
-1-

The Log-Structured Merge-Tree (LSM-Tree)

Patrick O'Neil1, Edward Cheng2

Dieter Gawlick3, Elizabeth O'Neil1
To be published: Acta Informatica

ABSTRACT. High-performance transaction system applications typically insert rows in a
History table to provide an activity trace; at the same time the transaction system generates log
records for purposes of system recovery. Both types of generated information can benefit from
efficient indexing. An example in a well-known setting is the TPC-A benchmark application,
modified to support efficient queries on the History for account activity for specific accounts.
This requires an index by account-id on the fast-growing History table. Unfortunately, stan-
dard disk-based index structures such as the B-tree will effectively double the I/O cost of the
transaction to maintain an index such as this in real time, increasing the total system cost up to
fifty percent. Clearly a method for maintaining a real-time index at low cost is desirable. The
Log-Structured Merge-tree (LSM-tree) is a disk-based data structure designed to provide
low-cost indexing for a file experiencing a high rate of record inserts (and deletes) over an
extended period. The LSM-tree uses an algorithm that defers and batches index changes, cas-
cading the changes from a memory-based component through one or more disk components in an
efficient manner reminiscent of merge sort. During this process all index values are contin-
uously accessible to retrievals (aside from very short locking periods), either through the
memory component or one of the disk components. The algorithm has greatly reduced disk arm
movements compared to a traditional access methods such as B-trees, and will improve cost-
performance in domains where disk arm costs for inserts with traditional access methods
overwhelm storage media costs. The LSM-tree approach also generalizes to operations other
than insert and delete. However, indexed finds requiring immediate response will lose I/O ef-
ficiency in some cases, so the LSM-tree is most useful in applications where index inserts are
more common than finds that retrieve the entries. This seems to be a common property for
History tables and log files, for example. The conclusions of Section 6 compare the hybrid use
of memory and disk components in the LSM-tree access method with the commonly understood
advantage of the hybrid method to buffer disk pages in memory.

1. Introduction

As long-lived transactions in activity flow management systems become commercially available
([10], [11], [12], [20], [24], [27]), there will be increased need to provide indexed access
to transactional log records. Traditionally, transactional logging has focused on aborts and re-
covery, and has required the system to refer back to a relatively short-term history in normal
processing with occasional transaction rollback, while recovery was performed using batched
sequential reads. However, as systems take on responsibility for more complex activities, the
duration and number of events that make up a single long-lived activity will increase to a point
where there is sometimes a need to review past transactional steps in real time to remind users
of what has been accomplished. At the same time, the total number of active events known to a
system will increase to the point where memory-resident data structures now used to keep
track of active logs are no longer feasible, notwithstanding the continuing decrease in memory
cost to be expected. The need to answer queries about a vast number of past activity logs implies
that indexed log access will become more and more important.

1Dept. of Math & C.S, UMass/Boston, Boston, MA 02125-3393, {poneil | eoneil}@cs.umb.edu
2Digital Equipment Corporation, Palo Alto, CA 94301, edwardc@pa.dec.com
3Oracle Corporation, Redwood Shores, CA, dgawlick@us.oracle.com

-2-

Even with current transactional systems there is clear value in providing indexing to support
queries on history tables with high insert volume. Networking, electronic mail, and other
nearly-transactional systems produce huge logs often to the detriment of their host systems. To
start from a concrete and well-known example, we explore a modified TPC-A benchmark in the
following Examples 1.1 and 1.2. Note that examples presented in this paper deal with specific
numeric parametric values for ease of presentation; it is a simple task to generalize these
results. Note too that although both history tables and logs involve time-series data, the index
entries of the LSM-Tree are not assumed to have indentical temporal key order. The only as-
sumption for improved efficiency is high update rates compared to retrieval rates.

The Five Minute Rule

The following two examples both depend on the Five Minute Rule [13]. This basic result states
that we can reduce system costs by purchasing memory buffer space to keep pages in memory,
thus avoiding disk I/O, when page reference frequency exceeds about once every 60 seconds. The
time period of 60 seconds is approximate, a ratio between the amortized cost for a disk arm
providing one I/O per second and memory cost to buffer a disk page of 4 KBytes amortized over
one second. In terms of the notation of section 3, the ratio is COSTP/COSTm divided by the page
size in Mbytes. Here we are simply trading off disk accesses for memory buffers while the
tradeoff gives economic gain. Note that the 60 second time period is expected to grow over the
years as memory prices come down faster than disk arms. The reason it is smaller now in 1995
than when defined in 1987 when it was five minutes, is partly technical (different buffering
assumptions) and partly due to the intervening introduction of extremely inexpensive mass-
produced disks.

Example 1.1. Consider the multi-user application envisioned by the TPC-A benchmark [26]
running 1000 transactions per second (this rate can be scaled, but we will consider only 1000
TPS in what follows). Each transaction updates a column value, withdrawing an amount Delta
from a Balance column, in a randomly chosen row containing 100 bytes, from each of three
tables: the Branch table, with 1000 rows, the Teller table with 10,000 rows, and the Account
table, with 100,000,000 rows; the transaction then writes a 50 byte row to a History table
before committing, with columns: Account-ID, Branch-ID, Teller-ID, Delta, and Timestamp.

Accepted calculations projecting disk and memory costs shows that Account table pages will not
be memory resident for a number of years to come (see reference [6]), while the Branch and
Teller tables should be entirely memory resident now. Under the assumptions given, repeated
references to the same disk page of the Accounts table will be about 2,500 seconds apart, well
below the frequency needed to justify buffer residence by the Five Minute rule. Now each
transaction requires about two disk I/Os, one to read in the desired Account record (we treat the
rare case where the page accessed is already in buffer as insignificant), and one to write out a
prior dirty Account page to make space in buffers for a read (necessary for steady-state be-
havior). Thus 1000 TPS will correspond to about 2000 I/Os per second. This requires 80 disk
arms (actuators) at the nominal rate of 25 I/Os per disk-arm-second assumed in [13]. In the
8 years since then (1987 to 1995) the rate has climbed by less than 10%/year so that the
nominal rate is now about 40 I/Os per second, or 50 disk arms for 2000 I/Os per second. The
cost of disk for the TPC application was calculated to be about half the total cost of the system in
[6], although it is somewhat less on IBM mainframe systems. However, the cost for supporting
I/O is clearly a growing component of the total system cost as the cost of both memory and CPU
drop faster than disk.�

Example 1.2. Now we consider an index on the high insert volume History table, and
demonstrate that such an index essentially doubles the disk cost for the TPC application. An

-3-

index on "Account-ID concatenated with Timestamp" (Acct-ID||Timestamp) for the History
table is crucial to support efficient queries on recent account activity such as:

(1 . 1) Select * from History
where History.Acct-ID = %custacctid
and History.Timestamp > %custdatetime;

If an Acct-ID||Timestamp index is not present, such a query requires a direct search of all rows
of the History table, and thus becomes impractical. An index on Acct-ID alone provides most of
the benefit, but cost considerations that follow don't change if the Timestamp is left out, so we
assume here the more useful concatenated index. What resources are required to maintain such
a secondary B-tree index in real time? We see that the entries in the B-tree are generated
1000 per second, and assuming a 20 day period of accumulation, with eight hour days and 16
byte index entries, this implies 576,000,000 entries on 9.2 GBytes of disk, or about 2.3
million pages needed on the index leaf level, even if there is no wasted space. Since transac-
tional Acct-ID values are randomly chosen, each transaction will require at least one page read
from this index, and in the steady state a page write as well. By the Five Minute Rule these
index pages will not be buffer resident (disk page reads about 2300 seconds apart), so all I/Os
are to disk. This addition of 2000 I/Os per second to the 2000 I/Os already needed for updating
the Account table, requires a purchase of an additional 50 disk arms, doubling our disk require-
ments. The figure optimistically assumes that deletes needed to keep the log file index only 20
days in length can be performed as a batch job during slack use times. �

We have considered a B-tree for the Acct-ID||Timestamp index on the History file because it is
the most common disk-based access method used in commercial systems, and in fact no classical
disk indexing structure consistently gives superior I/O cost/performance. We will discuss the
considerations that lead us to this conclusion in Section 5.

The LSM-tree access method presented in this paper enables us to perform the frequent index
inserts for the Account-ID||Timestamp index with much less disk arm use, therefore at an
order of magnitude lower cost. The LSM-tree uses an algorithm that defers and batches index
changes, migrating the changes out to disk in a particularly efficient way reminiscent of merge
sort. As we shall see in Section 5, the function of deferring index entry placement to an ulti-
mate disk position is of fundamental importance, and in the general LSM-tree case there is a
cascaded series of such deferred placements. The LSM-tree structure also supports other op-
erations of indexing such as deletes, updates, and even long latency find operations with the same
deferred efficiency. Only finds that require immediate response remain relatively costly. A
major area of effective use for the LSM-tree is in applications such as Example 1.2 where re-
trieval is much less frequent than insert (most people don't ask for recent account activity
nearly as often as they write a check or make a deposit). In such a situation, reducing the cost
of index inserts is of paramount importance; at the same time, find access is frequent enough
that an index of some kind must be maintained, because a sequential search through all the
records is out of the question.

Here is the plan of the paper. In Section 2, we introduce the two-component LSM-tree algo-
rithm. In Section 3, we analyze the performance of the LSM-tree, and motivate the multi-
component LSM-tree. In Section 4 we sketch the concepts of concurrency and recovery for the
LSM-tree. In Section 5 we consider competing access methods and their performance for ap-
plications of interest. Section 6 contains conclusions, where we evaluate some implications of
the LSM-tree, and provide a number of suggestions for extensions.

-4-

2. The Two Component LSM-Tree Algorithm

An LSM-tree is composed of two or more tree-like component data structures. We deal in this
Section with the simple two component case and assume in what follows that LSM-tree is in-
dexing rows in a History table as in Example 1.2. See Figure 2.1, below.

A two component LSM-tree has a smaller component which is entirely memory resident, known
as the C0 tree (or C0 component), and a larger component which is resident on disk, known as
the C1 tree (or C1 component). Although the C1 component is disk resident, frequently refer-
enced page nodes in C1 will remain in memory buffers as usual (buffers not shown), so that
popular high level directory nodes of C1 can be counted on to be memory resident.

 C1 tree C0 tree

Disk Memory
Figure 2.1. Schematic picture of an LSM-tree of two components

As each new History row is generated, a log record to recover this insert is first written to the
sequential log file in the usual way. The index entry for the History row is then inserted into
the memory resident C0 tree, after which it will in time migrate out to the C1 tree on disk; any
search for an index entry will look first in C0 and then in C1. There is a certain amount of la-
tency (delay) before entries in the C0 tree migrate out to the disk resident C1 tree, implying a
need for recovery of index entries that don't get out to disk prior to a crash. Recovery is dis-
cussed in Section 4, but for now we simply note that the log records that allow us to recover new
inserts of History rows can be treated as logical logs; during recovery we can reconstruct the
History rows that have been inserted and simultaneously recreate any needed entries to index
these rows to recapture the lost content of C0.

The operation of inserting an index entry into the memory resident C0 tree has no I/O cost.
However, the cost of memory capacity to house the C0 component is high compared to disk, and
this imposes a limit on its size. We need an efficient way to migrate entries out to the C1 tree
that resides on the lower cost disk medium. To achieve this, whenever the C0 tree as a result of
an insert reaches a threshold size near the maximum allotted, an ongoing rolling merge process
serves to delete some contiguous segment of entries from the C0 tree and merge it into the C1
tree on disk. Figure 2.2 depicts a conceptual picture of the rolling merge process.

The C1 tree has a comparable directory structure to a B-tree, but is optimized for sequential
disk access, with nodes 100% full, and sequences of single-page nodes on each level below the
root packed together in contiguous multi-page disk blocks for efficient arm use; this opti-
mization was also used in the SB-tree [21]. Multi-page block I/O is used during the rolling
merge and for long range retrievals, while single-page nodes are used for matching indexed
finds to minimize buffering requirements. Multi-page block sizes of 256 KBytes are envi-
sioned to contain nodes below the root; the root node is always a single page by definition.

