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In large federated and shared-nothing databases, resources can
exhibit widely fluctuating characteristics. Assumptions made
at the time a query is submitted will rarely hold throughout
the duration of query processing. As a result, traditional static
query optimization and execution techniques are ineffective in
these environments.

In this paper we introduce a query processing mechanism
called an eddy, which continuously reorders operators in a
query plan as it runs. We characterize the moments of sym-
metry during which pipelined joins can be easily reordered,
and the synchronization barriers that require inputs from dif-
ferent sources to be coordinated. By combining eddies with
appropriate join algorithms, we merge the optimization and
execution phases of query processing, allowing each tuple to
have a flexible ordering of the query operators. This flexibility
is controlled by a combination of fluid dynamics and a simple
learning algorithm. Our initial implementation demonstrates
promising results, with eddies performing nearly as well as
a static optimizer/executor in static scenarios, and providing
dramatic improvements in dynamic execution environments.
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There is increasing interest in query engines that run at un-
precedented scale, both for widely-distributed information re-
sources, and for massively parallel database systems. We are
building a system called Telegraph, which is intended to run
queries over all the data available on line. A key requirement
of a large-scale system like Telegraph is that it function ro-
bustly in an unpredictable and constantly fluctuating environ-
ment. This unpredictability is endemic in large-scale systems,
because of increased complexity in a number of dimensions:

Hardware and Workload Complexity: In wide-area envi-
ronments, variabilities are commonly observable in the bursty
performance of servers and networks [UFA98]. These systems
often serve large communities of users whose aggregate be-
havior can be hard to predict, and the hardware mix in the wide
area is quite heterogeneous. Large clusters of computers can
exhibit similar performance variations, due to a mix of user
requests and heterogeneous hardware evolution. Even in to-
tally homogeneous environments, hardware performance can
be unpredictable: for example, the outer tracks of a disk can
exhibit almost twice the bandwidth of inner tracks [Met97].

Data Complexity: Selectivity estimation for static alphanu-

Figure 1: An eddy in a pipeline. Data flows into the eddy from
input relations ����� and � . The eddy routes tuples to opera-
tors; the operators run as independent threads, returning tuples
to the eddy. The eddy sends a tuple to the output only when
it has been handled by all the operators. The eddy adaptively
chooses an order to route each tuple through the operators.

meric data sets is fairly well understood, and there has been
initial work on estimating statistical properties of static sets of
data with complex types [Aok99] and methods [BO99]. But
federated data often comes without any statistical summaries,
and complex non-alphanumeric data types are now widely in
use both in object-relational databases and on the web. In these
scenarios – and even in traditional static relational databases –
selectivity estimates are often quite inaccurate.

User Interface Complexity: In large-scale systems, many
queries can run for a very long time. As a result, there is in-
terest in Online Aggregation and other techniques that allow
users to “Control” properties of queries while they execute,
based on refining approximate results [HAC � 99].

For all of these reasons, we expect query processing param-
eters to change significantly over time in Telegraph, typically
many times during a single query. As a result, it is not appro-
priate to use the traditional architecture of optimizing a query
and then executing a static query plan: this approach does
not adapt to intra-query fluctuations. Instead, for these en-
vironments we want query execution plans to be reoptimized
regularly during the course of query processing, allowing the
system to adapt dynamically to fluctuations in computing re-
sources, data characteristics, and user preferences.

In this paper we present a query processing operator called
an eddy, which continuously reorders the application of pipe-



lined operators in a query plan, on a tuple-by-tuple basis. An
eddy is an � -ary tuple router interposed between � data sources
and a set of query processing operators; the eddy encapsulates
the ordering of the operators by routing tuples through them
dynamically (Figure 1). Because the eddy observes tuples en-
tering and exiting the pipelined operators, it can adaptively
change its routing to effect different operator orderings. In this
paper we present initial experimental results demonstrating the
viability of eddies: they can indeed reorder effectively in the
face of changing selectivities and costs, and provide benefits
in the case of delayed data sources as well.

Reoptimizing a query execution pipeline on the fly requires
significant care in maintaining query execution state. We high-
light query processing stages called moments of symmetry, dur-
ing which operators can be easily reordered. We also describe
synchronization barriers in certain join algorithms that can re-
strict performance to the rate of the slower input. Join algo-
rithms with frequent moments of symmetry and adaptive or
non-existent barriers are thus especially attractive in the Tele-
graph environment. We observe that the Ripple Join family
[HH99] provides efficiency, frequent moments of symmetry,
and adaptive or nonexistent barriers for equijoins and non-
equijoins alike.

The eddy architecture is quite simple, obviating the need for
traditional cost and selectivity estimation, and simplifying the
logic of plan enumeration. Eddies represent our first step in a
larger attempt to do away with traditional optimizers entirely,
in the hope of providing both run-time adaptivity and a reduc-
tion in code complexity. In this paper we focus on continuous
operator reordering in a single-site query processor; we leave
other optimization issues to our discussion of future work.
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Three properties can vary during query processing: the costs
of operators, their selectivities, and the rates at which tuples
arrive from the inputs. The first and third issues commonly
occur in wide area environments, as discussed in the literature
[AFTU96, UFA98, IFF � 99]. These issues may become more
common in cluster (shared-nothing) systems as they “scale
out” to thousands of nodes or more [Bar99].

Run-time variations in selectivity have not been widely dis-
cussed before, but occur quite naturally. They commonly arise
due to correlations between predicates and the order of tuple
delivery. For example, consider an employee table clustered
by ascending age, and a selection salary > 100000; age
and salary are often strongly correlated. Initially the selection
will filter out most tuples delivered, but that selectivity rate
will change as ever-older employees are scanned. Selectivity
over time can also depend on performance fluctuations: e.g., in
a parallel DBMS clustered relations are often horizontally par-
titioned across disks, and the rate of production from various
partitions may change over time depending on performance
characteristics and utilization of the different disks. Finally,
Online Aggregation systems explicitly allow users to control
the order in which tuples are delivered based on data prefer-
ences [RRH99], resulting in similar effects.
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Telegraph is intended to efficiently and flexibly provide both
distributed query processing across sites in the wide area, and
parallel query processing in a large shared-nothing cluster. In

this paper we narrow our focus somewhat to concentrate on
the initial, already difficult problem of run-time operator re-
ordering in a single-site query executor; that is, changing the
effective order or “shape” of a pipelined query plan tree in the
face of changes in performance.

In our discussion we will assume that some initial query
plan tree will be constructed during parsing by a naive pre-
optimizer. This optimizer need not exercise much judgement
since we will be reordering the plan tree on the fly. However
by constructing a query plan it must choose a spanning tree of
the query graph (i.e. a set of table-pairs to join) [KBZ86], and
algorithms for each of the joins. We will return to the choice of
join algorithms in Section 2, and defer to Section 6 the discus-
sion of changing the spanning tree and join algorithms during
processing.

