). As a simpli�cation, BlinkDB simply predicts n by as-
suming that latency scales linearly with input size, as is com-
monly observed with a majority of I/O bounded queries in
parallel distributed execution environments [8, 26]. To avoid
non-linearities that may arise when running on very small
in-memory samples, BlinkDB runs a few smaller samples un-
til performance seems to grow linearly and then estimates
the appropriate linear scaling constants (i.e., data processing
rate(s), disk/memory I/O rates etc.) for the model.

5.3 An Example

As an illustrative example consider a query which calculates
average session time for “Galena, IL”. For the purposes of this

example, the system has three strati�ed samples, one biased
on date and country, one biased on date and the designated
media area for a video, and the last one biased on date and
ended �ag. In this case it is not obvious which of these three
samples would be preferable for answering the query.
In this case, BlinkDB constructs an ELP for each of these

samples as shown in Figure 6. For many queries it is possi-
ble that all of the samples can satisfy speci�ed time or error
bounds. For instance all three of the samples in our exam-
ple can be used to answer this query with an error bound of
under 4%. However it is clear from the ELP that the sam-
ple biased on date and ended flag would take the short-
est time to �nd an answer within the required error bounds
(perhaps because the data for this sample is cached), and
BlinkDB would hence execute the query on that sample.

5.4 Bias Correction

Running a query on a non-uniform sample introduces a cer-
tain amount of statistical bias in the �nal result since dif-
ferent groups are picked at di�erent frequencies. In particu-
lar while all the tuples matching a rare subgroup would be
included in the sample, more popular subgroups will only
have a small fraction of values represented. To correct for this
bias, BlinkDB keeps track of the e�ective sampling rate for
each group associated with each sample in a hidden column
as part of the sample table schema, and uses this to weight
di�erent subgroups to produce an unbiased result.

6. Implementation
Fig. 7 describes the entireBlinkDB ecosystem.BlinkDB is built
on top of the Hive Query Engine [22], supports both Hadoop
MapReduce [2] and Spark [25] (via Shark [13]) at the execu-
tion layer and uses the Hadoop Distributed File System [1] at
the storage layer.
Our implementation required changes in a few key com-

ponents. We add a shim layer to the HiveQL parser to han-
dle the BlinkDB Query Interface, which enables queries with
response time and error bounds. Furthermore, the query in-
terface can detect data input, triggering the Sample Creation
andMaintenancemodule, which creates or updates the set of
random and multi-dimensional samples as described in §4.
We further extend the HiveQL parser to implement a Sam-
ple Selection module that re-writes the query and iteratively
assigns it an appropriately sized uniform or strati�ed sample
as described in §5. We also add an Uncertainty Propagation
module tomodify all pre-existing aggregation functions with
statistical closed forms to return errors bars and con�dence
intervals in addition to the result.
One concern with BlinkDB is that multiple queries might

use the same sample, inducing correlation among the an-
swers to those queries. For example, if by chance a sample
has a higher-than-expected average value of an aggregation
column, then two queries that use that sample and aggre-
gate on that column will both return high answers.�is may

(a) dt, country

(b) dt, dma

(c) dt, ended flag

Figure 6. Error Latency Pro�les for a variety of samples when executing a query to calculate average session time in Galena.
(a) Shows the ELP for a sample biased on date and country, (b) is the ELP for a sample biased on date and designated media
area (dma), and (c) is the ELP for a sample biased on date and the ended flag.