The rolling merge acts in a series of merge steps. A read of a multi-page block containing leaf
nodes of the C1 tree makes a range of entries in C1 buffer resident. Each merge step then reads a
disk page sized leaf node of the C1 tree buffered in this block, merges entries from the leaf node

-5-

with entries taken from the leaf level of the C0 tree, thus decreasing the size of C0, and creates a
newly merged leaf node of the C1 tree.

The buffered multi-page block containing old C1 tree nodes prior to merge is called the emp-
tying block, and new leaf nodes are written to a different buffered multi-page block called the
filling block. When this filling block has been packed full with newly merged leaf nodes of C1,
the block is written to a new free area on disk. The new multi-page block containing merged
results is pictured in Figure 2.2 as lying on the right of the former nodes. Subsequent merge
steps bring together increasing index value segments of the C0 and C1 components until the
maximum values are reached and the rolling merge starts again from the smallest values.

 C1 tree C0 tree

Disk Memory

Figure 2.2. Conceptual picture of rolling merge steps, with result written back to disk

Newly merged blocks are written to new disk positions, so that the old blocks will not be over-
written and will be available for recovery in case of a crash. The parent directory nodes in C1,
also buffered in memory, are updated to reflect this new leaf structure, but usually remain in
buffer for longer periods to minimize I/O; the old leaf nodes from the C1 component are in-
validated after the merge step is complete and are then deleted from the C1 directory. In gen-
eral, there will be leftover leaf-level entries for the merged C1 component following each
merge step, since a merge step is unlikely to result in a new node just as the old leaf node
empties. The same consideration holds for multi-page blocks, since in general when the filling
block has filled with newly merged nodes, there will be numerous nodes containing entries still
in the shrinking block. These leftover entries, as well as updated directory node information,
remain in block memory buffers for a time without being written to disk. Techniques to provide
concurrency during the merge step and recovery from lost memory during a crash are covered
in detail in Section 4. To reduce reconstruction time in recovery, checkpoints of the merge
process are taken periodically, forcing all buffered information to disk.

-6-

2.1 How a Two Component LSM-tree Grows

To trace the metamorphosis of an LSM-tree from the beginning of its growth, let us begin with a
first insertion to the C0 tree component in memory. Unlike the C1 tree, the C0 tree is not ex-
pected to have a B-tree-like structure. For one thing, the nodes could be any size: there is no
need to insist on disk page size nodes since the C0 tree never sits on disk, and so we need not
sacrifice CPU efficiency to minimize depth. Thus a (2-3) tree or AVL-tree (as explained, for
example, in [1]) are possible alternative structures for a C0 tree. When the growing C0 tree
first reaches its threshold size, a leftmost sequence of entries is deleted from the C0 tree (this
should be done in an efficient batch manner rather than one entry at a time) and reorganized
into a C1 tree leaf node packed 100% full. Successive leaf nodes are placed left-to-right in the
initial pages of a buffer resident multi-page block until the block is full; then this block is
written out to disk to become the first part of the C1 tree disk-resident leaf level. A directory
node structure for the C1 tree is created in memory buffers as successive leaf nodes are added,
with details explained below.

Successive multi-page blocks of the C1 tree leaf level in ever increasing key-sequence order
are written out to disk to keep the C0 tree threshold size from exceeding its threshold. Upper
level C1 tree directory nodes are maintained in separate multi-page block buffers, or else in
single page buffers, whichever makes more sense from a standpoint of total memory and disk
arm cost; entries in these directory nodes contain separators that channel access to individual
single-page nodes below, as in a B-tree. The intention is to provide efficient exact-match ac-
cess along a path of single page index nodes down to the leaf level, avoiding multi-page block
reads in such a case to minimize memory buffer requirements. Thus we read and write multi-
page blocks for the rolling merge or for long range retrievals, and single-page nodes for indexed
find (exact-match) access. A somewhat different architecture that supports such a dichotomy is
presented in [21]. Partially full multi-page blocks of C1 directory nodes are usually allowed to
remain in buffer while a sequence of leaf node blocks are written out. C1 directory nodes are
forced to new positions on disk when:

o A multi-page block buffer containing directory nodes becomes full
o The root node splits, increasing the depth of the C1 tree (to a depth greater than two)
o A checkpoint is performed

In the first case, the single multi-page block which has filled is written out to disk. In the
latter two cases, all multi-page block buffers and directory node buffers are flushed to disk.

After the rightmost leaf entry of the C0 tree is written out to the C1 tree for the first time, the
process starts over on the left end of the two trees, except that now and with successive passes
multi-page leaf-level blocks of the C1 tree must be read into buffer and merged with the entries
in the C0 tree, thus creating new multi-page leaf blocks of C1 to be written to disk.

Once the merge starts, the situation is more complex. We picture the rolling merge process in a
two component LSM-tree as having a conceptual cursor which slowly circulates in quantized
steps through equal key values of the C0 tree and C1 tree components, drawing indexing data out
from the C0 tree to the C1 tree on disk. The rolling merge cursor has a position at the leaf level
of the C1 tree and within each higher directory level as well. At each level, all currently
merging multi-page blocks of the C1 tree will in general be split into two blocks: the "empty-
ing" block whose entries have been depleted but which retains information not yet reached by
the merge cursor, and the "filling" block which reflects the result of the merge up to this
moment. There will be an analogous "filling node" and "emptying node" defining the cursor
which will certainly be buffer resident. For concurrent access purposes, both the emptying

-7-

block and the filling block on each level contain an integral number of page-sized nodes of the C1
tree, which simply happen to be buffer resident. (During the merge step that restructures
individual nodes, other types of concurrent access to the entries on those nodes are blocked.)
Whenever a complete flush of all buffered nodes to disk is required, all buffered information at
each level must be written to new positions on disk (with positions reflected in superior di-
rectory information, and a sequential log entry for recovery purposes). At a later point, when
the filling block in buffer on some level of the C1 tree fills and must be flushed again, it goes to
a new position. Old information that might still be needed during recovery is never overwritten
on disk, only invalidated as new writes succeed with more up-to-date information. A somewhat
more detailed explanation of the rolling merge process is presented in Section 4, where con-
currency and recovery designs are considered.

It is an important efficiency consideration of the LSM-tree that when the rolling merge process
on a particular level of the C1 tree passes through nodes at a relatively high rate, all reads and
writes are in multi-page blocks. By eliminating seek time and rotational latency, we expect to
gain a large advantage over random page I/O involved in normal B-tree entry insertion. (This
advantage is analyzed below, in Section 3.2.) The idea of always writing multi-page blocks to
new locations was inspired by the Log-Structured File System devised by Rosenblum and
Ousterhout [23], from which the Log-Structured Merge-tree takes its name. Note that the
continuous use of new disk space for fresh multi-page block writes implies that the area of disk
being written will wrap, and old discarded blocks must be reused. This bookkeeping can be done
in a memory table; old multi-page blocks are invalidated and reused as single units, and re-
covery is guaranteed by the checkpoint. In the Log-Structured File System, the reuse of old
blocks involves significant I/O because blocks are typically only partially freed up, so reuse
requires a block read and block write. In the LSM-Tree, blocks are totally freed up on the
trailing edge of the rolling merge, so no extra I/O is involved.

2.2 Finds in the LSM-tree Index

When an exact-match find or range find requiring immediate response is performed through the
LSM-tree index, first the C0 tree and then the C1 tree is searched for the value or values de-
sired. This may imply a slight CPU overhead compared to the B-tree case, since two directories
may need to be searched. In LSM-trees with more than two components, there may also be an
I/O overhead. To anticipate Chapter 3 somewhat, we define a multi component LSM-tree as
having components C0, C1, C2, . . ., CK-1 and CK, indexed tree structures of increasing size,
where C0 is memory resident and all other components are disk resident. There are asyn-
chronous rolling merge processes in train between all component pairs (Ci-1, Ci) that move
entries out from the smaller to the larger component each time the smaller component, Ci-1,
exceeds its threshold size. As a rule, in order to guarantee that all entries in the LSM-tree have
been examined, it is necessary for an exact-match find or range find to access each component Ci
through its index structure. However, there are a number of possible optimizations where this
search can be limited to an initial subset of the components.

First, where unique index values are guaranteed by the logic of generation, as when time-
stamps are guaranteed to be distinct, a matching indexed find is complete if it locates the desired
value in an early Ci component. As another example, we could limit our search when the find
criterion uses recent timestamp values so that the entries sought could not yet have migrated
out to the largest components. As the merge cursor circulates through the (Ci, Ci+1) pairs, we
will often have reason to retain entries in Ci that have been inserted in the recent past (in the
last τ i seconds), allowing only the older entries to go out to Ci+1. In cases where the most
frequent find references are to recently inserted values, many finds can be completed in the C0
tree, and so the C0 tree fulfills a valuable memory buffering function. This point was made also

-8-

in [23], and represents an important efficiency consideration. For example, indexes to short-
term transaction UNDO logs accessed in the event of an abort will have a large proportion of
accesses in a relatively short time-span after creation, and we can expect most of these indexes
to remain memory resident. By keeping track of the start-time for each transaction we can
guarantee that all logs for a transaction started in the last τ0 seconds, for example, will be
found in component C0, without recourse to disk components.

2.3 Deletes, Updates and Long-Latency Finds in the LSM-tree

We note that deletes can share with inserts the valuable properties of deferral and batching.
When an indexed row is deleted, if a key value entry is not found in the appropriate position in
the C0 tree, a delete node entry can be placed in that position, also indexed by the key value, but
noting an entry Row ID (RID) to delete. The actual delete can be done at a later time during the
rolling merge process, when the actual index entry is encountered: we say the delete node entry
migrates out to larger components during merge and annihilates the associated entry when it is
encountered. In the meantime, find requests must be filtered through delete node entries so as to
avoid returning references to deleted records. This filtering is easily performed during the
search for the relevant keyvalue, since the delete node entry will be located in the appropriate
keyvalue position of an earlier component than the entry itself, and in many cases this filter
will reduce the overhead of determining an entry is deleted. Updates of records that cause
changes to indexed values are unusual in any kind of applications, but such updates can be han-
dled by LSM-trees in a deferred manner if we view an update as a delete followed by an insert.

We sketch another type of operation for efficient index modification. A process known as predi-
cate deletion provides a means of performing batch deletes by simply asserting a predicate, for
example the predicate that all index values with timestamps more than 20 days old are to be
deleted. When the affected entries in the oldest (largest) component become resident during the
normal course of the rolling merge, this assertion causes them simply to be dropped during the
merge process. Yet another type of operation, a long-latency find, provide an efficient means of
responding to a query where the results can wait for the circulation period of the slowest cur-
sor. A find note entry is inserted in component C0, and the find is actually performed over an
extended period of time as it migrates out to later components. Once the find note entry has
circulated out to the appropriate region of the largest relevant component of the LSM-tree, the
accumulated list of RIDs for the long-latency find is complete.

3. Cost-Performance and the Multi-Component LSM-Tree

In this section we analyze the cost-performance of an LSM-tree, starting with an LSM-tree of
two components. We analyze the LSM-tree by analogy with a B-tree providing the same in-
dexing capabilities, comparing the I/O resources utilized for a high volume of new insertions.
As we will argue in Section 5, other disk-based access methods are comparable to the B-tree in
I/O cost for inserts of new index entries. The most important reason for the comparison of the
LSM-tree and B-tree that we perform here is that these two structures are easily comparable,
both containing an entry for each row indexed in collation sequence at a leaf level, with upper
level directory information that channels access along a path of page-sized nodes. The analysis
of I/O advantage for new entry inserts to the LSM-tree is effectively illustrated by analogy to
the less efficient but well understood behavior of the B-tree.