We study a standard single-node object-relational query pro-
cessing system, with the added capability of opening scans and
indexes from external data sets. This is becoming a very com-
mon base architecture, available in many of the commercial
object-relational systems (e.g., IBM DB2 UDB [RPK � 99],
Informix Dynamic Server UDO [SBH98]) and in federated
database systems (e.g., Cohera [HSC99]). We will refer to
these non-resident tables as external tables. We make no as-
sumptions limiting the scale of external sources, which may be
arbitrarily large. External tables present many of the dynamic
challenges described above: they can reside over a wide-area
network, face bursty utilization, and offer very minimal infor-
mation on costs and statistical properties.
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Before introducing eddies, in Section 2 we discuss the prop-
erties of query processing algorithms that allow (or disallow)
them to be frequently reordered. We then present the eddy ar-
chitecture, and describe how it allows for extreme flexibility
in operator ordering (Section 3). Section 4 discusses policies
for controlling tuple flow in an eddy. A variety of experiments
in Section 4 illustrate the robustness of eddies in both static
and dynamic environments, and raise some questions for fu-
ture work. We survey related work in Section 5, and in Sec-
tion 6 lay out a research program to carry this work forward.
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A basic challenge of run-time reoptimization is to reorder pipe-
lined query processing operators while they are in flight. To
change a query plan on the fly, a great deal of state in the var-
ious operators has to be considered, and arbitrary changes can
require significant processing and code complexity to guaran-
tee correct results. For example, the state maintained by an
operator like hybrid hash join [DKO � 84] can grow as large as
the size of an input relation, and require modification or re-
computation if the plan is reordered while the state is being
constructed.

By constraining the scenarios in which we reorder opera-
tors, we can keep this work to a minimum. Before describing
eddies, we study the state management of various join algo-
rithms; this discussion motivates the eddy design, and forms
the basis of our approach for reoptimizing cheaply and con-
tinuously. As a philosophy, we favor adaptivity over best-case
performance. In a highly variable environment, the best-case
scenario rarely exists for a significant length of time. So we



will sacrifice marginal improvements in idealized query pro-
cessing algorithms when they prevent frequent, efficient reop-
timization.
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Binary operators like joins often capture significant state. A
particular form of state used in such operators relates to the
interleaving of requests for tuples from different inputs.

As an example, consider the case of a merge join on two
sorted, duplicate-free inputs. During processing, the next tu-
ple is always consumed from the relation whose last tuple
had the lower value. This significantly constrains the order in
which tuples can be consumed: as an extreme example, con-
sider the case of a slowly-delivered external relation slowlow
with many low values in its join column, and a high-bandwidth
but large local relation fasthi with only high values in its join
column – the processing of fasthi is postponed for a long time
while consuming many tuples from slowlow. Using terminol-
ogy from parallel programming, we describe this phenomenon
as a synchronization barrier: one table-scan waits until the
other table-scan produces a value larger than any seen before.

In general, barriers limit concurrency – and hence perfor-
mance – when two tasks take different amounts of time to com-
plete (i.e., to “arrive” at the barrier). Recall that concurrency
arises even in single-site query engines, which can simultane-
ously carry out network I/O, disk I/O, and computation. Thus
it is desirable to minimize the overhead of synchronization
barriers in a dynamic (or even static but heterogeneous) per-
formance environment. Two issues affect the overhead of bar-
riers in a plan: the frequency of barriers, and the gap between
arrival times of the two inputs at the barrier. We will see in up-
coming discussion that barriers can often be avoided or tuned
by using appropriate join algorithms.

� �	� � ����
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Note that the synchronization barrier in merge join is stated
in an order-independent manner: it does not distinguish be-
tween the inputs based on any property other than the data
they deliver. Thus merge join is often described as a symmet-
ric operator, since its two inputs are treated uniformly1. This is
not the case for many other join algorithms. Consider the tra-
ditional nested-loops join, for example. The “outer” relation
in a nested-loops join is synchronized with the “inner” rela-
tion, but not vice versa: after each tuple (or block of tuples)
is consumed from the outer relation, a barrier is set until a full
scan of the inner is completed. For asymmetric operators like
nested-loops join, performance benefits can often be obtained
by reordering the inputs.

When a join algorithm reaches a barrier, it has declared the
end of a scheduling dependency between its two input rela-
tions. In such cases, the order of the inputs to the join can of-
ten be changed without modifying any state in the join; when
this is true, we refer to the barrier as a moment of symmetry.
Let us return to the example of a nested-loops join, with outer
relation � and inner relation � . At a barrier, the join has com-
pleted a full inner loop, having joined each tuple in a subset
of � with every tuple in � . Reordering the inputs at this point
can be done without affecting the join algorithm, as long as
�

If there are duplicates in a merge join, the duplicates are handled by an
asymmetric but usually small nested loop. For purposes of exposition, we can
ignore this detail here.

Figure 2: Tuples generated by a nested-loops join, reordered at
two moments of symmetry. Each axis represents the tuples of
the corresponding relation, in the order they are delivered by
an access method. The dots represent tuples generated by the
join, some of which may be eliminated by the join predicate.
The numbers correspond to the barriers reached, in order. �	�
and ��
 are the cursor positions maintained by the correspond-
ing inputs at the time of the reorderings.

the iterator producing � notes its current cursor position �	� .
In that case, the new “outer” loop on � begins rescanning by
fetching the first tuple of � , and � is scanned from ��� to the
end. This can be repeated indefinitely, joining � tuples with
all tuples in � from position ��� to the end. Alternatively, at
the end of some loop over � (i.e. at a moment of symmetry),
the order of inputs can be swapped again by remembering the
current position of � , and repeatedly joining the next tuple in
� (starting at � � ) with tuples from � between � 
 and the end.
Figure 2 depicts this scenario, with two changes of ordering.
Some operators like the pipelined hash join of [WA91] have no
barriers whatsoever. These operators are in constant symme-
try, since the processing of the two inputs is totally decoupled.

Moments of symmetry allow reordering of the inputs to a
single binary operator. But we can generalize this, by noting
that since joins commute, a tree of �
��� binary joins can be
viewed as a single � -ary join. One could easily implement a
doubly-nested-loops join operator over relations � , � and � ,
and it would have moments of complete symmetry at the end
of each loop of � . At that point, all three inputs could be re-
ordered (say to � then � then � ) with a straightforward exten-
sion to the discussion above: a cursor would be recorded for
each input, and each loop would go from the recorded cursor
position to the end of the input.

The same effect can be obtained in a binary implementa-
tion with two operators, by swapping the positions of binary
operators: effectively the plan tree transformation would go
in steps, from �
������� ��������� � to �
������� ��������� � and
then to � � ����� �!�"���#� � . This approach treats an operator
and its right-hand input as a unit (e.g., the unit $ ��� � �&% ), and
swaps units; the idea has been used previously in static query
optimization schemes [IK84, KBZ86, Hel98]. Viewing the sit-
uation in this manner, we can naturally consider reordering
multiple joins and their inputs, even if the join algorithms are
different. In our query �
����� � �'����� � � , we need $ ��� � �(% and
$ ����� �&% to be mutually commutative, but do not require them
to be the same join algorithm. We discuss the commutativity
of join algorithms further in Section 2.2.2.

Note that the combination of commutativity and moments
of symmetry allows for very aggressive reordering of a plan



tree. A single � -ary operator representing a reorderable plan
tree is therefore an attractive abstraction, since it encapsulates
any ordering that may be subject to change. We will exploit
this abstraction directly, by interposing an � -ary tuple router
(an “eddy”) between the input tables and the join operators.

� �	� � 
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Nested-loops joins can take advantage of indexes on the in-

ner relation, resulting in a fairly efficient pipelining join algo-
rithm. An index nested-loops join (henceforth an “index join”)
is inherently asymmetric, since one input relation has been
pre-indexed. Even when indexes exist on both inputs, chang-
ing the choice of inner and outer relation “on the fly” is prob-
lematic2. Hence for the purposes of reordering, it is simpler
to think of an index join as a kind of unary selection operator
on the unindexed input (as in the join of � and � in Figure 1).
The only distinction between an index join and a selection is
that – with respect to the unindexed relation – the selectivity
of the join node may be greater than 1. Although one cannot
swap the inputs to a single index join, one can reorder an index
join and its indexed relation as a unit among other operators in
a plan tree. Note that the logic for indexes can be applied to
external tables that require bindings to be passed; such tables
may be gateways to, e.g., web pages with forms, GIS index
systems, LDAP servers and so on [HKWY97, FMLS99].