Hadoop	 Distributed	 File	 System	 (HDFS)	

Spark	

Hadoop	
MapReduce	

BlinkDB	
Metastore	

Hive	 Query	 Engine	

Shark	
(Hive	 on	 Spark)	

Sample	 Creation	 and	 	 Maintenance	

BlinkDB	 Query	 Interface	

Sample	 Selection	 Uncertainty	 Propagation	

Figure 7. BlinkDB’s Implementation Stack

introduce subtle inaccuracies in analysis based on multiple
queries. By contrast, in a system that creates a new sample
for each query, a high answer for the �rst query is not pre-
dictive of a high answer for the second. However, as we have
already discussed in §2, precomputing samples is essential for
performance in a distributed setting. We address correlation
among query results by periodically replacing the set of sam-
ples used.BlinkDB runs a low priority background taskwhich
periodically (typically, daily) samples from the original data,
creating new samples which are then used by the system.
An additional concern is that the workload might change

over time, and the sample types we compute are no longer
“optimal”. To alleviate this concern, BlinkDB keeps track of
statistical properties of the underlying data (e.g., variance
and percentiles) and periodically runs the sample creation
module described in §4 to re-compute these properties and
decide whether the set of samples needs to be changed. To
reduce the churn caused due to this process, an operator can
set a parameter to control the percentage of sample that can
be changed at any single time.
In BlinkDB, uniform samples are generally created in a

few hundred seconds.�is is because the time taken to create
them only depends on the disk/memory bandwidth and the
degree of parallelism. On the other hand, creating strati�ed
samples on a set of columns takes anywhere between a 5 −
30 minutes depending on the number of unique values to
stratify on, which decides the number of reducers and the
amount of data shu�ed.

7. Evaluation
In this section, we evaluate BlinkDB’s performance on a 100
node EC2 cluster using a workload from Conviva Inc. and

the well-known TPC-H benchmark [3]. First, we compare
BlinkDB to query execution on full-sized datasets to demon-
strate how even a small trade-o� in the accuracy of �nal
answers can result in orders-of-magnitude improvements in
query response times. Second, we evaluate the accuracy and
convergence properties of our optimal multi-dimensional
strati�ed-sampling approach against both random sampling
and single-column strati�ed-sampling approaches.�ird, we
evaluate the e�ectiveness of our cost models and error pro-
jections at meeting the user’s accuracy/response time re-
quirements. Finally, we demonstrateBlinkDB’s ability to scale
gracefully with increasing cluster size.

7.1 Evaluation Setting

�e Conviva and the TPC-H datasets were 17 TB and 1 TB
(i.e., a scale factor of 1000) in size, respectively, andwere both
stored across 100 Amazon EC2 extra large instances (each
with 8 CPU cores (2.66 GHz), 68.4 GB of RAM, and 800
GB of disk). �e cluster was con�gured to utilize 75 TB of
distributed disk storage and 6 TB of distributed RAM cache.

Conviva Workload. �e Conviva data represents informa-
tion about video streams viewed by Internet users. We use
query traces from their SQL-based ad-hoc querying system
which is used for problem diagnosis and data analytics on a
log of media accesses by Conviva users.�ese access logs are
1.7 TB in size and constitute a small fraction of data collected
across 30 days. Based on their underlying data distribution,
we generated a 17 TB dataset for our experiments and
partitioned it across 100 nodes.�e data consists of a single
large fact table with 104 columns, such as customer ID,

city, media URL, genre, date, time, user OS,

browser type, request response time, etc. �e 17
TB dataset has about 5.5 billion rows and shares all the key
characteristics of real-world production workloads observed
at Facebook Inc. and Microso� Corp. [7].

�e raw query log consists of 19, 296 queries, from which
we selected di�erent subsets for each of our experiments.
We ran our optimization function on a sample of about 200
queries representing 42 query column sets. We repeated the
experiments with di�erent storage budgets for the strati�ed
samples– 50%, 100%, and 200%. A storage budget of x% in-

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

50% 100% 200%

A
ct

u
a
l
S

to
ra

g
e
 C

o
st

 (
%

)

Storage Budget (%)

[dt jointimems]
[objectid jointimems]

[dt dma]

[country endedflag]
[dt country]

[other columns]

(a) Biased Samples (Conviva)

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

50% 100% 200%

A
ct

u
a
l
S

to
ra

g
e
 C

o
st

 (
%

)

Storage Budget (%)

[orderkey suppkey]
[commitdt receiptdt]

[quantity]

[discount]
[shipmode]

[other columns]

(b) Biased Samples (TPC-H)