In Section 3.2 following, we compare the I/O insert costs and demonstrate that the small ratio of
cost for an LSM-tree of two components to that of a B-tree is a product of two factors. The first
factor, COSTπ/COSTP, corresponds to the advantage gained in the LSM-tree by performing all
I/O in multi-page blocks, thus utilizing disk arms much more efficiently by saving a great deal

-9-

of seek and rotational latency time. The COSTπ term represents the disk arm cost of reading or
writing a page on disk as part of a multi-page block, and COSTP represents the cost of reading or
writing a page at random. The second factor that determines I/O cost ratio between the LSM-
tree and the B-tree is given as 1/M, representing the batching efficiency to be gained during a
merge step. M is the average number of entries merged from C0 into a page-sized leaf node of
C1. Inserting multiple entries per leaf is an advantage over a (large) B-tree where each entry
inserted normally requires two I/Os to read and write the leaf node on which it resides. Because
of the Five minute rule, it is unlikely in Example 1.2 that a leaf page read in from a B-tree will
be re-referenced for a second insert during the short time it remains in buffer. Thus there is
no batching effect in a B-tree index: each leaf node is read in, an insert of a new entry is per-
formed, and it is written out again. In an LSM-tree however, there will be an important
batching effect as long as the C0 component is sufficiently large in comparison to the C1 com-
ponent. For example, with 16 byte index entries, we can expect 250 entries in a fully packed 4
KByte node. If the C0 component is 1/25 the size of the C1 component, we will expect (about)
10 new entries entering each new C1 node of 250 entries during a node I/O. It is clear that the
LSM-tree has an efficiency advantage over the B-tree because of these two factors, and the
"rolling merge" process is fundamental to gaining this advantage.

The factor COSTπ/COSTP corresponding to the ratio of efficiency of multi-page block over single
page I/O is a constant, and we can do nothing with the LSM-tree structure to have any effect on
it. However the batching efficiency 1/M of a merge step is proportional to the ratio in size be-
tween the C0 and the C1 components; the larger the C0 component in comparison to the C1
component, the more efficiency is gained in the merge; up to a certain point, this means that we
can save additional money on disk arm cost by using a larger C0 component, but this entails a
larger memory cost to contain the C0 component. There is an optimal mix of sizes to minimize
the total cost of disk arms and memory capacity, but the solution can be quite expensive in
terms of memory for a large C0. It is this consideration that motivates the need for a multi-
component LSM-tree, which is investigated in Section 3.3. A three component LSM-tree has
memory resident component C0 and disk resident components C1 and C2, where the components
increase in size with increasing subscript. There is a rolling merge processes in train between
C0 and C1 as well as a separate rolling merge between C1 and C2 that move entries out from the
smaller to the larger component each time the smaller component exceeds its threshold size.
The advantage of an LSM-tree of three components is that batching efficiency can be geometri-
cally improved by choosing C1 to optimize the combined ratio of size between C0 and C1 and be-
tween C1 and C2. As a result, the size of the C0 memory component can be made much smaller in
proportion to the total index, with a significant improvement in cost.

Section 3.4 derives a mathematical procedure for arriving at the optimal relative sizes of the
different components of a multi-component LSM-tree to minimize total cost for memory and
disk.

3.1 The Disk Model

The advantage of the LSM-tree over the B-tree lies mainly in the area of reduced cost for I/O
(although disk components that are 100% full offer a capacity cost advantage as well over other
known flexible disk structures). Part of this I/O cost advantage for the LSM-tree is the fact
that a page I/O can be amortized along with many other pages of a multi-page block.

Definition 3.1.1. I/O Costs and Data Temperature. As we store data of a particular
kind on disk, rows in a table or entries in an index, we find that as we increase the amount of
data stored, the disk arms see more and more utilization under normal use in a given application
environment. We are paying for two things when we buy a disk: first, disk capacity, and sec-

-10-

ond, disk I/O rate. Usually one of these two will be a limiting factor in any kind of use. If ca-
pacity is the limiting factor, we will fill up the disks and find that the disk arms that provide
the I/Os are only fractionally utilized by the application; on the other hand we may find that as
we add data the disk arms reach their full utilization rate when the disk is only fractionally
full, and this means that the I/O rate is the limiting factor.

A random page I/O during peak use has a cost, COSTP, which is based on a fair rent for the disk
arm, whereas the cost of a disk page I/O as part of a large multi-page block I/O will be repre-
sented as COSTπ, and this quantity is a good deal smaller because it amortizes seek time and ro-
tational latency over multiple pages. We adopt the following nomenclature for storage costs:

COSTd = cost of 1 MByte of disk storage
COSTm = cost of 1 MByte of memory storage
COSTP = disk arm cost to provide 1 page/second I/O rate, for random pages
COSTπ = disk arm cost to provide 1 page/second I/O rate, as part of multi-page block I/O

Given an application referencing a body of data with S MBytes of storage and H random pages per
second of I/O transfer (we assume no data is buffered), the rent for disk arms is given by
H.COSTP and the rent for disk media is given by S.COSTd. Depending on which cost is the lim-
iting factor the other comes for free, so the calculated cost for accessing this disk resident data,
COST-D, is given by:

COST-D = max(S.COSTd, H.COSTP)

COST-D will also be the total cost for supporting data access for this application, COST-TOT,
under the assumption given that none of the disk pages are buffered in memory. In this case, the
total cost increases linearly with the random I/O rate H even while the total storage require-
ment S remains constant. Now the point of memory buffering is to replace disk I/O with
memory buffers at a certain point of increasing I/O rate to the same total storage S. If we as-
sume under these circumstances that memory buffers can be populated in advance to support the
random I/O requests, the cost for disk drops to the cost for disk media alone, so the calculated
cost of accessing this buffer resident data, COST-B, is simply the cost of memory plus the cost
of disk media:

COST-B = S.COSTm + S.COSTd

Now the total cost for supporting data access for this application is the minimum of these two
calculated costs:

COST-TOT = min(max(S.COSTd, H.COSTP), S.COSTm + S.COSTd)

There are three cost regimes in the graph of COST-TOT as the page access rate H increases for a
given volume of data S. See Figure 3.1, where we graph COST-TOT/MByte vs H/S, or accesses
per second per megabyte. If S is small, COST-TOT is limited by the cost of disk medium,
S.COSTd, a constant for fixed S. As H/S increases, the cost comes to be dominated by disk arm
use, H.COSTP, and is proportional to increasing H/S for fixed S. Finally, at the point where the
Five Minute rule dictates memory residence, the dominant factor becomes S.COSTm + S.COSTd,
which is dominated by the memory term for present prices, COSTm >> COSTd. Following
Copeland et al. [6], we define the temperature of a body of data as H/S, and we name these three
cost regimes cold, warm, and hot. Hot data has a high enough access rate H, and thus tempera-
ture H/S, to justify memory buffer residence (see [6]). At the other extreme, cold data is disk

-11-

capacity limited: the disk volume that it must occupy comes with enough disk arms to satisfy
the I/O rate. In between is warm data, whose access requirements must be met by limiting the
data capacity used under each disk arm, so that disk arms are the limit of use. These ranges are
divided as follows:

 Tf = COSTd/COSTP = temperature division point between cold and warm data ("freezing")
 Tb = COSTm/COSTP = temperature division point between warm and hot data ("boiling")

Similarly-defined ranges exist for the multi-page block access case using COSTπ. The division
between the warm and hot regions is a generalization of the Five Minute Rule [13]. �

 Temperature H/S
(accesses/sec/Mbyte)

COST-TOT/Mbyte Hot Data

Warm Data

Cold Data

Figure 3.1. Graph of cost of access per MByte vs. Temperature

As stressed in [6], it is straightforward to calculate the temperature of a database table when it
is accessed uniformly. However, the relevance of this temperature depends on the access
method: the temperature that is relevant involves the actual disk access rate, not the logical
insert rate (including batched buffered inserts). One way to express what an LSM-tree
achieves is to say that it reduces the actual disk accesses and thus lowers the effective temper-
ature of the indexed data. This idea is revisited in the conclusions of Section 6.

Multi-page block I/O Advantage

The advantage to be gained by multi-page block I/O is central to several earlier access methods,
such as Bounded Disorder files [16], SB-trees [21], and Log Structured files [23]. A 1989
IBM publication analyzing DB2 utility performance on IBM 3380 disk [29] gave the following
analysis: ". . . The time to complete a [read of a single page] could be estimated to be about 20
ms (assumes 10ms seek, 8.3ms rotational delay, 1.7ms read) . . . The time to perform a se-
quential prefetch read [of 64 contiguous pages] could be estimated to be about 125ms (assumes
10ms seek, 8.3ms rotational delay, 106.9ms read of 64 records [pages]), or about 2 ms per
page." Thus the ratio of 2 ms per page for multi-page block I/O to 20 ms for random I/O im-
plies a ratio of rental costs for the disk arm, COSTπ/COSTP, equal to about 1/10. An analysis of
a more recent SCSI-2 disk read of a 4 KByte page gives us a 9 ms seek, 5.5 ms rotational delay,
and 1.2 ms read, totalling 16 ms. Reading 64 contiguous 4 KByte pages requires a 9 ms seek,
5.5 ms rotational delay, and 80 ms read for 64 pages, or a total of 95 ms, about 1.5 ms/page.
Once again COSTπ/COSTP is again equal to about 1/10.

-12-

We analyze a workstation server system with SCSI-2 disks holding one GByte and costing about
$1000, and a peak rate of approximately 60-70 I/Os per second. The nominal usable I/O rate
to avoid long I/O queues is lower, about 40 I/Os per second. The multi-block I/O advantage is
significant.

 Typical Workstation Costs, 1995:
 COSTm = $100/MByte

COSTd = $1/MByte
COSTP = $25/(IOs/sec)
COSTπ = $2.5/(IOs/sec)

 Tf = COSTd/COSTP = .04 IOs/(sec.MByte) ("freezing point")
Tb = COSTm/COSTP = 4 IOs/(sec.MByte) ("boiling point")

We use the Tb value to derive the reference interval τ for the Five Minute Rule, which asserts
that data sustaining an I/O rate of one page every seconds is incurring the same cost as the
memory needed to hold it. That common cost is:

(1/τ).COSTP = pagesize.COSTm

Solving for τ, we see τ = (1/pagesize).(COSTP/COSTm) = 1/(pagesize.Tb), and for the values
given above, with a page of .004 MBytes, we have τ = 1/(.004.4) 62.5 seconds/IO.

Example 3.1. To achieve a rate of 1000 TPS in the TPC-A application of Example 1.1, there
will be H = 2000 I/Os per second to the Account table, itself consisting of 100,000,000 rows
of 100 bytes, a total of S =10 GBytes. The disk storage cost here is S.COSTd= $10,000 whereas
the disk I/O cost is H.COSTP = $50,000. The temperature T = H/S = 2000/10,000 = 0.2, well
above freezing (a factor of 5), but also well below the boiling point. This warm data uses only
1/5 of its disk capacity for data storage. We are paying for the disk arms and not for the ca-
pacity. The situation is similar when we consider the 20 day Acct-ID||Timestamp index to the
History table of Example 1.2. Such a B-tree index, as we calculated in Example 1.2, requires
about 9.2 GBytes of leaf-level entries. Given that a growing tree is only about 70% full, the
entire tree will require 13.8 GBytes, but it has the same I/O rate (for inserts alone) as the
Account table, which implies a comparable temperature. �

3.2 Comparison of LSM-tree and B-tree I/O costs

We will be considering I/O costs of index operations which we call mergeable: inserts, deletes,
updates, and long-latency finds. The following discussion presents an analysis to compare an
LSM-tree to a B-tree.

B-tree Insert Cost Formula.

Consider the disk arm rental cost of performing a B-tree insert. We must first access the po-
sition in the tree where the entry should be placed, and this entails a search down nodes of the
tree. We assume that successive inserts to the tree are to random positions at the leaf level, so
that node pages in the path of access will not be consistently buffer resident because of past
inserts. A succession of inserts of ever increasing key-values, an insert-on-the-right situ-
ation, is a relatively common case that does not obey this assumption. We note that such an
insert-on-the-right situation can already be quite efficiently handled by the B-tree data
structure, since there is little I/O as the B-tree grows consistently to the right; indeed this is

-13-

the basic situation in which a B-tree load takes place. There are a number of other proposed
structures to deal with indexing log records by ever-increasing value [8].

In [21], the effective depth of a B-tree, symbolized by De, was defined to be the average
number of pages not found in buffer during a random key-value search down the directory
levels of a B-tree. For B-trees of the size used to index Account-ID||Timestamp in Example
1.2, the value for De is typically about 2.

To perform an insert to a B-tree, we perform a key-value search to a leaf level page (De I/Os),
update it, and (in the steady state) write out a corresponding dirty leaf page (1 I/O). We can
show that the relatively infrequent node splits have an insignificant effect on our analysis, and
therefore ignore them. The pages read and written in this process are all random access, with
cost COSTP, so the total I/O cost for a B-tree insert, COSTB-ins is given by:

(3 . 1) COSTB-ins = COSTP.(De + 1)

LSM-tree Insert Cost Formula.