� �	� �	�  ��� ��� ��	 �� ������
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Clearly, a pre-optimizer’s choice of an index join algorithm

constrains the possible join orderings. In the � -ary join view,
an ordering constraint must be imposed so that the unindexed
join input is ordered before (but not necessarily directly be-
fore) the indexed input. This constraint arises because of a
physical property of an input relation: indexes can be probed
but not scanned, and hence cannot appear before their cor-
responding probing tables. Similar but more complex con-
straints can arise in preserving the ordered inputs to a merge
join (i.e., preserving “interesting orders”).

The applicability of certain join algorithms raises additional
constraints. Many join algorithms work only for equijoins, and
will not work on other joins like Cartesian products. Such al-
gorithms constrain reorderings on the plan tree as well, since
they always require all relations mentioned in their equijoin
predicates to be handled before them. In this paper, we con-
sider ordering constraints to be an inviolable aspect of a plan
tree, and we ensure that they always hold. In Section 6 we
sketch initial ideas on relaxing this requirement, by consider-
ing multiple join algorithms and query graph spanning trees.

� �	� �	� � � � � � � ������� � ��� � 	 � � � 
 ��� � 
���� � �
In order for an eddy to be most effective, we favor join algo-

rithms with frequent moments of symmetry, adaptive or non-
existent barriers, and minimal ordering constraints: these al-
gorithms offer the most opportunities for reoptimization. In
[AH99] we summarize the salient properties of a variety of
join algorithms. Our desire to avoid blocking rules out the use
of hybrid hash join, and our desire to minimize ordering con-
straints and barriers excludes merge joins. Nested loops joins
	

In unclustered indexes, the index ordering is not the same as the scan order-
ing. Thus after a reordering of the inputs it is difficult to ensure that – using the
terminology of Section 2.2 – lookups on the index of the new “inner” relation 

produce only tuples between �
� and the end of 
 .

have infrequent moments of symmetry and imbalanced barri-
ers, making them undesirable as well.

The other algorithms we consider are based on frequent-
ly-symmetric versions of traditional iteration, hashing and in-
dexing schemes, i.e., the Ripple Joins [HH99]. Note that the
original pipelined hash join of [WA91] is a constrained ver-
sion of the hash ripple join. The external hashing extensions
of [UF99, IFF � 99] are directly applicable to the hash rip-
ple join, and [HH99] treats index joins as a special case as
well. For non-equijoins, the block ripple join algorithm is ef-
fective, having frequent moments of symmetry, particularly
at the beginning of processing [HH99]. Figure 3 illustrates
block, index and hash ripple joins; the reader is referred to
[HH99, IFF � 99, UF99] for detailed discussions of these al-
gorithms and their variants. These algorithms are adaptive
without sacrificing much performance: [UF99] and [IFF � 99]
demonstrate scalable versions of hash ripple join that perform
competitively with hybrid hash join in the static case; [HH99]
shows that while block ripple join can be less efficient than
nested-loops join, it arrives at moments of symmetry much
more frequently than nested-loops joins, especially in early
stages of processing. In [AH99] we discuss the memory over-
heads of these adaptive algorithms, which can be larger than
standard join algorithms.

Ripple joins have moments of symmetry at each “corner”
of a rectangular ripple in Figure 3, i.e., whenever a prefix of
the input stream � has been joined with all tuples in a prefix
of input stream � and vice versa. For hash ripple joins and in-
dex joins, this scenario occurs between each consecutive tuple
consumed from a scanned input. Thus ripple joins offer very
frequent moments of symmetry.

Ripple joins are attractive with respect to barriers as well.
Ripple joins were designed to allow changing rates for each
input; this was originally used to proactively expend more pro-
cessing on the input relation with more statistical influence on
intermediate results. However, the same mechanism allows re-
active adaptivity in the wide-area scenario: a barrier is reached
at each corner, and the next corner can adaptively reflect the
relative rates of the two inputs. For the block ripple join, the
next corner is chosen upon reaching the previous corner; this
can be done adaptively to reflect the relative rates of the two
inputs over time.

The ripple join family offers attractive adaptivity features
at a modest overhead in performance and memory footprint.
Hence they fit well with our philosophy of sacrificing marginal
speed for adaptability, and we focus on these algorithms in
Telegraph.

� � � � 
���� 	 � ��� � � � 
 �

The above discussion allows us to consider easily reordering
query plans at moments of symmetry. In this section we pro-
ceed to describe the eddy mechanism for implementing re-
ordering in a natural manner during query processing. The
techniques we describe can be used with any operators, but al-
gorithms with frequent moments of symmetry allow for more
frequent reoptimization. Before discussing eddies, we first in-
troduce our basic query processing environment.

� � 
�� � � 
��
We implemented eddies in the context of River [AAT � 99], a
shared-nothing parallel query processing framework that dy-



Figure 3: Tuples generated by block, index, and hash ripple join. In block ripple, all tuples are generated by the join, but some may
be eliminated by the join predicate. The arrows for index and hash ripple join represent the logical portion of the cross-product
space checked so far; these joins only expend work on tuples satisfying the join predicate (black dots). In the hash ripple diagram,
one relation arrives 3 � faster than the other.

namically adapts to fluctuations in performance and workload.
River has been used to robustly produce near-record perfor-
mance on I/O-intensive benchmarks like parallel sorting and
hash joins, despite heterogeneities and dynamic variability in
hardware and workloads across machines in a cluster. For
more details on River’s adaptivity and parallelism features, the
interested reader is referred to the original paper on the topic
[AAT � 99]. In Telegraph, we intend to leverage the adaptabil-
ity of River to allow for dynamic shifting of load (both query
processing and data delivery) in a shared-nothing parallel en-
vironment. But in this paper we restrict ourselves to basic
(single-site) features of eddies; discussions of eddies in par-
allel rivers are deferred to Section 6.

Since we do not discuss parallelism here, a very simple
overview of the River framework suffices. River is a dataflow
query engine, analogous in many ways to Gamma [DGS � 90],
Volcano [Gra90] and commercial parallel database engines,
in which “iterator”-style modules (query operators) commu-
nicate via a fixed dataflow graph (a query plan). Each mod-
ule runs as an independent thread, and the edges in the graph
correspond to finite message queues. When a producer and
consumer run at differing rates, the faster thread may block
on the queue waiting for the slower thread to catch up. As
in [UFA98], River is multi-threaded and can exploit barrier-
free algorithms by reading from various inputs at indepen-
dent rates. The River implementation we used derives from
the work on Now-Sort [AAC � 97], and features efficient I/O
mechanisms including pre-fetching scans, avoidance of oper-
ating system buffering, and high-performance user-level net-
working.

� � 
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Although we will use eddies to reorder tables among joins,

a heuristic pre-optimizer must choose how to initially pair off
relations into joins, with the constraint that each relation par-
ticipates in only one join. This corresponds to choosing a span-
ning tree of a query graph, in which nodes represent relations
and edges represent binary joins [KBZ86]. One reasonable
heuristic for picking a spanning tree forms a chain of cartesian
products across any tables known to be very small (to handle
“star schemas” when base-table cardinality statistics are avail-
able); it then picks arbitrary equijoin edges (on the assumption

that they are relatively low selectivity), followed by as many
arbitrary non-equijoin edges as required to complete a span-
ning tree.

Given a spanning tree of the query graph, the pre-optimizer
needs to choose join algorithms for each edge. Along each
equijoin edge it can use either an index join if an index is avail-
able, or a hash ripple join. Along each non-equijoin edge it can
use a block ripple join.