 1

 10

 100

 1000

 10000

 100000

2.5TB 7.5TB

Q
u
e
ry

 S
e
rv

ic
e
 T

im
e

(s
e
co

n
d

s)

Input Data Size (TB)

Hive
Hive on Spark (without caching)

Hive on Spark (with caching)
BlinkDB (1% relative error)

(c) BlinkDB Vs. No Sampling
Figure 8. 8(a) and 8(b) show the relative sizes of the set of strati�ed sample(s) created for 50%, 100% and 200% storage budget
on Conviva and TPC-H workloads respectively. 8(c) compares the response times (in log scale) incurred by Hive (on Hadoop),
Shark (Hive on Spark) – both with and without input data caching, and BlinkDB, on simple aggregation.

dicates that the cumulative size of all the samples will not ex-
ceed x

100 times the original data. So, for example, a budget
of 100% indicates that the total size of all the samples should
be less than or equal to the original data. Fig. 8(a) shows the
set of samples that were selected by our optimization prob-
lem for the storage budgets of 50%, 100% and 200% respec-
tively, along with their cumulative storage costs. Note that
each strati�ed sample has a di�erent size due to variable num-
ber of distinct keys in the table. For these samples, the value
of K for strati�ed sampling is set to 100, 000.

TPC-HWorkload.We also ran a smaller number of experi-
ments using the TPC-H workload to demonstrate the gener-
ality of our results, with respect to a standard benchmark. All
the TPC-H experiments ran on the same 100 node cluster, on
1 TB of data (i.e., a scale factor of 1000).�e 22 benchmark
queries in TPC-H were mapped to 6 unique query column
sets. Fig. 8(b) shows the set of sample selected by our opti-
mization problem for the storage budgets of 50%, 100% and
200%, along with their cumulative storage costs. Unless oth-
erwise speci�ed, all the experiments in this paper are done
with a 50% additional storage budget (i.e., samples could use
additional storage of up to 50% of the original data size).

7.2 BlinkDB vs. No Sampling

We �rst compare the performance of BlinkDB versus frame-
works that execute queries on complete data. In this exper-
iment, we ran on two subsets of the Conviva data, with 7.5
TB and 2.5 TB respectively, spread across 100 machines. We
chose these two subsets to demonstrate some key aspects of
the interaction between data-parallel frameworks and mod-
ern clusters with high-memory servers.While the smaller 2.5
TB dataset can be be completely cached in memory, datasets
larger than 6 TB in size have to be (at least partially) spilled to
disk. To demonstrate the signi�cance of sampling even for the
simplest analytical queries, we ran a simple query that com-
puted average of user session timeswith a �ltering predicate
on the date column (dt) and a GROUP BY on the city column.
We compared the response time of the full (accurate) execu-
tion of this query on Hive [22] on Hadoop MapReduce [2],
Hive on Spark (called Shark [13]) – both with and without
caching, against its (approximate) execution onBlinkDBwith
a 1% error bound for each GROUP BY key at 95% con�dence.

We ran this query on both data sizes (i.e., corresponding to
5 and 15 days worth of logs, respectively) on the aforemen-
tioned 100-node cluster. We repeated each query 10 times,
and report the average response time in Figure 8(c). Note that
the Y axis is log scale. In all cases, BlinkDB signi�cantly out-
performs its counterparts (by a factor of 10 − 200×), because
it is able to read far less data to compute a fairly accurate an-
swer. For both data sizes, BlinkDB returned the answers in a
few seconds as compared to thousands of seconds for others.
In the 2.5 TB run, Shark’s caching capabilities help consider-
ably, bringing the query runtime down to about 112 seconds.
However, with 7.5 TB of data, a considerable portion of data
is spilled to disk and the overall query response time is con-
siderably longer.