To evaluate the cost of an insert into the LSM-tree, we need to think in terms of amortization of
multiple inserts, since a single insert to the memory component C0 only occasionally has any
I/O effect. As we explained at the beginning of this Section, the performance advantage an LSM-
tree has over a B-tree is based on two different batching effects. The first is the already men-
tioned reduced cost of a page I/O, COSTπ. The second is based on the idea that the delay in
merging newly inserted entries into the C1 tree usually allows time for numerous entries to ac-
cumulate in C0; thus several entries will get merged into each C1 tree leaf page during its trip
from disk to memory and back. By contrast, we have been assuming that the B-tree leaf pages
are too infrequently referenced in memory for more than one entry insert to take place.

D e finition 3.2.1. The Batch-Merge Parameter M. To quantify this multiple-entries-
per-leaf batching effect, define the parameter M for a given LSM-tree as the average number of
entries in the C0 tree inserted into each single page leaf node of the C1 tree during the rolling
merge. We assert that the parameter M is a relatively stable value characterizing an LSM-tree.
In fact, the value for M is determined by index entry size and the ratio in size between the leaf
level of the C1 tree and that of the C0 tree. We define the following new size parameters:

Se = entry (index entry) size in bytes
Sp = page size in bytes
S0 = size in MBytes of C0 component leaf level
S1 = size in MBytes of C1 component leaf level.

Then the number of entries to a page is approximately Sp/Se, and the fraction of entries of the
LSM-tree sitting in component C0 is S0/(S0 + S1), so the parameter M is given by:

(3 . 2) M = (Sp/Se). (S0 /(S0 + S1))

Note that the larger the component C0 in comparison to C1, the larger will be the parameter M.
Typical implementations might have S1= 40.S0 and the number of entries per disk page, Sp/Se,
of 200, so that M = 5. Given the parameter M, we can now give a rough formula for the cost
COSTLSM-ins of an entry insert into the LSM-tree. We simply amortize the per-page cost of
bringing the C1 tree leaf node into memory and writing it out again, 2.COSTπ, over the M inserts
that are merged into an C1 tree leaf node during this time.

-14-

(3 . 3) COSTLSM-ins = 2.COSTπ/M

Note that we have ignored the relatively insignificant costs associated with I/Os for index up-
dates in both the LSM-tree and B-tree cases.

A Comparison of LSM-tree and B-tree Insert Costs

If we compare the cost formulas (3.1) and (3.3) for inserts to the two data structures, we see
the ratio:

(3 . 4) COSTLSM-ins/COSTB-ins = K1.(COSTπ/COSTP).(1/M)

where K1 is a (near) constant, 2/(De + 1), with a value of approximately 0.67 for index sizes
we have been considering. This formula shows that the cost ratio of an insert into the LSM-tree
to one in the B-tree is directly proportional to each of two batching effects we have discussed:
COSTπ/COSTP, a small fraction corresponding to the ratio of cost for a page I/O in a multi-page
block to a random page I/O, and 1/M, where M is the number of entries batched per page during
the rolling merge. Typically the product of the two ratios will give a cost ratio improvement of
nearly two orders of magnitude. Naturally, such improvement will only be possible in regimes
where the index has a relatively high temperature as a B-tree, so that it is possible to greatly
reduce the number of disks when moving to an LSM-tree index.

Example 3.2. If we assume that an index of the kind in Example 1.2 takes up 1 GByte of disk
space but is required to sit on 10 GBytes to achieve necessary disk arm access rates, then there
is certainly room for improvement in saving money on disk arm costs. If the ratio of insert
costs given in Equation (3.4) is 0.02 = 1/50, then the we can shrink the index and disk cost:
the LSM-tree will need to take up only 0.7 GBytes on disk because of closely packed entries and
reduced disk arm utilization. However, we see that the more efficient LSM-tree can only reduce
cost down to what is needed for disk capacity. If we had started with a 1 GByte B-tree which was
constrained to sit on 35 GBytes to receive needed disk arm service, the ratio of cost improve-
ment of 1/50 could have been fully realized. �

3.3 Multi-Component LSM-trees

The parameter M for a given LSM-tree was defined as the average number of entries in the C0
tree inserted into each single page leaf node of the C1 tree during the rolling merge. We have
been thinking of the quantity M as being greater than 1 because of the delay period during which
new entries can accumulate in the C0 tree before being merged into nodes of the C1 tree.
However, it should be clear from equation (3.2) that if the C1 tree were extremely large in
comparison to the C0 tree, or entries were extremely large and fit only a small number to a
page, the quantity M might be less than 1. Such a value for M means that on the average more
than one C1 tree page must be brought in and out of memory for each entry which is merged in
from the C0 tree. In the case where M is extremely small in terms of formula (3.4), specifi-
cally if M < K1 . COSTπ/COSTP, this could even cancel the batching effect of multi-page disk
reads, so we would do better to use a normal B-tree for inserts in place of an LSM-tree.

To avoid a small value for M the only course with a two-component LSM-tree is to increase the
size of the C0 component relative to that of C1. Consider a two-component LSM-tree of given
total leaf entry size S (S = S0 + S1, an approximately stable value), and assume we have a
constant rate R in bytes per second of new entry inserts into C0. For simplicity, we assume that

-15-

no entries inserted into C0 are deleted before they get out to component C1, and therefore entries
must migrate out to component C1 through the rolling merge at the same rate that they are in-
serted into C0 to keep the size of C0 near its threshold size. (Given that the total size S is ap-
proximately stable, this also implies that the insertion rate into C0 must be balanced by a
constant deletion rate from C1, possibly using a succession of predicate deletes.) As we vary the
size of C0, we affect the circulation speed of the merge cursor. A constant migration rate out to
C1 in bytes per second requires that the rolling merge cursor move through entries of C0 at a
constant rate in bytes per second, and therefore as the size of C0 decreases the circulation rate
from smallest to largest index values in C0 will increase; as a result, the I/O rate for multi-
page blocks in C1 to perform the rolling merge must also increase. If a C0 size of a single entry
were possible, at this conceptual extreme point we would require a circulation through all
multi-page blocks of C1 for each newly inserted entry, an immense demand on I/O. The ap-
proach of merging C0 and C1, rather than accessing relevant nodes of C1 for each newly inserted
entry as is done with the B-tree, would become a millstone around our necks. By comparison,
larger size C0 components will slow down the circulation of the merge cursor and decrease the
I/O cost of inserts. However, this will increase the cost of the memory-resident component C0.

Now there is a canonical size for C0 determined by the point at which the total cost of the LSM-
tree, memory cost for C0 plus media/disk arm cost for the C1 component, is minimized. To
arrive at this balance, we start with a large C0 component and pack the C1 component closely on
disk media. If the C0 component is sufficiently large, we will have a very small I/O rate to C1.
We can now decrease the size of C0, trading off expensive memory for inexpensive disk space,
until the I/O rate to service C1 increases to a point where the disk arms sitting over the C1
component media are running at full rate. At this point, further savings in memory cost for C0
will result in increased media cost, as we are required to spread out the C1 component over
fractionally full disks to reduce the disk arm load, and at some point as we continue to shrink C0
we will reach a minimum cost point. Now it is common in the two component LSM-tree that the
canonical size we determine for C0 will still be quite expensive in terms of memory use. An
alternative is to consider adopting an LSM-tree of three or more components. Conceptually, if
the size of the C0 component is so large that the memory cost is a significant factor, then we
consider creating another intermediate size disk based component between the two extremes.
This will permit us to limit the cost of disk arms while reducing the size of the C0 component.

 CK tree . . . C1 tree C0 tree

Disk Memory

mergemergemerge
. . .

Figure 3.1. An LSM-tree of K+1 components

In general, an LSM-tree of K+1 components has components C0, C1, C2, . . ., CK-1 and CK, which
are indexed tree structures of increasing size; the C0 component tree is memory resident and
all other components are disk resident (but with popular pages buffered in memory as with any
disk resident access tree). Under pressure from inserts, there are asynchronous rolling merge
processes in train between all component pairs (Ci-1, Ci), that move entries out from the
smaller to the larger component each time the smaller component, Ci-1, exceeds its threshold

-16-

size. During the life of a long-lived entry inserted in an LSM-tree, it starts in the C0 tree and
eventually migrates out to the CK, through a series of K asynchronous rolling merge steps.

The spotlight here is on performance under insert traffic because we are assuming that the
LSM-Tree exists in an insert-mostly environment. LSM-tree finds of three or more compo-
nents suffer somewhat in performance, typically by one extra page I/O per disk component.

3.4 LSM-trees: Component Sizes

In the current Section, we derive a formula for the I/O cost for inserts into an LSM-tree of
several components and demonstrate mathematically how to choose optimal threshold sizes for
the various components. An extended Example 3.3 illustrates the system cost for a B-tree, the
improved system cost for an LSM-tree of two components, and the greater savings to be had with
an LSM-tree of three components.

We define the size of an LSM-tree component, S(Ci), as the number of bytes of entries it con-
tains at the leaf level; the size of component Ci is denoted by Si, S(Ci) = Si, and S is the total
size of all leaf level entries in all components, S = Σ i Si. We assume there is some relatively
steady rate R of insertion, in bytes per second, to component C0 of the LSM-tree, and for sim-
plicity that all newly inserted entries live to circulate out to component CK by a succession of
rolling merge steps. We also assume that each of the components, C0, C1, . . . , CK-1, has a size
close to a maximum threshold size to be determined by the current analysis. The component CK
is assumed to have a relatively stable size, because of deletes balancing inserts over some
standard time period. The deletes from component CK can be thought of as taking place without
any addition to the rate of insertion R to component C0.

Given an LSM-tree of K components with a fixed total size S and memory component size S0, the
tree is totally described by the variables ri, i = 1, . . . ,K, representing size ratios between ad-
jacent pairs of components, ri = Si/Si-1, As detailed below, the total page I/O rate to perform
all ongoing merge operations between component pairs (Ci-1, Ci) can be expressed as a function
of R, the rate of insertions into C0, and the ratios ri. We assume that blocks of the different
components are striped across different disk arms in a mixed way to achieve a balance in uti-
lization, so that minimizing H is the same as minimizing the total disk arm cost (at least in any
range where disk arms rather than media capacity constitute the gating cost). It is a standard
calculus minimization problem to find the values for ri which minimize the total I/O rate H for
a given R. It turns out that the assumption that the total size S is fixed leads to a rather difficult
problem with a somewhat complex recurrence relation between the ri values. However, if we
make the comparable assumption that the largest component size SK is fixed (along with the
memory size S0), as we will show in Theorem 3.1, this minimization problem is solved when
all of the values ri are equal to a single constant value r. We show in Theorem 3.2 the slightly
more precise solution relating the ri values where the total size S is held constant, and argue
that the constant value r for ri gives similar results in all areas of real interest. Assuming
such a constant value r for all ri factors, we have Si = ri.S0. Thus the total size S is given by the
sum of the individual component sizes, S = S0 + r.S0 + r2.S0 + . . . + rK.S0, and we can solve
for r in terms of S and S0.

Thus in Theorem 3.1 we show that to minimize the total I/O rate H of a multi-component LSM-
tree, with fixed SK, S0, and insertion rate R, we size intermediate components in a geometric
progression between the smallest and largest. We will see, as in the case of a two-component
LSM-tree, that if we allow S0 to vary while R and SK remain constant, and express H as a

-17-

function of S0, then H increases with decreasing S0. We can now minimize the total cost of the
LSM-tree, memory plus disk arm cost, by varying the size of S0. The appropriate process to
arrive at an optimal total cost for a given number of components is illustrated below in Example
3.3. The only remaining free variable in the total cost is the number of components, K+1. We
discuss the tradeoffs for this value at the end of the current Section.