These are simple heuristics that we use to allow us to focus
on our initial eddy design; in Section 6 we present initial ideas
on making spanning tree and algorithm decisions adaptively.

� �	� � � � � ��� � � � � 
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An eddy is implemented via a module in a river containing
an arbitrary number of input relations, a number of partici-
pating unary and binary modules, and a single output relation
(Figure 1)3. An eddy encapsulates the scheduling of its par-
ticipating operators; tuples entering the eddy can flow through
its operators in a variety of orders.

In essence, an eddy explicitly merges multiple unary and
binary operators into a single � -ary operator within a query
plan, based on the intuition from Section 2.2 that symmetries
can be easily captured in an � -ary operator. An eddy module
maintains a fixed-sized buffer of tuples that are to be processed
by one or more operators. Each operator participating in the
eddy has one or two inputs that are fed tuples by the eddy, and
an output stream that returns tuples to the eddy. Eddies are so
named because of this circular data flow within a river.

A tuple entering an eddy is associated with a tuple descrip-
tor containing a vector of Ready bits and Done bits, which
indicate respectively those operators that are elgibile to pro-
cess the tuple, and those that have already processed the tuple.
The eddy module ships a tuple only to operators for which the
corresponding Ready bit turned on. After processing the tuple,
the operator returns it to the eddy, and the corresponding Done
bit is turned on. If all the Done bits are on, the tuple is sent
to the eddy’s output; otherwise it is sent to another eligible
operator for continued processing.
�

Nothing prevents the use of � -ary operators with ����� in an eddy, but
since implementations of these are atypical in database query processing we do
not discuss them here.



When an eddy receives a tuple from one of its inputs, it ze-
roes the Done bits, and sets the Ready bits appropriately. In
the simple case, the eddy sets all Ready bits on, signifying
that any ordering of the operators is acceptable. When there
are ordering constraints on the operators, the eddy turns on
only the Ready bits corresponding to operators that can be ex-
ecuted initially. When an operator returns a tuple to the eddy,
the eddy turns on the Ready bit of any operator eligible to pro-
cess the tuple. Binary operators generate output tuples that
correspond to combinations of input tuples; in these cases, the
Done bits and Ready bits of the two input tuples are ORed. In
this manner an eddy preserves the ordering constraints while
maximizing opportunities for tuples to follow different possi-
ble orderings of the operators.

Two properties of eddies merit comment. First, note that ed-
dies represent the full class of bushy trees corresponding to the
set of join nodes – it is possible, for instance, that two pairs of
tuples are combined independently by two different join mod-
ules, and then routed to a third join to perform the 4-way con-
catenation of the two binary records. Second, note that eddies
do not constrain reordering to moments of symmetry across
the eddy as a whole. A given operator must carefully refrain
from fetching tuples from certain inputs until its next moment
of symmetry – e.g., a nested-loops join would not fetch a new
tuple from the current outer relation until it finished rescan-
ning the inner. But there is no requirement that all operators in
the eddy be at a moment of symmetry when this occurs; just
the operator that is fetching a new tuple. Thus eddies are quite
flexible both in the shapes of trees they can generate, and in
the scenarios in which they can logically reorder operators.
� � � ����� � � � ����� 
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An eddy module directs the flow of tuples from the inputs
through the various operators to the output, providing the flex-
ibility to allow each tuple to be routed individually through
the operators. The routing policy used in the eddy determines
the efficiency of the system. In this section we study some
promising initial policies; we believe that this is a rich area for
future work. We outline some of the remaining questions in
Section 6.

An eddy’s tuple buffer is implemented as a priority queue
with a flexible prioritization scheme. An operator is always
given the highest-priority tuple in the buffer that has the corre-
sponding Ready bit set. For simplicity, we start by considering
a very simple priority scheme: tuples enter the eddy with low
priority, and when they are returned to the eddy from an oper-
ator they are given high priority. This simple priority scheme
ensures that tuples flow completely through the eddy before
new tuples are consumed from the inputs, ensuring that the
eddy does not become “clogged” with new tuples.
� � 
 � ����
����	��
 � � 	 � � 
 �����
In order to illustrate how eddies work, we present some initial
experiments in this section; we pause briefly here to describe
our experimental setup. All our experiments were run on a
single-processor Sun Ultra-1 workstation running Solaris 2.6,
with 160 MB of RAM. We used the Euphrates implementation
of River [AAT � 99]. We synthetically generated relations as in
Table 1, with 100 byte tuples in each relation.

To allow us to experiment with costs and selectivities of se-
lections, our selection modules are (artificially) implemented

Table Cardinality values in column �
R 10,000 500 - 5500
S 80,000 0 - 5000
T 10,000 N/A
U 50,000 N/A

Table 1: Cardinalities of tables; values are uniformly dis-
tributed.
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Figure 4: Performance of two 50% selections, ��� has cost 5,
� � varies across runs.

as spin loops corresponding to their relative costs, followed
by a randomized selection decision with the appropriate selec-
tivity. We describe the relative costs of selections in terms of
abstract “delay units”; for studying optimization, the absolute
number of cycles through a spin loop are irrelevant. We imple-
mented the simplest version of hash ripple join, identical to the
original pipelining hash join [WA91]; our implementation here
does not exert any statistically-motivated control over disk re-
source consumption (as in [HH99]). We simulated index joins
by doing random I/Os within a file, returning on average the
number of matches corresponding to a pre-programmed selec-
tivity. The filesystem cache was allowed to absorb some of the
index I/Os after warming up. In order to fairly compare eddies
to static plans, we simulate static plans via eddies that enforce
a static ordering on tuples (setting Ready bits in the correct
order).
� �	� � 	�� � 
 � � ����� ��� ��� �	� � � 	 � � ��� 	 � � � ��
��
	 � ��� � ����� �
To illustrate how an eddy works, we consider a very simple
single-table query with two expensive selection predicates, un-
der the traditional assumption that no performance or selec-
tivity properties change during execution. Our SQL query is
simply the following:

SELECT *
FROM U

WHERE � � � � AND ���#� � ;
In our first experiment, we wish to see how well a “naive” eddy
can account for differences in costs among operators. We run
the query multiple times, always setting the cost of ��� to 5
delay units, and the selectivities of both selections to 50%. In
each run we use a different cost for � � , varying it between
1 and 9 delay units across runs. We compare a naive eddy
of the two selections against both possible static orderings of
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Figure 5: Performance of two selections of cost 5, ��� has 50%
selectivity, � � varies across runs.

the two selections (and against a “lottery”-based eddy, about
which we will say more in Section 4.3.) One might imagine
that the flexible routing in the naive eddy would deliver tuples
to the two selections equally: half the tuples would flow to
� � before ��� , and half to ��� before � � , resulting in middling
performance over all. Figure 4 shows that this is not the case:
the naive eddy nearly matches the better of the two orderings in
all cases, without any explicit information about the operators’
relative costs.

The naive eddy’s effectiveness in this scenario is due to
simple fluid dynamics, arising from the different rates of con-
sumption by � � and ��� . Recall that edges in a River dataflow
graph correspond to fixed-size queues. This limitation has the
same effect as back-pressure in a fluid flow: production along
the input to any edge is limited by the rate of consumption at
the output. The lower-cost selection (e.g., � � at the left of Fig-
ure 4) can consume tuples more quickly, since it spends less
time per tuple; as a result the lower-cost operator exerts less
back-pressure on the input table. At the same time, the high-
cost operator produces tuples relatively slowly, so the low-cost
operator will rarely be required to consume a high-priority,
previously-seen tuple. Thus most tuples are routed to the low-
cost operator first, even though the costs are not explicitly ex-
posed or tracked in any way.
� �	� � 	 � � ��� � � ����
 	 � � � � � � 
�� 
 ����� � � ��� 
 �
The naive eddy works well for handling operators with differ-
ent costs but equal selectivity. But we have not yet considered
differences in selectivity. In our second experiment we keep
the costs of the operators constant and equal (5 units), keep
the selectivity of ��� fixed at 50%, and vary the selectivity of
� � across runs. The results in Figure 5 are less encouraging,
showing the naive eddy performing as we originally expected,
about half-way between the best and worst plans. Clearly our
naive priority scheme and the resulting back-pressure are in-
sufficient to capture differences in selectivity.