7.3 Multi-Dimensional Strati�ed Sampling

Next, we ran a set of experiments to evaluate the error (§7.3.1)
and convergence (§7.3.2) properties of our optimal multi-
dimensional strati�ed-sampling approach against both sim-
ple random sampling, and one-dimensional strati�ed sam-
pling (i.e., strati�ed samples over a single column). For these
experiments we constructed three sets of samples on both
Conviva and TPC-H data with a 50% storage constraint:
1. Uniform Samples. A sample containing 50% of the en-

tire data, chosen uniformly at random.
2. Single-Dimensional Strati�ed Samples.�e column

to stratify on was chosen using the same optimization frame-
work, restricted so a sample is strati�ed on exactly 1 column.
3. Multi-Dimensional Strati�ed Samples. �e sets of

columns to stratify on were chosen using BlinkDB’s opti-
mization framework (§4.2), restricted so that samples could
be strati�ed on no more than 3 columns (considering four
or more column combinations caused our optimizer to take
more than a minute to complete).

7.3.1 Error Properties

In order to illustrate the advantages of ourmulti-dimensional
strati�ed sampling strategy, we compared the average statis-
tical error at 95% con�dence while running a query for 10
seconds over the three sets of samples, all of which were con-
strained to be of the same size.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

QCS1
(16)

QCS2
(10)

QCS3
(1)

QCS4
(12)

QCS5
(1)

S
ta

ti
st

ic
a
l
E
rr

o
r

(%
)

Unique QCS

Uniform Samples
Single Column
Multi-Column

(a) Error Comparison (Conviva)

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

QCS1
(4)

QCS2
(6)

QCS3
(3)

QCS4
(7)

QCS5
(1)

QCS6
(1)

S
ta

ti
st

ic
a
l
E
rr

o
r

(%
)

Unique QCS

Uniform Samples
Single Column
Multi-Column

(b) Error Comparison (TPC-H)

 0.1

 1

 10

 100

 1000

 10000

 0 5 10 15 20 25 30 35

Ti
m

e
 (

se
co

n
d
s)

Statistical Error (%)

Uniform Samples
Single Column
Multi-Column

(c) Error Convergence (Conviva)
Figure 9. 9(a) and 9(b) compare the average statistical error perQCSwhen running a query with �xed time budget of 10 seconds
for various sets of samples. 9(c) compares the rates of error convergence with respect to time for various sets of samples.

For our evaluation using Conviva’s data we used a set of 40
of the most popular queries (with 5 unique QCSs) and 17 TB
of uncompressed data on 100 nodes. We ran a similar set of
experiments on the standard TPC-H queries (with 6 unique
QCSs).�e queries we chose were on the l ineitem table, and
were modi�ed to conform with HiveQL syntax.
In Figures 9(a), and 9(b), we report the average statisti-

cal error in the results of each of these queries when they
ran on the aforementioned sets of samples.�e queries are
binned according to the set(s) of columns in their GROUP BY,
WHERE and HAVING clauses (i.e., their QCSs) and the num-
bers in brackets indicate the number of queries which lie
in each bin. Based on the storage constraints, BlinkDB’s op-
timization framework had samples strati�ed on QCS1 and
QCS2 for Conviva data and samples strati�ed on QCS1,
QCS2 and QCS4 for TPC-H data. For common QCSs,
multi-dimensional samples produce smaller statistical errors
than either one-dimensional or random samples.�e opti-
mization framework attempts to minimize expected error,
rather than per-query errors, and therefore for some speci�c
QCS single-dimensional strati�ed samples behave better than
multi-dimensional samples. Overall, however, our optimiza-
tion framework signi�cantly improves performance versus
single column samples.

7.3.2 Convergence Properties

We also ran experiments to demonstrate the convergence
properties of multi-dimensional strati�ed samples used by
BlinkDB. We use the same set of three samples as §7.3, taken
over 17 TB of Conviva data. Over this data, we ran multiple
queries to calculate average session time
For a particular ISP’s customers in 5 US Cities and deter-

mined the latency for achieving a particular error boundwith
95% con�dence. Results from this experiment (Figure 9(c))
show that error bars from running queries over multi-
dimensional samples converge orders-of-magnitude faster
than random sampling (i.e.,Hadoop Online [11, 19]), and are
signi�cantly faster to converge than single-dimensional strat-
i�ed samples.