Theorem 3.1. Given an LSM-tree of K+1 components, with a fixed largest-component size SK,
insert rate R, and memory component size S0, the total page I/O rate H to perform all merges is
minimized when the ratios ri = Si/Si-1 are all equal to a common value r. Thus the total size S
is given by the sum of the individual component sizes,

(3 . 5) S = S0 + r.S0 + r2.S0 + . . . + rK.S0,

and we can solve for r in terms of S and S0. Similarly, the total page I/O rate H is given by

(3 . 6) H = (2R/Sp) .(K . (1 + r) - 1/2),

where Sp is the number of bytes per page. �

Proof. Since we have assumed that entries are never deleted until they arrive at component
CK, it is clear in the steady state that the rate R in bytes per second of inserts to C0 is the same
as the rate with which entries migrate by rolling merge out from component Ci-1 to component
C i, for all i, 0 < i ≤ K. Consider the case where the component Ci-1 is disk resident. Then the
merge from Ci-1 to Ci entails multi-page block reads from component Ci-1 at a rate of R/Sp
pages per second, where Sp is the number of bytes per page (we derive this from the rate R in
bytes per second that entries migrate out from Ci-1, assuming that 100% of all entries en-
countered are deleted from Ci-1; other assumptions are possible in a general case). The merge
also entails multi-page reads from Ci at a rate ri. R/Sp pages per second (this follows from the
fact that the rolling merge cursor passes over ri = Si/Si-1 times as many pages belonging to Ci
as it does pages of Ci-1). Finally, the merge entails multi-page disk writes at a rate of (ri+1)
R/Sp pages per second to write out newly merged data belonging to Ci. Note that here we are
taking into account the enlarged size of the Ci component resulting from the merge. Summing
over all disk resident components Ci, we have a total rate H of multi-page I/Os in pages per
second given by:

(3 . 7) H = (R/Sp) ((2.r1 +2) + (2.r2 +2) + . . . + (2.rK-1+2) + (2.rK +1)) ,

where each term of the form (2.ri+k) represents all I/O on component Ci: ri. R/Sp to read in
pages in Ci for the merge from Ci-1 to Ci, (ri +1) R/Sp to write out pages in Ci for that same
merge, and R/Sp to read in pages in Ci for the merge from Ci to Ci+1. Clearly there is no term
for C0 and the term for component CK does not have this final addition. Equation (3.7) can be
rewritten as:

(3.8) H = (2R/Sp) (∑
1

K
r i+ K -

1
2)

-18-

We wish to minimize the value of this function under the condition that: ∏
1

K
r i = (SK /S0)= C, a

constant. To solve this problem, we minimize ∑
1

K
r i, with the term rK replaced by C.∏

1

K-1
r i- 1 .

Taking partial derivatives by each of the free variables rj, j = 1, . . , K-1, and equating them to

zero, we arrive at a set of identical equations of the form: 0 = 1 -
1
r j

 C.∏
1

K-1
r i- 1 , which is

clearly solved when all rj (including rK) are equal to C. ∏
1

 K - 1
r i-1, or C1/K . �

Theorem 3.2. We vary the assumptions of Theorem 3.1 to fix the total size S rather than the
size SK of the largest component. This minimization problem is much more difficult, but can be
done using Lagrange multipliers. The results are a sequence of formulas for each ri in terms of
higher-indexed ri:

rK-1 = rK + 1
rK-2 = rK-1 + 1/rK - 1

 rK - 3 = rK - 2 + 1/(rK - 1 .rK - 2)
. . .

We omit the proof.�

As we will see, useful values of ri are fairly large, say 20 or more, so the size of the largest
component, SK, dominates the total size S. Note that in Theorem 3.2 therefore, each ri normally
differs by only a small fraction from its higher neighbor ri+1. In what follows, we base or
examples on the approximation of Theorem 3.1.

Minimizing Total Cost

From Theorem 3.1, it can be seen that if we allow S0 to vary while R and SK remain constant and
express the total I/O rate H as a function of S0, then since r increases with decreasing S0 by
equation (3.5), and H is proportional to r by equation (3.6), clearly H increases with de-
creasing S0. We can now minimize the total cost of the LSM-tree as in the two component case
by trading off expensive memory for inexpensive disk. If we calculate the disk media needed to
store the LSM-tree and the total I/O rate H that keeps these disk arms fully utilized, this be-
comes a starting point in our calculation to determine the size for S0 that minimizes cost. From
this point as we further decrease the size of C0 the cost of disk media goes up in inverse pro-
portion, since we have entered the region where disk arm cost is the limiting factor. Example
3.3, below, is a numerically based illustration of this process for a two and three component
LSM-tree. Prior to this example, we offer an analytic derivation for the two component case.

The total cost is the sum of memory cost, COSTm.S0, and disk cost, itself a maximum over disk
storage and I/O costs, here based on multi-page block access rate H in pages per second:

COSTtot = COSTm.S0 + max[COSTd.S1, COSTπ.H]

Consider the case of two components, so that in equation (3.6), K = 1, r = S1/S0. Let

-19-

s = (COSTm . S0)/(COSTd . S1) = cost of memory relative to storage cost for S1 data.

t = 2.((R/Sp)/S1).(COSTπ/COSTd)(COSTm/COSTd)

C = COSTtot/(COSTd.S1) = total cost relative to storage cost for S1 data

then, substituting equation (3.6) and simplifying, assuming S0/S1 small, we arrive at a close
approximation:

C ≈ s + max(1, t/s)

The relative cost C is a function of two variables t and s; the variable t is a kind of normalized
temperature measuring the basic multi-page block I/O rate required by the application. The
variable s represents how much memory we decide to use to implement the LSM-tree. To decide
the size of S0, the simplest rule would be to follow the line s = t, on which C = s + 1 and the disk
storage and I/O capacities are fully utilized. This rule is cost-minimal for t <= 1, but for t > 1,
the locus of minimal-C follows the curve s = t1/2, on which C = 2. t1/2. Putting the result
back in dimensional form we obtain, for t >= 1:

(3 . 8) COSTmin = 2[(COSTm.S1)(2.COSTπ.R/Sp)]1/2

Thus the total cost of the LSM-tree (for t ≥ 1) is seen to be twice the geometric mean of the
(very high) cost of enough memory to hold all the data in the LSM-tree and the (extremely low)
cost of disk required to support the multi-page block I/O needed to write its inserts to disk in
the cheapest way. Half of this total cost is used for memory for S0, the other half for disk for
I/O access to S1. The cost of disk storage does not show up because t >= 1 ensures that the data is
warm enough to make disk I/O predominate over disk storage at the minimum point. Note that
asymptotically, the cost goes as R1/2 compared to R for the B-tree, as R -> ∞ .

In the case that t <= 1, the cooler case, the minimum cost occurs along s = t, where C = t + 1 <
2. This means that the total cost in this case is always less than twice the basic cost of storing
S1 on disk. In this case we size disk by its storage requirements, and then use all its I/O ca-
pacity to minimize memory use.

Example 3.3. We consider the Account-ID||Timestamp index detailed in Example 3.1. The
following analysis calculates costs for inserts only, with an insertion rate R of 16,000 bytes
per second to the index (1000 16 byte index entries, not counting overhead), resulting in an
index of 576 million entries for 20 days of data, or 9.2 GBytes of data.

Using a B-tree to support the index, the disk I/O will be the limiting factor as we saw in
Example 3.1 — the leaf-level data is warm. We are required to use enough disk space to provide
H = 2,000 random I/Os per second to update random pages at the leaf level (this assumes all di-
rectory nodes are memory resident). Using the typical value COSTP = $25 from the table of
Section 3.1, we find the cost for I/O is H.COSTP = $50,000. We calculate the cost to buffer
upper-level nodes in memory as follows. Assume leaf nodes that are 70% full, 0.7.(4K/16) =
180 entries per leaf node, and therefore the level above the leaf contains about 576 mil-
lion/180 = 3.2 million entries pointing to subordinate leaves. If we grant some prefix com-
pression so that we can fit 200 entries to a node at this level, this implies about 16,000 pages
of 4 KBytes each, or 64 MBytes, at a cost for memory, COSTm, of $100 per MByte, or $6400.
We ignore the relatively insignificant cost of node buffering at levels above this, and say that

-20-

the total cost of a B-tree is $50,000 for disk plus $6400 for memory, or a total cost of
$56,400.

With an LSM-tree of two components, C0 and C1, we need an S1 of 9.2 GBytes of disk to store the
entries, at a cost of COSTd.S1 = $9,200. We pack this data closely on disk and calculate the total
I/O rate H supported by an equal cost in disk arms using multi-page block I/O, as H =
9200/COSTπ = 3700 pages per second. Now in Equation (3.6) we solve for r after setting the
total I/O rate H as above, the rate R to 16,000 bytes/second, and Sp to 4K. From the resulting
ratio r = S1/S0 = 460 and the fact that S1 = 9.2 GBytes, we calculate 20 MBytes of memory
for C0 , costing $2,000. This is the simple s = t solution, with total cost $11,200 and full
utilization of disk capacity and I/O capability. Since t = .22 is less than 1, this is the optimal
solution. We add $200 for 2 MBytes of memory to contain merging blocks, and arrive at a total
cost of $11,400. This is a significant improvement over the B-tree cost.

Here is a full explanation of the solution. The insert rate of R= 16,000 bytes/second is turned
into 4 pages/second that need to be merged from C0 to C1. Since C1 is 460 times larger than C0,
the new entries from C0 are on the average merged into positions 460 entries apart in C1. Thus
merging a page from C0 requires reading and writing 460 pages of C1, a total of 3680 pages per
second. But this is exactly what 9.2 disks provide in multiblock I/O capacity, with each pro-
viding 400 pages/sec, 10 times the nominal random I/O rate of 40 pages/second.

Since this example shows full utilization of disk resources with two components, we have no
reason to explore the three-component LSM-tree here. A more complete analysis would con-
sider how occasional finds must be performed in the index, and would consider utilizing more
disk arms. The following example shows a case where three components provide an improved
cost for a pure insert workload. �

Example 3.4. Consider Example 3.3, with R increased by a factor of 10. Note that the B-tree
solution now costs $500,000 for 500 Gbytes of disk to support an I/O rate H = 20,000 I/Os
per second; of this 491 Gbytes will be unutilized. But the B-tree is the same size and we still
pay $6400 to buffer the directory in memory, for a total cost of $506,400. In the LSM-tree
analysis, the increase of R by a factor of 10 means that t increases by the same factor, to 2.2.
Since this t is greater than 1, the best 2-component solution will not utililize all the disk ca-
pacity. We use equation (3.8) to calculate the minimum cost of $27,000 for a two-component
LSM-tree, half of which pays for 13.5 Gbytes of disk and half for 135 Mbytes of memory. Here
4.3 Gbytes of disk are unutilized. With 2Mbytes of memory for buffers, the total cost is
$27,200.

Here is a full explanation of the two-component solution. The insert rate R = 160,000
bytes/sec is turned into 40 pages/second that need to be merged from C0 to C1. Since C1 is 68
times larger than C0, merging a page from C0 requires 68 page reads and 68 writes to C1, a
total of 5450 pages per second. But this is exactly what 13.5 disks provide in multiblock I/O
capacity.

With an LSM-tree of three components for the R = 160,000 bytes/second case, the cost of the
largest disk component and a cost-balanced I/O rate are calculated as for two components. With
S i/S i-1 = r for i = 1, 2, by Theorem 3.1, we calculate r = 23 and S0 = 17 MBytes (for
memory cost of $1700) for fully occupied disk arms. The smaller disk component costs just
1/23 of the larger. Now increasing the memory size from this point has no good cost effect, and
decreasing the memory size will result in a corresponding factor, squared, increase in the cost
of disk. Since the cost for disk is currently a good deal higher than the cost of memory, we do
not gain cost effectiveness by memory size reduction. Thus we have an analogous s = t solution

-21-

in the three-component case. Allowing an additional 4 MBytes of memory for buffering, costing
$400, for the two rolling merge operations, the total cost for a 3 component LSM-tree is
therefore $9,200 for disk plus $2,100 for memory, or a total cost of $11,300, a further sig-
nificant improvement over the cost of a 2-component LSM-tree.

Here is a full explanation of the three-component solution. The in-memory component C0 has
17 Mbytes, the smaller disk component C1 is 23 times larger, at 400 Mbytes, and C2 is 23
times larger than C1, at 9.2 Gbytes. Each page of the 40 pages/second of data that must be
merged from C0 to C1 entails 23 pages of reading and 23 of writing, or 1840 pages per second.
Similarly, 40 pages/second are being merged from C1 to C2, each of which requires 23 pages of
reads and writes of C2. The total of the two I/O rates is 3680, exactly the multiblock I/O ca-
pacity of the 9.2 G of disk.