To resolve this dilemma, we would like our priority scheme
to favor operators based on both their consumption and pro-
duction rate. Note that the consumption (input) rate of an oper-
ator is determined by cost alone, while the production (output)
rate is determined by a product of cost and selectivity. Since
an operator’s back-pressure on its input depends largely on its
consumption rate, it is not surprising that our naive scheme
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Figure 6: Tuple flow with lottery scheme for the variable-
selectivity experiment(Figure 5).

does not capture differing selectivities.
To track both consumption and production over time, we

enhance our priority scheme with a simple learning algorithm
implemented via Lottery Scheduling [WW94]. Each time the
eddy gives a tuple to an operator, it credits the operator one
“ticket”. Each time the operator returns a tuple to the eddy,
one ticket is debited from the eddy’s running count for that op-
erator. When an eddy is ready to send a tuple to be processed,
it “holds a lottery” among the operators eligible for receiving
the tuple. (The interested reader is referred to [WW94] for
a simple and efficient implementation of lottery scheduling.)
An operator’s chance of “winning the lottery” and receiving
the tuple corresponds to the count of tickets for that operator,
which in turn tracks the relative efficiency of the operator at
draining tuples from the system. By routing tuples using this
lottery scheme, the eddy tracks (“learns”) an ordering of the
operators that gives good overall efficiency.

The “lottery” curve in Figures 4 and 5 show the more in-
telligent lottery-based routing scheme compared to the naive
back-pressure scheme and the two static orderings. The lottery
scheme handles both scenarios effectively, slightly improv-
ing the eddy in the changing-cost experiment, and performing
much better than naive in the changing-selectivity experiment.

To explain this a bit further, in Figure 6 we display the per-
cent of tuples that followed the order � � � ��� (as opposed to
����� � � ) in the two eddy schemes; this roughly represents the
average ratio of lottery tickets possessed by � � and � � over
time. Note that the naive back-pressure policy is barely sen-
sitive to changes in selectivity, and in fact drifts slightly in
the wrong direction as the selectivity of � � is increased. By
contrast, the lottery-based scheme adapts quite nicely as the
selectivity is varied.

In both graphs one can see that when the costs and selec-
tivities are close to equal ( � ��� ��� �����	� ), the percent-
age of tuples following the cheaper order is close to 50%.
This observation is intuitive, but quite significant. The lottery-
based eddy approaches the cost of an optimal ordering, but
does not concern itself about strictly observing the optimal or-
dering. Contrast this to earlier work on runtime reoptimiza-
tion [KD98, UFA98, IFF � 99], where a traditional query op-
timizer runs during processing to determine the optimal plan
remnant. By focusing on overall cost rather than on finding



the optimal plan, the lottery scheme probabilistically provides
nearly optimal performance with much less effort, allowing
re-optimization to be done with an extremely lightweight tech-
nique that can be executed multiple times for every tuple.

A related observation is that the lottery algorithm gets closer
to perfect routing ( � � � %) on the right of Figure 6 than it
does ( � � � �	� %) on the left. Yet in the corresponding perfor-
mance graph (Figure 5), the differences between the lottery-
based eddy and the optimal static ordering do not change much
in the two settings. This phenomenon is explained by exam-
ining the “jeopardy” of making ordering errors in either case.
Consider the left side of the graph, where the selectivity of � �
is 10%, ��� is 50%, and the costs of each are � � � delay units.
Let � be the rate at which tuples are routed erroneously (to ���
before � � in this case). Then the expected cost of the query
is � �!� � ��� ��� � �����	� ��� � � �
� � �	��� �
� � � . By contrast, in
the second case where the selectivity of � � is changed to 90%,
the expected cost is � ��� � ��� �
� � ������� �
� � � ��� � ����� ��� � � .
Since the jeopardy is higher at 90% selectivity than at 10%, the
lottery more aggressively favors the optimal ordering at 90%
selectivity than at 10%.
� � � � � � � �
We have discussed selections up to this point for ease of ex-
position, but of course joins are the more common expensive
operator in query processing. In this section we study how
eddies interact with the pipelining ripple join algorithms. For
the moment, we continue to study a static performance envi-
ronment, validating the ability of eddies to do well even in
scenarios where static techniques are most effective.

We begin with a simple 3-table query:
SELECT *

FROM ��� � � �
WHERE � � � � � � �

AND � � � � � � �
In our experiment, we constructed a preoptimized plan with a
hash ripple join between � and � , and an index join between
� and � . Since our data is uniformly distributed, Table 1 in-
dicates that the selectivity of the � � join is �
� � � � ����� ; its
selectivity with respect to � is 180% – i.e., each � tuple enter-
ing the join finds 1.8 matching � tuples on average [Hel98].
We artificially set the selectivity of the index join w.r.t. � to be� �	� (overall selectivity � � � � ��� ). Figure 7 shows the relative
performance of our two eddy schemes and the two static join
orderings. The results echo our results for selections, show-
ing the lottery-based eddy performing nearly optimally, and
the naive eddy performing in between the best and worst static
plans.

As noted in Section 2.2.1, index joins are very analogous to
selections. Hash joins have more complicated and symmetric
behavior, and hence merit additional study. Figure 8 presents
performance of two hash-ripple-only versions of this query.
Our in-memory pipelined hash joins all have the same cost.
We change the data in ��� � and � so that the selectivity of the
� � join w.r.t. � is 20% in one version, and 180% in the other.
In all runs, the selectivity of the � � join predicate w.r.t. � is
fixed at 100%. As the figure shows, the lottery-based eddy
continues to perform nearly optimally.

Figure 9 shows the percent of tuples in the eddy that follow
one order or the other in all four join experiments. While the
eddy is not strict about following the optimal ordering, it is
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Figure 7: Performance of two joins: a selective Index Join and
a Hash Join
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w.r.t. � varies between 20% and 180% in the two runs.

quite close in the case of the experiment where the hash join
should precede the index join. In this case, the relative cost
of index join is so high that the jeopardy of choosing it first
drives the hash join to nearly always win the lottery.
� ��� � 
 � � � � � � � � � � � � � 	 � � � � � � ������	 ��� � � �
Eddies should adaptively react over time to the changes in
performance and data characteristics described in Section 1.1.
The routing schemes described up to this point have not con-
sidered how to achieve this. In particular, our lottery scheme
weighs all experiences equally: observations from the distant
past affect the lottery as much as recent observations. As a re-
sult, an operator that earns many tickets early in a query may
become so wealthy that it will take a great deal of time for it
to lose ground to the top achievers in recent history.

To avoid this, we need to modify our point scheme to for-
get history to some extent. One simple way to do this is to
use a window scheme, in which time is partitioned into win-
dows, and the eddy keeps track of two counts for each op-
erator: a number of banked tickets, and a number of escrow
tickets. Banked tickets are used when running a lottery. Es-
crow tickets are used to measure efficiency during the win-
dow. At the beginning of the window, the value of the es-
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Figure 10: Adapting to changing join costs: performance.

crow account replaces the value of the banked account (i.e.,
banked = escrow), and the escrow account is reset (es-
crow = 0). This scheme ensures that operators “re-prove
themselves” each window.