7.4 Time/Accuracy Guarantees

In this set of experiments, we evaluateBlinkDB’s e�ectiveness
at meeting di�erent time/error bounds requested by the user.

To test time-bounded queries, we picked a sample of 20 Con-
viva queries, and ran each of them 10 times, with amaximum
time bound from 1 to 10 seconds. Figure 10(a) shows the re-
sults run on the same 17 TB data set, where each bar repre-
sents the minimum, maximum and average response times
of the 20 queries, averaged over 10 runs. From these results
we can see that BlinkDB is able to accurately select a sample
to satisfy a target response time.
Figure 10(b) shows results from the same set of queries,

also on the 17 TB data set, evaluating our ability tomeet spec-
i�ed error constraints. In this case, we varied the requested
maximumerror bound from2% to 32% .�e bars again repre-
sent the minimum, maximum and average errors across dif-
ferent runs of the queries. Note that the measured error is
almost always at or less than the requested error. However,
as we increase the error bound, the measured error becomes
closer to the bound.�is is because at higher error rates the
sample size is quite small and error bounds are wider.

7.5 Scaling Up

Finally, in order to evaluate the scalability properties of
BlinkDB as a function of cluster size, we created 2 di�erent
sets of query workload suites consisting of 40 unique Con-
viva queries each.�e �rst set (marked as sel ective) consists
of highly selective queries – i.e., those queries that only oper-
ate on a small fraction of input data.�ese queries occur fre-
quently in production workloads and consist of one or more
highly selective WHERE clauses.�e second set (marked as
bulk) consists of those queries that are intended to crunch
huge amounts of data. While the former set’s input is gener-
ally striped across a small number of machines, the latter set
of queries generally runs on data stored on a large number
of machines, incurring a higher communication cost. Fig-
ure 10(c) plots the query latency for each of these workloads
as a function of cluster size. Each query operates on 100n GB
of data (where n is the cluster size). So for a 10 node clus-
ter, each query operates on 1 TB of data and for a 100 node
cluster each query operates on around 10 TB of data. Fur-
ther, for each workload suite, we evaluate the query latency
for the case when the required samples are completely cached
in RAM or when they are stored entirely on disk. Since in re-
ality any sample will likely partially reside both on disk and in

 0

 2

 4

 6

 8

 10

 12

 2 3 4 5 6 7 8 9 10

A
ct

u
a
l
R

e
sp

o
n
se

 T
im

e
(s

e
co

n
d
s)

Requested Response Time (seconds)

(a) Response Time Bounds

 0

 5

 10

 15

 20

 25

 30

 35

 1 2 4 8 16 32

A
ct

u
a
l
E
rr

o
r

(%
)

Requested Error Bound (%)

(b) Relative Error Bounds

 0

 5

 10

 15

 20

1 20 40 60 80 100

Q
u
e
ry

 L
a
te

n
cy

 (
se

co
n
d
s)

Cluster Size (# nodes)

Selective + Cached
Selective + Non-Cached

Bulk + Cached
Bulk + Non-Cached

(c) Scaleup
Figure 10. 10(a) and 10(b) plot the actual vs. requested maximum response time and error bounds in BlinkDB. 10(c) plots the
query latency across 2 di�erent query workloads (with cached and non-cached samples) as a function of cluster size

memory these results indicate the min/max latency bounds
for any query.

8. RelatedWork
Prior work on interactive parallel query processing frame-
works has broadly relied on two di�erent sets of ideas.
One set of relatedwork has focused on using additional re-

sources (i.e.,memory or CPU) to decrease query processing
time. Examples include Spark [25],Dremel [17] and Shark [13].
While these systems deliver low-latency response timeswhen
each node has to process a relatively small amount of data
(e.g., when the data can �t in the aggregate memory of the
cluster), they become slower as the data grows unless new re-
sources are constantly being added in proportion. Addition-
ally, a signi�cant portion of query execution time in these sys-
tems involves shu�ing or re-partitioningmassive amounts of
data over the network, which is o�en a bottleneck for queries.
By using samples, BlinkDB is able to scale better as the quan-
tity of data grows. Additionally, being built on Spark,BlinkDB
is able to e�ectively leverage the bene�ts provided by these
systems while using limited resources.
Another line of work has focused on providing approxi-

mate answers with low latency, particularly in database sys-
tems. Approximate Query Processing (AQP) for decision
support in relational databases has been the subject of ex-
tensive research, and can either use samples, or other non-
sampling based approaches, which we describe below.