An LSM-tree of two or three components will require more I/O for find operations than the
simple B-tree. The largest component in either case will look very much like the corresponding
simple B-tree, but in the LSM-tree case we have not paid the $6,400 for memory for buffering
nodes just above the leaf level in the index. Nodes even higher in the tree are relatively so few
as to be negligable, and we can assume they are buffered. Clearly we would be willing to pay for
buffering all directory nodes if queries to find entries were sufficiently frequent to justify this
cost. In the three-component case, we need to consider the C1 component as well. Since it is 23
times smaller than the largest component, we can easily afford to buffer all of its non-leaf
nodes, and this cost should be added in the analysis. The unbuffered leaf access in C1 entails
another additional read for the find in cases where an entry in C2 is being sought, and there is a
decision to be made whether to buffer the directory of C2. Thus for the three-component case,
there may be a few additional page reads over the two I/Os needed for finds in the simple B-tree
(counting one I/O for a page write of a leaf node). For the two-component case, there may be
one additional read. If we do buy the memory for the buffering of nodes above leaf level of the
LSM-tree components, we can meet the B-tree speed in the two-component case and pay for one
extra read only in some cases in the three-component case. The total cost to add buffering in the
three-component case would then be $17,700, still far less than the B-tree. But it may well
be better to use this money in other ways: a full analysis should minimize total cost over the
workload, including both updates and retrievals. �

We have minimized the total I/O needed for merge operations with given S0 by varying the size
ratios ri, with the result of Theorem 3.1, and then minimized the total cost by choosing S0 to
achieve best disk arm and media cost. The only remaining variation possible in the LSM-tree is
the total number, K+1, of components provided. It turns out that as we increase the number of
components the size of S0 continues to decrease until the point is reached where the ratio r be-
tween component sizes reaches the value e = 2.71. . . , or until we reach the cold-data regime.
However, we can see from Example 3.4 that successively smaller S0 components as the number
of components increases make less and less difference to total cost; in an LSM-tree of three
components, the memory size S0 has already been reduced to 17 MBytes. Furthermore, there
are costs associated with increasing the number of components: a CPU cost to perform the ad-
ditional rolling merges and a memory cost to buffer the nodes of those merges (which will ac-
tually swamp the memory cost of C0 in common cost regimes). In addition, indexed finds re-
quiring immediate response will sometimes have to perform retrieval from all component
trees. These considerations put a strong constraint on the appropriate number of components,
and three components are probably the most that will be seen in practice.

4. Concurrency and Recovery in the LSM-tree

-22-

In the current Section we investigate the approaches to be used to provide concurrency and
recover for the LSM-tree. To accomplish this, we need to sketch a more detailed level of design
for the rolling merge process. We leave a formal demonstration of correctness of the concur-
rency and recovery algorithms for a later work, and try here simply to motivate the design
proposed.

4.1. Concurrency in the LSM-tree

In general, we are given an LSM-tree of K+1 components, C0, C1, C2, . . ., CK-1 and CK, of in-
creasing size, where the C0 component tree is memory resident and all other components are
disk resident. There are asynchronous rolling merge processes in train between all component
pairs (Ci-1, Ci) that move entries out from the smaller to the larger component each time the
smaller component, Ci-1, exceeds its threshold size. Each disk resident component is con-
structed of page-sized nodes in a B-tree type structure, except that multiple nodes in key se-
quence order at all levels below the root sit on multi-page blocks. Directory information in
upper levels of the tree channels access down through single page nodes and also indicates which
sequence of nodes sits on a multi-page block, so that a read or write of such a block can be
performed all at once. Under most circumstances, each multi-page block is packed full with
single page nodes, but as we will see there are a few situations where a smaller number of nodes
exist in such a block. In that case, the active nodes of the LSM-tree will fall on a contiguous set
of pages of the multi-page block, though not necessarily the initial pages of the block. Apart
from the fact that such contiguous pages are not necessarily the initial pages on the multi-page
block, the structure of an LSM-tree component is identical to the structure of the SB-tree
presented in [21], to which the reader is referred for supporting details.

A node of a disk-based component Ci can be individually resident in a single page memory buffer,
as when equal match finds are performed, or it can be memory resident within its containing
multi-page block. A multi-page block will be buffered in memory as a result of a long range
find or else because the rolling merge cursor is passing through the block in question at a high
rate. In any event, all non-locked nodes of the Ci component are accessible to directory lookup
at all times, and disk access will perform lookaside to locate any node in memory, even if it is
resident as part of a multi-page block taking part in the rolling merge. Given these considera-
tions, a concurrency approach for the LSM-tree must mediate three distinct types of physical
conflict.

 (i) A find operation should not access a node of a disk-based component at the same time that a
different process performing a rolling merge is modifying the contents of the node.

 (ii) A find or insert into the C0 component should not access the same part of the tree that a
different process is simultaneously altering to perform a rolling merge out to C1.

(i i i) The cursor for the rolling merge from Ci-1 out to Ci will sometimes need to move past the
cursor for the rolling merge from Ci out to Ci+1, since the rate of migration out from the
component Ci-1 is always at least as great as the rate of migration out from Ci and this
implies a faster rate of circulation of the cursor attached to the smaller component Ci-1.
Whatever concurrency method is adopted must permit this passage to take place without
one process (migration out to Ci) being blocked behind the other at the point of intersec-
tion (migration out from Ci).

Nodes are the unit of locking used in the LSM-tree to avoid physical conflict during concurrent
access to disk based components. Nodes being updated because of rolling merge are locked in
write mode and nodes being read during a find are locked in read mode; methods of directory

-23-

locking to avoid deadlocks are well understood (see, for example, [3]). The locking approach
taken in C0 is dependent on the data structure used. In the case of a (2-3)-tree, for example,
we could write lock a subtree falling below a single (2-3)-directory node that contains all
entries in the range affected during a merge to a node of C1; simultaneously, find operations
would lock all (2-3)-nodes on their access path in read mode so that one type of access will
exclude another. Note that we are only considering concurrency at the lowest physical level of
multi-level locking, in the sense of [28]. We leave to others the question of more abstract
locks, such as key range locking to preserve transactional isolation, and avoid for now the
problem of phantom updates; see [4], [14] for a discussion. Thus read-locks are released as
soon as the entries being sought at the leaf level have been scanned. Write locks for (all) nodes
under the cursor are released following each node merged from the larger component. This
gives an opportunity for a long range find or for a faster cursor to pass a relatively slower
cursor position, and thus addresses point (iii) above..

Now assume we are performing a rolling merge between two disk based components, migrating
entries from Ci-1, which we refer to as the inner component of this rolling merge, out to Ci,
which we refer to as the outer component. The cursor always has a well-defined inner com-
ponent position within a leaf-level node of Ci-1, pointing to the next entry it is about to migrate
out to Ci, and simultaneously a position in each of the higher directory levels of Ci-1 along the
path of access to the leaf level node position. The cursor also has an outer component position in
Ci, both at the leaf level and at upper levels along the path of access, corresponding to an entry it
is about to consider in the merge process. As the merge cursor progresses through successive
entries of the inner and outer components, new leaf nodes of Ci created by the merge are im-
mediately placed in left-to-right sequence in a new buffer resident multi-page block. Thus the
nodes of the Ci component surrounding the current cursor position will in general be split into
two partially full multi-page block buffers in memory: the "emptying" block whose entries
have been depleted but which retains information not yet reached by the merge cursor, and the
"filling" block which reflects the result of the merge up to this moment but is not yet full
enough to write on disk. For concurrent access purposes, both the emptying block and the
filling block contain an integral number of page-sized nodes of the C1 tree which simply happen
to be buffer resident. During merge step operations restructuring individual nodes, the nodes
involved are locked in write mode, blocking other types of concurrent access to the entries.

In the most general approach to a rolling merge, we may wish to retain certain entries in the
component Ci-1 rather than migrating all entries out to Ci as the cursor passes over them. In
this case, the nodes in the Ci-1 component surrounding the merge cursor will also be split into
two buffer resident multi-page blocks, the "emptying" block that contains nodes of Ci-1 that the
merge cursor has not yet reached, and the "filling" block with nodes, placed left-to-right, that
contain entries recently passed over by the merge cursor and retained in component Ci-1. In
this most general case then, the merge cursor position is affecting four different nodes at any
one time: the inner and outer component nodes in the emptying blocks where the merge is about
to occur and the inner and outer component nodes in the filling blocks where new information is
being written as the cursor progresses. Clearly these four nodes may all be less than com-
pletely full at any moment, and the same is true of the containing blocks. We take write locks on
all four nodes during the time the merge is actually modifying the node structures and release
these locks at quantized instants to allow a faster cursor to pass by; we choose to release locks
each time a node in the emptying block in the outer component has been completely depleted, but
the other three nodes will generally be less than full at that time. This is all right, since we can
perform all operations of access on a tree with nodes that are less than completely full as well
as blocks that are less than completely full with nodes. The case where one cursor passes an-
other requires particularly careful thought, because in general the cursor position of the
rolling merge being bypassed will be invalidated on its inner component, and provision must be

-24-

made to reorient the cursor. Note that all of the above considerations also apply at various di-
rectory levels of both components where changes occur because of the moving cursor. High
level directory nodes will not normally be memory resident in a multi-page block buffer,
however, so a somewhat different algorithm must be used, but there will still be a "filling" node
and an "emptying" node at every instant. We leave such complex considerations for later work,
after an implementation of the LSM-tree has provided additional experience.

Up to now we haven't taken any special account of the situation where the rolling merge under
consideration is directed from the inner component C0 to the outer C1 component. In fact, this
is a relatively simple situation by comparison with a disk-based inner component. As with all
such merge steps, one CPU should be totally dedicated to this task so that other accesses are
excluded by write locks for a short a time as possible. The range of C0 entries to be merged
should be pre-calculated and a write lock taken on this entry range in advance by the method
already explained. Following this, CPU time is saved by deleting entries from the C0 component
in a batch fashion, without attempts to rebalance after each individual entry delete; the C0 tree
can be fully rebalanced after the merge step is complete.

4.2. Recovery in the LSM-tree

As new entries are inserted into the C0 component of the LSM-tree, and the rolling merge
processes migrates entry information out to successively larger components, this work takes
place in memory buffered multi-page blocks. As with any such memory buffered changes, the
work is not resistant to system failure until it has been written to disk. We are faced with a
classical recovery problem: to reconstruct work that has taken place in memory after a crash
occurs and memory is lost. As we mentioned at the beginning of Chapter 2, we don't need to
create special logs to recover index entries on newly created records: transactional insert logs
for these new records are written out to a sequential log file in the normal course of events, and
it is a simple matter to treat these insert logs (which normally contain all field values together
with the RID where the inserted record has been placed) as a logical base for reconstructing the
index entries. This new approach to recover an index must be built into the system recovery
algorithm, and may have the effect of extending the time before storage reclamation for such
transactional History insert logs can take place, but this is a minor consideration.

To demonstrate recovery of the LSM-tree index, it is important that we carefully define the
form of a checkpoint and demonstrate that we know where to start in the sequential log file, and
how to apply successive logs, so as to deterministically replicate updates to the index that need
to be recovered. The scheme we use is as follows. When a checkpoint is requested at time T0, we
complete all merge steps in operation so that node locks are released, then postpone all new
entry inserts to the LSM-tree until the checkpoint completes; at this point we create an LSM-
tree checkpoint with the following actions.

o We write the contents of component C0 to a known disk location; following this, entry in-
serts to C0 can begin again, but merge steps continue to be deferred.

o We flush to disk all dirty memory buffered nodes of disk based components.
o We create a special checkpoint log with the following information:

o The Log Sequence Number, LSN0, of the last inserted indexed row at time T0
o The disk addresses of the roots of all components
o The location of all merge cursors in the various components
o The current information for dynamic allocation of new multi-page blocks.