We consider a scenario of a 3-table equijoin query, where
two of the tables are external and used as “inner” relations
by index joins. Our third relation has 30,000 tuples. Since
we assume that the index servers are remote, we implement
the “cost” in our index module as a time delay (i.e., while
(gettimeofday()

�
x) ;) rather than a spin loop; this

better models the behavior of waiting on an external event like
a network response. We have two phases in the experiment:
initially, one index (call it ����� ) is fast (no time delay) and the
other ( � ��� ) is slow (5 seconds per lookup). After 30 seconds
we begin the second phase, in which the two indexes swap
speeds: the ����� index becomes slow, and ����� becomes fast.
Both indexes return a single matching tuple 1% of the time.

Figure 10 shows the performance of both possible static
plans, compared with an eddy using a lottery with a window
scheme. As we would hope, the eddy is much faster than ei-
ther static plan. In the first static plan ( ����� before ����� ), the
initial index join in the plan is slow in the first phase, process-
ing only 6 tuples and discarding all of them. In the remainder
of the run, the plan quickly discards 99% of the tuples, passing
300 to the (now) expensive second join. In the second static
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Figure 11: Adapting to changing join costs: tuple movement.

plan ( ����� before ����� ), the initial join begins fast, processing
about 29,000 tuples, and passing about 290 of those to the sec-
ond (slower) join. After 30 seconds, the second join becomes
fast and handles the remainder of the 290 tuples quickly, while
the first join slowly processes the remaining 1,000 tuples at 5
seconds per tuple. The eddy outdoes both static plans: in the
first phase it behaves identically to the second static plan, con-
suming 29,000 tuples and queueing 290 for the eddy to pass
to � ��� . Just after phase 2 begins, the eddy adapts its ordering
and passes tuples to ����� – the new fast join – first. As a result,
the eddy spends 30 seconds in phase one, and in phase two
it has less then 290 tuples queued at ����� (now fast), and only
1,000 tuples to process, only about 10 of which are passed to
� ��� (now slow).

A similar, more controlled experiment illustrates the eddy’s
adaptability more clearly. Again, we run a three-table join,
with two external indexes that return a match 10% of the time.
We read 4,000 tuples from the scanned table, and toggle costs
between 1 and 100 cost units every 1000 tuples – i.e., three
times during the experiment. Figure 11 shows that the eddy
adapts correctly, switching orders when the operator costs
switch. Since the cost differential is less dramatic here, the
jeopardy is lower and the eddy takes a bit longer to adapt. De-
spite the learning time, the trends are clear – the eddy sends
most of the first 1000 tuples to index #1 first, which starts off
cheap. It sends most of the second 1000 tuples to index #2
first, causing the overall percentage of tuples to reach about
50%, as reflected by the near-linear drift toward 50% in the
second quarter of the graph. This pattern repeats in the third
and fourth quarters, with the eddy eventually displaying an
even use of the two orderings over time – always favoring the
best ordering.

For brevity, we omit here a similar experiment in which
we fixed costs and modified selectivity over time. The re-
sults were similar, except that changing only the selectivity of
two operators results in less dramatic benefits for an adaptive
scheme. This can be seen analytically, for two operators of
cost � whose selectivites are swapped from low to hi in a man-
ner analogous to our previous experiment. To lower-bound the
performance of either static ordering, selectivities should be
toggled to their extremes (100% and 0%) for equal amounts of
time – so that half the � tuples go through both operators. Ei-
ther static plan thus takes � �
� ��	 � � � time, whereas an optimal
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Figure 13: Adapting to an initial delay on � : tuple movement.

dynamic plan takes � � time, a ratio of only 3/2. With more op-
erators, adaptivity to changes in selectivity can become more
significant, however.
� ��� � 
 � 
�� 	�� 
 � � 
�� � � 
 � �

As a final experiment, we study the case where an input rela-
tion suffers from an initial delay, as in [AFTU96, UFA98]. We
return to the 3-table query shown in the left of Figure 8, with
the � � selectivity at 100%, and the � � selectivity at 20%. We
delay the delivery of � by 10 seconds; the results are shown
in Figure 12. Unfortunately, we see here that our eddy – even
with a lottery and a window-based forgetting scheme – does
not adapt to initial delays of � as well as it could. Figure 13
tells some of the story: in the early part of processing, the
eddy incorrectly favors the � � join, even though no � tuples
are streaming in, and even though the � � join should appear
second in a normal execution (Figure 8). The eddy does this
because it observes that the � � join does not produce any out-
put tuples when given � tuples. So the eddy awards most �
tuples to the � � join initially, which places them in an internal
hash table to be subsequently joined with � tuples when they
arrive. The � � join is left to fetch and hash � tuples. This
wastes resources that could have been spent joining � tuples
with � tuples during the delay, and “primes” the � � join to
produce a large number of tuples once the � s begin appearing.

Note that the eddy does far better than pessimally: when �

begins producing tuples (at 43.5 on the x axis of Figure 13),
the � values bottled up in the � � join burst forth, and the
eddy quickly throttles the � � join, allowing the � � join to
process most tuples first. This scenario indicates two prob-
lems with our implementation. First, our ticket scheme does
not capture the growing selectivity inherent in a join with a
delayed input. Second, storing tuples inside the hash tables of
a single join unnecessarily prevents other joins from process-
ing them; it might be conceivable to hash input tuples within
multiple joins, if care were taken to prevent duplicate results
from being generated. A solution to the second problem might
obviate the need to solve the first; we intend to explore these
issues further in future work.

For brevity, we omit here a variation of this experiment, in
which we delayed the delivery of � by 10 seconds instead of
� . In this case, the delay of � affects both joins identically,
and simply slows down the completion time of all plans by
about 10 seconds.

� � 
�� 	 ��
 ��� �����

To our knowledge, this paper represents the first general query
processing scheme for reordering in-flight operators within a
pipeline, though [NWMN99] considers the special case of
unary operators. Our characterization of barriers and moments
of symmetry also appears to be new, arising as it does from our
interest in reoptimizing general pipelines.

Recent papers consider reoptimizing queries at the ends of
pipelines [UFA98, KD98, IFF � 99], reordering operators only
after temporary results are materialized. [IFF � 99] observantly
notes that this approach dates back to the original INGRES
query decomposition scheme [SWK76]. These inter-pipeline
techniques are not adaptive in the sense used in traditional con-
trol theory (e.g., [Son98]) or machine learning (e.g., [Mit97]);
they make decisions without any ongoing feedback from the
operations they are to optimize, instead performing static op-
timizations at coarse-grained intervals in the query plan. One
can view these efforts as complementary to our work: eddies
can be used to do tuple scheduling within pipelines, and tech-
niques like those of [UFA98, KD98, IFF � 99] can be used to
reoptimize across pipelines. Of course such a marriage sac-
rifices the simplicity of eddies, requiring both the traditional
complexity of cost estimation and plan enumeration along with
the ideas of this paper. There are also significant questions on
how best to combine these techniques – e.g., how many mate-
rialization operators to put in a plan, which operators to put in
which eddy pipelines, etc.

DEC Rdb (subsequently Oracle Rdb) used competition to
choose among different access methods [AZ96]. Rdb briefly
observed the performance of alternative access methods at run-
time, and then fixed a “winner” for the remainder of query
execution. This bears a resemblance to sampling for cost esti-
mation (see [BDF � 97] for a survey). More distantly related is
the work on “parameterized” or “dynamic” query plans, which
postpone some optimization decisions until the beginning of
query execution [INSS97, GC94].