Sampling Approaches. �ere has been substantial work
on using sampling to provide approximate responses, includ-
ing work on strati�ed sampling techniques similar to ours
(see [14] for an overview). Especially relevant are:
1. STRAT [10] builds a single strati�ed sample, while

BlinkDB employs di�erent biased samples. However, the
more fundamental di�erence is in the assumptions and goals
of the two systems. STRAT tries to minimize the expected
relative error of the queries, for which it has to make stronger
assumptions about the future queries. Speci�cally, STRAT as-
sumes that fundamental regions (FRs) of future queries are
identical to the FRs of past queries, where FR of a query
is the exact set of tuples accessed by that query. Unfortu-
nately, inmany domains including those discussed in this pa-
per, this assumption does not hold, since even queries with
slightly di�erent constants can have di�erent FRs and thus,

having seen one of them does not imply that STRAT can
minimize the error for the other. In contrast, BlinkDB relies
on the weaker assumption that the set of columns that have
co-appeared in the past are likely to co-appear in the future
too. �us, instead of directly minimizing the error (which
would be impossible without assuming perfect knowledge of
future queries), BlinkDB focuses onmaximizing the coverage
of those column-sets, which as shown in §2, is much more
suitable to ad-hoc workloads.
2. SciBORQ [21] is a data-analytics framework designed

for scienti�c workloads, which uses special structures, called
impressions. Impressions are biased samples where tuples are
picked based on past query results. SciBORQ targets ex-
ploratory scienti�c analysis. In contrast toBlinkDB, SciBORQ
only supports time-based constraints. SciBORQ also does
not provide any guarantees on the error margin.
3. Babcock et al. [9] also describe a strati�ed sampling

technique where biased samples are built on a single column,
in contrast to our multi-column approach. In their approach,
queries are executed on all biased samples whose biased col-
umn is present in the query and the union of results is re-
turned as the �nal answer. Instead, BlinkDB runs on a single
sample, chosen based on the current query.
4. AQUA [4, 6] creates a single strati�ed sample for a

given table based on the union of the set(s) of columns that
occur in the GROUP BY or HAVING clauses of all the queries
on that table.�e number of tuples in each stratum are then
decided according to a weighting function that considers the
sizes of groups of all subsets of the grouping attributes. �is
implies that for g grouping attributes, AQUA considers all
2g combinations, which can be prohibitive for large values of
g (e.g., in our workloads g exceeds 10). In contrast, BlinkDB
considers only a small subset of these combinations by taking
the data distribution and the past QCSs into account, at the
expense of a higher storage overhead. In addition, AQUA
always operates on the full sample, limiting the user’s ability
to specify a time or an error bound for a query. BlinkDB
supports such bounds by maintaining multiple samples and
employing a run-time sample selection module to select the
appropriate sample type and size to meet a given query time
or error bound.
5. Olston et al. [18] use sampling for interactive data anal-

ysis. However, their approach requires building a new sample

for each query template, while BlinkDB shares strati�ed sam-
ples across column-sets.�is both reduces our storage over-
head, and allows us to e�ectively answer queries for which
templates are not known a priori.

Online Aggregation.Online Aggregation (OLA) [15] and
its successors [11, 19] proposed the idea of providing approx-
imate answers which are constantly re�ned during query ex-
ecution. It provides users with an interface to stop execution
once they are satis�ed with the current accuracy. As com-
monly implemented, the main disadvantage of OLA systems
is that they stream data in a random order, which imposes
a signi�cant overhead in terms of I/O. Naturally, these ap-
proaches cannot exploit the workload characteristics in op-
timizing the query execution. However, in principle, tech-
niques like online aggregation could be added to BlinkDB,
to make it continuously re�ne the values of aggregates; such
techniques are largely orthogonal to our ideas of optimally
selecting pre-computed, strati�ed samples.