Once this checkpoint information has been placed on disk, we can resume regular operations of
the LSM-tree. In the event of a crash and subsequent restart, this checkpoint can be located and

-25-

the saved component C0 loaded back into memory, together with the buffered blocks of other
components needed to continue rolling merges. Then logs starting with the first LSN after LSN0
are read into memory and have their associated index entries entered into the LSM-tree. As of
the time of the checkpoint, the positions of all disk-based components containing all indexing
information were recorded in component directories starting at the roots, whose locations are
known from the checkpoint log. None of this information has been wiped out by later writes of
multi-page disk blocks since these writes are always to new locations on disk until subsequent
checkpoints make outmoded multi-page blocks unnecessary. As we recover logs of inserts for
indexed rows, we place new entries into the C0 component; now the rolling merge starts again,
overwriting any multi-page blocks written since the checkpoint, but recovering all new index
entries, until the most recently inserted row has been indexed and recovery is complete.

This recovery approach clearly works, and its only drawback is that there is a possibly large
pause while various disk writes take place during the checkpoint process. This pause is not
terribly significant, however, since we can write the C0 component to disk in a short period and
then resume inserts to the C0 component while the rest of the writes to disk complete; this will
simply result in a longer than usual latency period during which index entries newly inserted to
C0 are not merged out to larger disk-based components. Once the checkpoint is complete, the
rolling merge process can catch up on work it has missed. Note that the last piece of informa-
tion mentioned in the checkpoint log list above was the current information for dynamic allo-
cation of new multi-page blocks. In the case of a crash, we will need to figure out in recovery
what multi-page blocks are available in our dynamic disk storage allocation algorithm. This is
clearly not a difficult problem; in fact a more difficult problem of garbage collecting frag-
mented information within such a block had to be solved in [23].

Another detail of recovery has to do with directory information. Note that as the rolling merge
progresses, each time a multi-page block or a higher level directory node is brought in from
disk to be emptied it must immediately be assigned a new disk position in case a checkpoint
occurs before the emptying is completed and remaining buffered information must be forced out
to disk. This means that the directory entries pointing down to the emptying nodes must be
immediately corrected to point to the new node locations. Similarly we must immediately assign
a disk position for newly created nodes so that directory entries in the tree will be able to point
immediately to the appropriate position on disk. At every point we need to take care that di-
rectory nodes containing pointers to lower-level nodes buffered by a rolling merge are also
buffered; only in this way can we make all necessary modifications quickly so that a checkpoint
will not be held up waiting for I/Os to correct directories. Furthermore, after a checkpoint
occurs and the multi-page blocks are read back into memory buffers to continue the rolling
merge, all the blocks involved must be assigned to a new disk position, and thus all directory
pointers to subsidiary nodes must be corrected. If this sounds like a great deal of work the
reader should recall that there is no additional I/O necessary and the number of pointers in-
volved is probably only about 64 for each block buffered. Furthermore these changes should be
amortized over a large number of merged nodes, assuming that the checkpoints are only taken
frequently enough to keep recovery time from growing beyond a few minutes; this implies a few
minutes of I/O between checkpoints.

5. Cost-Performance Comparisons with Other Access Methods

In our introductory Example 1.2, we considered a B-tree for the Acct-ID||Timestamp index on
the History file because it is the most common disk-based access method used in commercial
systems. What we wish to show now is that no other disk indexing structure consistently gives
superior I/O performance. To motivate this statement, we argue as follows.

-26-

Assume we are dealing with an arbitrary indexing structure. Recall that we calculated the
number of entries in the Acct-ID||Timestamp index by assuming they were generating 1000
entries per second over a 20 day period of accumulation with eight hour days. Given index
entries 16 bytes in length (4 bytes for the Acct-ID, 8 bytes for the timestamp, and 4 bytes for
the History row RID) this implies 9.2 GBytes of entries or about 2.3 million 4 KByte pages of
index, even if there is no wasted space. None of these conclusions are subject to change because
of the specific choice of index method. A B-tree will have a leaf level with a certain amount of
wasted space together with upper level directory nodes, whereas an extendible hash table will
have a somewhat different amount of wasted space and no directory nodes, but both structures
must contain 9.2 GBytes of entries as calculated above. Now to perform an insert of a new index
entry into an index structure, we need to calculate the page on which the entry is to be inserted
and make sure that page is memory resident. The question naturally arises: Are newly inserted
entries generally placed in an arbitrary position among all 9.2 GBytes of index entries that are
already present? The answer, for most classical acccess method structures, is Yes.

Definition 5.1. We say that the index structure of a disk based access method has the prop-
erty of being a Continuum Structure if the indexing scheme provides for immediate placement of
a newly inserted index entry in its ultimate collation order, based on key-value, with all other
entries already present. �

Recall that successive transactions in the TPC benchmark application have Acct-ID values
generated at random from each of 100,000,000 possible values. By Definition 1.1, each new
entry insert of an Acct-ID||Timestamp index will be placed in a pretty much random position on
one of 2.3 million pages of entries that already exist. In a B-tree, for example, the
576,000,000 accumulated entries will contain on the average 5.76 entries for each Acct-ID;
presumably each entry with the same Acct-ID has a distinct Timestamp. Each new entry insert
will therefore be placed on the right of all entries with the same Acct-ID. But this still leaves
100,000,000 points of insert randomly chosen, which certainly implies that each new insert
will be on a random one of the 2.3 million pages of existing entries. In an extendible hashing
scheme [9], by contrast, new entries have a collation order calculated as a hash value from the
Acct-ID||Timestamp key-value, and clearly any placement of a new entry in sequence with all
entries already present is equally likely.

Now 2.3 million pages is the minimum number on which the 9.2 GBytes of entries of a
Continuum Structure can sit, and given 1000 inserts per second, each page of such a Structure
is accessed for a new insert about once every 2,300 seconds; by the Five Minute Rule it is
uneconomical to keep all these pages buffered. If we consider larger nodes to hold the entries as
in the Bounded Disorder file [16], this provides no advantage, for although there is a greater
frequency of reference, the cost of memory to buffer the node is also greater and the two effects
cancel. In general, then, a page is read into memory buffer for an entry insert and must later
be dropped from buffer to make room for other pages. In transactional systems that update disk
pages in place before dropping them from buffer, this update requires a second I/O for each
index insert. Thus we are able to state that a Continuum Structure that does not defer updates
will require at least two I/Os for each index insert, approximately the same as a B-tree.

Most existing disk-based access methods are Continuum structures, including B-trees [5] and
its large number of variants such as SB-trees [21], Bounded Disorder Files [16], various
types of hashing schemes such as extendible hashing [9], and a myriad others. However, there
are a few access methods which migrate their entries from one segment to another: MD/OD R-
Trees of Kolovson and Stonebraker ([15]) and Time-Split B-trees of Lomet and Salzberg
([17], [18]). The Differential File approach [25] also collects up changes in a small compo-
nent, later performing updates to the full-sized structure. We will consider these structures
in a bit more depth.

-27-

First of all we should analyze exactly why the LSM-tree beats the Continuum Structure in
terms of I/O performance, reducing the disk arm load as much as two orders of magnitude in
certain situations. In its most general formulation the advantage the LSM-tree enjoys results
from two factors: (1) the ability to keep component C0 memory resident, and (2) careful de-
ferred placement. It is crucial that the original insert be made to a memory based component.
Inserts of new entries in Continuum Structures require two I/Os for exactly this reason: that
the size of the index in which they must be placed cannot economically be buffered in memory.
If the assured memory residence of component C0 in the LSM-tree were not assured, if this
were merely a probabilistic concomitant of buffering a relatively small disk resident struc-
ture, there would presumably be circumstances where the memory-resident property would
deteriorate, and this would lead to serious deterioration in LSM-tree performance as a growing
fraction of new entry inserts led to additional I/Os. Given the guarantee that the initial insert
will not cause an I/O, the second factor supporting high performance in the LSM-tree, a careful
deferred placement in the larger continuum of the index, is important to guarantee that com-
ponent C0 won't grow without control in the expensive memory medium. Indeed the multi-
component LSM-tree provides for a sequence of deferred placements to minimize our total cost.
It will turn out that with the special structures considered that are not Continuum Structures,
that while deferred placement in the final position of newly inserted entries is provided for,
this is not carefully done to guarantee that the initial component for new inserts remains
memory resident. Instead this component is seen as disk resident in the defining papers, al-
though a large proportion may be buffered in memory. But because there is no control of this
factor, the component can grow to be predominantly disk resident, so that the I/O performance
will degrade to a point where each new insert requires at least two I/Os, just like a B-tree.

Time-Split B-tree

To begin with, we consider the Time-Split B-tree or TSB-tree of Lomet and Salzberg ([17],
[18]). The TSB-tree is a two-dimensional search structure to locate records by dimensions of
timestamp and keyvalue. It is assumed that each time a record with a given key value is in-
serted, the old one becomes outmoded; however, a permanent history of all records, outmoded or
not, is kept indexed. When a new entry is inserted in a (current) node of a TSB-tree that has no
room to accept it, the node can be split either by key-value or by time, depending on circum-
stance. If a node is split by time, t, all entries with timestamp range less than t go to the his-
tory node of the split, all entries with timestamp range crossing t go to the current node. The
object is to eventually migrate outmoded records out to a history component of the TSB-tree on
inexpensive write-once storage. All current records and current nodes of the tree lie on disk.

We see the model for the TSB-tree is somewhat different from ours. We do not assume our older
History row is outmoded in any sense when a new History row with the same Acct-ID has been
written. It is indisputable that the current node set of the TSB-tree forms a separate component
that defers updates to a longer-term component. However, there is no attempt to keep this
current tree in memory as with the C0 component of the LSM-tree. Indeed, the current tree is
presented as being disk resident while the history tree is resident on write-once storage. There
is no claim that the TSB-tree accelerates insert performance; the intent of the design is rather
to provide a history index to all records generated over time. Without a guaranteed memory
resident component to which new inserts are performed, we are back to the situation of two I/Os
for each entry insert.

MD/OD R-Tree

The MD/OD R-tree of Kolovson and Stonebraker, [15], is comparable to the TSB-tree, in that it
uses a two dimensional access method (R-tree) variant to cluster and index historical records
by timestamp range and keyvalue. The important R-tree variation introduced in the MD/OD R-

-28-

tree is that the structure is meant to span magnetic disk (MD) and optical disk (OD); the ul-
timate object, as with the TSB-tree, is to eventually migrate outmoded records to an archive R-
tree with leaf pages and appropriate directory pages contained on inexpensive write-once op-
tical storage. This migration occurs by means of a Vacuum Cleaner Process (VCP). Whenever
the R-tree index on magnetic disk reaches a threshold size, the VCP moves some fraction of the
oldest leaf pages to the archive R-tree on optical disk. Two different variations of this process,
involving the percentage to be vacuumed and whether the archive and current R-trees are one
or two structures, are investigated in the paper (MD/OT-RT-1 and MD/OT-RT-2). As with
the TSB-tree, the current (MD R-tree) is represented as being disk resident while the archive
tree (OD R-tree) is resident on write-once storage, and there is no claim that the MD/OD R-
tree accelerates insert performance. Clearly the OD target precludes the rolling merge tech-
nique. Without a guaranteed memory resident component to which new inserts are performed,
we return to the situation of two I/Os for each entry insert. Indeed, even with a small number
of records used for simulation in [15], Figure 4 shows that the average number of pages read
per insert never goes below two for the two variant structures investigated. There is a rough
correspondence between the LSM-Tree and the MD/OD R-Tree if the latter is promoted up one
level of the memory hierarchy to use memory and disk, but most of the details are not the same
because of the differences in the features of the three media.

Differential File

The Differential File approach [25] starts with a main data file which remains unchanged over
an extended period, while newly added records are placed into a specific overflow area known as
a Differential File. At some future point (not carefully specified) it is assumed that the changes
will be amalgamated with the main data file, and a new Differential File will be started. Much of
the content of the paper has to do with advantages of having a much smaller dynamic area and
methods to avoid double-accesses, find operations by unique record identifier which need to look
first in the differential file (through some index) and then in the main data file (presumably
through a separate index). The concept of a Bloom filter is suggested as the main mechanism to
avoid such double accesses. Once again, as with access methods defined above, the Differential
File makes no provision to keep the Differential File memory resident. It is suggested in Section
3.4 that while the Differential File is being dumped and later incorporated into the main file, a
"differential-differential" file could reasonably be held in memory cache to permit online re-
organization. This approach is not analyzed further. It corresponds to the idea of maintaining a
C0 component in memory while C1 is merged with C2, but the presentation seems to assume
relatively slow insert rates, confirmed by the example given in Section 3.2 of a 10,000,000
record file with 100 changes per hour. It is not suggested that a differential-differential file
should be kept memory resident at all times and no mention is made of I/O savings for insert
operations.