The initial work on Query Scrambling [AFTU96] studied
network unpredictabilities in processing queries over wide-
area sources. This work materialized remote data while pro-
cessing was blocked waiting for other sources, an idea that
can be used in concert with eddies. Note that local material-
ization ameliorates but does not remove barriers: work to be



done locally after a barrier can still be quite significant. Later
work focused on rescheduling runnable sub-plans during ini-
tial delays in delivery [UFA98], but did not attempt to reorder
in-flight operators as we do here.

Two out-of-core versions of the pipelined hash join have
been proposed recently [IFF � 99, UF99]. The X-Join [UF99]
enhances the pipelined hash join not only by handling the out-
of-core case, but also by exploiting delay time to aggressively
match previously-received (and spilled) tuples. We intend to
experiment with X-Joins and eddies in future work.

The Control project [HAC � 99] studies interactive analysis
of massive data sets, using techniques like online aggregation,
online reordering and ripple joins. There is a natural syn-
ergy between interactive and adaptive query processing; online
techniques to pipeline best-effort answers are naturally adap-
tive to changing performance scenarios. The need for opti-
mizing pipelines in the Control project initially motivated our
work on eddies. The Control project [HAC � 99] is not ex-
plicitly related to the field of control theory [Son98], though
eddies appears to link the two in some regards.

The River project [AAT � 99] was another main inspiration
of this work. River allows modules to work as fast as they
can, naturally balancing flow to whichever modules are faster.
We carried the River philosophy into the intial back-pressure
design of eddies, and intend to return to the parallel load-
balancing aspects of the optimization problem in future work.

In addition to commercial projects like those in Section 1.2,
there have been numerous research systems for heterogeneous
data integration, e.g. [GMPQ � 97, HKWY97, IFF � 99], etc.

� � � � ��� ��� � � � � 	 � � ��� ��� � 
 � �����

Query optimization has traditionally been viewed as a coarse-
grained, static problem. Eddies are a query processing mech-
anism that allow fine-grained, adaptive, online optimization.
Eddies are particularly beneficial in the unpredictable query
processing environments prevalent in massive-scale systems,
and in interactive online query processing. They fit naturally
with algorithms from the Ripple Join family, which have fre-
quent moments of symmetry and adaptive or non-existent syn-
chronization barriers. Eddies can be used as the sole optimiza-
tion mechanism in a query processing system, obviating the
need for much of the complex code required in a traditional
query optimizer. Alternatively, eddies can be used in con-
cert with traditional optimizers to improve adaptability within
pipelines. Our initial results indicate that eddies perform well
under a variety of circumstances, though some questions re-
main in improving reaction time and in adaptively choosing
join orders with delayed sources. We are sufficiently encour-
aged by these early results that we are using eddies and rivers
as the basis for query processing in the Telegraph system.

In order to focus our energies in this initial work, we have
explicitly postponed a number of questions in understanding,
tuning, and extending these results. One main challenge is
to develop eddy “ticket” policies that can be formally proved
to converge quickly to a near-optimal execution in static sce-
narios, and that adaptively converge when conditions change.
This challenge is complicated by considering both selections
and joins, including hash joins that “absorb” tuples into their
hash tables as in Section 4.5.1. We intend to focus on multiple
performance metrics, including time to completion, the rate

of output from a plan, and the rate of refinement for online ag-
gregation estimators. We have also begun studying schemes to
allow eddies to effectively order dependent predicates, based
on reinforcement learning [SB98]. In a related vein, we would
like to automatically tune the aggressiveness with which we
forget past observations, so that we avoid introducing a tun-
ing knob to adjust window-length or some analogous constant
(e.g., a hysteresis factor).

Another main goal is to attack the remaining static aspects
of our scheme: the “pre-optimization” choices of spanning
tree, join algorithms, and access methods. Following [AZ96],
we believe that competition is key here: one can run multi-
ple redundant joins, join algorithms, and access methods, and
track their behavior in an eddy, adaptively choosing among
them over time. The implementation challenge in that sce-
nario relates to preventing duplicates from being generated,
while the efficiency challenge comes in not wasting too many
computing resources on unpromising alternatives.

A third major challenge is to harness the parallelism and
adaptivity available to us in rivers. Massively parallel systems
are reaching their limit of manageability, even as data sizes
continue to grow very quickly. Adaptive techniques like ed-
dies and rivers can significantly aid in the manageability of a
new generation of massively parallel query processors. Rivers
have been shown to adapt gracefully to performance changes
in large clusters, spreading query processing load across nodes
and spreading data delivery across data sources. Eddies face
additional challenges to meet the promise of rivers: in particu-
lar, reoptimizing queries with intra-operator parallelism entails
repartitioning data, which adds an expense to reordering that
was not present in our single-site eddies. An additional com-
plication arises when trying to adaptively adjust the degree of
partitioning for each operator in a plan. On a similar note, we
would like to explore enhancing eddies and rivers to tolerate
failures of sources or of participants in parallel execution.

Finally, we are exploring the application of eddies and rivers
to the generic space of dataflow programming, including appli-
cations such as multimedia analysis and transcoding, and the
composition of scalable, reliable internet services [GWBC99].
Our intent is for rivers to serve as a generic parallel dataflow
engine, and for eddies to be the main scheduling mechanism
in that environment.
� � � � � ��� 
 � ����
 � � �

Vijayshankar Raman provided much assistance in the course
of this work. Remzi Arpaci-Dusseau, Eric Anderson and Noah
Treuhaft implemented Euphrates, and helped implement ed-
dies. Mike Franklin asked hard questions and suggested direc-
tions for future work. Stuart Russell, Christos Papadimitriou,
Alistair Sinclair, Kris Hildrum and Lakshminarayanan Subra-
manian all helped us focus on formal issues. Thanks to Navin
Kabra and Mitch Cherniack for initial discussions on run-time
reoptimization, and to the database group at Berkeley for feed-
back. Stuart Russell suggested the term “eddy”.

This work was done while both authors were at UC Berke-
ley, supported by a grant from IBM Corporation, NSF grant
IIS-9802051, and a Sloan Foundation Fellowship. Computing
and network resources for this research were provided through
NSF RI grant CDA-9401156.



� 
 � 
�� 
 � � 
 �
[AAC

�

97] A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, D. E. Culler, J. M.
Hellerstein, and D. A. Patterson. High-Performance Sorting on
Networks of Workstations. In Proc. ACM-SIGMOD Interna-
tional Conference on Management of Data, Tucson, May 1997.

[AAT
�

99] R. H. Arpaci-Dusseau, E. Anderson, N. Treuhaft, D. E. Culler,
J. M. Hellerstein, D. A. Patterson, and K. Yelick. Cluster I/O
with River: Making the Fast Case Common. In Sixth Workshop
on I/O in Parallel and Distributed Systems (IOPADS ’99), pages
10–22, Atlanta, May 1999.

[AFTU96] L. Amsaleg, M. J. Franklin, A. Tomasic, and T. Urhan. Scram-
bling Query Plans to Cope With Unexpected Delays. In 4th In-
ternational Conference on Parallel and Distributed Information
Systems (PDIS), Miami Beach, December 1996.

[AH99] R. Avnur and J. M. Hellerstein. Continuous query optimization.
Technical Report CSD-99-1078, University of California, Berke-
ley, November 1999.

[Aok99] P. M. Aoki. How to Avoid Building DataBlades That Know the
Value of Everything and the Cost of Nothing. In 11th Interna-
tional Conference on Scientific and Statistical Database Man-
agement, Cleveland, July 1999.

[AZ96] G. Antoshenkov and M. Ziauddin. Query Processing and Opti-
mization in Oracle Rdb. VLDB Journal, 5(4):229–237, 1996.