Materialized Views, Data Cubes, Wavelets, Synopses,
Sketches, Histograms. �ere has been a great deal of work
on “synopses” (e.g., wavelets, histograms, sketches, etc.) and
lossless summaries (e.g. materialized views, data cubes). In
general, these techniques are tightly tied to speci�c classes of
queries. For instance, Vitter andWang [24] useHaar wavelets
to encode a data cube without reading the least signi�cant
bits of SUM/COUNT aggregates in a �at query5, but it is not
clear how to use the same encoding to answer joins, sub-
queries, or other complex expressions.�us, these techniques
are most applicable6 when future queries are known in ad-
vance (modulo constants or other minor details). Nonethe-
less, these techniques are orthogonal toBlinkDB, as one could
use di�erent wavelets and synopses for common queries and
resort to strati�ed sampling when faced with ad-hoc queries
that cannot be supported by the current set of synopses.
For instance, the join-synopsis [5] can be incorporated into
BlinkDB whereby any join query involving multiple tables
would be conceptually rewritten as a query on a single join
synopsis relation.�us, implementing such synopsis along-
side the current set of strati�ed samples in BlinkDBmay im-
prove the performance for certain cases. Incorporating the
storage requirement of such synopses into our optimization
formulation makes an interesting line of future work.

9. Conclusion
In this paper, we presented BlinkDB, a parallel, sampling-
based approximate query engine that provides support for
ad-hoc queries with error and response time constraints.
BlinkDB is based on two key ideas: (i) a multi-dimensional
sampling strategy that builds and maintains a variety of sam-
ples, and (ii) a run-time dynamic sample selection strategy
that uses parts of a sample to estimate query selectivity and

5A SQL statement without any nested sub-queries.
6Also, note that materialized views can be still too large for real-time pro-
cessing.

chooses the best samples for satisfying query constraints.
Evaluation results on real data sets and on deployments of
up to 100 nodes demonstrate the e�ectiveness of BlinkDB at
handling a variety of queries with diverse error and time con-
straints, allowing us to answer a range of queries within 2 sec-
onds on 17 TB of data with 90-98% accuracy.

Acknowledgements
We are indebted to Surajit Chaudhuri, Michael Franklin, Phil Gibbons, Joe
Hellerstein, our shepherd Kim Keeton, and members of the UC Berkeley
AMP Lab for their invaluable feedback and suggestions that greatly im-
proved this work.�is research is supported in part by NSF CISE Expedi-
tions award CCF-1139158, the DARPA XData Award FA8750-12-2-0331, and
gi�s fromQualcomm,AmazonWeb Services, Google, SAP, Blue Goji, Cisco,
Clearstory Data, Cloudera, Ericsson, Facebook, General Electric, Horton-
works, Huawei, Intel, Microso�, NetApp, Oracle, Quanta, Samsung, Splunk,
VMware and Yahoo!.

References
[1] Apache Hadoop Distributed File System. http://hadoop.apache.org/

hdfs/.
[2] Apache Hadoop Mapreduce Project. http://hadoop.apache.org/

mapreduce/.
[3] TPC-H Query Processing Benchmarks. http://www.tpc.org/tpch/.
[4] S. Acharya, P. B. Gibbons, and V. Poosala. Congressional samples for

approximate answering of group-by queries. In ACM SIGMOD, May 2000.
[5] S. Acharya, P. B. Gibbons, V. Poosala, and S. Ramaswamy. Join synopses
for approximate query answering. In ACM SIGMOD, June 1999.

[6] S. Acharya, P. B. Gibbons, V. Poosala, and S. Ramaswamy. The Aqua
approximate query answering system. ACM SIGMOD Record, 28(2), 1999.