Selective Deferred Text Index Updates

The text index maintenance method of Dadum, Lum, Praedel, and Schlageter [7] is also designed
to improve system performance in index updates by deferring the actual disk writes. Index
updates are cached in memory until forced out by conflicts with queries or trickled out by a
background task. This being a text system, a conflict here would be between the keywords as-
sociated with the document being updated and those associated with the query. After the update,
the query runs off of the index on disk. Thus the memory cache is not part of the authoratative
index, unlike the LSM-Tree. The deferral method allows some batching of updates in both in the
forced and trickled cases. However the pattern of updates still looks like that of a Continuum
Structure.

-29-

6. Conclusions and Suggested Extensions

A B-tree, because it has popular directory nodes buffered in memory, is really a hybrid data
structure which combines the low cost of disk media storage for the majority of the data with
the high cost of memory accessibility for the most popular data. The LSM-tree extends this
hierarchy to more than one level and incorporates the advantage of merge I/O in performing
multi-page disk reads.

In Figure 6.1, we expand on Figure 3.1, graphing "cost of access per MByte" against "rate of
access per MByte", i.e., data temperature, for data access through a B-tree and through an
LSM-tree of two components, i.e., number of disk components K = 1. Starting at the lowest
access rate, "cold" data has a cost proportional to the disk media on which it sits; In terms of
the typical cost figures, up to .04 I/Os per second per MByte, the "freezing point", disk access
costs $1 per MByte. The "Warm data" region begins at the freezing point, when disk arms be-
come the limiting factor in access and the media is underutilized; In terms of Example 3.3, 1
page I/O per second per MByte would cost $25 per MByte. Finally, we have "Hot data" when the
access is so frequent that B-tree-accessed data should remain in memory buffers; at $100 per
MByte of memory, the cost of this access rate will be $100 per MByte, and this implies a rate
of at least 4 I/Os per second per MByte, the "boiling point".

K=1
LSM-tree

B-tree

Insert Temperature
(inserts/sec/Mbyte)

Cost/Mbyte Hot Data

Warm Data

Cold Data

Figure 6.1. Graph of cost of access per MByte vs. Insert Temperature

The effect of buffering on a B-tree is to flatten the graph as the rate of access enters the Hot
Data region, so that more frequent access doesn't result in ever higher costs extending the slope
of the rising line for Warm Data. With a bit of thought, it can be seen that the effect of the
LSM-tree is to reduce the cost of access, for any realistic rate of access for mergeable opera-
tions such as insert and delete, strongly towards that of cold data. Further, many cases of access
rate that would indicate memory residence of the B-tree, the cases labeled "Hot Data" in Figure
4.1, can be accommodated mostly on disk with the LSM-tree. In these cases, the data is hot in
terms of logical access rate (inserts/sec) but only warm in terms of physical disk access rate
because of the batching effect of the LSM tree. This is an extremely significant advantage for
applications that have a great preponderance of mergeable operations.

6.1 Extensions of LSM-tree Application

To begin with, it should be clear that the LSM-tree entries could themselves contain records
rather than RIDs pointing to records elsewhere on disk. This means that the records themselves
can be clustered by their keyvalue. The cost for this is larger entries and a concomitant ac-

-30-

celeration of the rate of insert R in bytes per second and therefore of cursor movement and total
I/O rate H. However, as we saw in Example 3.3 a three component LSM-tree should be able to
provide the necessary circulation at a cost of the disk media to store the records and index, and
all of this disk media would be needed in any event to store the rows in a non-clustered manner.

Advantages of clustering might have quite important performance implications. For example,
consider the Escrow transactional method [20], which serves as a good layer to support work-
flow management because of the non-blocking nature of long-lived updates. In the Escrow
method, a number of incremental changes to various aggregate Escrow fields can be generated by
a long-lived transaction transaction. The approach used is to set aside the incremental amount
requested (Escrow quantity) and unlock the aggregate record for concurrent requests. We need
to keep logs for these Escrow quantities, and we can think of two possible clustering indexes for
these logs: Transaction ID (TID) of the generating transaction, and Field ID (FID) of the field on
which the Escrow quantity was taken. We might easily have twenty Escrow logs with a single
TID in existence over an extended period (extended enough so that the logs are no longer be
memory resident in classical log structures), and clustering by TID would be important up
until the time when the transaction performs a commit or abort, which determines the ultimate
effect these logs will have. In the event of a commit, the quantity taken out of the field would be
permanent and the log can simply be forgotten, but in the event of an abort we would like to
return the quantity to the field specified by the log's FID. A certain amount of speed is called
for. In processing an abort, the logs of an aborted transaction should be accessed (clustering by
TID is an important advantage) and fields with corresponding FID should be corrected. However,
if the field is not memory resident, rather than read in the containing record the log can be re-
inverted (placed in a different LSM-tree) clustered by its FID. Then when an Escrow field is
read back into memory, we will try to access all logs clustered by FID that might have some
update to perform; again there might be a large number of logs accessed, and clustering these
logs in an LSM-tree is an important savings. Using LSM-trees to cluster Escrow logs first by
TID, then by FID when the associated field is not in memory, will save a large number of I/Os
where long-lived transactions make large numbers of updates to cold or warm data. This ap-
proach is an improvement over the "extended field" concept of [20].

Another possible variation to the LSM-tree algorithm mentioned at the end of Section 2.2 is the
possibility of retaining recent entries (generated in the last τi seconds) in component Ci rather
then letting them migrate out to Ci+1. A number of alternatives are suggested by this idea. One
variation suggests that during cursor circulation, a time-key index such as that provided by the
TSB-tree might be generated. The rolling merge can be used to provide great efficiency for new
version inserts, and the multi-component structure suggests a final component migration to
write-once storage, with a good deal of control over archival time-key indexing. This approach
clearly deserves further study, and has been the subject of a conference paper [22].

Other ideas for further research include the following.

(1) Extend the cost analysis approach of Theorem 3.1 and Example 3.3 to situations where
some proportion of find operations must be balanced with the merge for purposes of I/O bal-
ancing. Because of tha added load on the disks, it will no longer be possible to assign all of the
disk I/O capacity to rolling merge operations and optimize for that case. Some proportion of the
disk capacity will have to be set aside for the find operation workload. Other ways to extend the
cost analysis are to allow for deletions prior to migration to component CK and consider re-
taining some proportion of recent entries in the inner component Ci-1 during the (Ci-1, Ci)
merge.

(2) It is clear that we can offload the CPU work to maintain the LSM-tree so that this doesn't
have to be done by the CPU that produces the log records. We merely need to communicate the

-31-

logs to the other CPU and then communicate later find requests as well. In cases where there is
shared memory, it is possible that finds can be done almost without added latency. The design
for such distributed work needs to be carefully thought out.

Acknowledgments

The authors would like to acknowledge the assistance of Jim Gray and Dave Lomet, both of whom
read an early version of this paper and made valuable suggestions for improvement. In addition,
the reviewers for this journal article made many valuable suggestions.

References

[1] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman, "The Design and Analysis of
Computer Algorithms", Addison-Wesley.

[2] Anon et al., "A Measure of Transaction Processing Power", Readings in Database Systems,
edited by Michael Stonebraker, pp 300-312, Morgan Kaufmann, 1988.

[3] R. Bayer and M Schkolnick, "Concurrency of Operations on B-Trees", Readings in Database
Systems, edited by Michael Stonebraker, pp 129-139, Morgan Kaufmann 1988.

[4] P. A. Bernstein, V. Hadzilacos, and N. Goodman, "Concurrency Control and Recovery in
Database Systems", Addison-Wesley, 1987.

[5] D. Comer, "The Ubiquitous B-tree", Comput. Surv. 11, (1979), pp 121-137.

[6] George Copeland, Tom Keller, and Marc Smith, "Database Buffer and Disk Configuring and
the Battle of the Bottlenecks", Proc. 4th International Workshop on High Performance
Transaction Systems, September 1991.

[7] P. Dadam, V. Lum, U. Praedel, G. Shlageter, "Selective Deferred Index Maintenance &
Concurrency Control in Integrated Information Systems," Proceedings of the Eleventh
International VLDB Conference, August 1985, pp. 142-150.

[8] Dean S. Daniels, Alfred Z. Spector and Dean S. Thompson, "Distributed Logging for
Transaction Processing", ACM SIGMOD Transactions, 1987, pp. 82-96.

[9] R. Fagin, J. Nievergelt, N. Pippenger and H.R. Strong, Extendible Hashing — A Fast Access
Method for Dynamic Files, ACM Trans. on Database Systems, V 4, N 3 (1979), pp 315-344

[10] H. Garcia-Molina, D. Gawlick, J. Klein, K. Kleissner and K. Salem, "Coordinating Multi-
Transactional Activities", Princeton University Report, CS-TR-247-90, February 1990.

[11] Hector Garcia-Molina and Kenneth Salem, "Sagas", ACM SIGMOD Transactions, May 1987,
pp. 249-259.

[12] Hector Garcia-Molina, "Modelling Long-Running Activities as Nested Sagas", IEEE Data
Engineering, v 14, No 1 (March 1991), pp. 14-18.

[13] Jim Gray and Franco Putzolu, "The Five Minute Rule for Trading Memory for Disk
Accesses and The 10 Byte Rule for Trading Memory for CPU Time", Proceedings of the 1987
ACM SIGMOD Conference, pp 395-398.

-32-

[14] Jim Gray and Andreas Reuter, "Transaction Processing, Concepts and Techniques",
Morgan Kaufmann 1992.

[15] Curtis P. Kolovson and Michael Stonebraker, "Indexing Techniques for Historical
Databases", Proceedings of the 1989 IEEE Data Engineering Conference, pp 138-147.

[16] Lomet, D.B.: A Simple Bounded Disorder File Organization with Good Performance, ACM
Trans. on Database Systems, V 13, N 4 (1988), pp 525-551

[17] David Lomet and Betty Salzberg, "Access Methods for Multiversion Data", Proceedings of
the 1989 ACM SIGMOD Conference, pp 315-323.

[18] David Lomet and Betty Salzberg, "The Performance of a Multiversion Access Method",
Proceedings of the 1990 ACM SIGMOD Conference, pp 353-363.

[19] Patrick O'Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O'Neil, "The Log-Structured
Merge-Tree (LSM-tree)", UMass/Boston Math & CS Dept Technical Report, 91-6, November,
1991.

[20] Patrick E. O'Neil, "The Escrow Transactional Method", TODS , v 11, No 4 (December
1986), pp. 405-430.

[21] Patrick E. O'Neil, "The SB-tree: An index-sequential structure for high-performance
sequential access", Acta Informatica 29, 241-265 (1992).

[22] Patrick O'Neil and Gerhard Weikum, "A Log-Structured History Data Access Method
(LHAM)," Presented at the Fifth International Workshop on High-Performance Transaction
Systems, September 1993.

[23] Mendel Rosenblum and John K. Ousterhout, "The Design and Implementation of a Log
Structured File System", ACM Trans. on Comp. Sys., v 10, no 1 (February 1992), pp 26-52.

[24] A. Reuter, "Contracts: A Means for Controlling System Activities Beyond Transactional
Boundaries", Proc. 3rd International Workshop on High Performance Transaction Systems,
September 1989.

[25] Dennis G. Severance and Guy M. Lohman, "Differential Files: Their Application to the
Maintenance of Large Databases", ACM Trans. on Database Systems, V 1, N 3 (Sept. 1976), pp
2 5 6 - 2 6 7 .

[26] Transaction Processing Performance Council (TPC), "TPC BENCHMARK A Standard
Specification", The Performance Handbook: for Database and Transaction Processing Systems,
Morgan Kauffman 1991.

[27] Helmut Wächter, "ConTracts: A Means for Improving Reliability in Distributed
Computing", IEEE Spring CompCon 91.

[28] Gerhard Weikum, "Principles and Realization Strategies for Multilevel Transaction
Management", ACM Trans. on Database Systems, V 16, N 1 (March 1991), pp 132-180.

[29] Wodnicki, J.M. and Kurtz, S.C.: GPD Performance Evaluation Lab Database 2 Version 2
Utility Analysis, IBM Document Number GG09-1031-0, September 28, 1989.