[Bar99] R. Barnes. Scale Out. In High Performance Transaction Pro-
cessing Workshop (HPTS ’99), Asilomar, September 1999.

[BDF
�

97] D. Barbara, W. DuMouchel, C. Faloutsos, P. J. Haas, J. M.
Hellerstein, Y. E. Ioannidis, H. V. Jagadish, T. Johnson, R. T.
Ng, V. Poosala, K. A. Ross, and K. C. Sevcik. The New Jersey
Data Reduction Report. IEEE Data Engineering Bulletin, 20(4),
December 1997.

[BO99] J. Boulos and K. Ono. Cost Estimation of User-Defined Meth-
ods in Object-Relational Database Systems. SIGMOD Record,
28(3):22–28, September 1999.

[DGS
�

90] D. J. DeWitt, S. Ghandeharizadeh, D. Schneider, A. Bricker,
H.-I Hsiao, and R. Rasmussen. The Gamma database machine
project. IEEE Transactions on Knowledge and Data Engineer-
ing, 2(1):44–62, Mar 1990.

[DKO
�

84] D. J. DeWitt, R. H. Katz, F. Olken, L. D. Shapiro, M. R. Stone-
braker, and D. Wood. Implementation Techniques for Main
Memory Database Systems. In Proc. ACM-SIGMOD Interna-
tional Conference on Management of Data, pages 1–8, Boston,
June 1984.

[FMLS99] D. Florescu, I. Manolescu, A. Levy, and D. Suciu. Query
Optimization in the Presence of Limited Access Patterns. In
Proc. ACM-SIGMOD International Conference on Management
of Data, Phildelphia, June 1999.

[GC94] G. Graefe and R. Cole. Optimization of Dynamic Query Evalua-
tion Plans. In Proc. ACM-SIGMOD International Conference on
Management of Data, Minneapolis, 1994.

[GMPQ
�

97] H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A Rajaraman,
Y. Sagiv, J. Ullman, and J. Widom. The TSIMMIS Project: Inte-
gration of Heterogeneous Information Sources. Journal of Intel-
ligent Information Systems, 8(2):117–132, March 1997.

[Gra90] G. Graefe. Encapsulation of Parallelism in the Volcano Query
Processing System. In Proc. ACM-SIGMOD International Con-
ference on Management of Data, pages 102–111, Atlantic City,
May 1990.

[GWBC99] S. D. Gribble, M. Welsh, E. A. Brewer, and D. Culler. The Multi-
Space: an Evolutionary Platform for Infrastructural Services. In
Proceedings of the 1999 Usenix Annual Technical Conference,
Monterey, June 1999.

[HAC
�

99] J. M. Hellerstein, R. Avnur, A. Chou, C. Hidber, C. Olston,
V. Raman, T. Roth, and P. J. Haas. Interactive Data Analysis: The
Control Project. IEEE Computer, 32(8):51–59, August 1999.

[Hel98] J. M. Hellerstein. Optimization Techniques for Queries with
Expensive Methods. ACM Transactions on Database Systems,
23(2):113–157, 1998.

[HH99] P. J. Haas and J. M. Hellerstein. Ripple Joins for Online Ag-
gregation. In Proc. ACM-SIGMOD International Conference on
Management of Data, pages 287–298, Philadelphia, 1999.

[HKWY97] L. Haas, D. Kossmann, E. Wimmers, and J. Yang. Optimizing
Queries Across Diverse Data Sources. In Proc. 23rd Interna-
tional Conference on Very Large Data Bases (VLDB), Athens,
1997.

[HSC99] J. M. Hellerstein, M. Stonebraker, and R. Caccia. Open, Inde-
pendent Enterprise Data Integration. IEEE Data Engineering
Bulletin, 22(1), March 1999. http://www.cohera.com.

[IFF
�

99] Z. G. Ives, D. Florescu, M. Friedman, A. Levy, and D. S. Weld.
An Adaptive Query Execution System for Data Integration. In
Proc. ACM-SIGMOD International Conference on Management
of Data, Philadelphia, 1999.

[IK84] T. Ibaraki and T. Kameda. Optimal Nesting for Computing
N-relational Joins. ACM Transactions on Database Systems,
9(3):482–502, October 1984.

[INSS97] Y. E. Ioannidis, R. T. Ng, K. Shim, and T. K. Sellis. Parametric
Query Optimization. VLDB Journal, 6(2):132–151, 1997.

[KBZ86] R. Krishnamurthy, H. Boral, and C. Zaniolo. Optimization of
Nonrecursive Queries. In Proc. 12th International Conference
on Very Large Databases (VLDB), pages 128–137, August 1986.

[KD98] N. Kabra and D. J. DeWitt. Efficient Mid-Query Reoptimization
of Sub-Optimal Query Execution Plans. In Proc. ACM-SIGMOD
International Conference on Management of Data, pages 106–
117, Seattle, 1998.

[Met97] R. Van Meter. Observing the Effects of Multi-Zone Disks. In
Proceedings of the Usenix 1997 Technical Conference, Anaheim,
January 1997.

[Mit97] T. Mitchell. Machine Learning. McGraw Hill, 1997.

[NWMN99] K. W. Ng, Z. Wang, R. R. Muntz, and S. Nittel. Dynamic Query
Re-Optimization. In 11th International Conference on Scientific
and Statistical Database Management, Cleveland, July 1999.

[RPK
�

99] B. Reinwald, H. Pirahesh, G. Krishnamoorthy, G. Lapis, B. Tran,
and S. Vora. Heterogeneous Query Processing Through SQL Ta-
ble Functions. In 15th International Conference on Data Engi-
neering, pages 366–373, Sydney, March 1999.

[RRH99] V. Raman, B. Raman, and J. M. Hellerstein. Online Dynamic
Reordering for Interactive Data Processing. In Proc. 25th Inter-
national Conference on Very Large Data Bases (VLDB), pages
709–720, Edinburgh, 1999.

[SB98] R. S. Sutton and A. G. Bartow. Reinforcement Learning. MIT
Press, Cambridge, MA, 1998.

[SBH98] M. Stonebraker, P. Brown, and M. Herbach. Interoperability,
Distributed Applications, and Distributed Databases: The Virtual
Table Interface. IEEE Data Engineering Bulletin, 21(3):25–34,
September 1998.

[Son98] E. D. Sontag. Mathematical Control Theory: Deterministic
Finite-Dimensional Systems, Second Edition. Number 6 in Texts
in Applied Mathematics. Springer-Verlag, New York, 1998.

[SWK76] M. R. Stonebraker, E. Wong, and P. Kreps. The Design and Im-
plementation of INGRES. ACM Transactions on Database Sys-
tems, 1(3):189–222, September 1976.

[UF99] T. Urhan and M. Franklin. XJoin: Getting Fast Answers From
Slow and Bursty Networks. Technical Report CS-TR-3994, Uni-
versity of Maryland, February 1999.

[UFA98] T. Urhan, M. Franklin, and L. Amsaleg. Cost-Based Query
Scrambling for Initial Delays. In Proc. ACM-SIGMOD Interna-
tional Conference on Management of Data, Seattle, June 1998.

[WA91] A. N. Wilschut and P. M. G. Apers. Dataflow Query Execution
in a Parallel Main-Memory Environment. In Proc. First Interna-
tional Conference on Parallel and Distributed Info. Sys. (PDIS),
pages 68–77, 1991.

[WW94] C. A. Waldspurger and W. E. Weihl. Lottery scheduling: Flex-
ible proportional-share resource management. In Proc. of the
First Symposium on Operating Systems Design and Implemen-
tation (OSDI ’94), pages 1–11, Monterey, CA, November 1994.
USENIX Assoc.