[7] S. Agarwal, S. Kandula, N. Bruno, M.-C. Wu, I. Stoica, and J. Zhou. Re-
optimizing Data Parallel Computing. In NSDI, 2012.

[8] G. Ananthanarayanan, S. Kandula, A. G. Greenberg, I. Stoica, and y. . . p. .
. e. . h. b. . D. others title = Reining in the Outliers in Map-Reduce Clusters
using Mantri, booktitle = OSDI.

[9] B. Babcock, S. Chaudhuri, and G. Das. Dynamic sample selection for
approximate query processing. In VLDB, 2003.

[10] S. Chaudhuri, G. Das, and V. Narasayya. Optimized stratified sampling for
approximate query processing. TODS, 2007.

[11] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmeleegy, and
R. Sears. Mapreduce online. In NSDI, 2010.

[12] G. Cormode. Sketch techniques for massive data. In Synposes for Massive
Data: Samples, Histograms, Wavelets and Sketches. 2011.

[13] C. Engle, A. Lupher, R. Xin, M. Zaharia, et al. Shark: Fast Data Analysis
Using Coarse-grained Distributed Memory. In SIGMOD, 2012.

[14] M. Garofalakis and P. Gibbons. Approximate query processing: Taming the
terabytes. In VLDB, 2001. Tutorial.

[15] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online aggregation. In
SIGMOD, 1997.

[16] S. Lohr. Sampling: design and analysis. Thomson, 2009.
[17] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar, M. Tolton, and

T. Vassilakis. Dremel: interactive analysis of web-scale datasets. Commun.
ACM, 54:114–123, June 2011.

[18] C. Olston, E. Bortnikov, K. Elmeleegy, F. Junqueira, and B. Reed. Interactive
analysis of web-scale data. In CIDR, 2009.

[19] N. Pansare, V. R. Borkar, C. Jermaine, and T. Condie. Online Aggregation
for Large MapReduce Jobs. PVLDB, 4(11):1135–1145, 2011.

[20] C. Sapia. Promise: Predicting query behavior to enable predictive caching
strategies for olap systems. DaWaK, pages 224–233. Springer-Verlag, 2000.

[21] L. Sidirourgos, M. L. Kersten, and P. A. Boncz. SciBORQ: Scientific data
management with Bounds On Runtime and Quality. In CIDR’11, 2011.

[22] A. Thusoo, J. S. Sarma, N. Jain, et al. Hive: a warehousing solution over a
map-reduce framework. PVLDB, 2(2), 2009.

[23] S. Tirthapura and D. Woodruff. Optimal random sampling from dis-
tributed streams revisited. Distributed Computing, pages 283–297, 2011.

[24] J. S. Vitter and M. Wang. Approximate computation of multidimensional
aggregates of sparse data using wavelets. SIGMOD, 1999.

[25] M. Zaharia et al. Resilient distributed datasets: A fault-tolerant abstraction
for in-memory cluster computing. In NSDI, 2012.

[26] M. Zaharia, A. Konwinski, A. D. Joseph, et al. Improving MapReduce
Performance in Heterogeneous Environments. In OSDI, 2008.

http://hadoop.apache.org/hdfs/
http://hadoop.apache.org/hdfs/
http://hadoop.apache.org/mapreduce/
http://hadoop.apache.org/mapreduce/
http://www.tpc.org/tpch/

	Introduction
	Background
	Workload Taxonomy
	Query Patterns in a Production Cluster

	System Overview
	Supported Queries

	Sample Creation
	Stratified Samples
	Optimizing a stratified sample for a single query
	Optimizing a set of stratified samples for all queries sharing a QCS

	Optimization Framework
	Problem Formulation

	BlinkDB Runtime
	Selecting the Sample
	Selecting the Right Sample/Size
	An Example
	Bias Correction

	Implementation
	Evaluation
	Evaluation Setting
	BlinkDB vs. No Sampling
	Multi-Dimensional Stratified Sampling
	Error Properties
	Convergence Properties

	Time/Accuracy Guarantees
	Scaling Up

	Related Work
	Conclusion

